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Abstract
Many definitions of moist potential vorticity (PV) have been proposed to extend
the dry theory of Ertel PV. None of the moist PV definitions seem to have all
of the desirable properties of the dry Ertel PV. For instance, dry PV is not only
a globally conserved quantity, but also a material invariant that is conserved
along fluid parcel trajectories. Therefore, an open question remains: Is there
a moist PV that is a material invariant, if clouds and phase changes of water
are present? In prior studies, definitions of moist PV have been proposed based
on physical and mathematical intuition. Here, a systematic approach is used.
In particular, a particle relabeling symmetry is devised for a moist atmosphere
and then Noether’s theorem is employed to arrive at the associated conservation
laws for a moist PV. A priori, it is not clear whether this systematic approach
will be viable, since it relies on variational derivatives in Hamilton’s principle,
and phase changes introduce singularities that could potentially prevent deriva-
tives at the cloud edge. However, it is shown that the energy and the Lagrangian
density are sufficiently smooth to allow variational derivatives, in a moist Boussi-
nesq system with reversible phase transitions between water vapor and liquid
cloud water. From the particle relabeling symmetry, a moist Kelvin circulation
theorem is found, along with a moist PV conservation law that applies not for
each individual parcel but for parcel-integrated PV, integrated over certain local
volumes.

K E Y W O R D S
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1 INTRODUCTION

Potential vorticity (PV) is one of the fundamental con-
served quantities of geophysical fluid dynamics. Conser-
vation of PV was recognized long ago by Rossby (1939)

and Ertel (1942). One important property of PV is that
it is a material invariant, meaning that it is conserved
along fluid particle trajectories; this allows it to func-
tion as a tracer of fluid particles. This material invariance
property is exploited in isentropic PV maps, which have
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been used extensively as an operational diagnostic tool in
the development of midlatitude synoptic weather systems
(Hoskins et al., 1985; Thorpe, 1985; Hoskins and Berris-
ford, 1988; Hoskins, 1991). Another important property
is its invertibility: the instantaneous global distribution of
PV with appropriate boundary conditions can be used to
recover the balanced parts of the wind and temperature
fields.

Though the concept of PV is well established for a dry
atmosphere, the concept of PV is less clear for a moist
atmosphere with clouds, phase changes, and latent heat-
ing. Several definitions of moist PV have been proposed,
but a moist counterpart that retains all of the desirable
properties of a dry PV has been elusive. For example, one
moist PV definition (here called PVv) is defined in terms
of the virtual potential temperature 𝜃v, and it was shown
to possess an invertibility principle that produces certain
velocity and temperature fields (Schubert et al., 2001).
However, Wetzel et al. (2020) have shown that the evo-
lution equation for PVv is coupled with inertia-gravity
waves due to latent heating, and therefore PVv is not bal-
anced, and inversion of PVv does not recover the balanced
velocity and temperature fields. Although PVv is not bal-
anced, it is a conserved quantity in unsaturated regions
and, therefore, can be used to monitor and diagnose latent
heating in the atmosphere (Davis and Emanuel, 1991;
Lackmann, 2002; Gao et al., 2004; Brennan and Lack-
mann, 2005; Brennan et al., 2008; Lackmann, 2011; Mar-
tin, 2013; Madonna et al., 2014; Büeler and Pfahl, 2017).
Another widely used PV (here called PVe) is based on
the equivalent potential temperature 𝜃e (Bennetts and
Hoskins, 1979; Emanuel, 1979). One criticism of PVe is
that it fails to possess an invertibility principle in the
presence of phase changes (Cao and Cho, 1995; Schu-
bert et al., 2001). However, taking advantage of one or
more additional balanced quantities M involving water,
extended PV–M inversion can indeed be used to solve
for the balanced moist flow using PVe (Smith and Stech-
mann, 2017; Wetzel et al., 2019, 2020). As a general princi-
ple, for a moist system, a single moist PV variable by itself
is not sufficient information to find the balanced flow com-
ponents, and additional moisture variables M need to be
retained (Smith and Stechmann, 2017).

Furthermore, the moist PV quantities that have
been proposed are lacking the fundamental conservation
property of dry PV: conservation along fluid parcel tra-
jectories. Some moist PV quantities are conserved in one
phase (either inside a cloud or outside a cloud) but none
are conserved along fluid parcel trajectories in the pres-
ence of clouds and phase changes. Hence, there remains an
open question: For a moist system with clouds and phase
changes, is there a moist PV quantity that is a material
invariant?

Though past definitions of moist PV have been pro-
posed based on physical and mathematical intuition,
there is, in fact, a systematic approach to identify-
ing conservation principles. In Hamiltonian mechanics
and Lagrangian mechanics, conservation principles are
related to symmetries in the action, via Noether’s theorem
(Noether, 1918; Hill, 1951; Olver, 2000). Therefore, as a
systematic route to identifying a moist PV conservation
law, one can first write the moist atmospheric equations
in a Hamiltonian or Lagrangian formulation and then
look for symmetries in the action or the Lagrangian
density.

The goal of the present paper is to take the systematic
approach described above. To first define a Hamiltonian or
Lagrangian formulation, we use the piecewise-quadratic
energy that was recently identified for the moist Boussi-
nesq equations with phase changes (Marsico et al., 2019).
As the symmetry of interest for moist PV, we will seek a
moist analog of the symmetry associated with dry PV con-
servation: particle relabeling symmetry (Bretherton, 1970;
Ripa, 1981; Salmon, 1988; Shepherd, 1990; Müller, 1995).

This article is another contribution of the use of the
Lagrangian or Hamiltonian formulation for geophysical
fluid dynamics. For example, in other applications, by
attaching additional constraints to the Lagrangian/Hamil-
tonian, the Lagrangian/Hamiltonian formulation provides
a systematic way of deriving approximate dynamical
equations that retain analogs of exact conservation laws
(Holm et al., 1998; Salmon, 1998; Cotter and Holm, 2014).
Well-known examples of such approximate models are
the quasi-geostrophic, shallow water, Korteweg–de Vries,
and Green–Naghdi equations (see Salmon, 1988, and ref-
erences therein). Additionally, the Hamiltonian formula-
tion is useful in nonlinear stability theory (Salmon, 1988).
Other applications include data assimilation (Cotter, 2013;
Hastermann et al., 2021), statistical analysis (Abramov
et al., 2003; Majda et al., 2019; Moore et al., 2020), and
stochastic partial differential equations for fluid dynamics
from a stochastic variational principle (Holm, 2015). It has
also been used in the development of numerical methods
(Pavlov et al., 2011).

In Section 2, we provide background about the gov-
erning moist Boussinesq equations and their conserva-
tion of energy principle. Next, in Section 3, we show
that the energy is differentiable, allowing for a formula-
tion of the dynamics from the perspective of Lagrangian
mechanics. We further demonstrate that Hamilton’s prin-
ciple leads to Euler–Lagrange equations that are equiv-
alent to the original equations. Section 4 explains how
to adapt particle-relabeling symmetry to the moist sys-
tem with phase changes, and thereby derive moist analogs
of Kelvin’s circulation theorem and conservation of PV.
Conclusions are given in Section 5.
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2 BACKGROUND

As background, we describe the model equations in
Section 2.1 and the conserved energy in Section 2.2. The
energy will be used later to suggest the form of a Hamilto-
nian and a Lagrangian.

2.1 Governing equations

We start by presenting the model equations, which are
moist Boussinesq equations with phase changes. This type
of model has been used for many purposes and with vary-
ing degrees of idealization (e.g., Kuo, 1961; Sommeria,
1976; Bretherton, 1987; Cuijpers and Duynkerke, 1993;
Spyksma et al., 2006; Pauluis and Schumacher, 2010;
Marsico et al., 2019; Zhang et al., 2021a,b). Though a
Boussinesq framework is used here, one would suspect
that similar results could be obtained for an anelastic
or compressible system, although such cases are beyond
the scope of this article. A Boussinesq framework is used
here instead of an anelastic or compressible framework
because it allows for some calculations to be in simpler
form and because it allows use of an energy function
(Section 2.2) that has a simple piecewise quadratic form
(Marsico et al., 2019).

