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Abstract. This paper investigates stochastic models whose dynamics switch depending on the
state/regime of the system. Such models have been called “hybrid switching diffusions” and exhibit
“sliding dynamics” with noise. Here the aim is an application to models of rainfall, convection, and
water vapor, where two states/regimes are considered: precipitation and non-precipitation. Regime
changes are modeled with a “trigger function,” and four trigger models are considered: deterministic
triggers (i.e. Heaviside function) or stochastic triggers (finite-state Markov jump process), with either
a single threshold for regime transitions or two distinct thresholds (allowing for hysteresis). These
triggers are idealizations of those used in convective parameterizations of global climate models, and
they are investigated here in a model for a single atmospheric column. Two types of results are
presented here. First, exact statistics are presented for all four models, and a comparison indicates
how the trigger choice influences rainfall statistics. For example, it is shown that the average rainfall
is identical for all four triggers, whereas extreme rainfall events are more likely with the stochastic
trigger. Second, the stochastic triggers are shown to converge to the deterministic triggers in the limit
of fast transition rates. The convergence is shown using formal asymptotics on the Master-Fokker-
Planck equations, where the limit is an interesting Fokker-Planck system with Dirac delta coupling
terms. Furthermore, the convergence is proved in the mean-square sense for pathwise solutions.
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1. Introduction. This paper is related to stochastic models that exhibit sliding
dynamics with noise [29, 28] and hybrid switching diffusions [36]. In particular here,
these types of stochastic models arise in the context of an atmospheric science problem:
What is the best way to model the onset and demise of atmospheric convection and/or
rainfall?

The mathematical form of the model is

dq = Sσ dt+Dσ dW, (1.1)

where q ∈ R is a scalar. The drift Sσ and diffusion Dσ coefficients are constant
and have a form that switches when the discrete process σt switches its value. For
simplicity, σt will be a two-state process that takes the value 0 or 1. Furthermore, the
dynamics of σt will take one of two forms. In one case, the value of σt switches when
qt reaches a fixed threshold (which will be labeled qc or qnp),–i.e., σt = H(qt − qc).
We refer to this type of trigger as a “deterministic trigger.” This is similar to the
sliding dynamics with noise discussed in [29, 28], except here the diffusion Dσ is state-
dependent, and two thresholds, qc and qnp, are used in a way that allows hysteresis.
In the second case, σt is a Markov jump process whose transition rates depend on qt.
Specifically, the transition rates have a form that allows a transition to occur when qt
crosses the fixed threshold qc, but the transition occurs stochastically at some random
value of q > qc. We call this a “stochastic trigger.” The two different types of triggers
with one or two thresholds gives four different models. We call the models with a
stochastic trigger with one or two thresholds S1 and S2, respectively. Similarly, the
models with a deterministic trigger are referred to as D1 and D2. See Figure 1.1
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Example of the (D1) process

In dry state

In wet state

↓

Switch to dry

↑
Switch to wet

 

q
c

Time [hrs]

M
oi

st
ur

e 
[m

m
]

Example of the (S2) process
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Fig. 1.1. An example of the four different models used in this study. For all models, the
switch to the wet state (grey line) occurs when the threshold qc is reached from below. For the 1
threshold models (left), the switch to the dry state (black line) occurs when the threshold qc is reached
from above. For the 2 threshold models (right), on the other hand, the switch to dry state occurs
when a different threshold qnp is reached from above. These switches occur deterministically (top,
D) or stochastically (bottom, S). For the deterministic trigger models (top panels), the switch from
one state to the other occurs immediately when the threshold is reached. For the stochastic trigger
models (bottom panels), on the other hand, the switch from one state to the other does not occur
immediately when the threshold is reached; instead, there is a stochastic delay in the switching, and
the switching occurs at a random value of q beyond the threshold.

for sample trajectories of each model. In this way, the “stochastic trigger” σt process
should converge to the “deterministic trigger” σt process as the transition rate λ tends
to infinity. One of the main objectives of this paper is to investigate this convergence
and to explore the statistics of qt and σt in each of the two cases.

From an atmospheric science point of view, these are idealized stochastic models
for rainfall. The variable qt represents the amount of water vapor in an atmospheric
column, which extends vertically above an area of roughly 10 km × 10 km—perhaps
even 100 km × 100 km. Within such an atmospheric column, clouds and rainfall will
occasionally develop, and the development can occur so rapidly that it appears to be
“triggered.” To describe the trigger mathematically, one simple approach is to use an
indicator function σt that equals 1 when the column is raining and 0 when there is
no rain.

The problem of modeling the trigger σt is important for both general circulation
models [2, 16, 33] and for hydrological models of rainfall [3, 10, 26, 5, 27, 1]. The
D1 model is an idealization of parameterizations of convection in general circulations
models and idealized atmospheric models [2, 22, 17, 8, 30]. In the models considered
here, two thresholds (qc and qnp) will be used [32] instead of the single threshold qc,
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and the two cases will be compared and contrasted. The motivation for introducing a
second threshold qnp comes from Figure 6 of [21]; this figure shows that more than half
of all rainfall occurs below qc; hence it may be most realistic to use a second threshold
qnp for the shutdown of rainfall. Stochastic trigger models with smoothed versions
of Heaviside functions have been studied previously [18, 19, 31]. This alternative is
perhaps more realistic than the use of a Heaviside function, since there is likely no
unique, fixed threshold value qc that demarcates the transition from raining to non-
raining for every rain event; nevertheless, the simplicity of the Heaviside function is
appealing.

The motivation for the present investigation is threefold.

First, in general circulation models of the atmosphere, the trigger is a key element
of the convective parameterization, and it can have significant effects on the realism
of tropical convection, convectively coupled waves, and the Madden–Julian Oscilla-
tion [16, 14]. While “deterministic triggers” are traditionally used [2, 22, 17, 8, 30],
“stochastic triggers” have been proposed and advanced to improve the simulated vari-
ability of tropical convection and waves [18, 13, 19, 12, 7]. The models of the present
paper can be thought of as idealized versions of realistic stochastic triggers. As such,
their value is that they offer exactly solvable statistics for ease of comparison of the
two types of triggers; and they allow for proofs of convergence with the rate of conver-
gence with respect to the transition rate. This also provides mathematically rigorous
guidance for how the two types of triggers are different.

Second, this paper provides a better understanding of models for a new perspec-
tive on precipitation and water vapor observations [24, 21, 23]. The observed statis-
tics have shown a similarity with critical phenomena and other statistical physics
paradigms. To better understand the physical processes underlying these statistics,
Stechmann and Neelin [31] designed and analyzed a model of the form (1.1), and they
showed that the model reproduces many of the observed statistics. Subsequently,
Stechmann and Neelin [32] introduced a simpler version of the model that uses deter-
ministic triggers instead of stochastic triggers. The model with deterministic triggers
is advantageous because its exact statistics are easily accessible; however, this sim-
plification comes at the expense of slightly less realistic statistics. Hence, for future
studies, an important question is: how closely related are the models with determin-
istic and stochastic triggers? Can the approximation error be quantified? Also along
these lines, exact statistics are presented here for a case with stochastic triggers; this
case involves a simpler parameter regime than in [31], and some of the formulas can
be prohibitively complex compared to the deterministic-trigger model of [32].

