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Abstract
We study circularly symmetric solution behaviour of invariant manifolds of
singular solutions of the partial differential equation EPDiff for geodesic flow
of a pressureless fluid whose kinetic energy is the H 1 norm of the fluid velocity.
These singular solutions describe interaction dynamics on lower-dimensional
support sets, for example, curves, or filaments, of momentum in the plane.
The 2 + 1 solutions we study are planar generalizations of the 1 + 1 peakon
solutions of Camassa and Holm (1993 Phys. Rev. Lett. 71 1661–4) for shallow
water solitons. As an example, we study the canonical Hamiltonian interaction
dynamics of N rotating concentric circles of peakons whose solution manifold
is 2N -dimensional. Thus, the problem is reduced from infinite dimensions to
a finite-dimensional, canonical, invariant manifold. We show both analytical
and numerical results. Just as occurs in soliton dynamics, these solutions are
found to exhibit elastic collision behaviour. That is, their interactions exchange
momentum and angular momentum but do not excite any internal degrees of
freedom. One expects the same type of elastic collision behaviour to occur in
other, more geometrically complicated cases.
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1. Introduction and overview

1.1. Geodesic flow by EPDiff in n dimensions

As first shown in Arnold [1], Euler’s equations for ideal fluid dynamics represent geodesic
motion on volume-preserving diffeomorphisms with respect to the the L2 norm of the velocity.
More generally, a time-dependent smooth map g(t) is a geodesic on the diffeomorphisms with
respect to a kinetic energy norm KE = 1

2‖u‖2, provided its velocity, the right-invariant tangent
vector u = ġg−1(t), satisfies the EPDiff equation [11, 12],

∂

∂t
m = −u · ∇m − ∇uT · m − m div u ≡ −ad∗

um. (1)

EPDiff is short for Euler–Poincaré equation on the diffeomorphisms. Here ad∗ denotes the
adjoint with respect to L2 pairing, 〈·, ·〉 : g∗ ×g → R, of the ad-action (commutator) of vector
fields u, w ∈ g. That is,

〈ad∗
um, w〉 = −〈m, aduw〉 = −〈m, [u, w]〉. (2)

The momentum vector m ∈ g∗ is defined as the variational derivative of kinetic energy with
respect to velocity,

δ(KE) = 〈m, δu〉 ⇐⇒ m = δ(KE)

δu
. (3)

This defining relation for momentum specifies the EPDiff equation (1) for geodesic motion
in terms of the chosen kinetic energy metric KE = 1

2‖u‖2. For more details, extensions and
applications of the Euler–Poincaré equation to both compressible and incompressible fluid and
plasma dynamics, see Holm et al [12].

1.2. EPDiff flow with H 1 velocities in two dimensions

In this paper, we focus on the solution behaviour of the EPDiff equation (1) when its momentum
vector is related to its velocity by the planar two-dimensional Helmholtz operation

m = u − �u, (4)

where � denotes the Laplacian operator in the plane. This Helmholtz relation arises when the
kinetic energy is given by the H 1 norm of the velocity,

KE = 1

2
‖u‖2

H 1 = 1

2

∫
|u|2 + |∇u|2 dx dy. (5)

The H 1 kinetic energy norm (5) is an approximation of the Lagrangian in Hamilton’s principle
for columnar motion of shallow water over a flat bottom when the potential energy is negligible
(the zero linear dispersion limit) and the kinetic energy of vertical motion is approximated by
the second term in the integral [3]. In this approximation, the physical meaning of the quantity
m = δ(KE)/δu in the Helmholtz relation (4) is the momentum of the shallow water flow,
while u is its velocity in two dimensions. See Kruse et al [4] for details of the derivation of
the geodesic EPDiff equation for approximating two-dimensional shallow water dynamics in
this limit.

