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Abstract: In making weather and climate predictions, the goal is often not to predict the instantaneous,
local value of temperature, wind speed, or rainfall; instead, the goal is often to predict these quantities after
averaging in time and/or space—for example, over one day or one week. What is the impact of spatial and/or
temporal averagingon forecasting skill?Here this question is investigatedusing simple stochasticmodels that
can be solved exactly analytically. While the models are idealized, their exact solutions allow clear results
that are not a�ected by errors from numerical simulations or from random sampling. As a model of time
series of oscillatory weather �uctuations, the complex Ornstein-Uhlenbeck process is used. To furthermore
investigate spatial averaging, the stochastic heat equation is used as an idealized spatiotemporal model for
moisture and rainfall. Space averaging and time averaging are shown to have distinctly di�erent impacts on
prediction skill. Spatial averaging leads to improved forecast skill, in line with some forms of basic intuition.
Time averaging, on the other hand, is more subtle: it may either increase or decrease forecast skill. The subtle
e�ects of time averaging are seen to arise from the relative de�nitions of the time averaging window and the
lead time. These results should help in understanding and comparing forecasts with di�erent temporal and
spatial averaging windows.

Keywords: prediction skill, lead time, temporal averaging, stochastic partial di�erential equations, Ornstein-
Uhlenbeck process, stochastic heat equation

1 Introduction
Weather predictions are commonly made for averaged quantities. For example, the amount of rainfall might
be predicted as an average in time over an hour, day, week, month, season, etc. [30, 36, 40]. For longer time
averages, the forecasts are often associated with intraseasonal variability such as the Madden–Julian Oscil-
lation (MJO) [1, 6, 16, 18–20, 22, 39] or El Niño–Southern Oscillation (ENSO) [3, 17, 25, 27, 33]. For shorter
time averages, the forecasts are often associated with synoptic variability or individual convective storms.
The question of spatial averaging becomes particularly relevant as further details of convective systems are
resolved by newer numerical weather predictionmodels, andmany new challenges arise in formulating fore-
casts of precipitation and in assessing errors and uncertainties [2, 4, 11, 12, 24, 28, 29].

Oneof themainquestionshere is:Howdoesprediction skill vary as the space- and/or time-averagingwin-
dow is varied? Here this question is investigated using exactly solvable models, which allows precise assess-
ment of forecastswithout being tarnishedby errors fromnumerical approximations or pseudo-randomMonte
Carlo sampling. The �rst model used here is the complex Ornstein–Uhlenbeck (cOU) process, a stochastic
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model for time series of weather �uctuations [21, e.g.]. The second model used here is the stochastic heat
equation, which has been used as an idealized spatiotemporal model of tropical rainfall [13, 31, 32].

A priori, one would perhaps expect from basic intuition that spatially and/or temporally averaged vari-
ables should have longer predictability. Intuition would suggest that averaging should �lter out the high-
frequency, nearly unpredictable components of the system, and only the low-frequency, more-predictable
components of the systemwould remain. For example, a time average over aweek or amonth should “average
out” the small-scale �uctuations in rainfall associated with individual convective storms, and the remaining,
averaged signal should be associated with low-frequency variability such as the MJO and/or ENSO.

In the results shown here, this basic intuition sometimes holds and sometimes does not. Di�erent results
will be seen for spatial versus temporal averaging. Spatial averaging leads to improved forecast skill, in line
with the basic intuition described above. Time averaging, on the other hand, is more subtle: it may either
increase or decrease forecast skill, depending on the relative de�nition of the lead time.

Our original motivation stemmed from analyzing some preliminary forecasts of precipitation associated
with convectively coupled equatorial waves (CCEWs) and the MJO, using the model of [32]. In forecasting
the rainfall associated with such multiscale systems, the skill could potentially be measured in a variety of
ways, depending on the length scales and time scales and wave types of interest. Some very recent studies
have now analyzed the forecast skill in this setting using operational numerical weather prediction models
[10, 14, 37, 38]. In the future it would be interesting to conduct more detailed forecasts with the model of
[32], which could o�er theoretical perspectives owing to the model’s simplicity relative to numerical weather
prediction systems.

The paper is organized as follows. The model equations and prediction setup are de�ned in section 2.
Forecasts of time series of the cOU process are presented in section 3. Subtleties of time averaging are dis-
cussed in further detail in section 4, including comparisons of di�erent de�nitions of lead time relative to
the averaging window. Forecasts of the spatiotemporal rainfall model (the stochastic heat equation) are pre-
sented in section 5, allowing investigation of both time averaging and space averaging, and allowing investi-
gation of time averaging for a more complicated system that has numerous degrees of freedom. Conclusions
are described in section 6.

2 Models and Methods
In this section, the two exactly solvablemodels are introduced: the complex Ornstein-Uhlenbeck process as a
model for a single oscillatorymode, and the stochastic heat equation as amodel for spatiotemporal dynamics.
In addition, several aspects of the forecasting setup are also described, including measures of forecast skill
and de�nitions of time and space averaging.

2.1 Mathematical Models

2.1.1 Complex Ornstein-Uhlenbeck(cOU) Process

A complex Ornstein-Uhlenbeck(cOU) process is applied for the �rst insight of the forecasting behaviors in
predicting signals at single time points or signals averaged over a temporal window. Conducting forecasting
analyses on a cOU process is a meaningful attempt for detecting the forecast skill for predicting signals with
a single oscillation mode. We consider a complex linear stochastic di�erential equation for the Ornstein-
Uhlenbeck process

du(t) = (−γ + iω)u(t) + σdW(t), (1)

where γ, σ > 0 and ω are real numbers and

dW(t) ≡ dW1(t) + idW2(t)√
2

(2)
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is a complex Gaussian white noise where each component satis�es

dWj(t) ≡ Ẇj(t)dt, j = 1, 2 (3)

that is, white noise is a "derivative" of the Wiener processWj(t) and it satis�es the following properties

E[Ẇj(t)] = 0 (4)
E[Ẇj(t)Ẇj(s)] = δ(t − s) (5)
E[Ẇi(t)Ẇj(s)] = 0 for i = ̸ j. (6)

The exact solution of (1) is

u(t) = e(−γ+iω)tu(0) + σ
t∫

0

e(−γ+iω)(t−s)dW(s). (7)

As t → ∞, u(t) will converge to a stationary Gaussian distribution with mean 0 and variance σ2

2γ (see details
in [21]).
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Figure 1: Panel a: Time series of the real part of a simulated signal from a cOU process over 12 months; Panel b: Time series of
RMM1 index in the year 2000. In both panels, the blue curve is the original signal while the dashed red curve is the half-month
averaged signal (namely û(t, Tw = 0.5 month) from t = 0 to t = 12 months in (12)).

In the simulation andplotting in this paper,we choose theparameters γ = 0.1month−1,ω = 4
3πmonth−1,

σ = 0.5 to represent a wave with oscillation period 2π/ω = 1.5 months like the MJO and a decorrelation
time 1/γ = 10 months that is longer than the oscillation period, resulting in the occurrence of sequences
of irregular wave oscillations. All the analytic formulas have been checked with the numerical simulations.
A simulated time series over 12 months is shown in panel a of Fig. 1 along with the time series of Real-time
Multivariate MJO (RMM) index in the year 2000. The similarities between the two time series show that the
cOU signals are good representations for the dynamics to some extent. When a time averaging is applied,
small oscillations will be removed from the original signal through the temporal averaging process so that
the signal becomes smoother with an expectation for a lower variance.

For investigating more about in�uences of temporal and spatial averaging in forecasting, a one dimen-
sional model based on the stochastic heat equation is analyzed for some insight. The simple model applied
to the water vapor dynamics has been shown that it has behaviors very similar to the observational statistics
in the article [13]. The model is a stochastic PDE

∂q
∂t = b0 52 q − 1

τ (q − q*) + F + D*Ẇ , (8)
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where q(t, x) is the signal at time t and location x depending on a spatial interaction constant b0, the relax-
ation time τ, the relaxation target q*, an external force F and the stochastic forcing variance D2

* . Now, Ẇ is a
space-time white noise. It can be characterized as a centered Gaussian process such that E[Ẇ(s, x)Ẇ(t, y)] =
δ(s − t)δ(x − y). We call (8) as SHE or SPDE for abbreviations in this paper. In one dimensional case, (8) can
be solved analytically as

q(t, x) = q* + τF + e−t/τ

(4πb0t)1/2

∫
R

e−
|x−y|2

4b0 t (q(0, y) − q* − τF)dy

+ e−t/τ

t∫
0

1
(4πb0|t − s|)1/2

∫
R

e−
|x−y|2

4b0(t−s) es/τẆ(s, y)dyds. (9)

Besides the analytical solution, there are many useful and important statistics that can be computed directly
using the analytical solution, such as the temporal covariance cov[q(t, x)q(s, x)] and the spatial covariance
cov[q(t, x)q(t, y)] which will help a lot in accessing the forecast skill (See in appendix section C). The signal
arising from this type of stochastic partial di�erential equation like (8) will enter into a stationary Gaussian
distribution as time goes to in�nity. The stationary distribution has mean q* + τF and variance D*