Third, the model is an example of hybrid switching diffusions and random dy-
namical systems with sliding dynamics not studied before. The models, S1 and S2,
are examples of switching diffusion systems with discontinuous transition functions
defined in equation (2.2), which differs from the examples in [36]. The D1 and D2
models are examples of dynamical systems that undergo sliding dynamics with state–
dependent noise. Furthermore, the D2 model has a manifold qnp ≤ q ≤ qc where the
dynamics of the system depend on the state of σt. That is, the state of σt can not be
derived from the moisture value of qnp ≤ qt ≤ qc alone.

In this paper, we prove that the hybrid switching diffusion model S2 converges
to deterministic trigger model D2 as the transition rate tends to infinity. To do so,
we use the Fokker-Planck equation to derive the first and second moments of the
jumping time, i.e. the time it takes the λ–process to jump once it reaches the critical
threshold. The first and second moments are of order λ−1/2 which ultimately controls
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the L2 convergence.
The models here are mathematically tractable idealizations of the atmosphere,

and they neglect or simplify many aspects of atmospheric physics and dynamics. A
more complete description would require other variables besides just water vapor (e.g.,
temperature) and would require knowledge of the water vapor q(z, t) at each height z
above the Earth’s surface z = 0, rather than just the column-averaged water vapor qt
that is considered here. Also, a more complete description would partition rainfall into
stratiform and deep convective components [12, 7, 11, 20]. Despite the simplicity of
the models here, they contain the important ingredients of thresholds and stochastic
forcing which are mainstays in both complex and idealized models alike.

The outline of the paper is as follows: In § 2, we give a more detailed explanation
of the models S1,S2,D1, and D2. In § 3 we study numerous properties of the model.
First we derive the Fokker–Planck equation for D2 using an asymptotic expansion of
the S2 Fokker-Planck equation [§ 3.2]. Then we find the exact stationary solutions
for the four models [§ 3.3], and use them to study conditional and marginal statistics
[§ 3.4]. We compare the mean event sizes for S2 and D2 in § 3.5. In § 4, we prove
the main theorem of the paper [Theorem 4.1], that the S2 process converges, in L2,
to the D2 process as λ tends to infinity.

2. Model Description. In this section we introduce a simple stochastic equa-
tion to model water vapor for a single atmospheric column. The column water vapor
at time t, denoted qt is defined by the stochastic different equation (SDE),

dqλt =

{

mdt+D0dWt σλ
t = 0

−rdt+D1dWt σλ
t = 1,

(2.1)

with m > 0 for moistening and r > 0 for rain rates, D1 > D0 > 0 are the noise
coefficients, and the initial condition qλ0 = q0, σ

λ
0 = 0. The dynamics of σλ

t ∈ {0, 1}
are as follows: when σλ

t = 0 the probability that σλ transitions to 1 is governed
by an exponential random variable with the transition rate r01(qt). Similarly, when
σλ
t = 1 the transition rate is r10(qt). That is, when σt = 0, the probability that the

process transitions to the rain state after a short amount of time, σt+∆t = 1, is given
approximately by r01(qt)∆t, and similarly for the transition from 1 to 0. The values
q = qc and q = qnp = qc − qǫ, for qǫ relatively small compared to qc, play a critical
role in the transition to and from convection.

There are many possible physically realistic choices for the rate function rij(q).
For example, in [31] the rate function is a hyperbolic tangent function. Another choice
would be to set r01(q) = 0 for q < qc and r01(q) = 1 once q = qc. Thus, the process
switches dynamics after an exponential random time. SDE, in which a smooth rate
function for the switching process is used, are studied in [36]. In this paper, we use
the rate functions

{

r01(q) = λH(q − qc)
r10(q) = λH(qnp − q).

(2.2)

The above rate function is studied in this paper because exact formulas are derived,
such as the stationary density [Sec. 3.3] and the jumping time distribution — i.e.
when qt = qc or qnp, the time it takes to switch dynamics.

The solution qt of SDE (2.1) is a Brownian motion with positive (σ = 0) or
negative (σ = 1) drift. Once the process switches dynamics, the process is still a
Brownian motion with drift. Thus, (qt, σt) is a Markov process, and despite the
discontinuity of the coefficients of SDE (2.1) there exists a unique solution (see § 4).
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We call the above model, the stochastic model with two thresholds (qc and qnp)
or S2. Three other models that are closely related to the above are considered in this
paper, S1, D1, and D2. The stochastic model with one threshold (qc), called S1, is
interpreted as the above model with qnp = qc − qǫ → qc as qǫ → 0. The transition
rates for these two models are diagrammed in Figure 2.1. The two deterministic
models, with one threshold and two (D1 and D2) are interpreted in the same way as
the stochastic, except that the process σ switches dynamics immediately when hitting
the threshold. This can be interpreted as having an infinite transition rate.
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Fig. 2.1. The transition rates for the S1 and S2 models are shown above. The one threshold
model S1 is plotted on the left. The two threshold model S2 is plotted on the right.

Later in the paper [§ 4], these models are shown to be approximations to one an-
other when a certain limit is taken. I.e. the one threshold models are approximations
to the corresponding two threshold models for qǫ ≪ 1, and the deterministic models
are approximations to the stochastic models for λ ≫ 1. The convergence is mapped
out in Figure 2.2, and is discussed in Section 4. Note that the jumping time used
in this paper is longer than an exponential random time as soon as the threshold is
reached and the hyperbolic tangent rate function used in [31]. Thus proving that the
above model converges to D2, implies many other models (e.g. the model in [31])
converge as well.

Fig. 2.2. A figure describing the convergence of the separate models. The arrows “→” imply
convergence in L2, and “⇒” are weak convergence (or in distribution), see § 4.
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3. Properties of the Models. In this section, we derive the Fokker-Planck
equations for the models D1 and D2. This includes giving a heuristic derivation
of the Fokker-Planck equation for D2 [§ 3.2] in the limit as λ → ∞. With these
equations we solve for exact statistics of the models. The statistics that we study
here, for the four different models, are the stationary probability density function
[§ 3.3], conditioned statistics computed from the stationary density [§ 3.4], and the
event duration [§ 3.5]. These statistics are exactly solvable for the four models.

3.1. The Fokker-Planck Equation for S2. To study the stationary density
of the models described in § 2, we use the Fokker-Planck (or Kolmogorov forward)
equation for the SDE of the corresponding model. The addition of a continuous time
discrete valued process σt adds another term to the classic Fokker-Planck equation.
For example, consider the process (qt, σt) governed by SDE (2.1) with the S2 type of
trigger. Then σ has a q-dependent generator, such that for a suitable function φ(q),

Q(q)φ(q) =

(

−λH(q − qc) λH(q − qc)
λH(qnp − q) −λH(qnp − q)

)(

φ0(q)
φ1(q)

)

. (3.1)

Given the SDE for the process qt, the joint generator for (q, σ) is

L(q,σ)f(q) =

(

L0f0(q) 0
0 L1f1(q)

)

+Q(q)f(q), (3.2)

where Li is the generator of SDE (2.1) with σ = i, i = 0, 1 [9, 36]. The Fokker-
Planck equation is the adjoint of the generator L(q,σ) above. It is a coupled PDE with
solutions ρ0(q, t), ρ1(q, t). In a slight abuse of terminology, we refer to these solutions
as “densities” of the dry (ρ0) and wet (ρ1) states, respectively. However, ρ0 and ρ1
do not integrate to one. They arise naturally from the joint density, ρ(q, σ, t), by
partitioning the density into σ = 0 and σ = 1, i.e.