When the two thermodynamic variables are chosen to
be 𝜃e and qt, the equations take the form

Du⃗
Dt

= −∇𝜙 + bk̂, (1)

D𝜃e

Dt
+ d𝜃e

dz
w = 0, (2)

Dqt

Dt
+

dq̃t

dz
w = 0, (3)

∇ ⋅ u⃗ = 0, (4)

where x⃗ = (x, y, z) is the position vector, k̂ is the unit
vector in the z-direction, u⃗ = (u, v,w) is the velocity
vector, D∕Dt = 𝜕∕𝜕t + u⃗ ⋅ ∇ is the material derivative,
𝜙 = p′∕𝜌0, p′ is the pressure anomaly, 𝜌0 is a constant
background density, 𝜃e is the equivalent potential temper-
ature anomaly, and qt is the anomalous total water mixing
ratio. Every thermodynamic variable considered here has
been decomposed into a background function of height z
and an anomalous part. For example, 𝜃tot

e = 𝜃e(z) + 𝜃e(x⃗, t)
and qtot

t = q̃t(z) + qt(x⃗, t). The background vertical gradi-
ents, d𝜃e∕dz and dq̃t∕dz, will be assumed to be constants,
in analogy with a common set-up of the Boussinesq
equations in the dry case (e.g., Majda, 2003).

The buoyancy b is influenced by phase changes of
water, and b can be expressed as a function of 𝜃e, qt, and z.
To do this, one can start from a definition of

b = g
(
𝜃

𝜃0
+ Rvdqv − ql

)
, (5)

where 𝜃0 ≈ 300 K is the constant background potential
temperature, g ≈ 9.8 m⋅s−2 is the acceleration due to grav-
ity and Rvd = (Rv∕Rd) − 1 ≈ 0.61, where Rd is the gas con-
stant for dry air and Rv is the gas constant for water vapor.
The three variables in this buoyancy expression are poten-
tial temperature 𝜃, water vapor mixing ratio qv, and liquid
water mixing ratio ql, and they can be related to qt and 𝜃e
as described in the following.

The set of variables (𝜃, qv, ql) can be related to the set of
variables (𝜃e, qt) in the following way. The total water qt is
defined as the sum of water vapor qv and liquid water ql:

qt = qv + ql. (6)

The second variable, equivalent potential temperature 𝜃e,
is defined here in linearized form as

𝜃e = 𝜃 +
Lv

cp
qv, (7)

where the latent heat is a constant with value Lv ≈ 2.5 ×
106 J⋅kg−1 and specific heat is a constant with value cp ≈
103 J⋅kg−1 ⋅K−1. From these definitions in Equations (6)
and (7), one can find the variables (𝜃e, qt) if given the
variables (𝜃, qv, ql).

For the opposite direction, if given qt, one can par-
tition it into its vapor (qv) and liquid (ql) components
by using the saturation mixing ratio qvs, which acts as a
threshold. The saturation mixing ratio will be assumed to
be a function of only z by making the assumption that Ttot

and ptot are close to the background states p̃(z) and T̃(z),
which in turn depend only on the height, in which case
qtot

vs (Ttot
, ptot) ≈ qtot

vs (T̃(z), p̃(z)) (see, e.g., the appendix of
Hernandez-Duenas et al., 2013). Two cases are possible,
depending on whether qt is below the threshold (qt < qvs)
or above the threshold (qt > qvs). If qt is below the thresh-
old (qt < qvs), then no liquid water is present (i.e., ql = 0),
and the water is all in the form of vapor: qt = qv. On the
other hand, if qt is above the threshold (qt > qvs), then
the water vapor is at its saturation value (i.e., qv = qvs),
and the remaining water is liquid water: ql = qt − qvs.
To encompass both of these cases in a unified way, the
formulas for qv and ql can be written as

qv = min(qt, qvs), (8)

ql = max(0, qt − qvs). (9)
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KOOLOTH et al. 1059

The two cases will be called the unsaturated phase (if
qv < qvs) and the saturated phase (if qv = qvs).

If 𝜃e and qt are both given, then one can also see that

𝜃 = 𝜃e −
Lv

cp
min(qt, qvs). (10)

This expression follows from Equations (7) and (8).
Together, the three expressions in Equations (8)–(10) give a
specification of the variables (𝜃, qv, ql) if given the variables
(𝜃e, qt).

Note that many of the aforementioned expressions
have been written in terms of anomalies, such as 𝜃e, rather
than the total expressions, such as 𝜃tot

e = 𝜃e(z) + 𝜃e(x⃗, t),
which include background states. In particular, notice that
the fundamental condition for saturation should be qtot

t =
qtot

vs . Nevertheless, one can choose the background state to
be unsaturated with q̃t(z) = q̃v(z), and one can also break
qtot

vs into background and anomaly as qtot
vs = q̃vs + qvs, with

the choice of q̃vs(z) = q̃v(z). With these choices of q̃t(z) =
q̃v(z) = q̃vs(z), it follows that the saturation condition qtot

t =
qtot

vs can be written in terms of anomalies in a simple way,
as qt = qvs.

It is convenient to rewrite these equations by replacing
the thermodynamic variables, 𝜃e and qt, with the unsat-
urated and saturated buoyancy variables, bu and bs. The
variables bu and bs are defined so that the buoyancy b can
be written simply as

b = buHu + bsHs, (11)

where Hu and Hs are Heaviside functions that are indica-
tors of the unsaturated and saturated regions, respectively:

Hu =

{
1 if qt < qvs(z)
0 if qt ≥ qvs(z),

Hs = 1 −Hu. (12)

To define bu and bs, the buoyancy definition in
Equation (5) is rewritten in terms of equivalent potential
temperature 𝜃e, total water qt, and prescribed saturation
mixing ratio qvs, using Equations (6)–(10), which yields

bu = g
[
𝜃e

𝜃0
+
(

Rvd −
Lv

cp𝜃0

)
qt

]
, (13)

bs = g
[
𝜃e

𝜃0
+
(

Rvd −
Lv

cp𝜃0
+ 1

)
qvs − qt

]
. (14)

These types of unsaturated and saturated buoyancy vari-
ables have also been used in other work on moist con-
vection (e.g., Kuo, 1961; Bretherton, 1987; Pauluis and
Schumacher, 2010; Smith and Stechmann, 2017) and are
sometimes called the dry and moist buoyancy variables.

Notice that b = bu in unsaturated regions and b = bs in sat-
urated regions, but the variables bu and bs are defined and
exist everywhere, since they are defined as functions of
𝜃e, qt, and qvs.

The governing equations in terms of bu and bs are

Du⃗
Dt

= −∇𝜙 + (buHu + bsHs)k̂ (15)

Dbu

Dt
+ N2

uw = 0 (16)

Dbs

Dt
+ N2

s w = 0, (17)

∇ ⋅ u⃗ = 0, (18)

where the unsaturated and saturated buoyancy frequen-
cies N2

u and N2
s are constants given by

N2
u = g d

dz

[
𝜃e

𝜃0
+
(

Rvd −
Lv

cp𝜃0

)
q̃t

]
, (19)

N2
s = g d

dz

[
𝜃e

𝜃0
−
(

Rvd −
Lv

cp𝜃0

)
qvs(z) − q̃t

]
. (20)

The evolution equations for bu and bs in Equations (16)
and (17) follow from the evolution equations for 𝜃e and qt
in Equations (2) and (3), using the definitions of bu and bs
in Equations (13) and (14); and the definitions of N2

u and
N2

s in Equations (19) and (20) also follow from this deriva-
tion. Finally, the indicator functions in Equation (12) can
be written as

Hu =

{
1 if bu > bs

0 if bu ≤ bs,
Hs = 1 −Hu. (21)

With this reformulation of the equations in terms of buoy-
ancy variables, many aspects of the subsequent discussion
will be simplified.

2.2 Piecewise quadratic energy

In subsequent sections, to explore a possible
particle-relabeling symmetry of the Lagrangian, it will first
be necessary to define a suitable Lagrangian functional. To
help motivate the form of a Lagrangian functional for the
model in Equations (1)–(4), we now describe an energy
function that was recently derived (Marsico et al., 2019).

The model in Equations (1)–(4) or Equations (15)–(18)
has an associated energy that is given by

E =  + 

= 1
2

u⃗ ⋅ u⃗ + 1
2

b2
u

N2
u

Hu +
1
2

b2
s

N2
s

Hs +
1
2

N2
uN2

s

N2
u − N2

s
M2Hu (22)
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and evolves according to

𝜕E
𝜕t
+ ∇ ⋅ [u⃗(E + 𝜙)] = 0, (23)

so that the domain-integrated energy is conserved (Mar-
sico et al., 2019). In the energy definition in Equation (22),
the first term is the kinetic energy  and the latter three
terms are the potential energy  . The b2

u and b2
s terms are

the buoyant potential energy terms in the unsaturated
and saturated phases, respectively. The new variable M
that appears in the potential energy is actually related to
bu and bs via

M = bu

N2
u
− bs

N2
s
, (24)

and it is a material invariant; that is:

DM
Dt

= 0, (25)

which can be seen from Equations (16), (17), and (24).
This variable M is associated with the additional eigen-
mode that is present in moist systems as opposed to dry
systems (Hernandez-Duenas et al., 2015; Smith and Stech-
mann, 2017). The M2 term in the potential energy in
Equation (22) is a moist energy term that accounts for the
latent heat released during change of phase. Notice that
each potential energy term is multiplied by either Hu or
Hs, so the form of the potential energy will be different in
different phases. In this way, the energy in Equation (22)
is piecewise quadratic, as opposed to the quadratic energy
that arises in the dry case.

