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ABSTRACT

A linear stochastic model is presented for the dynamics of water vapor and tropical convection. Despite its

linear formulation, the model reproduces a wide variety of observational statistics from disparate perspec-

tives, including (i) a cloud cluster area distribution with an approximate power law; (ii) a power spectrum of

spatiotemporal red noise, as in the ‘‘background spectrum’’ of tropical convection; and (iii) a suite of statistics

that resemble the statistical physics concepts of critical phenomena and phase transitions. The physical

processes of the model are precipitation, evaporation, and turbulent advection–diffusion of water vapor, and

they are represented in idealized form as eddy diffusion, damping, and stochastic forcing. Consequently, the

form of the model is a damped version of the two-dimensional stochastic heat equation. Exact analytical

solutions are available for many statistics, and numerical realizations can be generated for minimal compu-

tational cost and for any desired time step. Given the simple form of the model, the results suggest that

tropical convection may behave in a relatively simple, random way. Finally, relationships are also drawn with

the Ising model, the Edwards–Wilkinson model, the Gaussian free field, and the Schramm–Loewner evolu-

tion and its possible connection with cloud cluster statistics. Potential applications of the model include

several situations where realistic cloud fields must be generated for minimal cost, such as cloud parameter-

izations for climate models or radiative transfer models.

1. Introduction

Tropical clouds and precipitation display a remark-

able variety of behaviors. This behavior has been

quantified statistically using many different measures

which have been largely aided by satellite observations

in the past several decades. Three examples are (i) cloud

size distributions, from individual convective cells to

organized convection on mesoscales and synoptic scales

(Peters et al. 2009; Wood and Field 2011); (ii) the power

spectrum of precipitation and cloudiness, which shows

characteristics of spatiotemporal red noise and also co-

herent propagating wave features (Takayabu 1994;

Wheeler and Kiladis 1999); and (iii) statistical physics

perspectives including critical phenomena (Peters and

Neelin 2006; Neelin et al. 2009).

The main aim of this paper is to show that a relatively

simplemodel of water vapor dynamics has behavior very

similar to these observational statistics. The new water

vapor model proposed in this paper is a discrete version

of the stochastic PDE:

›q

›t
5 b

0
=2q2

1

t
(q2 q*)1F1D*

_W , (1)

where q(x, y, t) is the column water vapor at horizontal

location (x, y). The parameters of the model are de-

scribed in detail in section 2. In short, this model rep-

resents the effects of precipitation, evaporation, and

turbulent advection–diffusion of water vapor in a com-

pact, linearized form, as described in more detail below.

The motivation for this investigation is our incomplete

understanding of tropical convection andmoist convection.

This incomplete understanding is manifest, for example,
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in the continuing struggle to parameterize tropical

convection in climate models (Randall et al. 2003; Lin

et al. 2006; Hung et al. 2013).

Several stochastic models have been introduced to

provide insight into tropical convection and its spatio-

temporal variability. Lin and Neelin (2000, 2002)

introduced a stochastic version of the convective pa-

rameterization of Betts and Miller (1986), and they in-

vestigated it in an intermediate-complexity model and

later in a general circulation model (Lin and Neelin

2003). Majda and Khouider (2002) used ideas from

nonequilibrium statistical mechanics to model subgrid-

scale convective variability, and Khouider et al. (2003)

introduced a coarse-graining procedure to drastically

reduce the computational cost of the subgrid-scale model

while still retaining its important statistical features.

Khouider et al. (2010) introduced a stochastic multicloud

model that was later incorporated into the convective

parameterization of an idealized model (Frenkel et al.

2012, 2013) and a general circulation model (Deng et al.

2015) and reproduces many realistic features of con-

vectively coupled equatorial waves (CCEWs) and the

Madden–Julian oscillation (MJO). Bengtsson et al. (2011,

2013) used a cellular automaton to model deep convec-

tive cloud patterns on subgrid scales of a numerical

weather prediction model, and they explored its effect on

equatorial waves and on the ensemble spread of ensem-

ble forecasts. Thual et al. (2014) introduced a stochastic

model for the skeleton of the MJO that produces the

intermittent generation and termination of wave trains of

MJO events.

Common to almost all the models of the previous

paragraph is an aim toward convectively coupled waves

and the MJO. In the present paper, the focus is instead

on the ‘‘background spectrum’’ of tropical convection,

as illustrated in Fig. 2 of Wheeler and Kiladis (1999),

which is reproduced here in Fig. 1.

The background spectrum can be viewed from at least

two perspectives (and it is also possible that nature is

actually a combination of the two). One possible per-

spective is wave centric: CCEWs and the MJO provide

the dominant coherent features of tropical variability,

and their signature in a power spectrum can potentially

be smeared away from their idealized dispersion curves

to create the raw spectrum inFig. 4 of Takayabu (1994) or

Fig. 1 of Wheeler and Kiladis (1999). The smearing is

potentially created as a wave’s dispersion curve changes

in accordance with changes in the background state

through, for example, background wind shear orDoppler

shifting (Majda and Stechmann 2009a; Han and

Khouider 2010; Dias and Kiladis 2014). A second per-

spective can be formed around the background spectrum

itself and the highly stochastic nature of tropical

convection: perhaps, in the raw spectrum, the signature of

CCEWs is a slight deformation of a fundamental back-

ground spectrum of highly stochastic tropical convection.

A strong theoretical basis is currently lacking for

the background-centric perspective. This is because the

background spectrum is typically obtained in an em-

pirical way (by smoothing the raw spectrum) and be-

cause no theoretical explanation exists for a background

spectrum. In this paper, based on the model in (1), a

simple theoretical justification will be offered.

Another perspective on tropical convection has been

provided by analogies with statistical physics paradigms of

phase transitions and critical phenomena (Peters andNeelin

2006; Neelin et al. 2009). Stochastic models have been in-

troduced for this dynamical behavior in time (Stechmann

and Neelin 2011, 2014; Hottovy and Stechmann 2015).

In the present paper, one aim is to build on this work by

introducing a model for spatiotemporal variability: the

linear model in (1). Given that precipitation is typically

modeled as a nonlinear component of water vapor dy-

namics and given that most classical models for phase

transitions are inherently nonlinear (Yeomans 1992;

Christensen and Moloney 2005), one might wonder: Can

the linear model in (1) really display a similar type of

behavior? Precipitation will be introduced as a non-

linear statistic, formulated a posteriori in terms of the

underlying linear dynamics of water vapor in (1).

FIG. 1. The observed background power spectrum of outgoing

longwave radiation (OLR) data, a proxy for tropical convection and

cloudiness, reproduced from Fig. 2 of Wheeler and Kiladis (1999).

This background spectrum was created by several iterations of

smoothing the raw spectrum, and it resembles the spectrum of spa-

tiotemporal red noise. Copyright American Meteorological Society;

used with permission.
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The outline of the paper is as follows. In section 2, the

two-dimensional lattice model [(2)] is introduced, its ex-

act solution given, and how the parameters are chosen is

described. In section 3, a variety of statistics is presented

relating to water vapor, precipitation, and cloud clusters.