ρ(q, σ, t) = δσ0ρ(q, 0, t) + δσ1ρ(q, 1, t) = ρ0(q, t) + ρ1(q, t). (3.3)

In the case for S2 the Fokker-Planck equation is

∂

∂t

(

ρ0(q, t)
ρ1(q, t)

)

=− ∂

∂q

(

m 0
0 −r

)(

ρ0(q, t)
ρ1(q, t)

)

+
1

2

∂2

∂q2

(

D2
0 0
0 D2

1

)(

ρ0(q, t)
ρ1(q, t)

)

(3.4)

+λ

(

−H(q − qc) H(qnp − q)
H(q − qc) −H(qnp − q)

)(

ρ0(q, t)
ρ1(q, t)

)

.

The total probability of the system is conserved, where the state of the system is
characterized by the column water vapor q ∈ R and the precipitation indicator σ ∈
{0, 1}. Thus we have the condition

1
∑

σ=0

∫ ∞

−∞

ρ(q, σ, t) dq =

∫ ∞

−∞

ρ0(q, t) + ρ1(q, t) dq = 1, (3.5)

for all t ∈ [0,∞).

The Fokker-Planck equation for S1 can easily be recovered from the formula above
by taking qnp = qc.
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3.2. Derivation of the Limit Fokker-Planck Equation for D2. The
Fokker-Planck equation for D2 and D1 will not contain the generator term for stochas-
tic jumps. Instead, it will contain delta function terms which account for the injection
of probability mass into the domain of σ = 0 from σ = 1 and vice versa. D2 is derived
from taking the limit of S2 as λ → ∞. The Fokker-Planck equation for D2 was studied
in [32], and is

∂
∂tρ0 = −m ∂

∂qρ0 +
D2

0

2
∂2

∂q2 ρ0 − δ(q − qnp) f1|q=qnp , −∞ < q < qc, t ≥ 0,
∂
∂tρ1 = r ∂

∂qρ1 +
D2

1

2
∂2

∂q2 ρ1 + δ(q − qc) f0|q=qc , qnp < q < ∞, t ≥ 0,

ρ0(q
c, t) = ρ1(q

np, t) = 0 t ≥ 0,
(3.6)

where

f0 =mρ0 −
D2

0

2

∂

∂q
ρ0, (3.7)

f1 =− rρ1 −
D2

1

2

∂

∂q
ρ1. (3.8)

The delta functions in the PDE above can also be viewed as interface conditions on
the flux (probability current). It is not clear from equation (3.4) that delta terms
will arise. In [32] this system was presented intuitively, and here we derive it from S2
using asymptotics.

To derive the Fokker-Planck equation (3.6) from equation (3.4) we consider the
region q > qc. The following analysis will be identical for the region q < qnp. We first
change variables to ξ = λ1/2(q − qc), or q = λ−1/2ξ + qc. PDE (3.4) in this region,
with the change in variables for the ρ0 equation only, is

∂

∂t
ρ0 = −λ1/2m∂ξρ0 + λ

D2
0

2

∂2

∂ξ2
ρ0 − λH(λ−1/2ξ)ρ0 (3.9)

We expand the solutions in an asymptotic expansion, only this time, in powers of
λ−1/2. That is,

ρ0 = ρ
(0)
0 (ξ, t) + λ−1/2ρ

(1)
0 (ξ, t) + λ−1ρ

(2)
0 (ξ, t) + ... (3.10)

This results in the system,

O(λ) 0 =
D2

0

2

∂2

∂ξ2
ρ
(0)
0 − ρ

(0)
0 (3.11)

O(λ1/2) 0 = −m
∂

∂ξ
ρ
(0)
0 +

D2
0

2

∂2

∂ξ2
ρ
(1)
0 − ρ

(1)
0 (3.12)

O(1)
∂

∂t
ρ
(0)
0 = −m

∂

∂ξ
ρ
(1)
0 +

D2
0

2

∂2

∂ξ2
ρ
(2)
0 − ρ

(2)
0 (3.13)

Now we show the following: (i) ρ
(0)
0 = 0 and hence is ρ0|qc = 0 an absorbing

boundary condition. (ii) We solve for the coefficient of the ρ
(1)
0 term (C3(t)) in the

limit as λ → ∞. (iii) The Dirac-delta coupling term is derived.

To show ρ
(0)
0 = 0, we give the solution to the O(λ) equation [Eq. (3.11)],

ρ
(0)
0 (ξ, t) = C1(t) exp

(

−
√
2

D0
ξ

)

+ C2(t) exp

(√
2

D0
ξ

)

. (3.14)
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The solution ρ
(0)
0 is assumed to be a density and hence integrable on (qc,∞), thus

C2(t) = 0. Furthermore we assume ρ0(q, t) and ∂
∂qρ0(q, t) are continuous on R and

the limit as λ → ∞ must exist everywhere. Note that,

lim
λ→∞

∂

∂q
ρ0(q, t)|q=qc = lim

λ→∞
−C1(t)λ

1/2

√
2

D0
+

∂

∂ξ
ρ
(1)
0 (ξ, t)

∣

∣

∣

∣

ξ=0

+ ... (3.15)

which does not exist. Thus C1(t) = 0 and ρ
(0)
0 = 0. The solution to the order λ1/2

equation [Eq. (3.12)] with the integrability condition is

ρ
(1)
0 = C3(t) exp

(

−
√
2

D0
ξ

)

. (3.16)

By continuity of the probability density,

ρ0((q
c)−, t) = λ−1/2ρ

(1)
0 (0+, t) + ... (3.17)

Because the right hand side of the above equation decays in λ then for the limit as
λ → ∞, ρ0(q

c, t) → 0 for all t ≥ 0, which implies the absorbing boundary condition
for PDE (3.6). By continuity of the derivative at qc,

∂

∂q
ρ0((q

c)−, t) =
∂

∂ξ
ρ
(1)
0 (0+, t) + λ−1ρ

(2)
0 (0+, t) + ... (3.18)

=− C3(t)

√
2

D0
+ ... (3.19)

In the limit as λ → ∞, the above equation, when multiplied by the appropriate
constant, is a balance of fluxes at qc. Therefore,

C3(t) =

√
2

D0
f0

∣

∣

∣

∣

∣

qc

, (3.20)

where the flux f0 is defined as

f0(q, t) = −mρ0(q, t)−
D2

0

2

∂

∂q
ρ0(q, t). (3.21)

Next we show the λρ0 ≈ λ1/2ρ
(1)
0 term converges to a delta function in the sense

of distributions. Let φ(q) be a test function on R. Recall the definition of ξ, thus we
have

∫ ∞

0

C3(t) exp

(

−
√
2

D0
ξ

)

φ(ξλ−1/2 + qc) dξ (3.22)

=

∫ ∞

qc
λ1/2C3(t) exp

(

−λ1/2

√
2

D0
(q − qc)

)

φ(q) dq.

Integration by parts yields,
∫ ∞

qc
λ1/2C3(t) exp

(

−λ1/2

√
2

D0
(q − qc)

)

φ(q) dq = −φ(qc)
D0√
2
C3(t) (3.23)

+

∫ ∞

qc
C3(t)

D0√
2
φ′(q) exp

(

−λ−1/2D0√
2
(q − qc)

)

dq

→C3(t)
D0√
2
φ(qc), (3.24)
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as λ → ∞. Thus, using equation (3.20) for C3(t),

λH(q − qc)ρ0 ≈ λ1/2ρ
(1)
0 → δ(q − qc)f0|q=qc , as λ → ∞. (3.25)

Along with a similar argument for the interval −∞ ≤ q ≤ qnp, we recover equa-
tion (3.6) in a limit of equation (3.4) as λ → ∞.