4

√
τ
b0

. In
addition, seeing from spatial Fourier space, q(t, x) can be decomposed into the integral of a bunch of compo-
nents satisfying the equation of a cOU process (1) independently. All the components have a corresponding
decorrelation time 1/γ in the cOU process that is not greater than τ and ω = 0. From this point of view, q(t, x)
can be seen as the combination of numerous di�erent waves with decorrelation time not greater than τ and
oscillation frequency ω = 0. A detailed description and derivation for the discrete version of this Fourier
transform can be seen in [13].
In our simulation and �gures, we aim to simulate to recover the rainfall statistics according to the prob-
ability distribution in [13] and the power spectrum density plot in [35]. τ = 96 hours, q* = 65 mm, F =
−0.125 mm · hour−1, b0 = 104 km2 · hour−1, D* = 25 mm · km1/2 · hour−1/2 are chosen for this purpose. All
the analytic formulas have been checkedwith the numerical simulation. Both the temporal averaging and the
spatial averaging have an in�uence on eliminating the small oscillations and smoothing. A global dynamic
view of the simulated q(t, x) over one year is shown in panel a of Fig. 2 alongwith the OLR observational data
in the year of 2010 after averaging over the tropical belt, which provides a OLR signal OLR(t, x) for time t and
longitude x. The power spectrum density plot of the simulated data in panel c of Fig. 2 performs a goodmatch
with the power density based on the observational OLR data in the paper [35] (shown in panel d of Fig. 2).
The similarities between the observational data and the simulated data provide evidence for that stochastic
heat equation is a reasonable and good model for representing the atmospheric dynamic system.

2.2 Measures of Forecasting Skill: Mean Square Error (MSE) and Pearson
Correlation Coe�cients (ρ)

Two types of frequently-used criterions, mean square error(MSE) and the Pearson correlation coe�cients,
are used in this paper for evaluating the forecasting skill. The mean square error measures the average of the
squares of the errors that is the di�erence between the predictions and the true signal. When a temporal or
spatial averaging is applied, the variance of the averaged signal will also be scaled from the variance of the
original signal. Hence, instead of theMSE, the ratio of theMSE over the variance of the averaged signal seems
to be a more reasonable andmeaningful measure for the assessment. The Pearson correlation coe�cient is a
measure of the strength and direction of the linear relationship between two variables.Mathematically, if X(t)
is the true signal from the cOU process (1) or the stochastic heat equation (8) and Y(t) is our prediction, both
X(t) and Y(t) are stationary and ergodic processes and (X(t), Y(t)) is also a jointly stationary and ergodic
process. Stationarity ensures that the �rst moment E[X(t)], E[Y(t)], the second moment E[X(t)2], E[Y(t)2]
and the mixed moment E[X(t)Y(t)] are all constants that are not depending on the time t. Then the MSE of
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a. b.

c.
d.

Figure 2: Panel a. A simulated global image of q(t, x); Panel b. A global image of of OLR observational data in the year
2010 after averaging over the tropical belt; Panel c. The power spectrum density of the simulated data; Panel d. Zonal
wavenumber-frequency spectrum of the base-10 logarithm of the background power from the OLR observational data cited
from Wheeler&Kiladis’s paper [35]©American Meteorological Society. Used with permission.

the estimator Y(t) with respect to the unknown variable X(t) is de�ned as

MSE(X(t), Y(t)) = E[(Y(t) − X(t))2], (10)

which is a constant not depending on the time t. The formula for the Pearson correlation coe�cients ρ can
be expressed as

ρ(X(t), Y(t)) = cov(X(t), Y(t))
σXσY

, (11)
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where cov(X(t), Y(t)) = E[(X(t) − E[X(t)])(Y(t) − E[Y(t)])] is the covariance between X(t), Y(t) and σX , σY
are the standard deviations of X, Y respectively. ρ(X(t), Y(t)) is also a constant that doesn’t change over
time. In a situation of analyzing the real data, we have the true data from the true signal as X1, X2, · · · , XN
and our corresponding predictions Y1, Y2, · · · , YN . By ergodicity, as N → ∞, the sample means 1

N
∑N

i=1 Xi,
1
N
∑N

i=1 Yi converge in squaredmean toE[X(t)],E[Y(t)]and limN→∞
1
N
∑N

i X
2
i = E[X(t)2], limN→∞

1
N
∑N

i Y
2
i =

E[Y(t)2], limN→∞
1
N
∑N

i XiYi = E[X(t)Y(t)]. These connect the sampleMSEand sample correlation coe�cient
of a real dataset with our idealized and theoretical de�nitions (10) and (11).

2.3 Temporal and Spatial Averaging: De�nitions and Notations

Figure 3: Schematic of default lead time and temporal averaging window de�nitions in the analysis. The horizontal axis repre-
sents forecast time from the initial condition at t0.

When we do the temporal averaging, there are di�erent ways to place the temporal averaging window.
Motivated by Fig. 1 in the paper [41], the default de�nitions of the lead time when there is a temporal aver-
aging window in this paper are shown in Fig. 3. For the temporal averaged cOU signal û(t, Tw) at time t with
averaging window width Tw, it is de�ned as the averaged signal from time t to time t + Tw, namely

û(t, Tw) = 1
Tw

t+Tw∫
t

u(s)ds. (12)

Similarly, the temporal averaged stochastic heat equation signal at time t with averaging window width Tw
at a single location x is de�ned as

q̂(t, x, Tw) = 1
Tw

t+Tw∫
t

q(s, x)ds. (13)

For the spatial averaging at location x, the signals are averaged over a spatial window [x − Lw/2, x + Lw/2]
with Lw as the averaging window width and x as the center of the spatial averaging window, namely

q̃(t, x, Lw) = 1
Lw

x+Lw/2∫
x−Lw/2

q(t, y)dy. (14)

The averaged signal with both temporal and spatial averaging is a combination of (13) and (14) as

q(t, x, Tw , Lw) = 1
LwTw

x+Lw/2∫
x−Lw/2

t+Tw∫
t

q(s, y)dsdy. (15)
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The changes of variances in the cOU or SHE signals through the temporal and/or spatial averaging are also
investigated, which is described in appendix section A in detail.

Note that both the complex Ornstein-Uhlenbeck process and the stochastic heat equation are Markovian
processes. With the aids of Markovian properties of the two models, a lot of useful analytical formulas are
derived and calculated when we assess the forecasting skills involving temporal and/or spatial averaging in
the later sections. It would be interesting in the future to investigate whether similar results are still seenwith
non-markovian processes.

3 Forecasting the Complex Ornstein-Uhlenbeck Process

3.1 Forecasting at a Single Time Point

In an idealized situation, we have the perfect model of a cOU process for predicting, which means we have
the exact true values of the parameters γ, ω, σ in (1). However, by using the ensemble mean prediction, the
value of σ essentially will not a�ect the prediction skill. The true signal is a known realization from the cOU
process, we denote it as

utruth(t; θ) = The true signal = u(t; θ) (16)
with the underlying parameter θ which labels the realization of the stochastic process. By (7), treating t − tL
as the current time, one single prediction for time t with lead time tL will be another realization starting from
utruth(t − tL; θ) with underlying parameter ζ as

upred(t, tL; ζ , θ) = The prediction of the value of u at time t,
given the value of u at time t − tL,
for ensemble member label ζ

= e(−γ+iω)tLutruth(t − tL; θ) + σ
t∫

t−tL

e(−γ+iω)(t−s)dW(s; ζ ). (17)

Note that, technically speaking,W(s; ζ ) here is from another newWiener process which could be denoted as
W̃(s; ζ ), although the tilde will be left o� in order to ease notation. Also note that the prediction upred can be
separated into components from the θ realization and ζ realization according to the Markovian nature of the
process, as the future is independent from the past.
At the same time utruth(t; θ) is also a realization starting from utruth(t − tL; θ) with underlying parameter θ as

utruth(t; θ) = e(−γ+iω)tLutruth(t − tL; θ) + σ
t∫

t−tL

e(−γ+iω)(t−s)dW(s; θ). (18)

Then the ensemble mean of the predictions in the form of (17) serves as the ensemble forecasting for time t
with ensemble size∞ which is

upred(t, tL; θ) = Eζ [upred(t, tL; ζ , θ)]

= e(−γ+iω)tLutruth(t − tL; θ). (19)

First, we predict the signal at single time pointswith the perfect cOUmodel and lead time tL. Themean square
error (MSEu) and the Pearson correlation coe�cient (ρu) between the prediction and the true signal can be
calculated as

MSEu(tL) = Eθ[|utruth(t; θ) − upred(t, tL; θ)|2]

= Eθ[|σ
t∫

t−tL

e(−γ+iω)(t−s)dW(s; θ)|2]
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= σ2

2γ (1 − e−2γtL ), (20)

where σ2

2γ is the variance of the true signal.