In section 4, additional physical processes and extensions

of the model are discussed. In section 5, the results of this

paper are connected to othermodels in statistical physics.

In section 6, the results are summarized.

2. Model description

a. Equations and physical interpretation

A large swath of the atmosphere ismodeled using a two-

dimensional grid. The domain is a L by L section of the

tropics, where L 5 5000km. In this domain an N by N

point lattice, withN5 1000, is arranged so that each lattice

point lies in the center of a Dx by Dy section of the tropics

(see Fig. 2) withDx5Dy5 5km. The grid spacing of 5km

is chosen to be roughly the smallest width of individual

cells of tropical deep convection. Define qi,j(t) to be the

integrated columnwater vapor (mm) of the (i, j)th column

of the atmosphere. The column water vapor dynamics are

given by the stochastic differential equation (SDE):

dq
i,j
(t)

dt
5F1 b[q

i11,j
(t)1 q

i21,j
(t)1q

i,j11
(t)1 q

i,j21
(t)

2 4q
i,j
(t)]2 t21[q

i,j
(t)2q*]1D*

_W
i,j
(t) ,

(2)

for i, j 5 1, . . . , N, and _Wi,j(t) are independent white

noises, denoted formally as the derivative of a Wiener

process. The dynamics of qi,j(t) depend on an external

force F (mmh21), spacial interaction constant b (h21),

relaxation time t (h), relaxation target q* (mm), and

stochastic forcing variance D2

* (mm2h21). For simplic-

ity, periodic boundary conditions are imposed for the

above equation. That is, qN11,j(t) 5 q1,j(t) for all j 5
1, 2, . . . , N and qi,N11(t) 5 qi,1(t) for all i 5 1, 2, . . . , N.

The model [(2)], or its continuum form [(1)], can be re-

lated to atmospheric fluid dynamics in the following way.

The water vapor mass concentration evolves according to

›q

›t
1 (uq)

x
1 (yq)

y
1 (wq)

z
5 S , (3)

where u, y, and w are the velocity components and S

represents any source or sink such as precipitation. Next,

q is decomposed as q5 q1q0 into a large-scale com-

ponent q and a small-scale component q0. The large-

scale component q represents a vertical average of q

over the depth of the atmosphere [to give the column

water vapor (CWV)] and a horizontal average over a

scale similar to the lattice grid spacing Dx. (One could

argue that the vertical integral should be taken in the

free troposphere; i.e., above the atmospheric boundary

layer.) The dynamics of q is then found from (3) to be

›q

›t
5 S2 [(u q)

x
1 (y q)

y
]2 [(u0q0)

x
1 (y0q0)

y
] . (4)

The relationship with (1) and (2) can then be seen after

two common simplifying assumptions for turbulent flows:

(i) the small-scale flux convergence,2(u0q0)x 2 (y0q0)y, is

modeled as eddy diffusion, b0=
2q, and (ii) the nonlinear

turbulent effects of 2(u q)x 2 (y q)y are modeled with

additional turbulent damping, 2t21q, and stochastic

forcing, D*
_W (DelSole 2004; Majda and Grote 2007,

2009). The term S in (4) includes the effects of water

vapor sources such as precipitation and evaporation,

which are represented in (1) and (2) in idealized form as a

net mean constant forcing F and a partial contribution to

the stochastic forcing D*
_W. With this connection to at-

mospheric dynamics, the terms of the model can be

identified with physical processes of precipitation, evap-

oration, and turbulent advection–diffusion.

The precise relationships with precipitation and water

are somewhat open to interpretation in such a simple

model. For example, q could potentially represent total

water (sum of vapor and cloud condensate) or water vapor

alone. Corresponding to each of these possibilities is an

interpretation of q* as a saturation value (if q is total wa-

ter) or a threshold for the onset of convection (if q is water

vapor). Here q will be described as water vapor to be

consistent with the interpretation in the earlier work of

Peters and Neelin (2006) and Neelin et al. (2009). As an-

other example, the terms F, t21(q2 q*), and D*
_W

FIG. 2. A diagram of the two-dimensional lattice. Each 5 km 3
5 km square is represented by a lattice point, (i, j), which has the

column water vapor value of qi,j(t). Each site has nearest-neighbor

interactions. Nearest neighbors are defined as one site to the right,

left, up, and down.
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represent a combination of effects from precipitation,

evaporation, and turbulent advection–diffusion. In the

spirit of simplicity, precipitation will be identified in the

model as follows.

Cloudiness and convection are indicated in cell (i, j)

when qi,j(t). q*. We define the threshold in the model to

be q*5 65mm, which is close to the critical value found in

observational studies (e.g., Peters and Neelin 2006; Neelin

et al. 2009). Note that q* is also defined as the relaxation

target. It will be referred to as a threshold throughout the

rest of the paper. Define the cloud indicator variable

s
i,j
(t)5H (q

i,j
(t)2 q*), (5)

where H is the Heaviside function, equaling one if the

(i, j)th column is undergoing strong convection and

equaling zero if it is not. The connection to cloud cover is

seen in Fig. 3, which shows a snapshot of column water

FIG. 3. A realization of themodel forCWVand the cloud indicator (s). (a),(b)Themodelwith each lattice point denoting

a 5 km 3 5km area. (c),(d) The model coarsened, as described in section 2b, to a grid spacing of 25km 3 25 km.

4724 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



vapor (Fig. 3a) next to the values of si,j (Fig. 3c). A

variety of large and small clusters can be identified in

both qi,j and si,j, and their statistics will be examined in

more detail below.

A precipitation rate ri,j is assigned to a column if si,j5 1.

The precipitation rate used in previous models varies

greatly. In Betts andMiller (1986), the precipitation rate is

proportional to the column water vapor: (qi,j 2 q*)si,j/t.

In Stechmann and Neelin (2011, 2014) and Hottovy and

Stechmann (2015), the precipitation rate is constant:

jFjsi,j, whereF is the constant source from (2). In addition,

one could argue that the F term should be incorporated

into a Betts–Miller-like rain rate as

r
i,j
5

2
4jFj1 (q

i,j
2 q*)

t

3
5s

i,j
. (6)

All three of these precipitation definitions will be com-

pared below.

A coarsened grid is used to compare the model to

observational data. The motivation for the coarsening is

the relatively large footprint of satellite observations

such as the TRMM Microwave Imager (Huffman et al.