3.2.1. Deriving the D1 Fokker-Planck equation from D2. Given equa-
tion (3.6) for D2, we derive the Fokker-Planck equation for D1. To do so, we take
qnp = qc − qǫ and take the limit as qǫ → 0. The non-trivial part of this limit lies with
the interface conditions imposed by the delta functions. That is, if we integrate each
equation over their respective domains, we get the single condition,

f0(q
c) = f1(q

np). (3.26)

Because of the absorbing boundary conditions, equation (3.26) is written in terms of
ρ0 and ρ1 as

D2
0

2

∂

∂q
ρ0(q

c) =
D2

1

2

∂

∂q
ρ1(q

np). (3.27)

In the limit as qǫ → 0, the above equation is a condition that must be satisfied. Thus,
the Fokker-Planck equation for D1 is























∂
∂tρ0 = −m ∂

∂qρ0 +
D2

0

2
∂2

∂q2 ρ0, q < qc

∂
∂tρ1 = r ∂

∂qρ1 +
D2

1

2
∂2

∂q2 ρ1, q > qc

D2
0

2
∂
∂qρ0(q

c) =
D2

1

2
∂
∂qρ1(q

c)

1 =
∫∞

−∞
ρ0(q, t) + ρ1(q, t) dq

(3.28)

The above system does not require ρ = ρ0+ρ1 to be continuous. In fact, for D0 6= D1,
ρ is discontinuous at q = qc. This is seen in the stationary density of D1 [Eq. (3.39)].

3.3. Stationary Density. In this section we compute the stationary densities
for the four models using the stationary Fokker-Planck equations. We begin by finding
the stationary densities for the S2 model, denoted ρλ0 (q), ρ

λ
1 (q) respectively. For S2

the stationary Fokker-Planck equation is

(

0
0

)

=− ∂

∂q

(

m 0
0 −r

)(

ρλ0 (q)
ρλ1 (q)

)

+
1

2

∂2

∂q2

(

D2
0 0
0 D2

1

)(

ρλ0 (q)
ρλ1 (q)

)

(3.29)

+λ

(

−H(q − qc) H(qnp − q)
H(q − qc) −H(qnp − q)

)(

ρλ0 (q)
ρλ1 (q)

)

. (3.30)

The above equation is solved by considering the solution on the intervals

(−∞, qnp], [qnp, qc], [qc,∞) separately, then using continuity of ρ0, ρ1 and their deriva-
tives.

For the stationary density of S2 define,

rλ =
−r +

√

r2 + 2D2
1λ

D2
1

, and mλ =
m−

√

m2 + 2D2
0λ

D2
0

. (3.31)
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The stationary density on the different intervals is,

ρ1(q) =
2rm

(m+ r)
(

qǫ + mλ−rλ

rλmλ

)

(2r +D2
1r

λ)
er

λ(q−qnp), q < qnp,

(3.32)

ρ1(q) =

m

{

1− e
− 2r(q−qnp)

D2
1

}

(r +m)
(

qǫ + mλ−rλ

rλmλ

) +
r2me

2r(q−qnp)

D2
1

λ(m+ r)
(

qǫ + mλ−rλ

rλmλ

)

D2
1

, qnp ≤ q ≤ qc,

(3.33)

ρ1(q) =
rmem

λ(q−qc)

(m+ r)(2r +D2
1m

λ)
(

qǫ + mλ−rλ

rλmλ

) (3.34)

+

m

[

rλD1

2r+D1rλ
− mλD1

2r+D1mλ e
− 2rb

D2
1

]

e
−

2r(q−qc )

D2
1

(m+ r)
(

qǫ + mλ−rλ

rλmλ

) , q ≥ qc,

and the stationary density for ρ0 is expressed by a similar formula.
The stationary density for S1 is found by taking the above formula, substituting

qnp = qc − qǫ and taking the limit as qǫ → 0. The resulting density is

ρ1(q) =
2mrmλrλ

(m+ r)(mλ − rλ)(2r +D2
1r

λ)
er

λ(q−qc), for q < qc, (3.35)

ρ1(q) =
2mrmλrλ

(m+ r)(2r +D2
1m

λ)(mλ − rλ)
er

λ(q−qc) (3.36)

+
2mrmλrλD2

1

(m+ r)(2r +D2
1m,λ )(2r +D2

1r
λ)

e
− 2r

D2
1
(q−qc)

, for q > qc,

and similarly for ρ0.
The stationary densities for D2, ρ0(q), ρ1(q), were given analytically in [32] as

ρ1(q) =
1

qǫ
m

r +m

{

1− exp

(

− 2r

D2
1

(q − qnp)

)}

, for qnp ≤ q ≤ qc,

(3.37)

ρ1(q) =
1

qǫ
m

r +m

[

1− exp

(

2r

D2
1

qǫ
)]

exp

(

− 2r

D2
1

(q − qc)

)

, for q > qc,

(3.38)

and similarly for ρ0.
The stationary density for D1 by taking qǫ → 0, results in

ρ0(q) =
2rm

D2
0(r +m)

exp

(

2m

D2
0

(q − qc)

)

, for q < qc, (3.39)

ρ1(q) =
2rm

D2
1(r +m)

exp

(

− 2r

D2
1

(q − qc)

)

, for q > qc. (3.40)

Note that the density ρ = ρ0 + ρ1 is discontinuous for D0 6= D1.
The densities are plotted in Figure 3.1, and they can be compared with observed

densities [24, 21]. All four models capture the main observed features such as a peak
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density just below the threshold qc and an exponential tail above the threshold qc.
The D1 and D2 models have a slightly unrealistic lack of smoothness near qc; however,
these model densities are quite similar to the S1 and S2 densities for the value λ−1 =
0.4h, which is roughly the value suggested by [31]. Furthermore, the mathematical
simplicity of the D1 and D2 models is advantageous for analytical studies.
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Fig. 3.1. Plots for the densities of D1, D2 and S1, S2 with λ−1 = 0.4h. The dry state (σ = 0)
is in black and the wet state (σ = 1) in gray.

3.4. Conditional and Marginal Statistics. In this section we use the station-
ary densities calculated above to compute statistics studied in [21]. The stationary
densities will be denoted ρ0(q), ρ1(q) for the dry and wet states respectively. The
same formulas will be used for all four models (S1,S2,D1,D2).

3.4.1. Conditional Mean and Variance of Precipitation. The conditional
mean precipitation is defined as the conditional expectation of σ given a moisture
value q. That is,

E[rσ|q] = rρ1(q)

ρ0(q) + ρ1(q)
. (3.41)

40 50 60 70 80 90
0

r

Moisture q [mm]

[m
m

/h
]

Cond. Mean Precip. S1 and D1

40 50 60 70 80 90
0

r

Moisture q [mm]

[m
m

/h
]

Cond. Mean Precip. S2 and D2

Fig. 3.2. The mean precipitation is plotted for the deterministic trigger (black lines) and
stochastic trigger (gray lines) for λ−1 = 4, 0.4, 0.04 hours with one threshold (left) and two thresholds
(right).