Since the energy in Equation (22) is piecewise-
quadratic, it is positive if the coefficients N2

u, N2
s , and N2

u −
N2

s are positive. Each of N2
u and N2

s will be positive if the
fluid is stably stratified in the dry and moist sense, accord-
ing to Equations (19) and (20). For simpler expressions of
N2

u and N2
s , approximate forms of Equations (19) and (20)

are

N2
u ≈

g
𝜃0

d𝜃
dz
, N2

s ≈
g
𝜃0

d𝜃e

dz
, (26)

which indicate that N2
u and N2

s will be positive if the
background vertical gradients of 𝜃 and 𝜃e are pos-
itive. In this case, the difference N2

u − N2
s will be

positive if dq̃v∕dz is negative, as can be seen from (7)
and (26).

Though the energy in Equation (22) is piecewise-
defined in terms of Heaviside functions, it was shown by
Marsico et al. (2019) that the energy is continuous across
phase boundaries. In other words, the potential energy in

the unsaturated phase,

1
2

b2
u

N2
u
+ 1

2
N2

uN2
s

N2
u − N2

s
M2
, (27)

and the potential energy in the saturated phase,

1
2

b2
s

N2
s
, (28)

will be equal at the phase interface. To see this, recall
from Equation (21) that the phase interface can be defined
as locations where bu = bs. Consequently, at the phase
interface, one can rewrite the potential energy from the
unsaturated phase as

1
2

b2
u

N2
u
+ 1

2
N2

uN2
s

N2
u − N2

s
M2

= 1
2

b2
u

N2
u
+ 1

2
N2

uN2
s

N2
u − N2

s

(
bu

N2
u
− bs

N2
s

)2

(29)

= 1
2

b2
u

N2
u
+ 1

2
N2

uN2
s

N2
u − N2

s

(
b2

u

N4
u
− 2bubs

N2
uN2

s
+

b2
s

N4
s

)
(30)

= 1
2

b2
s

N2
u
+ 1

2
N2

uN2
s

N2
u − N2

s

(
b2

s

N4
u
−

2b2
s

N2
uN2

s
+

b2
s

N4
s

)
(31)

= 1
2

b2
s

N2
s
, (32)

so that Equations (27) and (28) are equal at the phase
interface, where the definition of M from Equation (24)
was also used in the calculation. Intuitively, the buoy-
ant energy b2

u∕N2
u should be smaller than b2

s∕N2
s at the

phase interface, since N2
u is typically larger than N2

s ; the
moist energy M2 then compensates for the difference and
ensures continuity of potential energy.

Beyond this earlier demonstration of continuity, we
will show that the energy is also continuously differ-
entiable, which allows us to take derivatives, which
are needed for using the energy in a Hamiltonian or
Lagrangian formulation.

3 LAGRANGIAN FORMULATION
AND EULER–LAGRANGE
EQUATIONS

The goal of this section is to present a Lagrangian
formulation of the model in Equations (1)–(4) or
Equations (15)–(18). Then, in Section 4, the Lagrangian
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KOOLOTH et al. 1061

formulation can be used to investigate PV and
particle-relabeling symmetry of the Lagrangian.

3.1 Lagrangian density and its
regularity at cloud edge

The piecewise-quadratic energy in (22) can be used to
construct a Lagrangian density 𝓁 for our system as the dif-
ference between kinetic and potential  energy terms:

𝓁 =  − 

= 1
2

u⃗ ⋅ u⃗ −
(

1
2

b2
u

N2
u

Hu +
1
2

b2
s

N2
s

Hs +
1
2

N2
uN2

s

N2
u − N2

s
M2Hu

)
,

(33)

where the potential energy  was discussed in Section 2.2.
For instance, though  is defined in a piecewise manner
in unsaturated and saturated phases, it is nevertheless a
continuous function.

In order to proceed with a Lagrangian formulation of
the dynamics including phase changes, it is necessary to
demonstrate that the density 𝓁 given by Equation (33) is
differentiable at phase boundaries, which are indicated
by the Heaviside functions Hu and Hs. Thus, we proceed
to compute derivatives in the unsaturated (bu > bs) and
saturated (bu < bs) phases separately, and then to show
equality of their one-sided limits as the phase boundary
(bu = bs) is approached.

Let us fist consider Equation (33) in an unsaturated
flow region with Hu = 1 and Hs = 0, and denote q as a
placeholder for x, y, z or t. A derivative with respect to q of
Equation (33) in the unsaturated phase gives

𝜕𝓁
𝜕q

= u⃗ ⋅ 𝜕u⃗
𝜕q

− bu

N2
u

𝜕bu

𝜕q
−

N2
uN2

s

N2
u − N2

s
M 𝜕M
𝜕q

(34)

= u⃗ ⋅ 𝜕u⃗
𝜕q

− bu

N2
u

𝜕bu

𝜕q
− 1

N2
u − N2

s

×
(

bu
N2

s

N2
u

𝜕bu

𝜕q
− bu

𝜕bs

𝜕q
+ bs

N2
u

N2
s

𝜕bs

𝜕q
− bs

𝜕bu

𝜕q

)
, (35)

where we have used the definition of M given by
Equation (24). As the phase interface is approached from
the unsaturated side, bu tends to bs from above, and
therefore

lim
bu−bs→0+

𝜕𝓁
𝜕q

= lim
bu−bs→0+

(
u⃗ ⋅ 𝜕u⃗

𝜕q
−
{
[(N2

u − N2
s ) + N2

s ]bu − N2
ubs

N2
u(N2

u − N2
s )

}

× 𝜕bu

𝜕q
−
[

bsN2
u − buN2

s

N2
s (N2

u − N2
s )

]
𝜕bs

𝜕q

)
(36)

= u⃗ ⋅ 𝜕u⃗
𝜕q

− bs

N2
s

𝜕bs

𝜕q
. (37)

Starting again from Equation (33), but now in a saturated
region, the derivative of 𝓁 with respect to q is

𝜕𝓁
𝜕q

= u⃗ ⋅ 𝜕u⃗
𝜕q

− bs

N2
s

𝜕bs

𝜕q
. (38)

From Equations (37) and (38), one can see that

lim
bu−bs→0+

𝜕𝓁
𝜕q

= lim
bs−bu→0−

𝜕𝓁
𝜕q

= u⃗ ⋅ 𝜕u⃗
𝜕q

− bs

N2
s

𝜕bs

𝜕q
, (39)

which establishes differentiability of the Lagrangian den-
sity 𝓁 at phase boundaries where bu = bs. Note that in
these calculations we are only considering the possibility
of non-smoothness that may have been introduced into
the Lagrangian density in Equation (33) by the Heavi-
side functions. A further issue is that the regularity of this
Lagrangian density also depends on the smoothness of the
velocity field, buoyancy variables bu and bs, and so on,
which we assume here to be sufficiently smooth. Estab-
lishing the regularity of solutions to moist dynamics would
require a detailed mathematical analysis, and this has been
carried out for some related systems (Majda and Sougani-
dis, 2010; Zelati and Temam, 2012; Zelati et al., 2013;
Bousquet et al., 2014; Zelati et al., 2015; Li and Titi, 2016;
Hittmeir et al., 2017; Cao et al., 2018; Hittmeir et al., 2020).