ρu(tL) = Eθ[(upred(t, tL; θ) − Eθ[upred(t, tL; θ)])(utruth(t; θ) − Eθ[utruth(t; θ)])*]
(var[upred(t, tL; θ)])1/2(var[utruth(t; θ)])1/2

= Eθ[upred(t, tL; θ)u*truth(t; θ)]
(var[upred(t, tL; θ)])1/2(var[utruth(t; θ)])1/2

= e(−γ+iω)tLEθ[utruth(t − tL; θ)u*truth(t; θ)]
e−γtL (var[utruth(t − tL; θ)])1/2(var[utruth(t; θ)])1/2

= e(−γ+iω)tL e(−γ−iω)tLEθ[utruth(t − tL; θ)u*truth(t − tL; θ)]
e−γtL σ2

2γ

= e−γtL . (21)

With a perfect model, the mean square error will keep increasing as the lead time increases but will never
exceed the variance of the underlying true signal. As lead time grows to in�nity, MSEu is approaching the
variance of the true signal. The correlation coe�cient ρu(tL) keeps decreasing with respect to the increasing
in the lead time and will drop below 0.5 if the lead time tL is larger than ln(2)/γ, approximately 0.69 of the
decorrelation time 1/γ. The characteristics of the forecasting skills at a single time point for a cOU process
are shown with the blue lines in Fig. 4. Since the conclusions fromMSE ratios are consistent with those from
the correlation coe�cients throughout this paper, we show only MSE formulas but not plots everywhere.
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Figure 4: Panel a. forecasting skill (correlation coe�cient) for di�erent temporal averaging windows of a cOU process with
ω = 0 under the default de�nitions clari�ed in the section 2.3; Panel b. forecasting skill (correlation coe�cient) for di�erent
temporal averaging windows of a cOU process with ω = 2π/(1.5 months) under the default de�nitions clari�ed in the section
2.3.

3.2 Forecasting with Temporal Averaging

Then we move on to assess the forecasting skill with a temporal averaging window. The forecasting skill is
achieved by comparing the averaged true cOU signal at time t, namely

ûtruth(t, Tw; θ) = 1
Tw

t+Tw∫
t

utruth(s; θ)ds
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Figure 5: Panel a. forecasting skill for di�erent lead times of a cOU process with ω = 0 under the default de�nitions clari�ed in
the section 2.3; Panel b. forecasting skill for di�erent lead times of a cOU process with ω = 2π/(1.5 months) under the default
de�nitions clari�ed in the section 2.3.

= 1
Tw

t+Tw∫
t

e(−γ+iω)(s−t+tL)utruth(t − tL; θ) + σ
s∫

t−tL

e(−γ+iω)(s−s′)dW(s′; θ)ds (22)

and the ensemble prediction at time t with lead time tL by the default de�nition clari�ed in the section 2.3
for this averaged true signal. Seeing t − tL as the current time, a single prediction with lead time tL for this
averaged signal with underlying ensemble label ζ is speci�ed as

ûpred(t, tL , Tw; ζ , θ) = 1
Tw

t+Tw∫
t

upred(s, s − (t − tL); ζ , θ)ds

= 1
Tw

t+Tw∫
t

e(−γ+iω)(s−t+tL)utruth(t − tL; θ) + σ
s∫

t−tL

e(−γ+iω)(s−s′)dW(s′; ζ )ds. (23)

Then the ensemble forecasting is the mean of the above forecasting with respect to ζ

ûpred(t, tL , Tw; θ) = Eζ [ûpred(t, tL , Tw; ζ , θ)]

= 1
Tw

t+Tw∫
t

e(−γ+iω)(s−t+tL)u(t − tL; θ)ds. (24)

Having all these ready, we are proceeding to compute the forecasting skill in this temporal averaging case.

M̂SEu(tL , Tw) = Eθ[|ûtruth(t, Tw; θ) − ûpred(t, tL , Tw; θ)|2]

= Eθ[| 1
Tw

t+Tw∫
t

σ
s∫

t−tL

e(−γ+iω)(s−s′)dW(s′; θ)ds|2]

= var[ûtruth(t, Tw; θ)] − σ
2

2γ
e−2γtL

(γ2 + ω2)T2
w

[e−2γTw − 2e−γTw cos(ωTw) + 1], (25)
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where var[ûtruth(t, Tw; θ)] is given in (52).

We do not present the details of the calculations that lead to (25), since they are relatively long and they
provide limited additional insight. To check the accuracy of the formula in (25), we conducted Monte Carlo
numerical simulations of the stochastic process in order to �nd statistical estimates of the forecast skill,
and the formula in (25) was in agreement with the statistical estimates (not shown). This same scenario will
repeat itself numerous times in the remainder of the paper; namely, many details of calculations will be
omitted, but the accuracy of the formulas was veri�ed using numerical statistical estimates.

From the formula in (25), one can see the following properties. With cos(ωTw) ≤ 1, the term e−2γTw −
2e−γTw cos(ωTw)+1 ≥ (e−γTw −1)2 ≥ 0, which indicates that M̂SEu(tL , Tw) ≤ var[ûtruth(t, Tw; θ)] always holds.
The mean square error is always controlled under the variance of the temporal averaged signal if forecasting
with a perfect model. It can be veri�ed that as Tw → ∞, M̂SEu(tL , Tw)→ 0 and as tL → ∞, M̂SEu(tL , Tw)→
var[ûtruth(t, Tw)].

For the Pearson correlation coe�cient,

ρ̂u(tL , Tw) = Eθ[ûpred(t, tL , Tw; θ)û*truth(t; θ)]
(var[ûpred(t, tL , Tw; θ)])1/2(var[û*truth(t; θ)]])1/2

= [ var[ûpred(t, tL , Tw; θ)]
var[ûtruth(t; θ)] ]1/2

= ρu(tL)
[

(γ2 + ω2)(e−2γTw − 2e−γTw cos(ωTw) + 1)

2γTw(γ2 + ω2) − 2(γ2 − ω2) + 2e−γTw
(

(γ2 − ω2) cos(ωTw) − 2γω sin(ωTw)
)]1/2

. (26)

The performances of the forecasting skills for di�erent temporal averaging windows and di�erent lead time
are demonstrated graphically in Fig. 4 and Fig. 5. (Note that a special behavior can sometimes arise when the
temporal averaging window Tw is an integer multiple of the oscillation period, 2π/ω. For example, in Fig. 5,
if Tw equals the oscillation period of 1.5 months, the prediction will have a very bad forecasting skill. This is
mainly because the signal is almost completely averaged out when the temporal averaging window equals
an integer multiple of the oscillation period; see also appendix A.)

From these two�gures 4 and 5,we can see clearly an interesting result: as the temporal averagingwindow
increases, the correlation coe�cient actually decreases, which means a worse forecasting for a larger tem-
poral averaging window. This is counter-intuitive. When a temporal averaging window is applied, intuitively
we would expect a lot of fast oscillations and unpredictable components would be averaged out, making the
resulting signal much easier to predict. But the results from the formulas tell us a totally counter story that
the temporal averaging makes the forecast skill worse!

4 Subtle Impacts of De�nitions of Averaging Window and Lead
Time

In the previous section, why did a wider temporal averaging window give a worse forecasting skill, counter
to what one would expect from basic intuition? With this question in mind, we have tried to review all of the
details of the procedure in order to determine the underlying cause. One key factor seems to be the relative
de�nitions of the lead time and the temporal averaging window, and the relative de�nition seems to cause
di�erences in the forecasting skills under di�erent settings. To illustrate the di�erent ways of making such
de�nitions, here in this section we use an alternative de�nition: the time of the right endpoint of a temporal
averaging interval is taken to be the “base time” of the averaged signal, which means a temporal averaged
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Figure 6: Schematic of a new lead time and temporal averaging window de�nition in the analysis. The horizontal axis repre-
sents forecast time from the initial condition at t0.
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Figure 7: Panel a. forecasting skill for di�erent temporal averaging windows of a cOU process with ω = 0 under the new def-
inition clari�ed in the Fig. 6 and equation (27); Panel b. forecasting skill for di�erent temporal averaging windows of a cOU
process with ω = 2π/(1.5 months) under the new de�nition clari�ed in the Fig. 6 and equation (27).

signal over a temporal averaging window with length Tw is de�ned as

ûRtruth(t; θ) = 1
Tw

t∫
t−Tw

utruth(s; θ)ds. (27)

A diagram for this new de�nition is shown in Fig. 6. In this new de�nition, it needs Tw < tL to make the
entire temporal averaging window lie in the future. If Tw > tL, then part of the averaging window lies in
the past which means that only part of the signals in the averaging window that lies in the future needs to
be predicted since the past is already known. Comparing the old and new de�nitions, the forecasting skill
can be easily evaluated by replacing the old lead time tL in (25) and (26) with tL − Tw if tL ≥ Tw, namely
M̂SE

R
u (tL , Tw) = M̂SEu(tL − Tw , Tw) and ρ̂Ru (tL , Tw) = ρ̂u(tL − Tw , Tw). If tL < Tw, the prediction in this new

de�nition will be made of a part of already known past values and a part of future forecasting. When tL < Tw,
M̂SE

R
u (tL , Tw) = M̂SEu(0, tL) · t2L/T2

w while ρ̂Ru needs to be calculated starting from the new de�nition. Here,
we omit the calculation details and directly give out the formulas.