The conditional precipitation variance is defined as the conditional variance of σ
given a moisture value q. That is,

E[(rσ)2|q]− E[rσ|q]2 =
r2ρ1(q)

ρ0(q) + ρ1(q)
−
(

rρ1(q)

ρ0(q) + ρ1(q)

)2

. (3.42)
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The conditional mean precipitation is plotted in Figure 3.2 and the conditional
precipitation variance is plotted in the supplemental materials. They can be compared
with observed statistics [24, 21]. The two stochastic trigger models (S1,S2) have
similar features, such as a smooth pick up near qc for the mean precipitation and
a spike near qc for the variance, for both one and two thresholds. The D1 model
has a Heaviside function for mean precipitation and the variance is zero. When two
thresholds are introduced, the D2 model has more realistic features, such as a rapid
pick up at qc for mean precipitation and a spike in the variance. Both of the statistics
for S1 and S2 converge to the statistics of D1 and D2 as λ increases.

3.4.2. Average Rainfall. The average rainfall is the fraction of time that the
stationary process is in state σ = 1. It is defined as,

E[rσ] =

∫ ∞

−∞

rρ1(q) dq. (3.43)

For all four models it is

E[rσ] =
r2

m+ r
. (3.44)

This means that the average rainfall is invariant in the choice of trigger and threshold.
Furthermore, the average rainfall does not change when the transition rate between
the dry and wet states are different for stochastic triggers—i.e. when r01 = λH(q−qc)
and r10 = µH(qnp − q) with µ 6= λ. One explanation is that while the times of
the rain events will depend on the choice of trigger (stochastic/deterministic) and
thresholds (one or two), these differences will average out in the stationary state.
This explanation implies that average rainfall would be preserved under changes to
the rate function (i.e. other than a Heaviside function). Further calculations are
needed to verify this claim.

The resulting average rainfall variance is

E[(rσ)2]− E[rσ]2 =
r2

m+ r

(

1− r2

m+ r

)

=
r2(m+ r − r2)

(m+ r)2
(3.45)

which is also the same for all four models and independent of λ for S1 and S2.

3.5. Event Size and Event Duration. The event size statistic is defined as
the total amount of precipitation to fall, in mm, during a precipitation event. For the
models studied here, the event size is proportional to the event duration, which can
be solved for exactly.

The event duration probability density for D2 was studied in [32]. The event
duration probability density for this case is the first passage probability density for
Brownian motion with drift to hit qc− qǫ, the drift and diffusion coefficients are given
by SDE (2.1). The event duration density for the wet state, ρ1t is reproduced here,

ρ1t =
qǫ

√

2πD2
1

exp

{

rqǫ

D2
1

}

exp

{−(qǫ)2

2D2
1t

}

exp

{−r2t

2D2
1

}

t−3/2, (3.46)

and a similar equation holds for ρ0t.
The event duration for S2 is much more complicated. Without loss of generality,

let the initial condition q0 < qc and σ0 = 0. Consider the qλ process which has just
switched dynamics, for the kth time with k odd, from σ = 0 to σ = 1, at time t0. This
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is pictured in Figure 3.3. The event time of σ = 1 is the sum of two random times
which we will call τλk and τJk . The first time, τλk , is the first passage time from the
random point in space qλt0 where the process switches dynamics to when the process
first hits the critical threshold qnp. Then the process switches dynamics after a time
τJk , which we will call the jumping time.

2.83 3.9053.93

63
65

← →τJ

Time [hrs]

M
oi

st
ur

e 
[m

m
]

Realization of one wet event for S2

2.83 3.9053.93
0

1

Time [hrs]

σ tλ

Fig. 3.3. A realization of the S2 process through one wet event starting at t = t0 and ending
when σλ

t = 1 for t > t0. The plot on the right is σλ
t through the same times.

3.5.1. Jumping time τJk and position. To study the characteristics of the
jumping time τJk for k even (i.e. σ = 0), we consider the process qλ with initial
condition qλ0 = qc. When the process switches dynamics, we freeze it at the jumping
point. Thus we consider the system















∂
∂tρ

J
0 (q, t) = −m ∂

∂qρ
J
0 (q, t) +

D2
0

2
∂
∂q

2
ρJ0 (q, t)− λH(q − qc)ρJ0 (q, t)

∂
∂tρ

J
1 (q, t) = λH(q − qc)ρJ0 (q, t)

ρJ0 (q, 0) = δ(q − qc)
ρJ1 (q, 0) = 0.

(3.47)

This problem was studied in [25] (see §3.5.3) in the absence of drift. Here we compute
the moments of the jumping time for a process with drift. The equation above is
solved using Laplace Transforms (see supplementary materials). The exact form of
the jumping time density, denoted ρτJ

k
(t) is

ρτJ
k
(t) =

d

dt
L−1

{

2

(m+
√

m2 + 2D2
0s)(−m+

√

m2 + 2D2
0(λ+ s))

}

, (3.48)

where L−1 is the inverse Laplace transform. The mean and second moment are

E[τJk ] =
D2

0

m

1

(−m+
√

m2 + 2D2
0λ)

, (3.49)

and

E[(τJk )
2] =

D4
0(2D

2
0λ−m(−3m+

√

m2 + 2λD2
0))

m3
√

m2 + 2λD2
0(m−

√

m2 + 2D2
0λ)

2
. (3.50)

The corresponding equations for k odd (σ = 1) are similar. Note that the second
moment is order λ−1/2. This fact is important for the convergence proof in § 4.

Furthermore, we recover an analytic expression for the density of the jumping
position. That is, the density for the random position where the process qλ switched
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dynamics. By integrating the equation for ρ1, in equation (3.47), in time, we see that

lim
t→∞

ρJ1 (q, t) =λH(q − qc)

∫ ∞

0

ρJ0 (q, t) dt = λH(q − qc)L{ρJ0 }(s = 0) (3.51)

=
2λH(q − qc)

D2
0(m+

√

m2 + 2D2
0λ)

e

m−

√
m2+2D2

0
λ

D2
0

(q−qc)
, (3.52)

and similarly for σ = 1. This density is plotted in Figure 3.4 for various values of λ.
The densities all have exponential decay away from qc and approaches δ(q − qc) as
λ → ∞. This gives the S1 and S2 models the property of delayed onset and demise
of convection. Thus the event duration will be longer, on average, than the models of
D1 and D2 respectively.

50 60 70 80
0

0.5

Moisture q [mm]

pd
f

Starting moisture value for σ = 1, for S2 and S1

Fig. 3.4. The density of where the processes S1 and S2 start their rain events for λ−1 =
4, 0.4, 0.04, 0.004h. Note that as λ increases, the densities are converging to delta functions at qc.

3.5.2. First passage time τλk . Given the distribution of points where the pro-
cess begins the event, we can calculate the pdf of the first passage time τλk . The first
and second moments of τλk are found using the Laplace transform (see supplementary
materials) and are

E[τλk ] =
qǫ

m
+

D2
0

(−r +
√

r2 + 2D2
1λ)

(3.53)

and

E[(τλk )
2] =

4D4
1λ

2

(rλ+)
3(−rλ−)

[

D2
0q

ǫ

m3
+

(qǫ)2

m2

]

(3.54)

+
D2

1

m3(rλ+)
3(−rλ−)

(

λ(2D4
1m+ 2rqǫ(rλ+)(D

2
0 − qǫm) +D2

1(D
2
0(r

λ
+) + 2qǫ(rλ+)m))

)

where

rλ± =
−r ±

√

r2 + 2D2
1λ

D2
1

, (3.55)

for k even (σ = 0) and similarly for k odd.
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3.6. Mean and second moment of event size. The mean event size for the
qλ process is

E[τλk + τJk ] =
qǫ

m
+

D2
0

(−r +
√

r2 + 2D2
1λ)

+
D2

0

m

1

(−m+
√

m2 + 2D2
0λ)

. (3.56)

and similarly for the σ = 1 case. The above equation is the sum of the mean event
time of the D2 process (qǫ/m) and order λ−1/2 terms.