Also note that, though the derivatives in Equations (35)
and (38) were calculated by restricting attention to unsat-
urated and saturated regions, respectively, one might fur-
ther desire a derivative formula that is valid throughout the
entire domain. In this direction, and for a generic scenario,
consider a piecewise-defined function g(q) given by

g(q) = gu(q)Hu + gs(q)Hs. (40)

For example, the Lagrangian density in Equation (33) is of
this form. Then its derivative can be formally calculated as

dg
dq

= d
dq

[
gu(q)Hu + gs(q)Hs

]
(41)

= g′u(q)Hu + g′s(q)Hs + gu(q)
dHu

dq
+ gs(q)

dHs

dq
(42)

= g′u(q)Hu + g′s(q)Hs + gu(q)
dHu

dq

+ gs(q)
d

dq
(1 −Hu) (43)

= g′u(q)Hu + g′s(q)Hs + [gu(q) − gs(q)]
dHu

dq
(44)

= g′u(q)Hu + g′s(q)Hs, (45)
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1062 KOOLOTH et al.

where the last equality follows from an additional
assumption that g is continuous, which implies that
gu(q) − gs(q) = 0 at the phase interface, so that the coef-
ficient of the Dirac-delta dHu∕dq is zero at the phase
interface. (Note that these formal derivatives can be formu-
lated as weak derivatives; see the Supporting Information
for details.) Consequently, in calculating the derivative of
a piecewise-defined function as in Equation (40), if the
function is also continuous, then one can simply use

dg
dq

= g′u(q)Hu + g′s(q)Hs, (46)

by differentiating the coefficients of Hu and Hs, without
needing to consider derivatives of Hu and Hs themselves.
We will use this result in Section 3.2.

3.2 Hamilton’s principle and the
Euler–Lagrange equations

The 𝓁 defined in Equation (33) is a candidate for a
Lagrangian density, which can potentially be used to
define an associated set of Euler–Lagrange equations, via a
variational principle – that is, the principle of least action,
or Hamilton’s principle. A priori, it is not immediately
clear whether this will work here, owing to complications
of phase changes. In Section 3.1 we established that, at
the very least, 𝓁 is differentiable, so it is at least possi-
ble to take variational derivatives of 𝓁. Now we investigate
whether a variational principle, using 𝓁 as the Lagrangian
density, will lead to the model in Equations (1)–(4) or
Equations (15)–(18) as the associated Euler–Lagrange
equations.

Hamilton’s principle states that the dynamics of a
system are determined according to a variational state-
ment, and for fluid systems the variational statement
may be expressed in either the Lagrangian1 description
or the Eulerian description (Hill, 1951; Bretherton, 1970;
Salmon, 1982, 1988, 1998; Cotter and Holm, 2014). Our
goal is to derive the model in Equations (15)–(18), which
is written in the Eulerian description. Nevertheless, for
clarity, and for further use later herein, we shall start
now from the Lagrangian description and then briefly
recall the steps in the transformation from the Lagrangian
to the Eulerian description. In the Lagrangian descrip-
tion, one considers variations 𝛿x⃗ in the particle trajectories
x⃗ = x⃗(a⃗, t) corresponding to particles labeled by a⃗. In the

1Note that the adjective “Lagrangian” is sometimes used in the sense of
Lagrangian versus Eulerian description of fluid dynamics, and
sometimes in the sense of Lagrangian versus Hamiltonian formulation
of classical mechanics. The different uses here should be clear from the
context.

Eulerian description, the system is described by the veloc-
ity u⃗ at fixed locations, and thus one must use the inverse
flow map a⃗ = a⃗(x⃗, t) (assumed one-to-one) to transform
the variational statement accordingly. As in the previous
sections, it will be convenient to work in Cartesian coordi-
nates for simplicity.

Following fluid particles labeled by a⃗, the Lagrangian
 for the system is given by

(t) =
∫ ∫ ∫

dVa 𝓁(x⃗(a⃗, t), x⃗t(a⃗, t), a⃗)

=
∫ ∫ ∫

dVa
1
2

(
x⃗t ⋅ x⃗t −

b2
u

N2
u

Hu −
b2

s

N2
s

Hs

−
N2

uN2
s

N2
u − N2

s
M2Hu

)
, (47)

where a⃗ is chosen such that dVa represents a differential
mass element dm in particle-label space. For example, a⃗
can be chosen as the initial position x⃗0. We make use of a
different such choice of a⃗ in later sections. The notation
x⃗t means the derivative of x⃗ with respect to time t, keep-
ing particle label a⃗ fixed. Hamilton’s principle is stated in
terms of the action:

𝛿 = 0,  =
∫

t2

t1

dt(t), (48)

for variations 𝛿x⃗(a⃗, t) that vanish outside the range t ∈
[t1, t2]. These variations must also tend to zero as x⃗ tends to
infinity, or satisfy no flow through the domain boundary
(see e.g., Bretherton, 1970). To transform Equation (48) to
the Eulerian description, one must change variables in the
volume element using

dVa =  dVx =
𝜕(a⃗)
𝜕(x⃗)

dVx, (49)

where dVx is the volume element in physical space and
 is the Jacobian determinant, and we adopt the nota-
tion  ≡ 𝜕(a⃗)∕𝜕(x⃗) as in some of the previous literature. In
Cartesian coordinates,  is the determinant of the matrix
𝜕ai∕𝜕x𝑗 . For labeling coordinates chosen such that equal
volumes in a⃗-space have equal masses, 𝜕(a⃗)∕𝜕(x⃗) is the
mass density 𝜌. Here, we wish to describe incompressible
Boussinesq dynamics, and thus we take the constant 𝜌 = 1.
Using the Eulerian notation u⃗ = x⃗t, Hamilton’s principle
Equation (48) becomes

𝛿 = 0,  =
∫

t2

t1

dt
∫ ∫ ∫

dVx
1
2

(
u⃗ ⋅ u⃗ −

b2
u

N2
u

Hu

−
b2

s

N2
s

Hs −
N2

uN2
s

N2
u − N2

s
M2Hu

)
, (50)
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KOOLOTH et al. 1063

where now the action  must be stationary with respect
to arbitrary variations 𝛿a⃗. Thus, one must express the
integrand as 𝓁 = 𝓁(a⃗(x⃗, t), … , x⃗), where the … means
derivatives of a⃗ with respect to x⃗ and/or t.

For example, let us consider how to express the velocity
u⃗ in Equation (50) as first derivatives of a⃗ with respect to x⃗
and t. The latter can be achieved from conservation of label
a⃗ following fluid particles:

D
Dt

a⃗ = a⃗t + u⃗ ⋅ ∇a⃗ = 0, (51)

by solving Equation (51) as a 3 × 3 system for u⃗
(Salmon, 1988), and we note that the∇without a subscript
is the gradient operator ∇ = (𝜕x, 𝜕y, 𝜕z). Alternatively, an
equivalent variational statement is found by appending
Equation (51) to Equation (50) as constraints (the Lin con-
straints), and then considering independent variations 𝛿u⃗
and 𝛿a⃗ (Bretherton, 1970; Salmon, 1988). In addition to
the Lin constraints, a constraint is required to enforce the
incompressibility condition ∇ ⋅ u⃗ = 0, thus leading to

 =
∫

dt
∫ ∫ ∫

dVx

[
1
2

u⃗ ⋅ u⃗ − 1
2

b2
u

N2
u

Hu −
1
2

b2
s

N2
s

Hs

−1
2

N2
uN2

s

N2
u − N2

s
M2Hu − 𝛼⃗ ⋅

Da⃗
Dt

− 𝜆(∇ ⋅ u⃗)
]
, (52)

where 𝜆 and 𝛼⃗ = (𝛼, 𝛽, 𝛾) are Lagrange multipliers. As will
be shown later, the multiplier 𝜆 contributes to the pressure.
Next, the potential energy in the integrand can be rewrit-
ten in terms of the material invariants btot

u = btot
u (a⃗) and

btot
s = btot

s (a⃗) using the relations

bu = btot
u − N2

uz, bs = btot
s − N2

s z. (53)

One can verify that btot
u and btot

s are invariant following
fluid particles according to the conservation equations

D
Dt

btot
u = D

Dt
btot

s = 0, D
Dt

= 𝜕

𝜕t
+ u⃗ ⋅ ∇. (54)

Using Equation (53), one can also rewrite Hu, Hs, and
M in the potential energy to be functions of btot

u and btot
s ,

based on their definitions in Equations (21) and (24).
Notice that, via Equation (53), the height z now appears
explicitly in the potential energy terms, along with btot

u
and btot

s . However, the explicit z-dependence does not have
an influence on variations 𝛿a⃗ for the Lagrangian den-
sity 𝓁 = 𝓁(a⃗(x⃗, t), … , x⃗), since the explicit z-dependence
is part of the explicit x⃗-dependence in 𝓁 = 𝓁(a⃗(x⃗, t), … , x⃗)
and is separate from the implicit x⃗-dependence of the
a⃗(x⃗, t)-dependence of𝓁. As some physical connection, note
that the potential energy is now considered as a function of

the three variables btot
u , btot

s , and z, and the presence of these
three variables is analogous to the presence of three ther-
modynamic variables 𝜃tot

e , qtot
t , and z or stot, qtot

t , and p that
are needed to describe the thermodynamic state of a moist
system. The quantities btot

u and btot
s are material invariants

that play the same type of role as the material invariants
of entropy stot and total water mixing ratio qtot

t , and z plays
the role of pressure p in Boussinesq and anelastic systems
(Pauluis, 2008). We continue to write the potential energy
in terms of bu, bs, and M for simplicity of the expression;
however, the transformation to the variables btot

u , btot
s , and

z is henceforth implied. Finally, we can exploit the mate-
rial invariance of the buoyancy variables btot

u and btot
s by

assigning them as two of the particle labels: a⃗ = (a, b, c) =
(a, btot

u , btot
s ), thereby allowing for independent variations

𝛿btot
u and 𝛿btot

s . Using the new labels, and integration by
parts in the incompressibility constraint, we arrive at