M̂SE
R
u (tL , Tw) =

 var[ûtruth(t, tL; θ)] t
2
L
T2
w
− σ2

2γ
1

(γ2+ω2)T2
w

[e−2γtL − 2e−γtL cos(ωtL) + 1] if tL < Tw
var[ûtruth(t, Tw; θ)] − σ2

2γ
e−2γ tL

(γ2+ω2)T2
w

[e2γTw − 2eγTw cos(ωTw) + 1] if tL ≥ Tw
(28)
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ρ̂Ru (tL , Tw) =



[
var[ 1

Tw

( ∫ t
t+tL−Tw

utruth(s;θ)ds+
∫ t+tL
t upred(s,s−t;θ)ds

)
]

var[ûtruth(t,Tw;θ)]

]1/2
if tL < Tw

ρu(tL)
[

(γ2+ω2)(e2γTw−2eγTw cos(ωTw)+1)

2γTw(γ2+ω2)−2(γ2−ω2)+2e−γTw
(

(γ2−ω2) cos(ωTw)−2γωsin(ωTw)

)]1/2
if tL ≥ Tw

(29)

where

var[ 1
Tw
( t∫
t+tL−Tw

utruth(s; θ)ds +
t+tL∫
t

upred(s, s − t; θ)ds
)

]

= 1
T2
w

[
(Tw − tL)2var[ûtruth(t, Tw − tL; θ)] + σ2

2γ
1

γ2 + ω2 (e−2γtL − 2e−γtL cos(ωtL) + 1)

+ σ2

2γ Re[ 2
(γ + iω)2 (1 − e(−γ−iω)tL )(1 − e(−γ−iω)(Tw−tL))]

]
(30)

and var[ûtruth(t, Tw; θ)] is given in (52).

Figure 8: Schematic of another new lead time and temporal averaging window de�nition in the analysis. The horizontal axis
represents forecast time from the initial condition at t0.

From Fig. 7, we care more about the case when tL > Tw where the entire temporal averaging window
falls in the future. Now, under the new de�nition, when ω = 0, the forecasting skills are improving when a
wider temporal averaging window is applied. For ω ≠ 0, things get a little bit more complicated. Forecasting
is very bad when the signal is averaged over a window with length that is multiples of the oscillation period
2π/ω. But the highest skill in the second cycle for 2π/ω ≤ Tw ≤ 4π/ω is even better than the highest skill
in the �rst cycle when 0 ≤ Tw ≤ 2π/ω for positive lead time. These results show in a counter way as those
under the default de�nition we discussed in the section 3.2. This is all caused by the di�erent de�nitions of
the averaging window.

Another choice of the temporal averaging window at time t is to put the window center exactly at the
time point t as in the Fig. 8. With curiosity, we also dig into this case. The formulas of the new forecasting
skills MSECu (tL , Tw) and ρCu (tL , Tw) can be derived directly based on (28) and (29) through the relationship
MSECu (tL , Tw) = MSERu (tL+Tw/2, Tw) and ρCu (tL , Tw) = ρRu (tL+Tw/2, Tw) and their behaviors can be observed
in Fig. 9. For ω = 0, the forecasting skill is similar as but slightly better than the single time point predictions.
For the ω = 2π/1.5 months, very bad forecasting skills stay the same at Tw is multiples of oscillation cycles.
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Figure 9: Panel a. Pearson correlation coe�cient of forecasting a cOU process with ω = 0 under the new de�nition clari�ed
in the Fig. 8; Panel b. Pearson correlation coe�cient of forecasting a cOU process with ω = 2π/1.5 months under the new
de�nition clari�ed in the Fig. 8.

A summary �gure, Fig. 10, is plotted to give a comprehensive view of the changes in forecast skill with
di�erent de�nitions of the temporal averaging window. As the center of the temporal averaging window over
time tmoves from the left side to the right side of time t, such as from the de�nition in Fig. 6 to Fig. 3, the fore-
cast skill becomes worse. The centered de�nition in Fig. 8 has slightly better forecast skill than the baseline
which is the single time point forecasting.

Note that two di�erent γ values are chosen in Fig. 10, γ = 0.1 in panel a and γ = 0.5 in panelb.We can see
that the di�erences in forecast skill among di�erent locations of the temporal averaging windows are slight
when γ = 0.1 as the y-axis in panel a of Fig. 10 ranges from about 0.95 to 1.15 but are much more signi�cant
when γ = 0.5. This is because the correlation coe�cient ratio ρ̂(tL , Tw)/ρ(tL) under di�erent de�nitions is
depending on γTw, which can be seen as follows. If we think the baseline is the case of single time point
forecasting and then de�ne a as

a = The temporal averaging window center minus the lead time tL in baseline
Tw

. (31)

Then a is a variable representingwhere the temporal averagingwindow is placed. Denote ρ̂(tL , Tw) under the
de�nition of the temporal averaging window with a as ρ̂(tL , Tw , a). When ω = 0, the correlation coe�cient
ratio can be calculated as

ρ̂(tL , Tw , a)/ρ(tL) =
ρ̂
(
tL − (Tw/2 − aTw), Tw)

)
ρ(tL)

=
(

exp(−γTw)
)a[ exp(γTw) + exp(−γTw) − 2

2γTw + 2 exp(−γTw) − 2 ]1/2. (32)

It is depending on γTw while independent from tL.
In any case, to summarize, it is clear fromFig. 10 that the de�nition of the time averagingwindow, relative

to the de�nition of the lead time, has a signi�cant impact on the change in forecast skill. Certain de�nitions
can even lead to the counter-intuitive result that time averaging causes a worse forecast skill. A “centered”
time averaging window, which is centered about the target prediction time, appears to o�er only a small
increase in forecast skill, despite intuitive expectations that time averaging should o�er larger increases in
forecast skill.
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Figure 10: Forecast skills (Pearson correlation coe�cients) with temporal averaging under di�erent de�nitions as in Fig. 13
compared to the baseline (single time point forecasting) for predicting cOU processes with ω = 0. Tw = 2 months is �xed
and the correlation coe�cient ratio is not depending on the lead time tL. Only cases where the entire averaging window for
forecasting lies in the future are considered here (in other words, tL > Tw). The blue dot stands for the de�nition in Fig. 6 with
better forecast skill , the cyan diamond represents the de�nition of the similar skill as baseline (slightly better) in Fig. 8, the
green square is used for the de�nition of the worse forecast skill in Fig. 3. Panel a is for the case γ = 0.1 and panel b is for the
case γ = 0.5.

5 Forecasting an Idealized Spatiotemporal Rainfall Model:
Stochastic Heat Equation

A complex Ornstein-Uhlenbeck process is an interesting test case since it is a good presentation for a single
wave. Nevertheless, spatial averaging issues cannot be conducted in a forecasting problem for a cOU signal.
Meanwhile, in the real world, we are often trying to predict signals composed of numerous waves or modes.
The cOU process is not enough for getting insights for those situations. Therefore, we proceed to study the
forecasting problem for the signal arising from a stochastic heat equation in the form of (8). Now we return
to the default de�nition of the time-averaging window from section 2.3 and take a look at the forecasting
behaviors for this type of signals.

5.1 Forecasting at a Single Time Point and a Single Spatial Location

The stochastic PDE (8) can be solved analytically. For convenience, let’s denote

Q(t, x) = q(t, x) − q* − τF, (33)

then E[Q(t, x)] = 0 for t → ∞. Similar to the cOU process, the true signal qtruth(t, x; θ) is a realization from
(8), say it is with underlying parameter θ as

qtruth(t, x; θ) = q(t, x; θ) = Q(t, x; θ) + q* + τF

= q* + τF + e−tL/τ

(4πb0tL)1/2

∫
R

e−
|x−y|2
4b0 tL Q(t − tL , y; θ)dy

+

tL∫
0

1
(4πb0|tL − s|)1/2

∫
R

e−
|x−y|2

4b0(t−s) e−(tL−s)/τẆ(s + t − tL , y; θ)dyds. (34)
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A single prediction qpred(t, x, tL; ζ , θ) for predicting qtruth(t, x; θ) with lead time tL is then a realization with
another underlying parameter ζ . In other words, it is

qpred(t, x, tL; ζ , θ) = q* + τF + e−tL/τ

(4πb0tL)1/2

∫
R

e−
|x−y|2
4b0 tL Q(t − tL , y; θ)dy

+

tL∫
0

1
(4πb0|tL − s|)1/2

∫
R

e−
|x−y|2

4b0(t−s) e−(tL−s)/τẆ(s + t − tL , y; ζ )dyds. (35)

With lead time tL, the ensemble forecasting for time t is the mean of all the single predictions
qpred(t, x, tL; ζ , θ) starting from qtruth(t − tL , x; θ) = Q(t − tL , x; θ) + q* + τF, which is

qpred(t, x, tL; θ) = Eζ [qpred(t, x, tL; ζ , θ)]

= q* + τF + e−tL/τ

(4πb0tL)1/2

∫
R

e−
|x−y|2
4b0 tL Q(t − tL , y; θ)dy. (36)

Now the forecasting skill can be achieved straightforwardly by comparing the qtruth(t, x; θ) and
qpred(t, x, tL; θ) and direct calculation.