This paper determines the analytical and numerical properties of circularly symmetric
solutions of the EPDiff equation (1) in the plane with definition (4). Remarkably, the solutions
that emerge and dominate the circularly symmetric initial value problem for the EPDiff partial
differential equation (1) are found to be singular. That is, their momenta are distributed on
delta functions defined on rotating concentric circles in the plane, each of which moves with
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the velocity of the fluid at that radius. The corresponding velocity distribution has a peak
located at each of these concentric circles, where it takes a jump in the radial derivative. Thus,
the initial value problem for EPDiff with circular symmetry produces jumps in the derivative of
the velocity moving with the flow when its kinetic energy is the H 1 norm. These are radially
symmetric contact discontinuities. These emergent singular solutions are found to possess
an invariant manifold governed by finite-dimensional canonical Hamiltonian dynamics. This
dynamics exhibits elastic collision behaviour (with its associated momentum and angular
momentum exchanges but no excitation of any internal degrees of freedom) just as occurs in
soliton dynamics. One may expect the same type of elastic collision behaviour to occur in
other, more geometrically complicated cases in the solution of the initial value problem for
EPDiff.

1.3. Problem statement: geodesic flow with respect to H 1 in polar coordinates

The present work studies azimuthally symmetric solutions of the EPDiff equation (1) in polar
coordinates (r, φ),

m = mr(r, t)r̂ + mφ(r, t)φ̂ and u = ur(r, t)r̂ + uφ(r, t)φ̂, (6)

in which the subscripts denote the radial and angular components. In the standard basis for
polar coordinates, momentum one-forms and velocity vector fields are expressed as

m · dx = mr dr + rmφ dφ and u · ∇ = ur∂r +
uφ

r
∂φ. (7)

Solutions (6) satisfy coupled partial differential equations whose radial and azimuthal
components are, respectively,

∂mr

∂t
= −1

r
∂r(rmrur) − mr∂rur − (rmφ)∂r

(uφ

r

)
, (8)

∂(rmφ)

∂t
= −1

r
∂r(r

2mφur). (9)

In these coupled equations, the nonzero rotation, uφ , generates the radial velocity, ur , which
influences the azimuthal motion. Without rotation, uφ = 0 and mφ = 0; so the solution
becomes purely radial. The system of equations (8) and (9) for geodesic motion conserves the
H 1 kinetic energy norm,

KE([ur ], [uφ]) = 1

2

∫ [
u2

φ + u2
φ,r +

u2
φ

r2
+ u2

r + u2
r,r +

u2
r

r2

]
r dr = 1

2
‖u‖2

H 1 . (10)

In the square brackets, the velocity components are denoted as in equation (6) and the subscript
comma denotes the partial derivative. The corresponding momenta are defined by the dual
relations

rmφ = δKE

δ(uφ/r)
and mr = δKE

δur

. (11)

The Helmholtz relation (4), between mφ and uφ , for example, is expressed as

mφ = uφ − ∂2uφ

∂r2
− 1

r

∂uφ

∂r
+

1

r2
uφ =

(
1 − 1

r
∂rr∂r +

1

r2

)
uφ. (12)

This relation between velocity and momentum defines the Helmholtz operator in polar
coordinates with finite boundary conditions at r = 0 and → ∞. The velocity u(r, t) is obtained
from the momentumm(r, t)by the convolutionu(r) = G ∗ m = ∫ ∞

0 G(r, ξ)m(ξ)ξ dξ (an extra
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factor ξ arises in polar coordinates) with the Green function, G(r, ξ). The Green function for
the radial Helmholtz operator in (12) is given by

G(r, ξ) =
{
I1(ξ)K1(r) for ξ < r,

I1(r)K1(ξ) for r < ξ,
(13)

where I1 and K1 are modified Bessel’s functions. This Green function will play a significant
role in what follows.

Equations (8) and (9) may be written equivalently as a Hamiltonian system, by Legendre
transforming the kinetic energy KE([ur ], [uφ]) to the Hamiltonian h([mr ], [rmφ]), after which
the equations take the form

∂

∂t

[
mr

rmφ

]
=

[ {mr, h}
{rmφ, h}

]
= −D

[
δh/δmr

δh/δ(rmφ)

]
= −D

[
ur

uφ/r

]
, (14)

where δh/δmr = ur , δh/δ(rmφ) = uφ/r and the Hamiltonian operator D, is

D =
[
r−1∂rrmr + mr∂r rmφ∂r

r−1∂rr
2mφ 0

]
, (15)

is the matrix D = {(mr, rmφ), (mr, rmφ)}, which defines the Lie–Poisson bracket for geodesic
motion in polar coordinates. As may be expected, D is skew-symmetric with respect to the L2

pairing with radial measure r dr .