Because of the Markov property of (qλt , σ
λ
t ) the times τλk and τJk are independent.

Therefore, the second moment of the event size is

E[(τλk )
2 + 2τλk τ

J
k + (τJk )

2] = E[τ2k ] + 2E[τλk ]E[τJk ] + E[(τJk )
2]. (3.57)

Again, this is the sum of the second moment of the event time of the D2 process and
an order λ−1/2 term.

4. Convergence Theorem. In this section we rigorously prove that the S2
model solution converges to the D2 model solution as λ → ∞ in L2 of the underlying
probability space.

Theorem 4.1. Let (qλt , σ
λ
t ) be the solution of SDE (4.2) with initial conditions

(q0, σ0) constant for every λ and let (qt, σt) be the solution to SDE (4.3) with the same
initial condition (q0, σ0). Then

lim
λ→∞

E

[

sup
0≤t≤T

|qλt − qt|2
]

= 0. (4.1)

The other modes of convergence pictured in Figure 2.2 are not proved rigorously
in this paper, but can be proved either using the strategy of the proof below, or by
using well established methods from weak convergence. The proof of Theorem 4.1
takes a path-wise strategy and will highlight where error (between D2 and S2) is
introduced in the model, and the decay rate of this error in λ.

In § 4.1 we define the probability space as well as random times where the pro-
cesses switch dynamics. In § 4.2 we argue that there exists a strong unique solution to
the SDE (2.1) for λ < ∞ and the limiting process D2. In § 4.3 we prove the theorem
of L2 convergence of S2 to D2. In § 4.4 we outline how to prove the other modes of
convergence pictured in Figure 2.2. Some estimates and proofs of lemmas used in the
proof of Theorem 4.1 are provided explicitly in the supplementary materials.

4.1. Definitions and Notation. Define the joint Markov process (qλt , σ
λ
t ) for

S2 by the SDE,

dqλt =

{

m dt+D0 dWt for σλ
t = 0

−r dt+D1 dWt for σλ
t = 1,

(4.2)

where σλ
t ∈ {0, 1} is a continuous time process defined by the generator in equa-

tion (3.1). Define the joint Markov Process (qt, σt) for D2 by the SDE:

dqt =

{

m dt+D0 dWt for σt = 0
−r dt+D1 dWt for σt = 1.

(4.3)

and σt ∈ {0, 1} is defined in the following manner: If σ0 = 0, then the process
switches to one at the time when qt1 = qnp (i.e. σt1 = 1). The process will switch
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back to zero at the time when qt2 = qnp (σt2 = 0), and the algorithm is repeated.
For the remainder of this paper, with out loss of generality, we have initial conditions
qλ0 = q0 < qc and σλ

0 = σ0 = 0. Note that equations (4.2) and (4.3) differ only in σλ
t

vs σt.
The processes (qλt , σ

λ
t ) and (qt, σt) are defined on the same probability space and

driven by the same standard Wiener process Wt. The probability space is constructed
from two separate spaces. One, we call (Ω1,F1, P1) which defines the Wiener process
Wt. The other probability triple, (Ω2,F2, P2), which is independent of (Ω1,F1, P1),
defines the exponential random variables which provide the stochastic jumping times
of σλ

t . The joint probability space is then (Ω,F , P ) = (Ω1 × Ω2,F1 ×F2, P1 × P2).
Define the stopping times Tn, T λ

n as the times where σt and σλ
t switch values.

That is, given the initial condition q0 < qc, σ0 = 0,

T1 = inf{t > 0 : σt = 1}, T2 = inf{t > T1 : σt = 0}, T3 = inf{t > T2 : σt = 1}, ...
(4.4)

or

Tk = inf{t > Tk−1 : σt = σk}, (4.5)

where T0 = 0 and

σk =

{

0 for k even
1 for k odd.

(4.6)

We similarly define T λ
n for the process qλ.

The first passage stopping time, denoted τ(x, q̂), is defined as

τ(x, q̂) = inf{s > 0 : qs = x+ q̂, q0 = q̂}, (4.7)

and similarly

τλ(x, q̂) = inf{s > 0 : qλs = x+ q̂, qλ0 = q̂}. (4.8)

Recall the jumping time τJk , from § 3.5.1, is the time it takes the qλ process to jump
dynamics once it has reached a threshold. I.e., let

t̂k = inf{s > T λ
k−1 : qλs = qk}, (4.9)

be the time at which the qλ process reaches one of the thresholds

qk =

{

qnp, for k even
qc, for k odd.

(4.10)

We define the stopping time

τJk = inf{s > t̂k : σλ
s = σk}. (4.11)

The values of qt and qλt at those times are shown in the table below [Table 4.1].
The process σt is related to a renewal process. Note that we can write

Tk =







0 k = 0,
τ(qc − q0, q0) k = 1,

τ(qc − q0, q0) +
∑k

j=1 τ((−1)jqǫ, qj), k = 2, 3, ...
(4.12)

16



Thus the times Ti have independent increments, and we can define the renewal process
Nt

Nt =
∞
∑

i=1

χ{Ti<t}, (4.13)

where χA is the indicator function of the set A. Note that Nt is the number of times
that σt jumps in the interval [0, t].

4.2. Existence and Uniqueness. Both the SDE (4.2) and (4.3), have coeffi-
cients which are discontinuous. Thus, the standard existence and uniqueness theo-
rems, which require Lipschitz coefficients, are not applicable here. However, a strong
solution exists and is unique. That is, we will show that qλt is a strong solution
adapted to the filtration Ft = (F1)t × F2 where (F1)t = σ(Ws, s ≤ t), the smallest
sigma algebra generated by the Wiener process. Consider qλt for 0 ≤ t ≤ T λ

1 . Note
that T λ

1 is (F1)t measurable. Thus

qλt = q0 +mt+D0Wt, 0 ≤ t ≤ T λ
1 , (4.14)

exists and is unique. For T λ
1 ≤ t ≤ T λ

2 , we define,

qλt = qT λ
1
− rt+D0Wt, T λ

1 ≤ t ≤ T λ
2 . (4.15)

Therefore, qλt is defined up to T λ
2 . This process is repeated up to time T . This method

is repeated for the process qt to show existence and uniqueness for SDE (4.3).

