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1. Text S1 to S4

Introduction Supplementary information contains derivations of the evolution equations

for circulation/potential vorticity and the dry circulation theorem for the purpose of

completeness. Also provided is an alternate derivation of the moist potential vorticity

conservation theorem.
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Text S1. Evolution of circulation

The definition of the circulation Γ is the integral of the velocity u⃗ along a closed curve C:

Γ =
∮
C
u⃗ · dx⃗ =

∮
C
u⃗ · ∂x⃗

∂σ
dσ, (1)

where the curve has been parametrized with parameter σ.

The evolution equation for the circulation Γ(t) can be derived as follows, for a curve

C(t) that moves with the fluid. The starting point is the momentum equation for an

inviscid fluid with a conservative body force acting on it:

Du⃗

Dt
= −ρ−1∇p+∇ϕ, (2)

where D/Dt = ∂/∂t + u⃗ · ∇ is the material derivative, ρ is the density of the fluid, p is

the pressure and ϕ is the force potential. Now, by taking a material derivative of (1), we

have

DΓ

Dt
=
∮ Du⃗

Dt
· dx⃗+

∮
u⃗ · D

Dt

(
∂x⃗

∂σ

)
dσ =

∮ Du⃗

Dt
· dx⃗+

∮
u⃗ · ∂u⃗

∂σ
dσ. (3)

The last term on the right hand side is an exact differential d
(
1
2
u⃗ · u⃗

)
and consequently

goes to zero when integrated along a closed curve. The momentum equation can then be

used to replace Du⃗
Dt

and arrive at

DΓ

Dt
=
∮ Du⃗

Dt
· dx⃗ = −

∮
ρ−1∇p · dx⃗+

∮
∇ϕ · dx⃗. (4)

The second integral can be written as the integral of an exact differential dϕ and therefore

is zero. From this, we obtain our final result,

DΓ

Dt
= −

∮
ρ−1∇p · dx⃗, (5)

the evolution equation for circulation Γ.
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One can also easily incorporate the effects of rotation. In this case, the momentum

evolution equation becomes

Du⃗

Dt
+ 2Ω⃗× u⃗ = −ρ−1∇p+∇ϕ, (6)

which includes the Coriolis term, 2Ω⃗ × u⃗, where Ω⃗ is the rotation vector. Following a

similar derivation as above, one can arrive at the same evolution equation for circulation

Γ as in (5), except for a modified definition of the circulation,

Γ =
∮
C
(u⃗+ Ω⃗× x⃗) · dx⃗, (7)

which includes a term due to rotation.

Text S2. Circulation theorem (dry atmosphere)

We review a derivation of the circulation theorem for a dry atmosphere (i.e., for an

atmosphere with no moisture and no clouds). This dry derivation is useful for illustrating

that it is difficult to see how a similar derivation could be used for a moist atmosphere

with clouds and phase changes.

The derivation starts from (5), which can be rewritten as

DΓ

Dt
= −

∮
ρ−1 dp. (8)

The idea now is to rewrite the integrand in a way that will expose an exact differential.

To do this, define the potential temperature, θ, as

θ = T

(
p0
p

) R
cp

. (9)

where p0 is a constant reference pressure, cp is the specific heat at constant pressure, and

R is the gas constant from the ideal gas law, p = ρRT . Now introduce the Exner function,
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π(p), defined as

π = cp

(
p

p0

) R
cp

, (10)

and use the ideal gas law, p = ρRT , to see that

∮
ρ−1dp =

∮
θdπ. (11)

Therefore, (8) can be rewritten as

DΓ

Dt
= −

∮
θdπ. (12)

Note that θdπ is not, in general, an exact differential. However, by restricting the material

circuit to a surface of constant potential temperature θ, it is an exact differential and we

have

DΓ

Dt
= 0, (13)

where Γ is the circulation of material curves on a level surface of constant potential

temperature, or on a level surface of constant entropy, since s = cp log θ+ const. for a dry

atmosphere, where cp, commonly assumed constant for a dry atmosphere, is the specific

heat at constant pressure. In order for the material curve C(t) to remain on a surface of

constant entropy for all times, the fluid is assumed to be adiabatic, so that Ds/Dt = 0.