2. Momentum maps and singular solutions of geodesic flow in n dimensions

2.1. Singular momentum solution ansatz for EPDiff

Based on the peakon solutions for the Camassa–Holm equation [2] and its generalizations to
include the other travelling-wave pulson shapes [8], Holm and Staley [9] have introduced the
following singular solution ansatz for the momentum of the EPDiff equation (1),

m(x, t) =
N∑

a=1

∫
s

P a(s, t)δ(x − Qa(s, t)) ds, m ∈ R
n, s ∈ R

k, (16)

where the dimensions satisfy k < n. These are singular momentum (weak) solutions, which
are defined on subspaces of the ambient space. Being defined on delta functions, the singular
solutions (16) have no internal degrees of freedom. They generalize the peakon solutions for
the Camassa–Holm equation whose momenta are supported on points moving along the line.
Having no internal degrees of freedom, these singular momentum solutions undergo elastic
collisions as in soliton dynamics, without necessarily being integrable. (No claim is made here
about the integrability of the singular solution dynamics.)

The fluid velocity corresponding to the singular momentum solution ansatz (16) is given by

u(x, t) = G ∗ m =
N∑

b=1

∫
s ′

P b(s ′, t)G(x, Qb(s ′, t)) ds ′, u ∈ R
n, (17)

where G(x, y) is the Green function for the Helmholtz operator in n dimensions. This velocity
contains vector-valued momentum parameters P b with b = 1, . . . , N that are supported in
R

n on a set of N surfaces (or curves) of codimension (n − k) for s ∈ R
k with k < n. In

three dimensions, for example, these momentum parameters may be supported on sets of
points (vector peakons, k = 0), quasi one-dimensional filaments (strings, k = 1), or quasi
two-dimensional surfaces (sheets, k = 2). Substitution of the solution ansatz (16) into the
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EPDiff equation (1) implies the following integro-partial-differential equations (IPDEs) for
the evolution of such strings, or sheets,

∂

∂t
Qa(s, t) =

N∑
b=1

∫
s ′

P b(s ′, t)G(Qa(s, t), Qb(s ′, t)) ds ′,

∂

∂t
P a(s, t) = −

N∑
b=1

∫
s ′
(P a(s, t) · P b(s ′, t))

∂

∂Qa(s, t)
G(Qa(s, t), Qb(s ′, t)) ds ′.

(18)

Importantly for the interpretation of these solutions given later in Holm and Marsden [11], the
independent variables s ∈ R

k in the singular momentum ansatz (16) turn out to be Lagrangian
coordinates. When evaluated along the curve x = Qa(s, t), the fluid velocity (17) satisfies [9]

u(x, t)|x=Qa(s,t) =
N∑

b=1

∫
s ′

P b(s ′, t)G(Qa(s, t), Qb(s ′, t)) ds ′ = ∂Qa(s, t)

∂t
. (19)

Consequently, the lower-dimensional support sets (defined on x = Qa(s, t) and parametrized
by coordinates s ∈ R

k) move with the fluid velocity.
Moreover, equations (18) for the evolution of these support sets are canonical Hamiltonian

equations [9],

∂

∂t
Qa(s, t) = δHN

δP a ,
∂

∂t
P a(s, t) = −δHN

δQa . (20)

The corresponding Hamiltonian function, HN : (Rn × R
n)⊗N → R, is

HN = 1

2

∫
s

∫
s ′

N∑
a,b=1

(P a(s, t) · P b(s ′, t))G(Qa(s, t), Qb(s ′, t)) ds ds ′. (21)

This is the Hamiltonian for canonical geodesic motion on the cotangent bundle of a set of
N curves Qa(s, t), a = 1, . . . , N , with respect to the metric given by G. The Hamiltonian
(21) is obtained by substituting the weak solution ansatz (16) and (17) into H = 1

2

∫
m ·u dnx.