4.3. Proof of Theorem 4.1. Proof. To prove the above theorem we must relate
individual paths of the processes qλ and q. An outline of the proof is as follows: first
we condition the expectation on the number of jumps NT that the process σt has
taken in the interval [0, T ]. Next, we restrict our processes to a certain ordering of
the stopping times Tk and T λ

k . With this ordering, we consider the difference of the
processes at time t. We decompose the difference |qλt − qt| into a finite sum of three
types of errors [§ 4.3.1]. These types of errors are estimated to be of order λ−1/2 (see
the supplementary materials for complete estimates). In § 4.3.2 the expectations over
the complement of the ordering is shown to be arbitrarily small [Lemma 4.2]. Finally,
the probability that NT = N is shown to decay fast enough so the sums converge
[Lemma 4.3]. The estimates on the conditional expectations prove convergence in L2

with respect to the uniform norm.
To prove Theorem 4.1 we condition on the number of transitions defined by the

renewal process NT [Eq. (4.13)]. Note that sup0≤t≤T |qλt − qt|2 is a process with
parameter T . By the law of total probability,

E

[

sup
0≤t≤T

|qλt − qt|2
]

=
∞
∑

N=0

E

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

P (NT = N). (4.16)

For each finite N the dynamics of qλ and q can be far out of sync if, for example,
T4 < T λ

2 . In other words, the process q has switched dynamics at least four times
where the qλ process has only switched dynamics twice. Define

TN = {T1 ≤ T λ
1 ≤ T2 ≤ T λ

2 ≤ ... ≤ T λ
N−1 ≤ TN}. (4.17)

Now we break up each conditional expectation into the TN and T
c
N parts. Define,

ETN
[A] = E[A;TN ] =

∫

ω∈TN

A dP (ω), (4.18)
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and

ETc
N
[A] = E[A;Tc

N ]. (4.19)

We can write

E

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

=ETN

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

(4.20)

+ETc
N

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

.

We first consider the expectation on the sets TN , then we will show the probability
of Tc

N is small [§ 4.3.2].

4.3.1. Three different types of errors. We first consider the expectation on
TN and condition on NT = N . The error will be split into three terms. That is, given
the ordering TN ,

qλt − qt =

Nt
∑

k=1

ξk +

Nt−1
∑

k=1

ζk + Et. (4.21)

The first type, ξk is due to the lag in the jumping time to switch dynamics. We define
this error as,

ξk =(−1)k−1

(

∫ T λ
k

T λ
k
−τJ

k

(m+ r) ds+

∫ T λ
k

T λ
k
−τJ

k

(D0 −D1) dWs)

)

(4.22)

=(−1)k+1(m+ r)τJk + (−1)k−1(D0 −D1)
(

WT λ
k
−WT λ

k
−τJ

k

)

.

The second error, which is compounding, accrues when qt hits a threshold, switches
dynamics, then qλt must reach the threshold. We define this as

ζk =(−1)kτλ



(−1)k





k
∑

j=1

ξj +

k−1
∑

j=1

ζj



 , qk+1 + (−1)k−1





k
∑

j=1

ξj +

k−1
∑

j=1

ζj







 (m+ r)

(4.23)

+(−1)k(D0 −D1)
(

WTk+τλ((−1)k(
∑

k
j=1 ξj+

∑k−1
j=1 ζj),qk+1+(−1)k−1(

∑
k
j=1 ξj+

∑k−1
j=1 ζj))

−WTk

)

,

where qk = qc for k odd and qnp for k even. The third error, is the last term where
the process ends

Et = (−1)Nt−1

(

∫ t

TNt

(m+ r) ds+

∫ t

TNt

(D0 −D1) dWs

)

. (4.24)

Note that this term, in some cases, will be zero (i.e. if T λ
N < T ).

To highlight the role of the stopping times and errors, a table of the various
stopping times and their ordering is given in Table 4.1. The stopping times are
ordered with respect to TN . The error between the models at T λ

1 (where the λ
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Stopping Times τ qτ στ qλτ σλ
τ

0 q0 σ0 = 0 qλ0 σλ
0 = 0

T1 qc 1 qc 0

T λ
1 = T1 + τJ1 – 1 – 1

T2 qnp 0 – 1
T2 + τλ(−ξ1, q

np + ξ1) – 0 qnp 1

T λ
2 = T2 + τλ(−ξ1, q

np + ξ1) + τJ2 – 0 – 0
T3 qc 1 – 0

T3 + τλ(ξ1 + ζ1 + ξ2, q
c − (ξ1 + ζ1 + ξ2)) – 1 qc 0

T λ
3 – 1 – 1
...

...
...

...
...

Table 4.1

A table of the stopping times defined in Section 4.1. The places with a “–” denote random
values. Note that we have assumed the ordering TN .

process jumps), denoted ξ1, remains constant until the qt process reaches qnp. This
is where the second type of error accrues, ζ1, until the λ process reaches qnp.

We provide some explicit examples of ζk for clarity.

ζ1 =− (m+ r)τλ(−ξ1, q
np + ξ1)− (D0 −D1)(WT1+τλ(−ξ1,qnp+ξ1) −WT1) (4.25)

ζ2 =(m+ r)τλ(ξ1 + ζ1 + ξ2, q
c − (ξ1 + ζ1 + ξ2)) (4.26)

+(D0 −D1)(WT2+τλ
2 (ξ1+ζ1+ξ2,qc−(ξ1+ζ1+ξ2)) −WT2).

Now we square equation (4.21) and using the Cauchy-Schwartz inequality we have

|qλt − qt|2 ≤ 9N2
t

Nt
∑

k=1

ξ2k + 9(Nt − 1)2
Nt−1
∑

k=1

ζ2k + 9E2
t . (4.27)

The sup0≤t≤T Nt = NT . Thus the supremum over 0 ≤ t ≤ T of both sides of the
above equation is

sup
0≤t≤T

|qλt − qt|2 ≤ 9N2
T

NT
∑

k=1

ξ2k + 9(NT − 1)2
NT−1
∑

k=1

ζ2k + 9 sup
0≤t≤T

E2
t . (4.28)

The conditional expectation is

ETN

[

sup
0≤t≤T

|qλt − qT |2
∣

∣

∣

∣

NT = N

]

≤9N2
N
∑

k=1

ETN
[ξ2k] + 9(N − 1)2

N−1
∑

k=1

ETN
[ζ2k ]

(4.29)

+9ETN

[

sup
0≤t≤T

E2
t

]

.

We first calculate the expectation of ζk. To do so, consider Brownian motion with
drift µ and diffusion coefficient D2, i.e. µτ +DWτ = x, W0 = 0, and x having the
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same sign as µ. The first and second moments of the first passage time, τ(x, q̂), are

E[τ(x, q̂)] =
|x|
|µ| (4.30)

E[τ(x, q̂)2] =
x2

µ2
+

D2|x|
|µ|3 = E[τ(x, q̂)]2 +

D2

|µ|3 |x|. (4.31)

Using the fact that the expected first passage time is linear in x, an estimate of
ETN

[ζ2k ] is,

ETN
[ζ2k ] ≤4(m+ r)2

1

c2k



ETN









k
∑

j=1

ξj +

k−1
∑

j=1

ζj













2

(4.32)

+4(m+ r)2
D2

k

c3k
ETN





∣

∣

∣

∣

∣

∣





k
∑

j=1

ξj +

k−1
∑

j=1

ζj





∣

∣

∣

∣

∣

∣





+4(D1 −D0)
2 1

ck
ETN





∣

∣

∣

∣

∣

∣





k
∑

j=1

ξj +

k−1
∑

j=1

ζj





∣

∣

∣

∣

∣

∣



 ,

where

Dk =

{

D0, for k even,
D1, for k odd.