 =
∫

dt
∫ ∫ ∫

dVx

(
1
2

u⃗ ⋅ u⃗ − 1
2

b2
u

N2
u

Hu −
1
2

b2
s

N2
s

Hs

− 1
2

N2
uN2

s

N2
u − N2

s
M2Hu − 𝛼

Da
Dt

−𝛽
Dbtot

u

Dt
− 𝛾

Dbtot
s

Dt
− u⃗ ⋅ ∇𝜆

)
. (55)

After all of the preceding transformations, Hamilton’s
principle requires that the be stationary with respect to
variations in u⃗(x⃗, t), a(x⃗, t), btot

u (x⃗, t), btot
s (x⃗, t), 𝛼(x⃗, t), 𝛽(x⃗, t),

𝛾(x⃗, t), and 𝜆(x⃗, t). These variations result in the following:

𝛿u: u⃗ − 𝛼∇a − 𝛽∇btot
u − 𝛾∇btot

s − ∇𝜆 = 0, (56)

𝛿𝛼: Da
Dt

= 0, (57)

𝛿a: D𝛼
Dt

= 0, (58)

𝛿𝛽:
Dbtot

u

Dt
= 0, (59)

𝛿btot
u : D𝛽

Dt
− bu

N2
u

Hu −
N2

s

N2
u − N2

s
MHu = 0, (60)

𝛿𝛾 :
Dbtot

s

Dt
= 0, (61)

𝛿btot
s : D𝛾

Dt
− bs

N2
s

Hs +
N2

u

N2
u − N2

s
MHu = 0, (62)

𝛿𝜆: ∇ ⋅ u⃗ = 0, (63)

where we have used Equation (46). To obtain the
momentum equation, one can compute Du⃗∕Dt using
Equation (56), and then substitute from the remaining
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1064 KOOLOTH et al.

equations in Equations (57)–(63) to obtain

Du⃗
Dt
= D

Dt
(𝛼∇a + 𝛽∇btot

u + 𝛾∇btot
s + ∇𝜆)

= 𝜕

𝜕t
(𝛼∇a + 𝛽∇btot

u + 𝛾∇btot
s + ∇𝜆) + u⃗ ⋅ ∇u⃗ (64)

= 𝛼 𝜕∇a
𝜕t

+ 𝛽
𝜕∇btot

u

𝜕t
+ 𝛾

𝜕∇btot
s

𝜕t
+ 𝜕∇𝜆

𝜕t
+ ∇a𝜕𝛼

𝜕t

+ ∇btot
u
𝜕𝛽

𝜕t
+ ∇btot

s
𝜕𝛾

𝜕t
+ u⃗ ⋅ ∇u⃗ (65)

= −[𝛼∇(u⃗ ⋅ ∇a) + 𝛽∇(u⃗ ⋅ ∇btot
u ) + 𝛾∇(u⃗ ⋅ ∇btot

s )

+ ∇(u⃗ ⋅ ∇𝜆)] + ∇
(

u⃗ ⋅ ∇𝜆 + 𝜕𝜆

𝜕t

)
+Hu

bu

N2
u
∇btot

u

+Hu
N2

s

N2
u − N2

s
M∇btot

u +Hs
bs

N2
s
∇btot

s

−Hu
N2

u

N2
u − N2

s
M∇btot

s + u⃗ ⋅ ∇u⃗ − [∇a(u⃗ ⋅ ∇𝛼)

+ ∇btot
u (u⃗ ⋅ ∇𝛽) + ∇btot

s (u⃗ ⋅ ∇𝛾)] (66)

= −[𝛼∇(u⃗ ⋅ ∇a) + 𝛽∇(u⃗ ⋅ ∇btot
u ) + 𝛾∇(u⃗ ⋅ ∇btot

s )

+ ∇(u⃗ ⋅ ∇𝜆)] − ∇
(
−u⃗ ⋅ ∇𝜆 − 𝜕𝜆

𝜕t
− 1

2
(bu)2

N2
u

Hu

−1
2
(bs)2

N2
s

Hs −
1
2

N2
uN2

s

N2
u − N2

s
M2Hu

)
+ (buHu + bsHs)k̂

+ u⃗ ⋅ ∇u⃗ − [∇a(u⃗ ⋅ ∇𝛼) + ∇btot
u (u⃗ ⋅ ∇𝛽) + ∇btot

s (u⃗ ⋅ ∇𝛾)].
(67)

In moving from Equation (65) to Equation (66), the
term ∇(u⃗ ⋅ ∇𝜆) was added and subtracted, and several
of the relations from Equations (57)–(63) were used to
replace 𝜕∕𝜕t terms. Then, in moving from Equation (66) to
Equation (67), the term ∇btot

u was split into contributions
from bu and N2

uz, using the definition in Equation (53),
and similarly for ∇btot

s , leading to the buoyancy term
(buHu + bsHs)k̂ in Equation (67). Also used in moving from
Equation (66) to Equation (67) are Equations (24), (39),
and (46). To proceed further, the main challenge is to iden-
tify and collect gradient terms so as to determine an effec-
tive pressure to recover the requisite governing equations.
With that goal, we use the identity

𝛼∇(u⃗ ⋅ ∇a) + ∇a(u⃗ ⋅ ∇𝛼) = ∇[u⃗ ⋅ (𝛼∇a)] + u⃗ ⋅ ∇(𝛼∇a)
− [∇(𝛼∇a)]Tu⃗ (68)

where [∇(𝛼∇a)]Tu⃗ is a matrix–vector multiplication that
can be written in index notation as u𝑗𝜕xi(𝛼𝜕x

𝑗
a), with

summation over repeated indices. Using this identity in

Equation (67), we obtain

Du⃗
Dt

= −∇p + (buHu + bsHs)k̂, (69)

where the pressure p is related to the Lagrange multiplier
𝜆 via

p =
(

1
2
|u⃗|2 − u⃗ ⋅ ∇𝜆 − 𝜕𝜆

𝜕t
− 1

2
(bu)2

N2
u

Hu

−1
2
(bs)2

N2
s

Hs −
1
2

N2
uN2

s

N2
u − N2

s
M2Hu

)
(70)

=
(
𝓁 − u⃗ ⋅ ∇𝜆 − 𝜕𝜆

𝜕t

)
. (71)

Therefore, we have demonstrated that the governing
equations, Equations (59), (61), (63), and (69), are
obtained using Hamilton’s principle, starting from the
Lagrangian density in Equation (33) – compare with
Equations (15)–(18) and use Equation (53).

4 CIRCULATION AND PV IN
MOIST SYSTEMS

Using the Lagrangian formulation from Section 3,
we can now investigate PV from the perspective of
particle-relabeling symmetry of the Lagrangian. In this
section, a moist version of particle-relabeling symmetry is
studied, and it is used to identify various versions of PV
conservation.

4.1 Background on Noether’s theorem
and possible outcomes

As a systematic approach to seeking conservation laws,
one could identify symmetries of the Lagrangian function
and apply Noether’s theorem to arrive at a corresponding
conservation law (Noether, 1918). For conservation of PV
and Kelvin’s circulation theorem, the symmetry of inter-
est for dry dynamics is the particle-relabeling symmetry
(e.g., Bretherton, 1970; Salmon, 1988; Padhye and Morri-
son, 1996). Here, we now seek a particle-relabeling sym-
metry that is valid for moist dynamics with phase changes.
By taking such a systematic approach, we can discover
statements for conservation of circulation and moist PV in
a system with phase changes.