The two- and three-dimensional solution behaviour arising from the weak solution ansatz
(16) for the EPDiff equation (1) was investigated numerically in Holm and Staley [10]. We refer
to that paper for the behaviour of the solution dynamics arising numerically from the initial
value problem for equation (1) in the absence of circular symmetry and in higher dimensions.

Holm and Marsden [11] show that the singular momentum solution ansatz (16) is a
momentum map. This fact explains why equations (20) are canonically Hamiltonian. It
also explains why their corresponding Hamiltonian function (21) is obtained by substituting
the solution ansatz (16) into the H 1 norm (5), which is the conserved energy for the EPDiff
equation (1). All this is guaranteed by the momentum map property of the solution ansatz (16).
However, this momentum map property does not explain why these singular solutions emerge
and dominate the initial value problem for equation (1).

Aim of the paper. In this paper, we derive singular momentum solutions that are circularly
symmetric in plane polar coordinates. For this circular symmetry, the nonlocality integrates
out and the motion reduces to a dynamical system of ordinary differential equations. Most of
the paper is devoted to the study of these circular solutions, which we call rotating peakons.
The set of solutions obeying translational symmetry in the plane, but having two velocity
components, is studied in appendix A. For a solution of N planar peakons, there are 2N

degrees of freedom, with 2N positions and 2N canonically conjugate momenta. Hence,
the evolution of the N planar peakon solution is governed by a set of 4N nonlocal partial
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differential equations. These reduce to ordinary differential equations in the presence of
either rotational or translational symmetry. This paper also demonstrates numerically that
these singular solutions emerge from any initial condition with this circular symmetry in the
plane. Thus, the singular solutions (16) are an essential feature of the initial value problem for
equation (1). In appendix B, we generalize the circularly symmetric singular solutions in two
dimensions to cylindrically symmetric singular solutions, with axial translation symmetry in
three dimensions.

2.2. Potential applications of singular EPDiff solutions

One of the potential applications of the two-dimensional version of this problem involves the
internal waves on the interface between two layers of different density in the ocean. Figure 1
shows a striking agreement between two internal wave trains propagating at the interface of
different density levels in the South China Sea, and the solution appearing in the simulations of
the EPDiff equation (1) in two dimensions. Inspired by this figure, we shall construct a theory
of propagating one-dimensional momentum filaments in two dimensions. For other work on
the two-dimensional CH equation in the context of shallow water waves, see Kruse et al [4].

Another potential application of the two-dimensional version of this problem occurs in
image processing for computational anatomy, e.g. brain mapping from PET scans. For this
application, one envisions the geodesic motion as an optimization problem whose solution
maps one measured two-dimensional PET scan to another by interpolation in three dimensions
along a geodesic path between them in the space of diffeomorphisms. In this situation, the
singular solutions of geodesic flow studied here correspond to ‘cartoon’ outlines of PET scan
images. The geodesic ‘evolution’ in the space between them provides a three-dimensional
image that is optimal for the chosen norm. For a review of this imaging approach, which is
called ‘template matching’ in computational anatomy, see Miller and Younes [13]. For recent
discussions of the relation of soliton dynamics to computational anatomy in the context of
EPDiff, see Holm et al [14].

2.3. Peakon momentum map J : T ∗S −→ g∗ in n dimensions

Holm and Marsden [11] have explained an important component of the general theory
underlying the remarkable reduced solutions of the vector EPDiff equation (1). In particular,
Holm and Marsden [11] have shown that the solution ansatz (16) for the momentum vector
in the EPDiff equation (1) introduced in Holm and Staley [9] defines a momentum map for
the (left) action of diffeomorphisms on the support sets S of the Dirac delta functions. These
support sets are points on the real line for the CH shallow water equation in one dimension.
They are points, curves, or surfaces in R

n for the vector EPDiff equation (1) in n dimensions.

Momentum map definition. Let a group G act on a manifold S and lift the action of G to the
cotangent bundle T ∗S. This lifted action yields a Poisson map J from T ∗S to g∗, the dual of
the Lie algebra of G. (A map is Poisson, provided it is coadjoint equivariant. In particular,
J maps the canonical Poisson bracket on the image space T ∗S into the Lie–Poisson bracket
on the target space g∗.) In symbols, this is

J : (P, Q) ∈ T ∗S −→ m ∈ g
∗,

J : {f, h}can(P, Q) −→ {f, h}LP(m) =
〈
m,

[
δf

δm
,

δh

δm

]〉
, where 〈·, ·〉 : g

∗ × g −→ R.
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Figure 1. Simulation of the full EPDiff equation (1), courtesy of Martin Staley (top). Internal
waves in the South China Sea (bottom).