MSEq(tL) = Eθ[(qtruth(t, x; θ) − qpred(t, x, tL; θ))2]

= Eθ[(

tL∫
0

1
(4πb0|tL − s|)1/2

∫
R

e−
|x−y|2

4b0(t−s) e−(tL−s)/τẆ(s + t − tL , y; θ)dyds)2]

= D2
*

4

√
τ
b0
erf (

√
2tL
τ ). (37)

Note D2
*

4

√
τ
b0

is the variance of the true signal. Hence the mean square error is again controlled under the
variance of the true signal with the perfect model.

ρq(tL) = Eθ[(qpred(t, x, tL; θ) − Eθ[qpred(t, x, tL; θ)])(qtruth(t, x; θ) − Eθ[qtruth(t, x; θ)])]
(var[qpred(t, x, tL; θ)])1/2(var[qtruth(t, x; θ)])1/2)

= ( var[qpred(t, x, tL; θ)]
var[qtruth(t, x; θ)] )1/2

= [1 − erf (
√

2tL
τ )]1/2. (38)

Essentially, the forecasting skill at a single time point and a single spatial location is only related to the ratio
of tL and τ and doesn’t involve any other parameters in the model. With tL ≤ 0.33τ, ρq(tL) ≥ 0.5. In our
simulation, for τ = 96h = 4 days in the idealized rainfall model, tL ≤ 1.32344 days = 31.76256 hours will
have a good forecast correlation coe�cient ρq(tL) ≥ 0.5.

5.2 Forecasting at a Single Spatial Location with Temporal Averaging

Temporal averaging forecasting skill for a single spatial location for the signal from the stochastic heat equa-
tion is studied as well. The temporal averaged signal is

q̂truth(t, x, Tw; θ) = 1
Tw

t+Tw∫
t

qtruth(s, x; θ)ds = 1
Tw

t+Tw∫
t

Q(s, x; θ)ds + q* + τF, (39)
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Figure 11: Panel a. forecasting skill for di�erent temporal averaging windows of a SPDE process under the default de�nition
clari�ed in the section 2.3; Panel b. forecasting skill for di�erent spatial averaging windows of a SPDE process under the de-
fault de�nition clari�ed in the section 2.3 .

where

Q(s, x; θ) = e−(s−(t−tL))/τ

[4πb0
(
s − (t − tL)

)
]1/2

∫
R

e
− |x−y|2

4b0
(
s−(t−tL )

)
Q(t − tL , y; θ)dy

+

s−(t−tL)∫
0

1
(4πb0|s − (t − tL) − µ|)1/2

∫
R

e−
|x−y|2

4b0(s−(t−tL )−µ) e−(s−(t−tL)−µ)/τξ (µ + t − tL , y; θ)dydµ (40)

and the ensemble forecasting is achieved by taking the ensemble mean of all the single predictions

q̂pred(t, x, tL , Tw; θ) = 1
Tw

t+Tw∫
t

e−a(s−(t−tL))

[4πb
(
s − (t − tL)

)
]1/2

∫
R

e
− |x−y|2

4b
(
s−(t−tL )

)
Q(t − tL , y; θ)dyds + q* + τF, (41)

M̂SEq(tL , Tw) = Eθ[(q̂truth(t, x, Tw; θ) − q̂pred(t, x, tL , Tw; θ))2]

= D2
*

4

√
τ
b0

τ2

T2
w

[
2(tL + Tw)

τ

2(tL+Tw)/τ∫
(2tL+Tw)/τ

erf (
√
x)dx − 2tL

τ

(2tL+Tw)/τ∫
2tL/τ

erf (
√
x)dx

− 2Tw
τ

Tw/τ∫
0

erf (
√
x)dx +

(2tL+Tw)/τ∫
2tL/τ

xerf (
√
x)dx

−
2(tL+Tw)/τ∫

(2tL+Tw)/τ

xerf (
√
x)dx + 2

Tw/τ∫
0

xerf (
√
x)dx

]
, (42)

where
B∫
A

erf (
√
x)dx =Berf (

√
B) − Aerf (

√
A) − 1

2 erf (
√
B) + 1

2 erf (
√
A)
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+
√
B
π exp(−B) −

√
A
π exp(−A) (43)

and
B∫
A

xerf (
√
x)dx = 1

2B
2erf (

√
B) − 1

2A
2erf (

√
A) − 3

8 erf (
√
B) + 3

8 erf (
√
A)

+ 1
2√π B

3/2exp(−B) − 1
2√π A

3/2exp(−A)

+ 3
4√π B

1/2exp(−B) − 3
4√π A

1/2exp(−A). (44)

The correlation coe�cient can again be proved to be the square root of the ratio between the two variances
of the true averaged signal and the prediction as

ρ̂q(tL , Tw) =
( var[q̂pred(t, x, tL , Tw; θ)]

var[q̂truth(t, x, Tw; θ)]

)1/2
, (45)

where

var[q̂pred(t, x, tL , Tw; θ)] =D
2
*

4

√
τ
b0

{
1 − τ

2

T2
w

[ (2tL+Tw)/τ∫
2tL/τ

(xerf (
√
x))dx −

2(tL+Tw)/τ∫
(2tL+Tw)/τ

xerf (
√
x)dx

− 2tL
τ

(2tL+Tw)/τ∫
2tL/τ

erf (
√
x)dx + 2(tL + Tw)

τ

2(tL+Tw)/τ∫
(2tL+Tw)/τ

erf (
√
x)dx

]}
(46)

and var[q̂truth(t, x, Tw; θ)] is given in (53).

For positive lead time, the skill has slight improvements for very narrow temporal averaging window Tw
and then starts to drop as the averaging window becomes wider and wider. Fig. 11 shows this characteristic
when lead time tL is larger than about 6 hours. The SHE signal is made up of a lot of cOUwaves with di�erent
decorrelation times but no oscillations if we see it from Fourier space. Recalling the discussion from the cOU
part, the fast decay waves with short decorrelation times are hard to predict and those slow decay waves
with long decorrelation times are predictable. When a temporal averaging window is used, we average out
the fast decayed waves which helps to improve the forecasting skill while at the same time the forecast skill
for each individual predictable wave is dropping that may deteriorate the forecasting. The improvement
part can be induced both from intuition and the correlation formula. When we do the temporal averaging
window, we removed those unpredictable waves and diminish the overall variance of the signal, making
it easier to predict. The variance contribution of the predictions for those fast decayed waves is always
almost zero in var[q̂pred(t, x, tL , Tw; θ)] while averaging them out de�nitely reduces the variance of the
true signal q̂truth(t, x, Tw; θ). The Pearson correlation coe�cient appears to be the ratio of these two values
indicating the averaging out of those fast decayed waves will help the forecasting. The forecasting on those
slow decayed waves is worse when a temporal averaging window under the default de�nition in section
2.3 is applied as we stated before. Hence, the overall change in the forecasting skill is a trade o� between
the improvements brought by averaging out the fast decayed waves and the decline caused by the worse
forecasting for those slow decayed waves.

Aswe know before, whether the forecasting skill will become better or worse for a predictable wavewhen
temporal averaging is used is highly depending on how we place the temporal averaging window. If a tem-
poral averaging window is placed as in Fig. 6, then the forecasting for the SHE signal is keeping climbing
when a wider temporal averaging window is applied since both the averaging out of the fast decayed signals
and the averaging of the slow decayed signals are helping the forecasting. The same thing will happen if we
invoke the averaging de�nition in Fig. 8 with the same reasons.
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5.3 Forecasting at a Single Time Point with Spatial Averaging

For the spatial averaging, we de�ne the spatial averaged signal at location x with spatial window length Lw
by averaging all the signals over the interval [x − Lw/2, x + Lw/2] as in (14), namely the averaged truth signal
q̃truth(t, x, Lw; θ) and its corresponding prediction q̃pred(t, x, tL , Lw; θ) are

q̃truth(t, x, Lw; θ) = 1
Lw

x+Lw/2∫
x−Lw/2

qtruth(t, y; θ)dy (47)

and

q̃pred(t, x, tL , Lw; θ) = 1
Lw

x+Lw/2∫
x−Lw/2

qpred(t, y, tL; θ)dy. (48)

We omit more details in this section and directly give the formulas for the forecasting skills as following.