2007). Specifically, the satellite footprint represents an

area of roughly 25 km3 25km or 50km3 50km (Neelin

et al. 2009), whereas each column in the model accounts

for a 5 km 3 5km area of vertically integrated atmo-

sphere. To compare the model to observational data, a

sum is taken over a subblock of the lattice. For example,

to compare column water vapor statistics, the entire

lattice is divided into M by M blocks, where M 5 5 (see

Fig. 2). This results in a two-dimensional lattice that is

N/M by N/M points with N/M 5 200. Thus each point

represents a 25 km3 25km area of the atmosphere. The

column water vapor in the Mi,jth column of this coars-

ened lattice is

q
Mi,j

5
1

M2 �
i0,j02Mi,j

q
i0,j0 . (7)

This procedure is repeated for the cloud indicator (si,j) and

precipitation (ri,j) statistics. The effect of the coarsening is

most notable in the conditional cloud indicator statistic

[given by (A15)].Given a single columnvalueqi,j,E(si,j jqi,j)
is a discontinuous Heaviside function centered at q*; on the

otherhand, for the coarsenedgrid,E(sMi,j j qMi,j) is a smooth

function that rapidly increases to one after q*. The results of

coarsening the column water vapor (Fig. 3b) and cloud in-

dicator (Fig. 3d) are shown in Fig. 3.

To further evaluate the realism of the coarsened spatial

variability, the corresponding precipitation from (6) is

compared in Fig. 4, after coarsening, against a TRMM

Microwave Imager sample data [Huffman et al. (2007)

and http://trmm.gsfc.nasa.gov/affinity/affinity_3hrly_rain.

html]. Since the model is currently set up to represent

tropical deep convection, TRMM data from the Indian

and western Pacific oceans is shown for comparison. The

model domain of 5000km3 5000km is chosen to roughly

represent the same area as this TRMMdata snapshot. To

the eye, the spatial variability compares favorably, with

the understanding that one can only make statistical

FIG. 4. Comparison of observational and model precipitation. (a) Precipitation data from TRMM (from http://

trmm.gsfc.nasa.gov/). (b) A realization of the model for the precipitation (jFj1 qi,j/t)si,j, which is coarsened to

a 25 km 3 25 km grid spacing.
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comparisons, and with the caveat that the relatively cold

waters of the southern Indian Ocean do not favor

tropical deep convection at this time, whereas convec-

tion is equally probable at any location in the stochastic

model domain. Detailed statistical comparisons will be

presented below in section 3.

b. Analytic stationary pdf

In this section the stationary pdf is given in both

physical and Fourier spaces.

In physical space, the stationary pdf of the system is

r(q)5Z21 exp

8<
:D22

*

2
4F �

N21

i,j50

q
i,j
2

1

2t
�
N21

i,j50

(q
i,j
2 q*)2

2 b �
h(i,j),(~i,~j )i

(q
i,j
2 q~i,~j

)2

3
5
9=
; ,

(8)

where q is a vector of the qi,j values, h�, �i denotes nearest
neighbors, and Z is a normalizing constant. (See the

appendix for a derivation.) Notice that this resembles

the continuum formula

r(q)’Z21 exp

�
D22

*

�
F

ð ð
q(x, y) dx dy

2
1

2t

ð ð
jq(x, y)2 q*j2 dx dy

2 b
0

ð ð
j$q(x, y)j2 dx dy

��
, (9)

which indicates that (i) spatial gradients j$qj2 are penal-

ized via b0, (ii) anomalies jq2 q*j are penalized via t21,

and (iii) positive anomalies, q . 0, are penalized if F ,
0 (and vice versa for F. 0). In other words, even though

qi,j(t) is random, the parameters t and b act to promote

some degree of temporal and spatial correlation.

Mathematically, (8) takes the form of a multivariate

Gaussian distribution. The mean is given by

E[q(t)]5 tF1 q*. (10)

The covariance can be obtained in either physical space

or Fourier space.

In Fourier space, the system [(2)] decouples for each

Fourier mode, which greatly simplifies the formulas for

the stationary pdf and covariance. Define the two-

dimensional discrete Fourier transform of qi,j(t) as

Q
k,‘
(t)5

1

N2 �
N21

i50

"
�
N21

j50

e22pı̂Dx(ki1‘j)/Lq
i,j
(t)

#
, (11)

where ı̂ is the usual definition of the imaginary number.

The inverse formula for the discrete Fourier transform is

q
i,j
(t)5 �

N21

k50
�
N21

‘50

e2pı̂Dx(ki1‘j)/LQ
k,‘
(t) . (12)

Equation (2) is diagonalized in the Fourier domain and

thus

dQ
k,‘
(t)

dt
52c

k,‘
Q

k,‘
(t)1D*

_̂W
k,‘
(t) , (13)

where an additional term (F1 t21q*) must be added to

the right-hand side when k 5 0, ‘ 5 0, and where ck,‘ is

defined as

c
k,‘

5 b

�
41 (bt)21 2 2 cos

�
2pkDx

L

�
2 2 cos

�
2p‘Dy

L

��
.

(14)

The terms _̂Wk,‘(t) in (13) are obtained by the discrete

Fourier transform of _Wi,j in a manner similar to (11).

Thus, _̂Wk,‘(t) are independent Gaussian random vari-

ables, except that _̂Wk,‘ and _̂WN2k,N2‘ are complex con-

jugates to ensure that qi,j is real valued. Equation (13)

defines a complex-valued Ornstein–Uhlenbeck process.

Since ck,‘ . 0, the process has a (Gaussian) stationary

distribution with mean

E(Q
k,‘
)5 0 (15)

and variance

E(jQ
k,‘
j2)5

D2

*
2c

k,‘

. (16)

For k 5 ‘ 5 0 the mean is instead (Ft1 q*). Further-

more, the spatial and temporal covariance can be com-

puted. More details are described below.

A sample realization of q from the stationary

state was shown in Fig. 3a. Note that such realiza-

tions can be generated very computationally effi-

ciently; an independent Gaussian random variable

is drawn for each Fourier mode according to (15)

and (16), and then an inverse Fourier transform

yields qi,j.

c. Semianalytic evolution in time

In this section, a formula to compute realizations of

the model is derived. Realizations of the model are

used in this study in two ways: (i) to visualize indi-

vidual realizations and (ii) for computing some com-

plicated statistics that cannot be found analytically.

This method is called semianalytic because the solution
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for the realization qi,j(t) is derived analytically (meaning

there is no numerical integration error), but random

variables must be drawn, which introduces sampling

error.

The model is solved in Fourier space by integrating

exactly. The solution of SDE (13) in the Fourier

domain is

Q
k,‘
(t)5 e2ck,‘(t2t0)Q

k,‘
(t
0
)1D*

ðt
t0

e2ck,‘(t2s) dŴ
k,‘
(s)

1
[F1 (q*/t)]

c
0,0

[12 e2c0,0(t2t0)]d
0k
d
0‘
,

(17)

where di,j is the Kronecker delta function. Note that the

integral in (17) is a Gaussian random variable at each

time t with mean zero and variance

Var

"
D*

ðt
t0

e2ck,‘(t2s) dŴ
k,‘
(s)

#
5

D2

*
2c

k,‘

[12 e22ck,‘(t2t0)] .