A Poisson map J : T ∗S → g∗ that satisfies

〈J (αq), ξ〉 = 〈αq, ξQ(q)〉 (22)

for any αq ∈ T ∗S and ξ ∈ g is called a momentum map. For details of the many properties and
rich mathematical features of momentum maps, see Ortega and Ratiu [15]. The approach we
use to characterize equivariant momentum maps is explained in an interesting way in section 3
of Weinstein [16].

The n-dimensional peakon momentum solution ansatz (for any Hamiltonian) introduced
by Holm and Staley [9] is the superposition formula in equation (16), which is now regarded
as a map J : T ∗S → g∗, given by

J : m(x, t) =
N∑

a=1

∫
s

P a(s, t)δ(x − Qa(s, t)) ds, m ∈ R
n, s ∈ R

k. (23)

By direct substitution using the canonical Q, P Poisson brackets, one computes the Poisson
property of the map J in n Cartesian dimensions. Namely,

{mi(x), mj (y)}can(P, Q) = −
(

∂

∂xj
mi(x) + mj(x)

∂

∂xi

)
δ(x − y) (24)
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in the sense of distributions integrated against a pair of smooth functions of x and y.
This expression defines the Lie–Poisson bracket {·, ·}LP(m) defined on the dual Lie algebra
g∗, restricted to momentum filaments supported on the N curves x = Qa(s, t), where
a = 1, 2, . . . , N . The singular momentum ansatz J in the map (23) was verified to satisfy the
defining relation for momentum maps (22) in Holm and Marsden [11]. Hence the following
theorem.

Theorem 2.1 (Holm and Marsden [11]). The momentum solution ansatz (16) for singular
solutions of the vector EPDiff equation (1) is a momentum map.

The momentum map J in (16), (23) is, of course, independent of the choice of Hamiltonian.
This independence explains, for example, why the map extends from peakons of a particular
shape in Camassa and Holm [2] to the pulsons of any shape studied in Fringer and Holm [8]. The
solution ansatz (16), now rewritten as the momentum map J in (23), is also a Lagrange-to-Euler
map because the momentum is supported on filaments that move with the fluid velocity. Hence,
the motion governed by the EPDiff equation (1) occurs by the action of the diffeomorphisms
in G on the support set of the fluid momentum, whose position and canonical momentum
are defined on the cotangent bundle T ∗S of the space of curves S. This observation informs
the study of geodesic motion governed by the EPDiff equation (1). For complete details and
definitions, we refer to Holm and Marsden [11].

2.4. Peakon momentum map J : T ∗S −→ g∗ on a Riemannian manifold

The goal of the present work is to characterize the singular momentum solutions of the vector
EPDiff equation (1) by using the momentum map J in (23) when S is the space of concentric
circles in the plane. The motion and interactions of these singular momentum solutions may
be purely radial (circles of peakons), or they may also have an azimuthal component (rotating
circles of peakons). To accomplish this goal, we employ a result from Holm and Staley [10]
that on a Riemannian manifold M with metric determinant det g(x), the singular momentum
ansatz (16) becomes

m(x, t) =
N∑

a=1

∫
s

P a(s, t)
δ(x − Qa(s, t))√

det g
ds, m ∈ M, s ∈ R

k. (25)

This solution ansatz is also a momentum map, as shown in Holm and Marsden [11]. On a
Riemannian manifold, the corresponding Lie–Poisson bracket for the momentum on its support
set becomes

{mi(x), mj (y)} = −
(

mj(x)
∂

∂xi
+

1√
det g

∂

∂xj

√
det g mi(x)

)
δ(x − y)√

det g
. (26)

For example, in polar coordinates one has
√

det g = r and the vector m depends only on the
radial coordinate, r . For solutions with these symmetries, the Lagrangian label coordinate,
s, is unnecessary, as we shall see in polar coordinates, and the equations for Qa and P a will
reduce to ordinary differential equations in time. Equation (26) for the singular Lie–Poisson
bracket on a Riemannian manifold is a new result.