M̃SEq(tL , Lw) =D
2
*

4

√
τ
b0

{
2
√
b0τ
Lw

− 2b0τ
L2
w
erf (

√
2tL/τ)

+ b0τ
L2
w
exp(− Lw√

b0τ
)
(

1 − erf ( Lw√
8b0tL

−
√

2tL/τ)
)

− b0τ
L2
w
exp( Lw√

b0τ
)
(

1 − erf ( Lw√
8b0tL

+
√

2tL/τ)
)

− 2
√
b0τ
Lw

exp(−2tL/τ)
(
erf ( Lw√

8b0tL
) −
√

8b0tL√
πLw

(
1 − exp(− L2

w
8b0tL

)
))}

, (49)

ρ̃q(tL , Lw) =
( var[q̃pred(t, x, tL , Lw; θ)]

var[q̃truth(t, x, Lw; θ)]

)1/2
, (50)

where

var[q̃pred(t, x, tL , Lw; θ)] =D
2
*

4

√
τ
b0

{
b0τ
L2
w

[exp(− Lw√
b0τ

) + exp( Lw√
b0τ

) − 2]

b0τ
L2
w
exp(− Lw√

b0τ
)erf ( Lw√

8b0tL
−
√

2tL/τ)

+ b0τexp( Lw√
b0τ

)erf (− Lw√
8b0tL

−
√

2tL/τ)

− 2b0τ
L2
w
erf (−

√
2tL/τ) + 2

√
b0τ
Lw

exp(−2tL/τ)erf ( Lw√
8b0tL

)

− 2
√
b0τ√
πLw

√
8b0tL
Lw

exp(−2tL/τ)(1 − exp(− L2
w

8b0tL
))
}

(51)

and var[q̃truth(t, x, Lw; θ)] is given in (54).
The spatial averaging is helping to improve the forecasting skills unambiguously. A wider spatial averaging
window produce better forecasting. Since the spatial averaging window is independent from the lead time,
we would expect the improvements in forecasting brought by the spatial averaging no matter whether the
averaging window at location x is placed more on the left side of x, centered at x or more on the right side of
x.
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5.4 Forecasting with Both Temporal and Spatial Averaging
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Figure 12: Panel a. forecasting skill of a temporal averaged SPDE process under the default de�nition clari�ed in the section
2.3 with a �xed spatial averaging window Lw = 25 km; Panel b. forecasting skill of a temporal averaged SPDE process under
the default de�nition clari�ed in the section 2.3 with a �xed spatial averaging window Lw = 275 km.

Regarding the formulas of forecast skills with both temporal and spatial averaging for predicting a SHE sig-
nal, see in appendix section B. Instead, we take a look at the patterns through Fig. 12 here. The forecasting
performance is the combination e�ects of the temporal and spatial averaging where the spatial averaging
always helps to improve the forecasting while the temporal averaging helps the forecasting for very narrow
windows and then make the forecasting worse for wider windows. If the de�nitions shown in Fig. 6 or Fig. 8
are used, then the temporal averaging is also helping the forecasting so that the skills are always improving
with wider spatial and temporal windows in those cases.

6 Conclusions
The e�ect of timeaveragingon forecast skillwas seen tobe signi�cantly di�erent dependingon thede�nitions
of the temporal averagingwindowand the lead time. Twomain competing e�ects contribute to this di�erence.
On the one hand, time averaging should increase forecasting skill by eliminating (“averaging out”) high-
frequency, nearly unpredictable components from the signal; such an e�ect is consistent with some a priori,
basic intuition. On the other hand, time averaging candecrease forecasting skill if the time-averagingwindow
[t, t+Tw] lies in the future, beyond the time t of the prediction, since the signal is less predictable for times that
are farther in the future. As a result, it is di�cult to make a general statement about whether time averaging
leads to an increase or decrease in forecasting skill. The answer depends on the relative de�nitions of the
time-averaging window and the lead time; see Fig. 13 for a schematic diagram.

Spatial averaging was seen to always improve the forecast skill. It eliminates (“averages out”) high-
frequency, nearly unpredictable components from the signal, and it leaves behind only the low-frequency,
more-predictable components of the signal. Such behavior is consistent with a priori, basic intuition. No sub-
tlety exists in the relative de�nition of lead time and a spatial averaging window.

What is the “correct” de�nition of lead time, relative to the time-averagingwindow?Onemight argue that
the lead time should be de�ned with respect to the end of an averaging window, [t − Tw , t]. Such a de�nition
seems sensible for a number of reasons. For instance, in terms of the initial data for the forecast, the time-
averaged state over the past Tw time units would be known at the initial time. Also, this de�nition leads to
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Figure 13: Schematics of comparison between di�erent de�nitions of temporal averaging window and single time point predic-
tions and brief conclusions for predicting cOU processes with ω = 0.

enhanced prediction skill, which is in linewith some basic intuition for the impact of averaging on prediction
skill, and it seems desirable to have agreement with basic intuition. However, it is possible that the enhanced
prediction skill is not entirely due to the averaging itself; instead, it is likely enhanced at least partially due
to the fact that the time-averaging window [t − Tw , t] contains signal data before the target time t, and this
“earlier” data should naturally be more predictable than the “later” data at time t. Consequently, it is un-
clear whether there is a “best” de�nition of lead time, relative to the time-averaging window, since several
competing factors are intermingled.

The models here were chosen to be exactly solvable and to be somewhat representative of atmospheric,
oceanic, and climate variability. Therefore, the results here could potentially be expected to hold to some
degree even for more complicated dynamical models. However, it is possible that nonlinearities [5–9, 15, 23,
26, 34] and other factors could potentially impact the conclusions, and it would be interesting to investigate
similar questions with more complicated models in the future. As one small step in this direction, we have
added advection to the stochastic heat equation by replacing ∂tq by ∂tq + c∂xq with an advection speed of
c ≈ 15 m/s; numerical results of forecasts with time averaging (not shown) are essentially the same as the
main conclusions presented above. It would be interesting to investigate other models in the future.

Acknowledgments: The authors thank two anonymous reviewers for helpful comments. The research of
S.N.S. is partially supported by a Sloan Research Fellowship from the Alfred P. Sloan Foundation and a Vilas
Associates Award from theUniversity ofWisconsin–Madison. Y.L. is partially supported as a graduate student
researcher by the Vilas Associates Award.

Appendix

A Temporal and Spatial Averaging: Model Statistics
Beforeweevaluate the forecasting skill,weneed to investigate a little bit in the changeof varianceof the signal
through the temporal averaging and spatial averaging. Relative small mean square errors are expected for
forecasting with temporal or spatial averaging since averaging will create a smaller variance for the averaged
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signal. The trends of the variance changes as we do the averaging are shown in Fig. 14. For a complex OU
process from (1), after approaching the stationary distribution arbitrary closely, the averaged mean will be
nearly 0 while the variance of the averaged signal over a temporal window with length Tw is close to the
stationary value of

var[û(t, Tw)] = σ2

2γ ·
1

(γ2 + ω2)2T2
w
· [2γTw(γ2 + ω2) − 2(γ2 − ω2)

+ 2e−γTw
(

(γ2 − ω2)cos(ωTw) − 2γωsin(ωTw)
)

], (52)

where σ2/2γ is the variance of the unaveraged cOU signal and this variance has properties

lim
Tw→0

var[û(t, Tw)] = σ2

2γ = var[u(t)], lim
Tw→∞

var[û(t, Tw)] = 0,

which agreewith one’s intuition that the signal will be averaged out if the temporal averagingwindow is very
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Figure 14: Panel a. variance change over temporal averaging for ω = 0 and di�erent γ of a cOU process; Panel b. variance
change over temporal averaging for ω = 2π/(1.5 months) and di�erent γ of a COU process ; Panel c. variance change over
temporal averaging for a stochastic PDE process; Panel d. variance change over spatial averaging for a stochastic PDE process

large. From the panel a of Fig. 14, we can see that the variance of the cOU signal is monotone decreasing if
ω = 0 as we increase the length of the temporal averaging window.When ω ≠ 0, the variance of the averaged
cOU signal is decreasing at �rst if we enlarge the temporal averaging window and the signal is almost
averaged out after a time period 2π/ω according to that its variance is almost below 15% of the original
variance after a time period in panel b of Fig. 14. As the decorrelation time 1/γ decreases(γ increases), the
declining rate of the variance is changing from a cosine type decreasing to an exponential decreasing. In the
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case ω = 0, the variance decline is dominated by γ only. In the case ω = ̸ 0, the variance always decreases to
a very small amount after a time period regardless of the values of γ.

Regarding the stationary process stemming from the stochastic heat equation (8), both the impacts of the
temporal and spatial averaging on the variance have to be considered. The averaged signal always has the
same mean q* + τF. Through the temporal averaging with a temporal window of length Tw, the variance of
the temporal averaged signal becomes

var[q̂(t, x, Tw)] =D
2
*

4

√
τ
b0

[
1 − erf (

√
Tw
τ )
(3

4 ( τTw
)2 − τ

Tw
+ 1
)

+ exp(−Twτ )
( 3

2√π ( τTw
)3/2 − 1√

π
( τTw

)1/2)]. (53)

Through the spatial averaging with a spatial window of length Lw, the variance of the spatial averaged signal
will be

var[q̃(t, x, Lw)] = D2
*

4

√
τ
b0
· 2[
√
b0τ
Lw

− b0τ
L2
w

(1 − exp(− Lw√
b0τ

))], (54)

where D2
*

4

√
τ
b0

is the variance of the unaveraged stochastic partial di�erential equation signal. The variance
is decreasing monotonically as the averaging window increases in both the temporal averaging case and
the spatial averaging case for the stochastic partial di�erential equation process by panel c and panel d of
Fig. 14. By the analytic formulas (53) and (54), the variance of the temporal averaged SPDE signal compared
to the original unaveraged variance is determined by the ratio of the temporal averaging window Tw and
the relaxation time τ only and not related to other parameters in the model (8). The variance of the spatial
averaged SPDE signal compared to the original unaveraged variance is determined by the ratio of square root
of b0τ and the spatial averaging window Lw only.