(18)

Using this formula, Qk,‘(t) is computed efficiently in

the following way. For any desired time t, draw an in-

dependent Gaussian random variable for each Fourier

mode according to (18) and add it to the contribution

from Qk,‘(t0) in (17), and then the inverse fast Fourier

transform recovers qi,j(t). This procedure can be re-

peated to advance forward in time with samples at any

desired times.

A sample of the time evolution is shown in Fig. 5. The

initial condition, at time t 5 0, was drawn from the sta-

tionary pdf [(15) and (16)], and a realization of the time

evolution was sampled one time every 12h, using

the method described in (17) and (18) with t0 5 12i and

FIG. 5. A Hovmöller plot of (a) the column water vapor, (b) cloud indicator, and (c) precipitation. To emphasize

the large-scale features, the data are averaged over a 1000-km strip in the y direction, and a boxcar filter is applied

over wavenumbers 210 to 10.
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t 5 12(i 1 1) for i 5 1, 2, 3, . . . . To compactly illustrate

the spatiotemporal evolution, qi,j(t) is averaged over a

band of latitudes from y 5 2000 to y 5 3000km, similar

to averaging from 58S to 58N as in the standard method

for creating Hovmöller diagrams. Figure 5 shows plots

of water vapor (Fig. 5a), cloud indicator (Fig. 5b), and

precipitation (Fig. 5c), all low-pass filtered spatially to

include Fourier wavelengths of 500km and longer

(which turns the cloud indicator variable into a cloud

area fraction). There is evidence for coherent traveling

structures especially in the CWV.

For example, high water vapor values seem tomove to

thewest from x5 3000 to x5 1800kmover 150–160 days.

This indicates that propagating structures can arise even

from (spatiotemporal) red noise, with no waves or ad-

vection explicitly included in the model.

d. Model calibration

The constants of (2) are chosen to match climatolog-

ical mean and variance data. The observational data of

background power spectral density of OLR [see Fig. 2 of

Wheeler and Kiladis (1999)] is used to determine pa-

rameters t and b. The t is chosen to give a similar decay

in power over the k 5 0 mode frequencies, and b is

chosen to give similar decay in the k 6¼ 0 directions (see

Fig. 6). Next, the observational column water vapor

probability density function is used to determineD* and

F [see Fig. 3 in Peters and Neelin (2006)] by using the

standard deviation and mean, respectively. The numeri-

cal values for each parameter can be found in Table 1.

3. Statistics of water vapor, precipitation, and cloud
clusters

In this section water vapor statistics are computed for

(2). Explicit formulas are given for statistics that are

exactly solvable. In some cases there is no formula (e.g.,

CWV variance). In these cases numerical simulations

are used instead.

In section 3a the power spectral density is computed.

In section 3b statistics that correspond to critical phe-

nomena are given, including conditional precipitation

and the spatial covariance of CWV. In section 3c the

cloud cluster area distribution is numerically computed.

a. Power spectral density

For the model, the power spectral density is

P
k,‘
(v)5

D2

*
2(v2 1 c2k,‘)

1
F2

c20,0
d(v)d

k0
d
‘0
. (19)

FIG. 6. The power spectral density of the model CWV.

TABLE 1. A table of the parameters used in the model (2).

Parameter

variable Description Numerical value Units

L System size in one direction 5000 km

N Number of lattice points in one direction 1000 —

M Coarsening block size in one direction 5 —

Dx Size of one grid cell in x direction 5 km

Dy Size of one grid cell in y direction 5 km

F Deterministic forcing 20.125 mmh21

t Dampening coefficient 96 h

b0 Diffusion coefficient 750 km2 h21

b 5 b0/Dx
2 Interaction coefficient 30 1 h21

D* Magnitude of stochastic forcing 50 mmh21/2

q* Threshold value for switch to convection 65 mm
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(See the appendix for an outline of the derivation.) To

compare this equation with observations, we consider

the power Pk,0(v) in the ‘ 5 0 mode as an analog of

averaging over a range of latitudes (e.g., 158S to 158N).

An approximate, but more revealing, form of this power

spectral density (PSD) can be obtained by considering

ck,0 in more detail. First, a Taylor expansion of c2k,0,

about k 5 0, is taken using the definition of ck,‘ from

(14). Assuming a diffusive scaling of b5 b0/Dx
2 leads to

lim
Dx/ 0

c2k,0 5 t22 1
4b

0
p2k2

L2
(12 t21) . (20)

Thus the power spectrum, in the limit of large N, is

P
k,0
(v)’

D2

*1F2d(v)d
k0

2

�
v2 1 t22 1

8b
0
t21p2

L2
k2

� . (21)

Thus the column water vapor has a power spectral

density function similar to red noise power spectrum in

both space and time, as indicated by the k2 and v2 in the

denominator.

In Fig. 6, the PSD for zonal wavenumbers215 to 15 is

plotted for the model averaged in the y direction. The

decay across wavenumbers is similar to the observed

background spectrum as shown in Fig. 2 of Wheeler and

Kiladis (1999). The PSD of the precipitation ri,j and

cloud indicator si,j can be computed numerically (not

shown) and look similar to Fig. 6.

b. Phase transition and criticality

In this subsection, the stochastic model is compared

with a recently proposed paradigm for tropical convec-

tion. Drawing on ideas from statistical physics, obser-

vational analyses have shown that tropical convection

has similar characteristics to phase transitions and self-

organized criticality (Peters and Neelin 2006; Neelin

et al. 2009). What is the simplest model with this type of

atmospheric behavior?

The most basic principles of the phase transition and

self-organized criticality are illustrated in Fig. 7. The

mean precipitation, conditioned on each CWV value,

displays a rapid pickup as CWV increases beyond the

‘‘critical’’ value q* 5 65mm [see appendix for the ana-

lytical formulas, specifically (A15)]. This is reminiscent

of a continuous phase transition (Baxter 1989; Yeomans

1992; Christensen and Moloney 2005) and similar to the

observational analysis of tropical convection by Peters

andNeelin (2006) (see their Figs. 1 and 3). Also shown in

Fig. 7 is the pdf of CWV. In this model, the pdf is a

Gaussian with mean

E(q
Mi,j

)5 q*1Ft5 53mm (22)

and standard deviation 4.70mm. The bulk of the pdf is

positioned just below the ‘‘critical value’’ q* 5 65mm,

similar to Fig. 3 of Peters and Neelin (2006) and to many

systems displaying self-organized criticality.1

To further explore the conditional mean pre-

cipitation, three different variations of precipitation

are plotted in Fig. 8. The dashed line is a fixed rain rate

of F, as in Stechmann and Neelin (2011, 2014) and

Hottovy and Stechmann (2015). The dashed line is a

FIG. 7. The PDF of CWV (qMi,j ) (dashed line) and the conditional

mean precipitation (solid line).

FIG. 8. A plot of the conditional mean precipitation with three

interpretations of precipitation. The dashed line is precipitation as

a constant rain rate jFj, as in Stechmann and Neelin (2011, 2014)

and Hottovy and Stechmann (2015). The dashed–dotted line is

precipitation proportional to CWV, as in Betts and Miller (1986).