Before considering particle-relabeling symmetry and
the systematic approach itself, it is worthwhile to consider
what the possible outcomes may be. As examples, con-
sider other known symmetries and their associated con-
servation laws. One well-known symmetry is translation
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KOOLOTH et al. 1065

invariance, whereby the action is invariant under transla-
tions of the x⃗ coordinates. The corresponding conservation
law is conservation of momentum. A second symmetry is
the particle-relabeling symmetry, which, for a dry atmo-
sphere, is known to correspond with conservation of PV.
As examples of conservation laws, these two examples
differ in that it is the total (or global) momentum, inte-
grated over all fluid parcels that is conserved, whereas the
PV is conserved for each individual fluid parcel. A priori,
for the moist case of this article, either scenario is pos-
sible. In other words, it is possible that moist PV will be
conserved for each individual fluid parcel, or that moist
PV is globally conserved (upon integrating over all fluid
parcels), or some other type of conservation law. By find-
ing the moist particle-relabeling symmetry and applying
Noether’s theorem, we will discover the corresponding
conservation law that arises.

4.2 Particle-relabeling symmetry
and PV

In this section, our goal is to find a particle-relabeling sym-
metry for the action defined in Equations (47) and (48),
whose Euler–Lagrange equations are the moist system in
Equations (15)–(18) with phase changes. The action for
our system may be written as

 =
∫

dt
∫ ∫ ∫

dVa 𝓁(x⃗(a⃗, t), x⃗t(a⃗, t), a⃗)

=
∫

dt
∫ ∫ ∫

dVa
1
2

x⃗t ⋅ x⃗t − (btot
u (a⃗), btot

s (a⃗), z) (72)

where x⃗ = x⃗(a⃗, t) is the particle path, x⃗t = x⃗t(a⃗, t) is the
fluid velocity following fluid particles, and btot

u and btot
s

are the total buoyancies specified by Equations (53) and
(54). Henceforth, it is understood that the limits of integra-
tion and boundary conditions are appropriately defined,
as mentioned in Section 3.2 and discussed by Brether-
ton (1970).

To achieve the goal of deriving conservation statements
for the moist system with phase changes, we consider here
a particle relabeling a⃗′ = a⃗ + 𝛿a⃗(a⃗, t) that does not change
the particle paths, such that x⃗′(a⃗′, t) = x⃗(a⃗, t). Further-
more, the relabeling should not change the mass, such
that

dVa =
𝜕(a⃗)
𝜕(a⃗′)

dV ′
a = dV ′

a, (73)

and hence we must have 𝜕(a⃗)∕𝜕(a⃗′) = 1, from which it fol-
lows that the label variation 𝛿a⃗ satisfies a divergence-free
constraint (see the Supporting Information or

Salmon (1998) for details):

𝜕𝛿a
𝜕a

+ 𝜕𝛿b
𝜕b

+ 𝜕𝛿c
𝜕c

= 0. (74)

In addition, we restrict the relabeling to those that
do not alter the potential energy density  itself. To
achieve invariance of potential energy, based on its form
(btot

u , btot
s , z), we see that we should consider variations

𝛿a⃗ along curves of constant btot
u and constant btot

s , where a
schematic of such curves is shown in Figure 1. These are
curves at the intersection of two surfaces: one with con-
stant btot

u and the other with constant btot
s . Since surfaces of

constant btot
u and surfaces of constant btot

s are both material
invariant, it follows that their intersection is also material
invariant. Mathematically, in any label coordinate system
a⃗, we require the infinitesimal particle label variation 𝛿a⃗
to satisfy

𝛿a⃗ ⋅ ∇abtot
u = 0, (75)

𝛿a⃗ ⋅ ∇abtot
s = 0, (76)

∇a ⋅ 𝛿a⃗ = 0, (77)

where the operator ∇a = ( 𝜕
𝜕a
,
𝜕

𝜕b
,
𝜕

𝜕c
). For example, the

label coordinate system a⃗ can be taken to be the position
of the particles at t = 0.

To satisfy the conditions in Equations (75)–(77), one
can take 𝛿a⃗ to be of the form

𝛿a⃗ = 𝛿f (btot
u , btot

s , t)(∇abtot
u × ∇abtot

s ). (78)

Here, 𝛿f (btot
u , btot

s , t) is an arbitrary smooth scalar function
of btot

u , btot
s , and t (with an additional constraint specified

later; see discussion after (89)). The cross-product term
(∇abtot

u × ∇abtot
s ) ensures that Equations (75) and (76) are

satisfied, and one can see that Equation (77) is satisfied
because of the restriction that the function 𝛿f depends only
on btot

u , btot
s , and t:

∇a ⋅ (𝛿f (btot
u , btot

s , t)(∇abtot
u × ∇abtot

s ))
= ∇a ⋅ (𝛿f (btot

u , btot
s , t)∇a × (btot

u ∇abtot
s )), (79)

= [∇a𝛿f (btot
u , btot

s , t)] ⋅ [∇a × (btot
u ∇abtot

s )], (80)

=
(
𝜕𝛿f
𝜕btot

u
∇abtot

u +
𝜕𝛿f
𝜕btot

s
∇abtot

s

)
⋅ (∇abtot

u × ∇abtot
s ),

(81)

= 0. (82)

The form of the variation in Equation (78) therefore
ensures a mass-conserving particle relabeling. Intuitively,
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1066 KOOLOTH et al.

F I G U R E 1 Left: Schematic diagram showing the particle labels, a⃗ = (a, btot
u , btot

s ). Right: Schematic diagram showing level sets of btot
s

on a surface of constant btot
u , assuming that btot

s and btot
u are smooth functions. [Colour figure can be viewed at wileyonlinelibrary.com]

the relabeling in Equation (78) is a uniform shift on level
sets of constant btot

u and btot
s because 𝛿f (btot

u , btot
s , t) depends

only on btot
u and btot

s .
In the derivation of the circulation theorem that fol-

lows, it will be desirable to restrict attention to the vicinity
of a single closed curve. To do so, one can make a slight
modification of Equation (78) in order to localize the vari-
ation in certain regions of the domain:

𝛿a⃗ = 𝛿f (btot
u , btot

s , t)(∇abtot
u × ∇abtot

s )𝜒D(a⃗), (83)

where a new factor of 𝜒D(a⃗) has been included, where
𝜒D(a⃗) is a smooth cut-off function for an appropriately
chosen region of interest D. Note that the conditions
in Equations (75)–(77) are still satisfied if the region of
non-zero 𝛿f values is contained in the region where 𝜒D =
1.

By adopting variations of the form in Equation (83),
we now proceed to enforce 𝛿 = 0, where 𝛿 arises from
variations 𝛿x⃗t in the kinetic energy,

𝛿 =
∫

dt
∫ ∫ ∫

dVa
𝜕x⃗
𝜕t
⋅ 𝛿
𝜕x⃗
𝜕t

=
∫

dt
∫ ∫ ∫

dVa x⃗t ⋅ 𝛿x⃗t = 0, (84)

with the eventual aim of relating the result to conservation
of PV. We remind the reader that x⃗t means the derivative
of x⃗(a⃗, t) with respect to time t, keeping a⃗ fixed. In what
follows, the steps in the rather lengthy calculation are (i)
express 𝛿x⃗t in terms of (𝛿a⃗)t, (ii) substitute Equation (83)
for 𝛿a⃗, (iii) specify region D of interest and transform
to buoyancy-based label coordinates, (iv) rearrange the
ordering of terms in the integral, and (v) simplify the
integral and interpret the result in physical terms.

An expression for 𝛿x⃗t in terms of (𝛿a⃗)t follows from
calculus and takes the form

𝛿
𝜕x⃗
𝜕t
∼ −

(
𝜕x⃗
𝜕a

𝜕𝛿a
𝜕t

||||a⃗ +
𝜕x⃗
𝜕b

𝜕𝛿b
𝜕t

||||a⃗ +
𝜕x⃗
𝜕c

𝜕𝛿c
𝜕t

||||a⃗
)

(85)

(see the Supporting Information for details of the calcu-
lation). Using Equation (85) in Equation (84), we arrive at

∫
dt
∫ ∫ ∫

dVa

(
𝜕xi

𝜕t
𝜕xi

𝜕a𝑗
𝜕𝛿a𝑗
𝜕t

)
= 0. (86)

Now, by integration by parts in time t, we have

∫
dt
∫ ∫ ∫

dVa
𝜕A⃗
𝜕t
⋅ 𝛿a⃗ = 0, (87)

where
A𝑗 =

𝜕xi

𝜕t
𝜕xi

𝜕a𝑗
. (88)

Therefore,

∫
dt
∫ ∫ ∫

dVa
𝜕A⃗
𝜕t

× 𝛿f (btot
u , btot

s )(∇abtot
u × ∇abtot

s )𝜒D(a⃗) = 0. (89)