B Formulas of forecasting skill for a both temporal and spatial
averaged SPDE

• Mean Square Error MSEq(tL , Tw , Lw)

MSEq(tL , Tw , Lw) = D2
*

4

√
τ
b0

1
L2
wT2

w

τ2

2

[
2Tw
τ
(
P(Tw/τ, Lw) − P(0, Lw)

)
+ 2tL
τ
(
P((2tL + Tw)/τ, Lw) − P(2tL/τ, Lw)

)
− 2(tL + Tw)

τ
(
P(2(tL + Tw)/τ, Lw) − P((2tL + Tw)/τ, Lw)

)
− 2
(
Q(Tw/τ, Lw) − Q(0, Lw)

)
−
(
Q((2tL + Tw)/τ, Lw) − Q(2tL/τ, Lw)

)
+
(
Q(2(tL + Tw), Lw)) − Q((2tL + Tw)/τ, Lw)

)]
, (55)

where

P(x, y) =
√

1
b0τ

[(h2(x, y) + g2(x, y)) − y(h1(x, y) + g1(x, y))]

+ (2x − 1)[(h1(x, y) − g1(x, y)) − y(h0(x, y) − g0(x, y))]

− 4
√
b0τ · x · exp(−x)

(
y · erf ( y

2
√
b0τx

) − 2
√
b0τx
π
(

1 − exp(− y2

4b0τx
)
))

,

(56)
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Q(x, y) = − 1
4b0τ

[(h3(x, y) − g3(x, y)) − y(h2(x, y) − g2(x, y))]

+ 3
4

1√
b0τ

[(h2(x, y) + g2(x, y)) − y(h1(x, y) + g1(x, y))]

+ (x2 − 3
4 )[(h1(x, y) − g1(x, y)) − y(h0(x, y) − g0(x, y))]

−
√
b0τ(2x + 3)x · exp(−x)

(
y · erf ( y

2
√
b0τx

) − 2
√
b0τx
π
(

1 − exp(− y2

4b0τx
)
))

,

(57)

h0(x, y) =
y∫

0

exp( z√
b0τ

)erf ( z
2
√
b0τx

+
√
x)dz, (58)

h1(x, y) =
y∫

0

z · exp( z√
b0τ

)erf ( z
2
√
b0τx

+
√
x)dz, (59)

h2(x, y) =
y∫

0

z2 · exp( z√
b0τ

)erf ( z
2
√
b0τx

+
√
x)dz, (60)

h3(x, y) =
y∫

0

z3 · exp( z√
b0τ

)erf ( z
2
√
b0τx

+
√
x)dz, (61)

g0(x, y) =
y∫

0

exp(− z√
b0τ

)erf ( z
2
√
b0τx

−
√
x)dz, (62)

g1(x, y) =
y∫

0

z · exp(− z√
b0τ

)erf ( z
2
√
b0τx

−
√
x)dz, (63)

g2(x, y) =
y∫

0

z2 · exp(− z√
b0τ

)erf ( z
2
√
b0τx

−
√
x)dz, (64)

g3(x, y) =
y∫

0

z3 · exp(− z√
b0τ

)erf ( z
2
√
b0τx

−
√
x)dz. (65)

• Correlation coe�cient ρq(tL , Tw , Lw)

ρq(tL , Tw , Lw) =
( var[q̄pred(t, x, tL , Tw , Lw; θ)]

var[q̄truth(t, x, Tw , Lw; θ)]

)1/2
, (66)

var[qtruth(t, x, Tw , Lw; θ)] = D2
*

4

√
τ
b0

1
L2
w

{
τ2

T2
w

[
Tw
τ
(
P(Tw/τ, Lw) − P(0, Lw)

)
(
Q(Tw/τ, Lw) − Q(0, Lw)

)]
+ b0τ

(
exp( Lw√

b0τ
) + exp( Lw√

b0τ
) − 2

)}
,

(67)
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var[qpred(t, x, tL , Tw , Lw; θ)] = D2
*

4

√
τ
b0

1
L2
w

{
b0τ[exp( Lw√

b0τ
) + exp(− Lw√

b0τ
) − 2]

+ 1
T2
w

[ 2tL+Tw∫
2tL

f1(α, Lw)dα −
2(tL+Tw)∫

2tL+Tw

f1(α, Lw)dα

− 2tL
2tL+Tw∫
2tL

f0(α, Lw)dα + 2(tL + Tw)
2(tL+Tw)∫

2tL+Tw

f0(α, Lw)dα
]}

,

(68)

where tL is the lead time, Tw is the width of the temporal averaging window, Lw is the width of the spatial
averaging window and

f0(α, β) =b0τexp(− β√
b0τ

)erf ( β
2
√
b0α

−
√
α/τ)

− b0τexp( β√
b0τ

)erf ( β
2
√
b0α

+
√
α/τ)

+ 2b0τerf (
√
α/τ) + 2

√
b0τβexp(−α/τ)erf ( β

2
√
b0α

)

− 4b0

√
τα
π exp(−α/τ)(1 − exp(− β2

4b0α
)),

(69)

f1(α, β) = αf0(α, β). (70)

C Calculations of some important statistics
By the change of the variable in (33), inserting into the SPDE (8) gives

∂Q
∂t = b0 4 Q −

1
τ Q + D*Ẇ . (71)

With onemore step of changing the variable by v(t, x) = et/τQ(t, x), the equation (71) is simpli�ed to a simple
and regular stochastic heat equation

∂v
∂t = b0 4 v + D*et/τẆ . (72)

v then can be solved directly as

v(t, x) = 1
(4πb0t)1/2

∫
R

e−
|x−y|2

4b0 t v(0, y)dy +
t∫

0

1
4πb|t − s|1/2

∫
R

e−
|x−y|2
4b(t−s) es/τẆ(s, y)dyds. (73)

The important statistics of the q(t, x) and Q(t, x) can be calculated through this analytic solution (73) as the
following.
• Mean

For a bounded initial value |q(0, y)| ≤ K(K is a �nite constant)

|E[q(t, x)] − (q* + τF)| = |E[Q(t, x)]|
= |E[e−t/τv(t, x)]|
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=
∣∣∣∣e−t/τ 1

(4πb0t)1/2

∫
R

e−
|x−y|2

4b0 t v(0, y)dy
∣∣∣∣

=
∣∣∣∣e−t/τ 1

(4πb0t)1/2

∫
R

e−
|x−y|2

4b0 t
(
q(0, y) − q* − τF

)
dy
∣∣∣∣

≤ e−t/τ 1
(4πb0t)1/2

∫
R

e−
|x−y|2

4b0 t (K + q* + τF
)
dy

= (K + q* + τF)e−t/τ → 0 as t →∞
⇒ lim

t→∞
E[q(t, x)] = q* + τF. (74)

• Covariance and variance

cov[q(s, x), q(t, y)] = cov[Q(s, x), Q(t, y)]
= cov[e−s/τv(s, x), e−t/τv(t, y)]

= e−(s+t)/τcov[v(s, 0), v(t, x − y)]

= e−(s+t)/τ D2
*

4πb0
·

E
[ t∫

0

s∫
0

∫
R

∫
R

1
|t − r|1/2|s − r′|1/2 e

− |x−y|2
4b0(t−r)−

|y′|2
4b0(s−r′) Ẇ(r, y)Ẇ(r′, y′)er/τer

′/τdydy′dr′dr
]

= e−(s+t)/τ D2
*

4πb0

s∧t∫
0

∫
R

1
|t − r|1/2|s − r|1/2 e

− |x−y|2
4b0(t−r)−

|y|2
4b0(s−r) e2r/τdydr

= e−(s+t)/τ D2
*

(4πb0)1/2

s∧t∫
0

(s + t − 2r)−1/2exp
(
− |x − y|2

4b0(s + t − 2r)

)
e2r/τdr

= D2
*

4
√
πb0

s+t∫
|s−t|

l−1/2exp(− |x − y|
2

4b0l
− al)dl. (75)

For the temporal covariance at a single location, take x = y in (75),

cov[q(s, x), q(t, x)] = D2
*

4
√
πb0

s+t∫
|s−t|

l−1/2exp(−l/τ)dl

(let η = (l/τ)1/2) = D2
*

4
√
πb0

√
(s+t)/τ∫

√
|s−t|/τ

2
√
τexp(−η2)dη

= D2
*

4

√
τ
b0
· 2√

π

√
(s+t)/τ∫

√
|s−t|/τ

exp(−η2)dη

= D2
*

4

√
τ
b0

(erf (
√

(s + t)/τ) − erf (
√
|s − t|/τ)). (76)

For the asymptotic spatial covariance at a single time point, take s = t in (75),

lim
t→∞

cov[q(t, x), q(t, y)] = D2
*

4
√
πb0

∞∫
0

l−1/2exp(− |x − y|
2

4b0l
− l/τ)dl
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(Let η =
√
l) = D2

*
2
√
πb0

exp(− 1√
b0τ
|x − y|)

∞∫
0

exp
(
−
( |x − y|

2
√
b0η

− η√
τ
)2
)
dη

= D2
*

2
√
πb0

exp(−
√

1
b0τ
|x − y|) ·

√
πτ
2

= D2
*

4

√
τ
b0
exp(− 1√

b0τ
|x − y|). (77)

For the stationary variance for q(t, x), take x = y in (77),

lim
t→∞

var[q(t, x)] = D2
*

4

√
τ
b0

. (78)

References
[1] R. Alexander, Z. Zhao, E. Székely, andD. Giannakis. Kernel analog forecasting of tropical intraseasonal oscillations. J. Atmos.