The solid line is precipitation as a combination of the two previous

values. The gray lines are the best-fit power laws with exponents

b 5 0.62 (solid) and b 5 0.23 (dashed).

1 In a sense this may not seem ‘‘self-organized’’ since themean of

the pdf can be determined in terms of the model parameters.

However, it is self-organized in the sense that the ‘‘tuning param-

eters’’ here, the CWV, is allowed to vary through its own internal

dynamics, in contrast to classical phase transitions where an ex-

ternal tuning parameter such as temperature is fixed in a laboratory

experiment.

DECEMBER 2015 HOTTOVY AND STECHMANN 4729



rain rate proportional to the CWV as in Betts and

Miller (1986). The solid line is a combination of both.

Also in Fig. 8, the conditional mean precipitation is

plotted with the best-fit line of a power law (gray

dashed lines). That is, qc, a, and b are chosen to fit the

function a(q2 qc)b, for q. q*$ qc. The critical value

qc for the precipitation rate [jFj1 (qi,j 2 q*)/t]si,j is

strictly less than the threshold value of q*. This is anal-

ogous to what is seen in observations [see Neelin et al.

(2009), their Fig. 3], where q* would be identified with

the saturation value. On the other hand, the Betts–

Miller-like precipitation rate (qi,j 2 q*)si,j/t bears little

resemblance to a power law. Finally, the third potential

precipitation definition, jFjsi,j, is shown with a black

dashed–dotted line and also appears to follow a power

law (gray dashed line). In fact, its power-law exponent

of 0.23 is close to the values of 0.215 (Peters and Neelin

2006) and 0.265 (Peters et al. 2009) estimated from

observational data.

In Fig. 9 the variance of CWV for qMi,j (top panel) is

plotted with error bars. This plot is numerically com-

puted. An analytical formula does not exist because the

expectation of the product si,jsi0 ,j0 can only be explicitly

calculated in the simplest of cases (e.g., F 5 0). There-

fore, independent realizations of the model are used and

the variance of one subblock is computed. In the bottom

panel, the conditional mean is plotted based on the same

numerical samples. Notice that the large CWV values

(q . 70) are not well sampled but are sampled similarly

to the observational data analysis of Peters and Neelin

(2006) (see their Fig. 2). [We have run other tests (not

shown) with many more samples in order to obtain more

accurate estimates of the variance, and the result is es-

sentially the same.] The main feature is a peak in the

variance near the critical point qc , q*, similar to Fig. 1 of

Peters and Neelin (2006) and to many examples of phase

transitions (Baxter 1989; Yeomans 1992; Christensen and

Moloney 2005).

A further characteristic of criticality is a nontrivial

scaling of variance on different length scales. Specifi-

cally, in Fig. 10 the variance is plotted when averaging

over block sizes of M 5 5, 10, and 20. This corresponds

to coarsening factors of R 5 1, 2, and 4, respectively,

relative to the standard coarseningM5 5. These values

of M are similar to the ones used in Peters and Neelin

(2006), their Fig. 2. As the block size increases, the

variance decreases because of regression toward the

mean (top panel). For independent random variables,

the central limit theorem states that the variance of

the average of a block size scales as R22. For the sto-

chastic model here, in the bottom panel, the variance

scales as R20.6. The power law of 0.6 , 2 means that

FIG. 9. (top) Numerically computed precipitation variance and

(bottom) the mean precipitation, conditioned on column water

vapor. Error bars are shown in gray. The number of model samples

was chosen to be comparable to the number of observational data

samples available in earlier studies.

FIG. 10. Variance for block sizesR5 1 (M5 5),R5 2 (M5 10),

and R 5 4 (M 5 40). (top) The decrease in variance as block size

increases. (bottom) The variance multiplied by a scaling factor of

R0.6 to collapse all the curves.
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there are long correlations. For a system with short

correlations [i.e., here, correlations that exponentially

decay before 100 km (M 5 20)], the exponent will de-

pend on R and increase to 2 as R increases. However,

for a system exhibiting criticality, the exponent will be a

fixed constant, independent of R. This means that, at

least over the limited coarsened block scales consid-

ered here, the system has approximately scale-free

correlations.

To further explore the correlations in the steady state

between qi,j and sites qi0,j0, in Fig. 11 the spatial corre-

lation of a single site is plotted as a function of the

distance in x (i.e., i2 i0). The distance is varied only in x

because the correlation function is homogeneous and

isotropic. In the top panel, the correlation decays

quickly over the first 1000 km. In the bottom panel, the

correlation is plotted on a log–log axis. In this panel, there

is a period of power-law decay over distances from 5 to

500km. This power law (dashed line) has slope 20.454

(using linear least squares over this period). Then at

roughly 500–1000km, there is a cutoff where exponen-

tial decay begins. The correlation is compared to the

power law (dashed line) to emphasize the long spatial

correlations of the system. The fit to the power law can

be enhanced by varying the parameters of the system as

described in section 4a. This power law with an expo-

nential cutoff behavior is typical of systems with critical-

ity. In a system with criticality, the exponential cutoff

increases to arbitrarily long scales for certain parameter

regimes (Yeomans 1992).

c. Cloud cluster

A cloud cluster in the model is a group of adjacent

sites such that si,j 5 1 for (i, j) in the group. Recall that

adjacent sites are nearest neighbors—that is, one lat-

tice site away in either direction, but not both (not di-

agonal). This leads to the definition of a cluster as a

connected graph of sites with qi,j . q*, where edges

connect nearest neighbor sites. The cluster area is the

number of sites in a cluster (times the 5 km3 5 km area

of one site). To count the number of clusters in a re-

alization, we implement the buffer algorithm [see

Newman and Barkema (1999), their section 13.2.5].

In Fig. 12 the results of counting the cloud clusters are

plotted. A PDF is created by normalizing each point by

the total number of clusters counted. Error bars are in-

cluded. There is a power-law trend over at least four

decades in cloud area. The approximate power law

is 21.7254. A similar power law is seen in observational

data in Peters et al. (2009), their Fig. 8, and inWood and

Field (2011), their Fig. 4.

The robustness of the power law to changes in pa-

rameter t is shown in Fig. 13 (the mean Ft is held

constant). A vast range of values of t is shown, from

t5 1 to t5 104, where the standard value of the present

paper falls in the middle of the range at t 5 96. The

larger values of t promote a more extensive power-law

range, and the cloud size distribution appears to be

converging to a fixed power law of approximately21.19

as t increases. These plots provide additional confi-

dence that the model’s cloud size distribution follows a

power law.

FIG. 11. Spatial correlation of CWVat two locations as a function

of the separation in x. (top) Linear–linear axis scaling. (bottom)

Log–log axis scaling.