Text S3. Evolution of PV

A derivation of the evolution equation for PV is now presented. The derivation fol-

lows common derivations (Schubert et al., 2001; Vallis, 2017) and is presented here for

completeness and to keep the manuscript self-contained.
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The momentum equation in (2) can be rewritten using u⃗ · ∇u⃗ = 1
2
∇(u⃗ · u⃗) + ω⃗ × u⃗ to

arrive at

∂u⃗

∂t
+ ω⃗ × u⃗+∇

(
1

2
u⃗ · u⃗− ϕ

)
+ ρ−1∇p = 0, (14)

where ω⃗ = ∇ × u⃗ is the vorticity. One can then obtain the vorticity equation by taking

the curl of the momentum equation to arrive at

∂ω⃗

∂t
+∇× (ω⃗ × u⃗) = ∇ρ−1 ×∇p. (15)

From the vorticity equation, the evolution equation for PVψ = 1
ρ
ω⃗ · ∇ψ, for any fluid

dynamic variable ψ, can be obtained by first taking a dot product with ∇ψ:

∂ω⃗ · ∇ψ
∂t

+∇ψ · (∇× (ω⃗ × u⃗)) = ∇ψ · ∇ρ−1 ×∇p+ ω⃗ · ∇∂ψ

∂t
. (16)

The equation can be further simplified by noting that

∇ψ · (∇× (ω⃗ × u⃗)) = ∇ · (∇ψ × (u⃗× ω⃗))− (u⃗× ω⃗) · (∇×∇ψ) = ∇ · (∇ψ × (u⃗× ω⃗)),

(17)

where the second term goes to zero since ∇ × ∇A = 0 for all A. Furthermore, using

∇ψ × (u⃗× ω⃗) = u⃗(ω⃗ · ∇ψ)− ω⃗(u⃗ · ∇ψ), (16) reduces to

∇ψ · ∂ω⃗
∂t

+∇ · (u⃗(ω⃗ · ∇ψ)− ω⃗(u⃗ · ∇ψ)) = ∇ψ · ∇ρ−1 ×∇p, (18)

or

∇ψ · ∂ω⃗
∂t

+ u⃗ · ∇(ω⃗ · ∇ψ) + (∇ · u⃗)(ω⃗ · ∇ψ)− (∇ · ω⃗)(u⃗ · ∇ψ)− ω⃗ · ∇(u⃗ · ∇ψ) = ∇ψ · ∇ρ−1 ×∇p.

(19)

Using the definition of the material derivative D/Dt, we get,

∇ψ · ∂ω⃗
∂t

+ u⃗ · ∇(ω⃗ · ∇ψ) + (∇ · u⃗)(ω⃗ · ∇ψ)− ω⃗ · ∇
(
Dψ

Dt
− ∂ψ

∂t

)
= ∇ψ · ∇ρ−1 ×∇p.
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Now, be rearranging terms, we have,

∇ψ · ∂ω⃗
∂t

+ ω⃗ · ∂∇ψ
∂t

+ u⃗ · ∇(ω⃗ · ∇ψ) + (∇ · u⃗)(ω⃗ · ∇ψ)− ω⃗ · ∇
(
Dψ

Dt

)
= ∇ψ · ∇ρ−1 ×∇p.

(21)

Simplifying further using the definition of D/Dt and product rule,

D

Dt
(ω⃗ · ∇ψ) + (∇ · u⃗)(ω⃗ · ∇ψ) = ∇ψ · ∇ρ−1 ×∇p+ ω⃗ · ∇

(
Dψ

Dt

)
, (22)

or

ρ
D

Dt

(
1

ρ
ω⃗ · ∇ψ

)
− ρ (ω⃗ · ∇ψ) D

Dt

(
1

ρ

)
+ (∇ · u⃗)(ω⃗ · ∇ψ) = ∇ψ · ∇ρ−1 ×∇p+ ω⃗ · ∇

(
Dψ

Dt

)
,

(23)

or

ρ
D

Dt

(
1

ρ
ω⃗ · ∇ψ

)
+

1

ρ
(ω⃗ · ∇ψ) Dρ

Dt
+ (∇ · u⃗)(ω⃗ · ∇ψ) = ∇ψ · ∇ρ−1 ×∇p+ ω⃗ · ∇

(
Dψ

Dt

)
.