(4.33)

Thus the second moment of ζk is estimated by the first and second moments of the
sums of ξj and ζj . To prove that the second moment of ζk converges to zero as λ → ∞
we show that these moments are of order O(λ−1/2). In order to show ζk is O(λ−1/2)
we define the first moment recursively (see the supplementary materials). To prove
the theorem, we also bound the second moment of ET . Combining these estimates of
E[ζ2k ], E[ξ2k], and E[E2

T ] results in

ETN

[

|qλt − qt|2|NT = N
]

≤ 4N2
N
∑

i=1

E[ξ2i ]+4(N − 1)2
N−1
∑

i=1

E[ζ2i ]+ET = O(N6λ−1/2).

(4.34)

4.3.2. Complement of TN . Now we show that the expectation over T
c
N is

small. No matter the ordering of the stopping times, the biggest the error can be is
if |σs − σλ

s | = 1 for all s ∈ [0, t]. Thus by Doob’s maximal inequality,

ET
c
N

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

≤ ET
c
N

[

sup
0≤t≤T

t2(r +m)2
∣

∣

∣

∣

NT = N

]

+ETc
N

[

sup
0≤t≤T

(D1 −D0)
2|Wt −W0|2|NT = N

]

≤T 2(r +m)2ETc
N
[1|NT = N ] + T (D1 −D0)

2ETc
N
[1|NT = N ] (4.35)

≤
(

T 2(r +m)2 + T (D1 −D0)
2
)

P (Tc
N ). (4.36)

Now we show that the probability of Tc
N converges to zero as λ → ∞.
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Lemma 4.2. Let T < ∞, and let N be the finite, random number of times that
the process q switches dynamics. For all ǫ > 0, there exists some ΛN ∈ R such that
for all λ ≥ ΛN ,

P (Tc
N ) < ǫ. (4.37)

See the supplementary materials for the proof.
Using inequalities (4.34), and (4.36), for all ǫ > 0 we have

E

[

sup
0≤t≤T

|qλt − qt|2
]

=

∞
∑

N=0

(

ETN

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

]

(4.38)

+ ET c
N

[

sup
0≤t≤T

|qλt − qt|2
∣

∣

∣

∣

NT = N

])

P (NT = N)

≤C
∞
∑

N=0

(

N6λ−1/2 + ǫ
)

P (NT = N) (4.39)

Because NT is a renewal process with finite mean and second moment,

∞
∑

N=0

ǫP (NT = N) = CT ǫ. (4.40)

However the terms in the sum of the right hand size of inequality (4.39) are of order
N6P (NT = N). We now prove a lemma about the decay properties of P (NT = N)
for large N .

Lemma 4.3. Let NT be the renewal process defined in equation (4.13) at time
T < ∞. Then there exists some N0 and constants a > 0 and C > 0 depending on N0,
such that for all N > N0

P (NT = N) ≤ Ce−aN . (4.41)

See the supplemental materials for the proof.
With this lemma, the sum in inequality (4.39) is finite, and

∞
∑

N=0

N6λ−1/2P (NT = N) ≤ Cλ−1/2. (4.42)

Therefore,

E

[

sup
0≤t≤T

|qλt − qt|2
]

≤C

∞
∑

N=0

(

N6λ−1/2 + ǫ
)

P (NT = N) (4.43)

≤C̃(λ−1/2 + ǫ), (4.44)

and ǫ > 0 is arbitrarily small. Therefore

lim
λ→∞

E

[

sup
0≤t≤T

|qλt − qt|2
]

= 0. (4.45)
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While Theorem 4.1 describes the mean error, one might also investigate fluctu-
ations in the error about the mean. In terms of equation (4.21), the error is a sum
of random variables. The first sum, with the ξi, are independent and identically dis-
tributed random variables with finite mean and second moment. Therefore, a central
limit type theorem can be proved for the first sum, and the error grows like N . For
the second sum, the random variable ζi are not independent or identically distributed.
However, the second moment of ζk, is finite and it grows like k2. Thus, if a stronger
property of ζk can be proven, i.e. Markov or Martingale, then a central limit type
theorem will hold for the second sum (see [15] § 2.6).

4.4. Convergence of other models. The other convergence theorems of the
models (pictured in Figure 2.2), can be proved using a similar argument as above
(S2 → S1) or by weak convergence proofs that are well developed. That is, showing
the generators of the process, defined in equation (3.2), converge to the limiting
process’ generator. For example, the argument in § 3.2 can be made rigorous. For
an example and outline of such a proof see [6] Chapter 6, and [4] for a complete
treatment.

5. Conclusion. Four models were investigated for the initiation and termination
of rainfall events. In the trigger for the events, the models use the water vapor q in
an atmospheric column. Two triggers were considered (deterministic vs. stochastic),
and two threshold scenarios were considered (a single threshold vs. two distinct
thresholds). These cases are motivated by triggers used in or proposed for use in the
convective parameterizations of global climate models.

The results presented here were of two types: exact statistics and convergence
results. For example, it was shown that the average rainfall was identical for all four
triggers. However, with a stochastic trigger, a larger mean and variance for duration
of rainfall coupled with a larger initial column water vapor and delayed demise of
the rain event imply extreme rainfall events are more likely than with deterministic
triggers. Furthermore, the exact statistics were utilized in a rigorous proof of pathwise
convergence in a mean-square sense: the stochastic triggers converge to deterministic
triggers in the limit of fast transition rates. The proof also shows the error between
the stochastic and deterministic trigger as a sum random variables which characterizes
the fluctuations about the mean. Besides this rigorous pathwise proof, convergence of
the generators was also demonstrated using formal asymptotics. In this latter case,
the asymptotic limit is an interesting Fokker-Planck system with Dirac delta coupling
terms.

The models presented here are examples of hybrid switching diffusions (stochas-
tic trigger) and random dynamical systems exhibiting sliding dynamics (deterministic
trigger). As examples within these classes of dynamics, the models here exhibit sev-
eral interesting features. With a deterministic trigger, the model is of the class of
random dynamical systems with sliding dynamics and state-dependent noise. When
one threshold is used the stationary probability density function has a discontinuity
at qc. For two thresholds, the system allows for hysteresis and the paths qt and qλt
are not Markovian. The stochastic trigger model is an example of a hybrid switching
diffusion. The models presented here use a transition function rij(q) which has a
jump at qc or qnp.

Generalizations of the present models would be necessary to make them fitting
for global climate models. For instance, the full vertical structure would be needed as
qt(z), rather than the column-averaged water vapor qt. Also, a more complex trigger
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could use not only water vapor but also temperature, convective available potential
energy (CAPE), convective inhibition (CIN), etc.

The idealized triggers here illustrate two ways to extend existing convective pa-
rameterizations. First, distinct thresholds could be used for the initiation and termi-
nation of events. Here these were labeled qc and qnp, and they introduced an element
of hysteresis. Moreover, they introduce a realistic element of uncertainty; specifically,
given an atmospheric state q in the range qnp < q < qc, it is uncertain whether it is
precipitating or not. Second, a stochastic trigger could be used to delay the onset of
precipitation events and allow the build-up of a high humidity environment. Such a
delayed onset has sometimes led to improved simulations of tropical convection and
the Madden–Julian Oscillation, although it is typically achieved through modifications
of the convective entrainment rate [35, 16, 34].

When replacing a deterministic trigger with a stochastic trigger, the single–
column results here suggest an improved realism of some detailed event statistics
while still maintaining the same value of climatological mean rainfall. Such a result
would be desirable for global climate models, since modifying the convective parame-
terization can sometimes improve convective variability while adversely affecting the
climatological mean state, or vice versa.
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