FIG. 12. A log–log plot of the PDF of cloud cluster area with

error bars.
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4. Discussion

a. Parameter sensitivity

We have explored a variety of alternative parameter

choices, and here we describe some broad aspects of

parameter sensitivity for each parameter. Many aspects

can be inferred from the formulas for the exact statistics.

First, D* controls the randomness, and it impacts the

standard deviation of the CWV pdf (Fig. 7) and hence

also the cloud fraction. However, it has no impact on the

shape of the power spectrum (Fig. 6) because it impacts

each Fourier mode in the same way in (19). Second, F

impacts the mean of the CWV pdf in (22) and Fig. 7, and

hence it also impacts the cloud fraction. Third, b impacts

the spatial scale of CWVvariations and hence also cloud

clusters. In the power spectrum, it is b that causes the

decrease in power as jkj increases. Finally, t seems to

have an interesting effect on the cloud cluster area dis-

tribution (Fig. 12). Specifically, in additional cases

(shown in Fig. 13), large t seems to promote a more

robust power law and simultaneously promote the

power law in spatial correlation function (Fig. 11). This

is perhaps consistent with the connection between the

t/ ‘ limit and some existing statistical physics models,

which is described in section 5.

b. Thermodynamics and vertical structure

The thermodynamics of clouds is treated here in

highly simplified form, based only on water vapor (or

total water, depending on one’s interpretation of the

model variable q), and based only on its vertical average.

This formulation neglects the potential effects of the

vertical structure of water vapor (Holloway and Neelin

2009) and effects of temperature variations, which have

been explored from the statistical physics perspective by

Neelin et al. (2009). Furthermore, associated with the

column-averaged formulation is a tacit focus on deep

convection without explicit consideration of other cloud

types with more detailed vertical structure, such as

congestus and stratiform clouds (Houze 1989; Johnson

et al. 1999). The effect of congestus and stratiform

clouds has been incorporated into some modeling

frameworks (Moncrieff 1992; Mapes 2000; Khouider

and Majda 2006) and it would be interesting to combine

these approaches with the effects of the present model.

c. Nonlinear precipitation

The precipitation rate parameterization here is highly

idealized and is simply a linear function of CWV mul-

tiplied by the cloud indicator variable. Furthermore, the

same linear dependence of t21q is also used to represent

evaporation with the same time scale t. As a result, the

value of t is intermediate between the short and long

time scales that would normally be used (Neelin and

Zeng 2000; Khouider and Majda 2006; Craig and Mack

2013) for precipitation and evaporation, respectively,

and themodel precipitation rates are somewhat reduced

accordingly. In light of this, it is perhaps somewhat

surprising that the model still displays features that

resemble a continuous phase transition and power-law

scaling of cloud cluster size distribution. Nonlinear

precipitation has been investigated, for example, by

Craig and Mack (2013), in a model without stochastic

forcing, and the model produces phase separation with

precipitation confined to a small number of circular

moist regions. In the future, it would be interesting to

explore the effects of the simple nonlinear precipitation

formulation of Stechmann and Neelin (2011, 2014).

d. Entrainment

Entrainment and detrainment effects were in-

cluded here only in a simplified linear form. More

specifically, they are inherent to some degree in the

eddy diffusion, which promotes an exchange of water

vapor between neighboring cells. However, this ex-

change occurs here between all neighboring grid cells,

not just at cloud boundaries. Nonlinearity could be

introduced to isolate water vapor exchange at cloud

boundaries; for example, a nonlinear term of the form

(si,j 1si11,j 2 2si,jsi11,j)(qi,j 2qi11,j) would be active

only if cells (i, j) and (i 1 1, j) represent a cloud

boundary with si,j 5 1 and si11,j 5 0 or vice versa. It

would be interesting to explore such nonlinear as-

pects of entrainment and detrainment. However,

FIG. 13. As in Fig. 12, but for several values of t.
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nonlinearity would cause exact solutions to be very

challenging if not impossible, and it would cause even

numerical solutions to be much more computationally

expensive, since the semianalytic numerical method of

section 2c would no longer be applicable.

e. Turbulent advection–diffusion

The representation of turbulent advection–diffusion

here is in a highly idealized form as eddy diffusion, sto-

chastic forcing, and damping. More sophisticated repre-

sentations could also be used to provide additional

realism, as described, for example, byMajda and Kramer

(1999) and Majda and Gershgorin (2013) and references

therein. For instance, these more sophisticated models

can reproduce the fat-tailed pdfs that are commonly

seen in situations of turbulent advection–diffusion

with a background mean gradient, including the case

of water vapor pdfs with exponential tails (Neelin et al.

2010). With water vapor, an added complication are the

source terms due to precipitation and evaporation, and

Stechmann and Neelin (2011) suggested that the source

terms may play a key role in accounting for the expo-

nential tails analyzed by Neelin et al. (2009). It would be

interesting to possibly extend the model used here to

explore the contributions of source terms versus turbu-

lent advection–diffusion in accounting for the expo-

nential tails in water vapor pdfs.

5. Connections with existing mathematical and
statistical physics models

In this section, several connections are made with

existingmodels in themathematical and physics literature.

a. Ising model

To make a connection to the Ising model, notice that

(8) can be written as

r(q)5Z21
q exp

(
(D*)

22

"
2b �
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q
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The above pdf is analogous to the classical Ising model’s

pdf. In the spin–1/2 Ising model, the distribution is

characterized by the density

r(s
i,j
)5Z21

s exp
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(k

B
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(24)

where si,j 2 f21, 1g is the spin, J is the exchange energy,

H is an external field, kB is the Boltzmann constant, andT

is the temperature. Comparing the density in (23) with

(24), D* is analogous with kBT, b to J, and F to H. (Ad-

ditionally, there is a term proportional to 1/t and a term

proportional to b that are not in the Isingmodel). This is a

useful analogy that provides insight into water vapor

model parameters because the Ising model is a well-

known system and its parameter sensitivity has been ex-

tensively studied (Christensen and Moloney 2005).

There are key differences between themodel of column

water vapor and the Ising model. The Ising model has

discrete random variables si,j, which take only the values

21 or 1. The water vapor at a site qi,j can be any real

number. This changes the interpretation of the partition

functions (Zq and Zs) from a sum (in the Ising case) to an

integral. Furthermore, the Ising model has a phase tran-

sition at a critical temperature, T. 0, for dimensions two

and greater. The column water vapor equations are linear

and thus there are not any phase transitions with respect

to the qi,j variables themselves. However, the inclusion

of a nonlinear threshold function si,j adds a complexity

that leads to phase transition-like statistics.

b. Stochastic partial differential equations and the
Edwards–Wilkinson model

The model [(2)] is a discretized form of the stochastic

heat equation with damping in two dimensions (Hairer

2009). In one dimension the solution has finite variance;

however, in two dimensions, the continuum solution has

infinite variance. Thus, taking a limit as Dx, Dy/ 0 of (2)

does not lead to a ‘‘nice’’ limit. To obtain a limit, the white

noise (uncorrelated in space) must be replaced by a spa-

tially correlated noise—for example, the convolution

R � _W of a smooth function R(x, y) with white noise
_W(x, y, t).