At this point, it is helpful to identify a particular closed
curve of interest, on which btot

u and btot
s have constant

values. The region D, associated with the cut-off func-
tion 𝜒D, is chosen to encompass the neighborhood of
the closed curve of interest, so that, in region D, a
buoyancy-based label coordinate system can be used.
More specifically, in region D there exists a smooth
invertible map from initial-position-based label coordi-
nates a⃗ to buoyancy-based label coordinates (a′′, btot

u , btot
s ).
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KOOLOTH et al. 1067

The purpose of defining region D is to ensure that the
buoyancy-based label coordinates are valid and a given
pair (btot

u , btot
s ) identifies at most one simple closed curve

(see the Appendix for a detailed discussion of this map-
ping). To proceed with the integral in Equation (89),
before the change in label coordinates, the region D is
divided into two disjoint regions D1 and D2 such that D1
is the region where 𝜒D(a⃗) = 1 and D2 = D ⧵ D1, where the
cut-off function smoothly approaches zero. By constrain-
ing 𝛿f (btot

u , btot
s , t) to be zero on D2, the second integral in

the aforementioned expression vanishes, and we have

∫
dt
∫ ∫ ∫D1

dVa
𝜕A⃗
𝜕t
⋅ 𝛿f (btot

u , btot
s , t)(∇abtot

u × ∇abtot
s ) = 0.

(90)
It is now convenient to transform from the general label
coordinates a⃗ to the buoyancy-based label coordinates
a⃗′′ = (a′′, b′′, c′′) = (a′′, btot

u , btot
s ) as shown in Figure 2 (see

the Appendix for an explicit construction starting from
initial-position labels). In the buoyancy-based label coor-
dinates, the label variation in Equation (78) has the simple
form of 𝛿a⃗′′ = (𝛿f (b′′, c′′, t), 0, 0) = (𝛿f (btot

u , btot
s , t), 0, 0).

After dropping the primes to simplify notation,
Equation (90) becomes, in the new coordinate system,

∫
dt
∫ ∫ ∫D1

da db dc 𝜕

𝜕t

(
𝜕x⃗
𝜕t
⋅
𝜕x⃗
𝜕a

)
𝛿f (b, c, t)

=
∫

dt
∫ ∫

db dc 𝛿f (b, c, t)
∫

da 𝜕

𝜕t

(
𝜕x⃗
𝜕t
⋅
𝜕x⃗
𝜕a

)
= 0.

(91)

F I G U R E 2 Schematic diagram showing level sets of btot
s on a

surface of constant btot
u , assuming that btot

s and btot
u are smooth

functions. Also shown is the local buoyancy-based label coordinate
system in an appropriately chosen region D. [Colour figure can be
viewed at wileyonlinelibrary.com]

Since 𝛿f (b, c, t) is arbitrary, it follows that

∫
da 𝜕

𝜕t

(
𝜕x⃗
𝜕t
⋅
𝜕x⃗
𝜕a

)
= 0. (92)

Note that 𝜕∕𝜕t can be brought outside the integral, since it
is a time derivative with the label coordinates a⃗ = (a, b, c)
held fixed. Also note that 𝜕x⃗∕𝜕t is the velocity u⃗, and
consequently we arrive at

d
dt ∫

u⃗ ⋅ 𝜕x⃗
𝜕a

da = 0. (93)

According to our definition of labels, a parametrizes closed
simple curves of constant (btot

u , btot
s ); see Figure 1. There-

fore, returning from label space to x⃗-space and considering
closed curves C(btot

u , btot
s , t) of constant (btot

u , btot
s ), the result

Equation (93) may be restated as

D
Dt ∮C(btot

u ,btot
s ,t)

u⃗ ⋅ dx⃗ = 0, (94)

where dx⃗ is the line element tangent to the curve
C(btot

u , btot
s , t). The statement in Equation (94) is the moist

circulation theorem for the system of Equations (15)–(18)
with phase changes. It is the moist analogue of the Kelvin
or Bjerknes circulation theorems from the dry case (e.g.,
Majda and Bertozzi, 2002; Thorpe et al., 2003; Cotter and
Holm, 2014).

Furthermore, it is possible to obtain conservation prin-
ciples for PV. In this direction, using Stokes’ theorem,
we may rewrite the moist Kelvin circulation theorem in
Equation (94) to obtain a conservation law for vorticity,
𝜔⃗ = ∇ × u⃗, on a material surface patch S(x⃗, t):

D
Dt ∫ ∫S(x⃗,t)

𝜔⃗ ⋅ dS⃗ = 0, (95)

where the boundary of the patch is the closed curve
C(btot

u , btot
s , t). For the special case where S(x⃗, t) is on a

surface of constant btot
u , we find

D
Dt ∫ ∫S(x⃗,t)

𝜔⃗ ⋅
∇btot

u

||∇btot
u ||dS = 0. (96)

To then move toward a volumetric integral, take an addi-
tional integral with respect to btot

u to yield

∫

C2

C1

D
Dt ∫ ∫S(x⃗,t)

𝜔⃗ ⋅
∇btot

u

||∇btot
u ||dS dbtot

u = 0. (97)

Since btot
u is a label coordinate, and the material deriva-

tive D∕Dt is a time derivative holding labels fixed, we may
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F I G U R E 3 “Pancake”-like local material volume for
parcel-integrated potential vorticity. [Colour figure can be viewed at
wileyonlinelibrary.com]

rewrite Equation (97) as

D
Dt ∫ ∫ ∫S(x⃗,t)

𝜔⃗ ⋅
∇btot

u

||∇btot
u ||dS dbtot

u = D
Dt ∫ ∫ ∫S(x⃗,t)

𝜔⃗

⋅
∇btot

u

||∇btot
u ||dS

(||∇btot
u ||d𝜎) = 0, (98)

where 𝜎 is the arc length along curves in the direction
of ∇btot

u (Figure 3). Simplifying, we find conservation of a
volume-integrated moist PV ∫ PVu for a material volume
that looks like a distorted cylinder or pill-box or pancake
as in Figure 3:

D
Dt ∫ ∫ ∫V(x⃗,t)

dV PVu =
D
Dt ∫ ∫ ∫V(x⃗,t)

dV 𝜔⃗ ⋅ ∇btot
u = 0.

(99)
In Equation (99), the base and lid of the cylinder are sur-
faces of constant btot

u , connected by gradient lines of btot
u .

Moreover, the cylinder can be viewed as a stack of patches,
where each patch is on a different surface of constant btot

u ,
and the boundary of each patch is a curve of constant btot

s .
In this way, the btot

s values on the sides of the cylinder can
be written as functions btot

s (btot
u ). In the Supporting Infor-

mation, we also show that the conservation statement can
be extended to a volume with sides given by any arbitrary
function btot

s (btot
u ).

Similarly, one can also arrive at conservation of
volume-integrated moist PV ∫ PVs:

D
Dt ∫ ∫ ∫V(x⃗,t)

dV PVs =
D
Dt ∫ ∫ ∫V(x⃗,t)

dV 𝜔⃗ ⋅ ∇btot
s = 0,

(100)
where the material volume in Equation (100) has base and
lid which are surfaces of constant btot

s , connected by sides
given by any arbitrary function btot

u (btot
s ).

For the moist Boussinesq system in Equations
(15)–(18), Equations (99) and (100) are the strongest type
of conservation statement for PV. When phase changes
are present, conservation applies following local volumes

of PV, enclosed by special surfaces defined in terms of
(btot

u , btot
s ), rather than following individual fluid particles

as in the dry system.
Now that the systematic procedure has produced the

form of the circulation theorem and the conservation
principle for PV, it is possible to derive these results
directly from the moist Boussinesq evolution equations
in Equations (15)–(18). In the Supporting Information,
we present direct derivations for the circulation theorem,
globally integrated PVu, and parcel-integrated PVu and
PVs. The direct derivations provide an independent con-
firmation of these conservation principles. The Supporting
Information also includes special variations of the action
leading to global conservation of PVu and PVs.

5 DISCUSSION AND
CONCLUSIONS

Here, we have shown that Hamilton’s principle can
be used to derive the moist Boussinesq dynamics,
Equations (1)–(4), including phase changes between water
vapor and liquid water. The Hamiltonian formulation is
not obvious a priori because the buoyancy is piecewise,
changing its functional form at interfaces between unsat-
urated and cloudy air. A key observation is that the piece-
wise potential energy associated with buoyancy is both
continuous and differentiable.