Sci., 74(4):1321–1342, 2017.
[2] F. Atger. Veri�cation of intense precipitation forecasts from single models and ensemble prediction systems. Nonlinear

Processes in Geophysics, 8(6):401–417, 2001.
[3] A. G. Barnston, M. H. Glantz, and Y. He. Predictive skill of statistical and dynamical climate models in SST forecasts during

the 1997–98 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteorol. Soc., 80(2):217–244, 1999.
[4] B. Casati, G. Ross, and D. B. Stephenson. A new intensity-scale approach for the veri�cation of spatial precipitation fore-

casts. Meteorological Applications, 11(2):141–154, 2004.
[5] N. Chen and A. J. Majda. Predicting the cloud patterns for the Boreal summer intraseasonal oscillation through a low-order

stochastic model. Math. Clim. Weather Forecast., 1:1–20, 2016.
[6] N. Chen, A. J. Majda, and D. Giannakis. Predicting the cloud patterns of the Madden–Julian Oscillation through a low-order

nonlinear stochastic model. Geophys. Res. Lett., 41(15):5612–5619, 2014.
[7] S. Chen, A. J. Majda, and S. N. Stechmann. Multiscale asymptotics for the skeleton of the Madden–Julian oscillation and

tropical–extratropical interactions. Math. Clim. Weather Forecast., 1:43–69, 2015.
[8] S. Chen, A. J. Majda, and S. N. Stechmann. Tropical–extratropical interactions with the MJO skeleton and climatological

mean flow. J. Atmos. Sci., 73(10):4101–4116, 2016.
[9] S. Chen and S. N. Stechmann. Nonlinear traveling waves for the skeleton of the Madden–Julian oscillation. Comm. Math.

Sci., 14:571–592, 2016.
[10] J. Dias, M. Gehne, G. N. Kiladis, N. Sakaeda, P. Bechtold, and T. Haiden. Equatorial waves and the skill of NCEP and ECMWF

numerical weather prediction systems. Mon. Wea. Rev., 146(6):1763–1784, 2018.
[11] Elizabeth E Ebert. Fuzzy veri�cation of high-resolution gridded forecasts: a review and proposed framework. Meteorological

applications, 15(1):51–64, 2008.
[12] Elizabeth E Ebert. Neighborhood veri�cation: A strategy for rewarding close forecasts. Weather and Forecasting,

24(6):1498–1510, 2009.
[13] S. Hottovy and S. N. Stechmann. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J.

Atmos. Sci., 72:4721–4738, 2015.
[14] M. A. Janiga, C. Schreck, J. A. Ridout, M. Flatau, N. Barton, E. J. Metzger, and C. Reynolds. Subseasonal forecasts of convec-

tively coupled equatorial waves and the MJO: Activity and predictive skill. Mon. Wea. Rev., page in press, 2018.
[15] B. Khouider and A. J. Majda. A simplemulticloud parameterization for convectively coupled tropical waves. Part II: Nonlinear

simulations. J. Atmos. Sci., 64:381–400, 2007.
[16] B. Khouider, A. J. Majda, and S. N. Stechmann. Climate science in the tropics: waves, vortices and PDEs. Nonlinearity,

26(1):R1–R68, 2013.
[17] M. Latif, D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa, J. O’Brien, A. Rosati, and E. Schneider. A review of the

predictability and prediction of ENSO. J. Geophys. Res.: Oceans, 103(C7):14375–14393, 1998.
[18] W. K. M. Lau and D. E. Waliser, editors. Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin,

2nd edition, 2012.
[19] R. A. Madden and P. R. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Paci�c. J. Atmos. Sci.,

28(5):702–708, 1971.
[20] R. A. Madden and P. R. Julian. Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos.

Sci., 29:1109–1123, September 1972.
[21] A. J. Majda and J. Harlim. Filtering Turbulent Complex Systems. Cambridge University Press, 2012.

Brought to you by | University of Wisconsin Madison Libraries
Authenticated

Download Date | 12/5/18 6:53 PM



Spatial and Temporal Averaging Windows | 49

[22] A. J. Majda and S. N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA,
106(21):8417–8422, 2009.

[23] A. J. Majda and S. N. Stechmann. Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68:3053–
3071, 2011.

[24] Chiara Marsigli, Andrea Montani, and Tiziana Paccangnella. A spatial veri�cation method applied to the evaluation of high-
resolution ensemble forecasts. Meteorological Applications, 15(1):125–143, 2008.

[25] J. D. Neelin, D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak. ENSO theory. J. Geophys. Res.:
Oceans, 103(C7):14261–14290, 1998.

[26] H. R. Ogrosky, S. N. Stechmann, and S. Hottovy. Instability and nonlinear evolution of the MJO in a model with vertically-
varying convective adjustment. J. Adv. Model. Earth Syst., page submitted, 2018.

[27] C. Penland and T. Magorian. Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate,
6(6):1067–1076, 1993.

[28] Nigel Roberts. Assessing the spatial and temporal variation in the skill of precipitation forecasts from an nwp model. Me-
teorological Applications, 15(1):163–169, 2008.

[29] Nigel M Roberts and HumphreyW Lean. Scale-selective veri�cation of rainfall accumulations from high-resolution forecasts
of convective events. Monthly Weather Review, 136(1):78–97, 2008.

[30] M. J. Rodwell and F. J. Doblas-Reyes. Medium-range, monthly, and seasonal prediction for Europe and the use of forecast
information. J. Climate, 19(23):6025–6046, 2006.

[31] S. N. Stechmann and S. Hottovy. Cloud regimes as phase transitions. Geophys. Res. Lett., 43:6579–6587, 2016.
[32] S. N. Stechmann and S. Hottovy. Uni�ed spectrum of tropical rainfall and waves in a simple stochastic model. Geophys.

Res. Lett., 44:10,713–10,724, 2017.
[33] S. Thual, A. J. Majda, N. Chen, and S. N. Stechmann. Simple stochastic model for El Niño with westerly wind bursts. Proc.

Natl. Acad. Sci., 113(37):10245–10250, 2016.
[34] S. Thual, A. J. Majda, and S. N. Stechmann. A stochastic skeleton model for the MJO. J. Atmos. Sci., 71:697–715, 2014.
[35] M. Wheeler and G. N. Kiladis. Convectively coupled equatorial waves: analysis of clouds and temperature in the

wavenumber–frequency domain. J. Atmos. Sci., 56(3):374–399, 1999.
[36] M. C. Wheeler, H. Zhu, A. H. Sobel, D. Hudson, and F. Vitart. Seamless precipitation prediction skill comparison between

two global models. Q. J. Roy. Meteorol. Soc., 143(702):374–383, 2017.
[37] Y. Ying and F. Zhang. Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves

during the active phase of an MJO. J. Atmos. Sci., 74(11):3771–3785, 2017.
[38] Y. Ying and F. Zhang. Potentials in improving predictability of multiscale tropical weather systems evaluated through en-

semble assimilation of simulated satellite-based obse rvations. J. Atmos. Sci., 75(5):1675–1698, 2018.
[39] C. Zhang. Madden–Julian Oscillation. Rev. Geophys., 43:RG2003, June 2005.
[40] H. Zhu, M. C. Wheeler, A. H. Sobel, and D. Hudson. Seamless precipitation prediction skill in the tropics and extratropics

from a global model. Mon. Wea. Rev., 142(4):1556–1569, 2014.
[41] H. ZhuandM.C.Wheeler. Seamlessprecipitationprediction skill in the tropics andextratropics fromaglobalmodel.Monthly

Weather Review, 142:1556–1569, 2014.

Brought to you by | University of Wisconsin Madison Libraries
Authenticated

Download Date | 12/5/18 6:53 PM


	1 Introduction
	2 Models and Methods
	2.1 Mathematical Models
	2.1.1 Complex Ornstein-Uhlenbeck(cOU) Process

	2.2 Measures of Forecasting Skill: Mean Square Error (MSE) and Pearson Correlation Coefficients ()
	2.3 Temporal and Spatial Averaging: Definitions and Notations

	3 Forecasting the Complex Ornstein-Uhlenbeck Process
	3.1 Forecasting at a Single Time Point
	3.2 Forecasting with Temporal Averaging

	4 Subtle Impacts of Definitions of Averaging Window and Lead Time
	5 Forecasting an Idealized Spatiotemporal Rainfall Model: Stochastic Heat Equation
	5.1 Forecasting at a Single Time Point and a Single Spatial Location
	5.2 Forecasting at a Single Spatial Location with Temporal Averaging
	5.3 Forecasting at a Single Time Point with Spatial Averaging
	5.4 Forecasting with Both Temporal and Spatial Averaging

	6 Conclusions
	A Temporal and Spatial Averaging: Model Statistics
	B Formulas of forecasting skill for a both temporal and spatial averaged SPDE
	C Calculations of some important statistics