The one-dimensional Edwards–Wilkinson (EW)

model is a model of the random growth of a surface

(Edwards and Wilkinson 1982; Yu et al. 1994; Barabási
and Stanley 1995; Antal and Rácz 1996). The EWmodel

has the form

›q(x, t)

›t
5 b

0

›2q

›x2
1 _W(x, t) . (25)

Comparing this equation to the continuum model [(1)],

the EW model arises by taking the limit as t / ‘. Be-
cause of the absence of a relaxation term, on average,

the solution to (25) grows unbounded as time t tends to

infinity. This unbounded growth can be characterized in

terms of power laws and can be viewed as an example of

nonequilibrium self-organized criticality (Pruessner

2012). Equation (1), unlike the model in (25), has an
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equilibrium distribution because of the addition of the

relaxation term t21(q2 q*).

c. Self-organized criticality

Peters and Neelin (2006) showed that tropical pre-

cipitation and water vapor can be viewed as self-organized

criticality (SOC) (Bak et al. 1987, 1988; Christensen and

Moloney 2005) in the sense that a critical value of water

vapor marks a continuous phase transition, and the system

is naturally attracted to the critical point (rather than ex-

ternally tuned to lie near the critical point as in a labora-

tory setting or in the classical Isingmodel). This provides a

new conceptual viewpoint of tropical convection, and in a

sense it extends the ideas of convective ‘‘quasi equilib-

rium’’ that have been widely in use for decades (Arakawa

andSchubert 1974;Emanuel et al. 1994;Neelin et al. 2008).

Such a new conceptual viewpoint may potentially provide

practical advances in, for instance, the parameterization of

convection in climate models, some of which are based on

convective quasi-equilibrium ideas.

In the present paper, further possible connections are

drawn between tropical convection and ideas from sta-

tistical physics such as self-organized criticality. Most

importantly, a simplifiedmodel for water vapor dynamics

was introduced in (1), its relationship with atmospheric

fluid dynamics was described in (3) and (4), and its sta-

tistics were shown to conform in many ways to the par-

adigm of self-organized criticality. These results provide

some insight into the underlying water vapor and pre-

cipitation mechanisms. Furthermore, another possible

connection is that the dynamics in (1) has some similari-

ties to the model of Edwards and Wilkinson (1982) (a

model of critical phenomena in interface growth) and, in

turn, a quenched version of the Edwards and Wilkinson

(1982) model has been shown by Pruessner (2003) to be

related to the Oslo rice pile model, which is a well-known

model of SOC.

Several caveats should also be noted in the possible

connection with SOC. First, the observational data an-

alyzed by Peters and Neelin (2006) has notable un-

certainties. While some statistics have shown agreement

when data were retrieved from different sources [mi-

crowave and radar measurements; see Fig. 1 of Peters

et al. (2009)], it has also been suggested that measure-

ment uncertainties may contribute to the appearance

of a continuous phase transition (Gilmore 2015). Sec-

ond, while the present paper’s model displays statistics

similar to SOC, some of the aspects of criticality are not

established rigorously here. For example, the power

laws suggested in Figs. 11 and 8 are seen over relatively

small ranges of scales [although a more substantial

power law in Fig. 11 could be seen (not shown) for larger

values of t, similar to the cloud cluster statistic in Fig. 13

when t is increased]. In any case, the paradigms of phase

transitions and self-organized criticality are useful as

organizing principles for the vast range of statistics of

tropical convection.

d. Gaussian free fields

The Gaussian free field (GFF) is a statistical me-

chanics model of random surfaces (Schramm and

Sheffield 2009, 2013). The discrete GFF takes the same

form as the stationary pdf [(8)] if F5 0 and in the limit as

t / ‘:

r(q)5Z21 exp

8<
:D22
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2
42b �
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)2

3
5
9=
; . (26)

One interesting connection between GFFs and our

model is the statistics of cloud clusters as seen in Fig. 12.

A cluster of clouds is analogous to the interior of a

contour loop for the value q5 q* in theGFF case. These

are not yet well understood. However, there are results

for contour lines of the GFF connecting two boundaries.

The statistics of these lines are governed by the

Schramm–Loewner evolution (SLE). It would be inter-

esting to further explore this connection.

6. Conclusions

A linear stochastic model was presented for tropical

convection, clouds, andwater vapor dynamics. This simple

model displays a variety of characteristics that conform

to a statistical physics perspective of tropical convection—

for example, a fractal, scale-free distribution of cloud

cluster sizes and statistics resembling a phase transition

and criticality. These features are in line with the ideas of

self-organized criticality.While the underlyingmodel itself

is linear, nonlinear statistics were analyzed involving the

cloud indicator si,j 5H (qi,j 2 q*). In addition, toward a

different perspective, themodel also displays a ‘‘red noise’’

power spectrum in both space and time, and hence it can

be viewed as a model of the ‘‘background spectrum’’ of

tropical convection [as illustrated in Fig. 2 of Wheeler and

Kiladis (1999)]. Interestingly, these disparate perspectives

on clouds and convection are unified by this model.

The physical processes incorporated into the model

are precipitation, evaporation, and turbulent advection–

diffusion of water vapor. These processes are modeled

here in a highly idealized form. Nevertheless, it is re-

assuring that the model equations are related to actual

water vapor dynamics, rather than using a cloud in-

dicator variable or rainfall variable as the stochastic

dynamical variable in the model. Given the relation to

actual water vapor dynamics, the results here suggest
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that water vapor and convection in the tropics may be-

have in a relatively simple, random way.

Connections were drawn with some existing models

of applied math and physics, including the Ising model,

Edwards–Wilkinson model, and the Gaussian free

field. The Ising model parameters are directly analo-

gous to the water vapor model parameters, which fa-

cilitates their interpretation and the model’s behavior.

However, a key distinction is that the Ising model is

based on a discrete variable s (which can take only two

values: 21 or 1), whereas the water vapor q is a con-

tinuum variable (which can take the value of any real

number). The Edwards–Wilkinson model arises from

the water vapor model when damping is neglected and

is usually studied in one spatial dimension. The

Gaussian free field arises from the water vapor model

in a special limiting case of the parameter values. This

connection may offer further understanding of cloud

cluster statistics, since cloud cluster boundaries are

contour lines where the water vapor satisfies

q(x, y)5q*, and the statistics of Gaussian free field

contour lines have been shown to be governed by the

Schramm–Loewner evolution.

Wave dynamics were not explicitly included in the

present study for the sake of simplicity. As a result, the

model does not produce convectively coupled equato-

rial waves (Kiladis et al. 2009) or the Madden–Julian

oscillation (Zhang 2005) in its present formulation. We

are currently investigating the additional effects of

waves and plan to present the results elsewhere in the

near future. Furthermore, it would be interesting to in-

corporate the present model’s features into other

models of tropical dynamics (Frenkel et al. 2012, 2013;

Khouider 2014; Majda and Stechmann 2009b; Thual

et al. 2014).