(24)

At this point, we can use the evolution equation for density, ρ given by Dρ
Dt

+ ρ∇ · u⃗ = 0

to arrive at the evolution equation for PVψ,

ρ
D

Dt

(
1

ρ
ω⃗ · ∇ψ

)
= ∇ψ · ∇ρ−1 ×∇p+ ω⃗ · ∇

(
Dψ

Dt

)
, (25)

where ψ can be any scalar and is commonly chosen to be the entropy s.

One can also easily incorporate the effects of rotation. In this case, the momentum

evolution equation becomes

Du⃗

Dt
+ 2Ω⃗× u⃗ = −ρ−1∇p+∇ϕ, (26)

which includes the Coriolis term, 2Ω⃗ × u⃗, where Ω⃗ is the rotation vector. Following a

similar derivation as above, one can arrive at the same evolution equation for PVψ as in
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(25), except for a modified definition of the potential vorticity,

PVψ =
1

ρ
ω⃗a · ∇ψ, (27)

which is the same as the original PVψ definition except with vorticity, ω⃗, replaced by the

absolute vorticity ω⃗a = ω⃗ + 2Ω⃗.

Text S4. Local volume-integrated moist PV conservation: Alternative derivation

Here is an alternative direct proof for moist PV conservation, without explicitly referring

to enthalpy. Now take ψ = s and integrate over a distorted cylinder with base and lid

given by s = C1 and s = C2, respectively, and sides given by qt = qt(s). The first steps in

evaluating the integral are

D

Dt

∫
Vm
dV (ω⃗ · ∇s) = D

Dt

∫
Va
dVaJ (ω⃗ · ∇s) (28)

=
∫
Va
dVa

∂

∂t

(
ω⃗ · ∇s
ρ

)
(29)

=
∫
Va
dVaJ ρ

∂

∂t

(
ω⃗ · ∇s
ρ

)
(30)

=
∫
Vm
dV ρ

D

Dt

(
ω⃗ · ∇s
ρ

)
(31)

The second line results from knowing J = ∂(x⃗)
∂(a⃗)

= 1
ρ
by appropriately choosing particle label

a⃗ as done by Salmon (1998). Now, using the divergence theorem, since ∇s ·∇×
(
1
ρ
∇p

)
=

∇ ·
(
s∇×

(
1
ρ
∇p

))
, we have

D

Dt

∫
Vm
dV (ω⃗ · ∇s) =

∫
Vm
dV ∇ ·

(
s∇×

(
1

ρ
∇p

))
(32)
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=
∮
Sm

dS⃗ · s∇×
(
1

ρ
∇p

)
=
∮
Sm

dS⃗ ·
(
∇×

(
1

ρ
s∇p

)
−
(
1

ρ
∇s×∇p

))
(33)

= −
∮
Sm

dS⃗ ·
(
1

ρ
∇s×∇p

)
(34)

On the base and lid, dS⃗ ∥ ∇s i.e., the normal to the surface is perpendicular to ∇s. If

qt = qt(s) on the sides, then

−
∫ ∫

Ssides

dS⃗ ·
(
1

ρ
∇s×∇p

)
= −

∫ ∫
Ssides

dS⃗ ·(f(p, s)∇s×∇p) = −
∫ ∫

Ssides

dS⃗ ·∇×(g(p, s)∇p)

where ∂g(p, s)/∂s = f(p, s). Now using Stokes’ theorem, we have,

−
∫ ∫

Ssides

dS⃗ ·
(
1

ρ
∇s×∇p

)
= −

∫
C1

dx⃗ · (g(p, s)∇p) +
∫
C2

dx⃗ · (g(p, s)∇p) (35)

−
∫ ∫

Ssides

dS⃗ ·
(
1

ρ
∇s×∇p

)
=
∫
C
dx⃗ · (g(p)∇p) (36)

=
∫
C
dx⃗ · ∇G(p) =

∫
C
dG(p) = 0 (37)
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