After the Hamiltonian formulation was established,
we were then able to investigate particle-relabeling sym-
metry for the action associated with the moist dynamics,
and thereby provide a systematic derivation of conser-
vation statements for moist PV. The conservation state-
ments derived herein had not previously been found from
other approaches. Furthermore, the symmetry analysis
naturally links the moist versions of Kelvin’s circulation
theorem and conservation of PV.

Using particle-relabeling symmetry, we uncover a fun-
damental difference between the dry and moist conserva-
tion statements for PV, following directly from the require-
ment that potential energy must remain invariant under
the relabeling. In the dry case, it is necessary to restrict
relabeling to constant entropy, leading to material invari-
ance of dry PV on constant-entropy surfaces. In the moist
case with phase changes, the relabeling is restricted to
fluid parcels situated on curves of constant btot

u and con-
stant btot

s . These curves are not restricted to the unsaturated
or saturated regimes since bu and bs are globally defined
quantities as in Equations (13) and (14). Ultimately, the
stronger constraint leads to a weaker conservation law;
namely, material invariance of parcel-integrated moist PV,
where the local volumes have special surfaces defined in
terms of (btot

u , btot
s ), as in Figure 3, for example. Table 1
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T A B L E 1 Summary of potential vorticity (PV) conservation
principles for various regimes.

Feature
Dry case
(non-isentropic)

Moist
Boussinesq case

Particle-relabeling
symmetry

On level surfaces
Ss(t) of
entropy s.

On curves Cb(t)
of constant btot

u
and btot

s

Circulation
theorem:
∮C(t) u⃗ ⋅ dx⃗ = 0

C(t) ∶ Any curve
on Ss(t)

C(t) ∶ Special
curves Cb(t)

PV definition 1
𝜌
𝜔⃗ ⋅ ∇s PVu = 𝜔⃗ ⋅

∇btot
u ;PVs =

𝜔⃗ ⋅ ∇btot
s

Conserved
quantity

Individual parcel
PV

Parcel-integrated
PV

summarizes the dry and moist results, with respective defi-
nitions for PV. Note that one could restate the moist results
in terms of any two material invariants for the system in
Equations (1)–(4); for example, total potential temperature
𝜃

tot
e and total water qtot

t .
In previous work (Marsico et al., 2019), we established

conservation of a piecewise-quadratic energy for the moist
Boussinesq dynamics. Here, we expand our knowledge of
the relevant conservation laws to include a moist Kelvin
circulation theorem and conservation of parcel-integrated
moist PV, as well as their relationship to each other. Thus,
we now have moist analogs for some of the most impor-
tant theorems for dry Boussinesq dynamics. Future work
will explore how these results can be applied to analyze
observations and numerical simulations of atmospheric
flows. It is straightforward to include the effects of rota-
tion (e.g., Cotter and Holm, 2014), which were omitted
here for simplicity. In addition, we have already gener-
alized the statement for conservation of PV and Kelvin’s
circulation theorem to the case of compressible moist flows
in work that is presented elsewhere (Kooloth et al., 2022).
Note: After the present article was accepted for publica-
tion, the authors became aware of a paper by Bannon
2003 that describes a circulation theorem for binary flu-
ids although not a parcel-integrated conservation law for
potential vorticity.
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nes’ circulation theorem: a historical perspective. Bulletin of the
American Meteorological Society, 84, 471–480.

Wetzel, A.N., Smith, L.M., Stechmann, S.N. and Martin, J.E. (2019)
Balanced and unbalanced components of moist atmospheric
flows with phase changes. Chinese Annals of Mathematics,
Series B, 40, 1005–1038.

Wetzel, A.N., Smith, L.M., Stechmann, S.N., Martin, J.E. and
Zhang, Y. (2020) Potential vorticity and balanced and unbal-
anced moisture. Journal of the Atmospheric Sciences, 77,
1913–1931.

Zelati, M.C., Frémond, M., Temam, R. and Tribbia, J. (2013) The
equations of the atmosphere with humidity and saturation:
uniqueness and physical bounds. Physica D: Nonlinear Phenom-
ena, 264, 49–65.

Zelati, M.C., Huang, A., Kukavica, I., Temam, R. and Ziane, M. (2015)
The primitive equations of the atmosphere in presence of vapour
saturation. Nonlinearity, 28, 625.

Zelati, M.C. and Temam, R. (2012) The atmospheric equation of
water vapor with saturation. Bollettino della Unione Matematica
Italiana, 5, 309–336.

Zhang, Y., Smith, L.M. and Stechmann, S.N. (2021a) Effects of clouds
and phase changes on fast-wave averaging: a numerical assess-
ment. Journal of Fluid Mechanics, 920, A49.

Zhang, Y., Smith, L.M. and Stechmann, S.N. (2021b) Fast-wave
averaging with phase changes: asymptotics and application
to moist atmospheric dynamics. Journal of Nonlinear Science,
31, 38.

How to cite this article: Kooloth, P., Smith, L.M.
& Stechmann, S.N. (2023) Hamilton’s principle with
phase changes and conservation principles for
moist potential vorticity. Quarterly Journal of the
Royal Meteorological Society, 149(752), 1056–1072.
Available from: https://doi.org/10.1002/qj.4454

APPENDIX A. PARTICLE LABEL
DEFINITION

We can define the particle label a⃗ as follows:

a⃗ = (a, b, c) = (a, btot
u , btot

s ), (A.1)

where the first component a should be such that it locates
particles on curves of constant (btot

u , btot
s ). In addition,

we require that dVa = da dbtot
u dbtot

s represents a mass
element in physical space with dVa = [𝜕(a⃗)∕𝜕(x⃗)] dVx =
𝜌 dVx. Keeping in mind that the initial position vector x⃗0
is a mass-conserving label with 𝜕(x⃗0)∕𝜕(x⃗) = 𝜌, we there-
fore choose the first component a in Equation (A.1) such
that 𝜕(a⃗)∕𝜕(x⃗0) = 1. A third requirement is for a to be mate-
rial invariant with Da∕Dt = 0. In the following, we show
an explicit construction for a⃗ satisfying all the aforemen-
tioned three restrictions.

In order to concretely define the label a, start by draw-
ing a parallelepiped in terms of a, btot

u , btot
s , where the

direction of a is determined by the cross product ∇0btot
u ×

∇0btot
s , and where∇0 is a gradient with respect to the initial

position vector x⃗0 at time t = 0. To enforce Equation (49),
and using the chain rule, the magnitude of a is determined
by 𝜕(a⃗)∕𝜕(x⃗0) = |∇0a ∇0btot

u ∇0btot
s | = 1, where ∇0a and so

on are column vectors. Therefore, the label a is chosen to

F I G U R E A.1 Schematic to illustrate the computation of the
label a(x⃗0) in terms of initial position labels x⃗0, where a is the first
coordinate of a⃗ = (a, btot

u , btot
s ). [Colour figure can be viewed at

wileyonlinelibrary.com]
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F I G U R E A.2 Schematic to illustrate cases for which the label coordinate mapping is not one-to-one globally. Left: Level surfaces of
btot

u and btot
s coincide. Right: Intersection of level surfaces of btot

u and btot
s results in multiple distinct closed curves. [Colour figure can be

viewed at wileyonlinelibrary.com]

satisfy the condition |∇0a ∇0btot
u ∇0btot

s | = 1, which can be
restated in terms of a scalar triple product as

(∇0btot
u × ∇0btot

s ) ⋅ ∇0a = 1. (A.2)

The relation in Equation (A.2) will be true if we define

∇0a =
∇0btot

u × ∇0btot
s

|∇0btot
u × ∇0btot

s |2 . (A.3)

Then, integrating along a material curve C of constant
(btot

u , btot
s ), the particle label a is given by

a(x⃗0) =
∫

C

∇x0 btot
u × ∇x0 btot

s

|∇x0 btot
u × ∇x0 btot

s |2 ⋅ dx⃗′0, (A.4)

where the integration is from reference point x⃗r
0 to initial

point x⃗0. Equivalently, we may write

a(x⃗0) =
∫

𝜎

0

d𝜎′

|∇x0 btot
u × ∇x0 btot

s | , (A.5)

where𝜎 is the arc length along the curve C (see Figure A.1).
Finally, notice that since a is completely determined by
x⃗0, then Da∕Dt = 0 by the chain rule, and therefore a is
material invariant as required.

Note that this label coordinate system will apply in
many scenarios but will have issues in some special cases,
such as at points where the gradient ∇0btot

u is in the same
direction as∇0btot

s and when a fixed value of (btot
u , btot

s ) cor-
responds to multiple closed curves. Schematics of these
two scenarios are shown in Figure A.2.
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