Potential applications of the model include

several situations where realistic cloud fields must be

generated for minimal cost. For example, in some

convective parameterizations in climate models, im-

provements in tropical variability have been achieved

by incorporating the effects of subgrid-scale variabil-

ity in time and/or space (Randall et al. 2003; Deng

et al. 2015), and in radiative transfer models, sto-

chastically generated cloud fields are sometimes uti-

lized [e.g., see Pincus et al. (2003), Räisänen et al.

(2004), Alexandrov et al. (2010), and references

therein].
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APPENDIX

Mathematical Formulas and Computations

a. Stationary pdf

To find the stationary distribution of (2), the poten-

tial conditions are used, as described in Gardiner

(2009), section 6.2.2. A potential function, F(q), is

sought such that

›
qi,j
F(q)5 b(q

i11,j
1 q

i,j11
2 2q

i,j
1 q

i21,j
1 q

i,j21
)

2
1

t
(q

i,j
2 q*)1F . (A1)

Then the stationary distribution is

r(q)5Z21 exp[D22

* F(q)] . (A2)

Equation (A1) is integrated to obtain the potential

function

F(q)5F �
N21

i, j50

q
i, j
2

1

2t
�
N21

i, j50

(q
i, j
2 q*)2

2 b �
h(i, j),(i0, j0)i

(q
i, j
2 q

i0, j0)
2 , (A3)

where h�, �i denotes nearest neighbors. Furthermore, the

normalizing constant Z is

Z5 (2p)N/2 P
N21

k,‘50

D2

*
2c

k,‘

, (A4)

which is most easily determined from the Fourier space

perspective in (16).

b. Power spectral density

The Fourier transform in time of Qk,‘(t) [(13)], de-

noted ak,‘(v), is

2iva
k,‘
(v)5Fd

k0
d
‘0
d(v)2 c

k,‘
a
k,‘
(v)1D*

^̂_W
k,‘
(v) ,

(A5)

where
^̂_Wk,‘(v) is the discrete Fourier transform in

space, and continuous Fourier transform in time, of
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white noise _Wi,j(t). The power spectrum is defined

as Pk,‘(v)d(v2v0)5E[jak,‘(v)ak,‘* (v0)j]. Using the iden-

tity E[
^̂_Wk,‘(v)

^̂_Wk,‘* (v0)]5 d(v2v0), the power spectral

density is

P
k,‘
(v)5

D2

*
2(v2 1 c2k,‘)

1
F2

c20,0
d(v)d

k0
d
‘0
. (A6)

c. Space and time correlations

The Wiener–Khinchin theorem is used to easily ex-

tract the spatiotemporal correlations in the stationary

state from the properties of the complex-valued

Ornstein–Uhlenbeck process in (13). Briefly, it states

that the space correlation, denotedC(i2 i0, j2 j0), is the
Fourier transform of the correlation in Fourier space.

That is,

C(i2 i0, j2 j0)5FTfE(jQ
k,‘
j2)g(i2 i0, j2 j0) , (A7)

where FTf�g the discrete Fourier transform. [See

Gardiner (2009), section 1.5.2, for more detail and simple

one-dimensional examples. See Yaglom (1962) for a

more complete description.] Note that this is the steady-

state correlation function and is written as a function of

i 2 i0 and j 2 j0 using the fact that the process is spatially

homogeneous.

d. Marginal and conditional statistics

Let q 2 R
N2

be the vector of qi,j with rowwise or-

dering. It is a Gaussian random variable with mean F

and one time covariance C(i2 i0, j2 j0). Therefore, qi,j
are jointly Gaussian random variables and the mar-

ginal distribution of qi,j is Gaussian. The joint distri-

bution of qi,j and the k5 0 mode, qMn,m 5�(k,‘)2Mn,m
qk,‘,

is found in the following way. Using an affine trans-

formation of the variables q5 fqi,jgi,j2Mn,m
, define the

matrix,

~A5

0
BBBBBB@

1 1 1 ⋯ 1 1 ⋯ 1

0 1 0 ⋯ ⋯ ⋯ ⋯ 0

0 0 1 ⋱ ⋯ ⋯ ⋯ 0

..

. ..
.

⋱ ⋱ ..
.

⋯ ⋯ ..
.

0 0 0 . . . ⋯ ⋯ ⋯ 1

1
CCCCCCA
. (A8)

Then, the new variables u5 ~Aq/M2 have a first compo-

nent of

u
1
5

1

M2 �
k,‘2Mn,m

q
k,‘

5 q
Mn,m

. (A9)

From the properties of jointly Gaussian random vari-

ables, u is jointlyGaussian withmean F5 (F, F, F, . . . , F )

and covariance matrix

8>>><
>>>:

C
i,j
, i, j 6¼ 1

S
k,‘
C

k,‘
, i5 j5 1

S
k
C

i,k
, j5 1, i 6¼ 1

S
k
C

k,j
, i5 1, j 6¼ 1

, (A10)

where Ci,j is the original covariance matrix of q.

For the joint distribution of Q, qi, consider i . 1 (for

convenience). The variables are jointly Gaussian with

covariance matrix,

~C5

 
S
k,‘
C

k,‘
S
k
C

i,k

S
k
C

i,k
C

i,i

!
. (A11)

The stationary density for the anomalies qi 5 qi 2 tF

and Q5Q2 tF is

r(Q,q
i
)5Z21

Q,qi
exp

�
2
1

2
~C21
1,1Q

2
1 ~C21

1,2Qq
i
2
1

2
~C21
2,2q

2
i

�
,

(A12)

where ZQ,qi is the normalizing constant for the marginal

variables qi and Q.

The statistic E(si jSiqi 5R) is found by using the

above distribution. First note,

E

�
s
i
j�

i

q
i
5Q5R

�
5 13

Pr(q
i
. q*,Q5R)

Pr(Q5R)

1 03
Pr(q

i
, q*,Q5R)

Pr(Q5R)
.

(A13)

Using the above density, along with the fact that qi . q*

implies qi .2tF yields

E(s
i
jQ5R)5

ð‘
2tF

Z21
Q,qi

exp

�
2
1

2
~C21
1,1(R2 tF)2 1 ~C21

1,2(R2 tF)q
i
2

1

2
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�
dq

i

Z21
Q exp

�
2
1

2
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1,1(R2 tF)2

� . (A14)
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After simplification, it is

E(s
i
jQ5R)

5
1

2

0
BB@11 erf

8>><
>>:

(S
k,‘
C
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)F1 (S

k
C

i,k
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2(S
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k
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)2]

q
9>>=
>>;

1
CCA.

(A15)

Using the above methods, E(qisi jQ 5 R) can

also be computed. Thus analytical formulas for

E(jFjs jQ5R), E[(qi2q*)t21si jQ5R], and E(ri jQ5R)

can be recovered.
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