3. Lie–Poisson bracket for rotating concentric circles of peakons

3.1. Azimuthal relabelling symmetry for rotating circular peakons

We shall consider the dynamics of rotating circular peakons, whose motion may have both
radial and azimuthal components. Suppose one were to mark a Lagrangian point on the ath
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circle, a = 1, . . . , N . Then the change in its azimuthal angle, φa(t), could be measured as it
moves with the azimuthal fluid velocity, uφ , along the the ath circle as its radius r = qa(t)

evolves. Translations in the Lagrangian azimuthal coordinate would shift the mark, but this
shift of a Lagrangian label would have no effect on the Eulerian velocity dynamics of the system.
Such a Lagrangian relabelling would be a symmetry for any Hamiltonian, depending only on
the Eulerian velocity. Thus, the azimuthal relabelling would result in the conservation of its
canonically conjugate angular momentum, Ma , which generates the rotation corresponding to
the relabelling symmetry of the ath circle. The ath circle would be characterized in phase space
by its radius, r = qa(t), and its canonically conjugate radial momentum, denoted as pa . The
rotational degree of freedom of the ath circle would be represented by its conserved angular
momentum, Ma , and its ignorable canonical azimuthal angle, φa . The only nonzero canonical
Poisson brackets among these variables are

{qa, pb}can = δab and {φa, Mb}can = δab. (27)

3.2. Poisson map for rotating circular peakons

In terms of their 4N canonical phase space variables (qa, pa, φa, Ma), with a = 1, 2, . . . , N ,
the superposition formula (23) for N rotating circular peakons may be expressed as

J : m(r, t) =
N∑

a=1

(
pa(t)r̂ +

Ma

qa(t)
φ̂

)
δ(r − qa(t))

r
. (28)

We shall verify that this formula is a Poisson map, and then in section 4 we shall rederive it,
by requiring it to be a valid solution ansatz for the EPDiff equation (1) in polar coordinates.
In fact, formula (28) is more than just a Poisson map. It is also the special case for plane polar
coordinates of the momentum map discussed in Holm and Marsden [11]. As a consequence,
the motion governed by the system of partial differential equations (8) and (9) for planar EPDiff
with azimuthal symmetry has a finite-dimensional invariant manifold in the 2N -dimensional
canonical phase space (qa, pa) for each choice of the N angular momentum values Ma , with
a = 1, 2, . . . , N . Later, we shall also examine numerical studies of these solutions when the
kinetic energy is chosen to be the H 1 norm of the azimuthally symmetric fluid velocity.

By direct substitution using the canonical Poisson brackets in (27), one verifies the Poisson
property of the map J in (28) as follows,

{mr(r), mr(r
′)}can( p, q) = −

(
1

r

∂

∂r
rmr(r) + mr(r)

∂

∂r

)
δ(r − r ′)

r
,

{mr(r), r
′mφ(r ′)}can( p, q) = −rmφ(r)

∂

∂r

δ(r − r ′)
r

,

{rmφ(r), mr(r
′)}can( p, q) = −1

r

∂

∂r
r2mφ(r)

δ(r − r ′)
r

,

{rmφ(r), rmφ(r ′)}can( p, q) = 0.

(29)

These equalities are written in the sense of distributions integrated against a pair of smooth
functions of r and r ′. They demonstrate the Poisson property of the map J in (28), which is
also the solution ansatz for the rotating circular peakons. They also express the Lie–Poisson
bracket {·, ·}LP(mr, rmφ) for momentum filaments defined on the dual Lie algebra g∗ and
restricted to the support set of these solutions. Hence, we have demonstrated the following
proposition.

Proposition 3.1. The map J in (28) is a Poisson map.
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On comparing the formulae in (29) with the Hamiltonian operator D for the continuous
solutions in (15), one sees that the momentum map (28) restricts the Lie–Poisson bracket
with Hamiltonian operator D to its support set. Next, we shall rederive the Poisson map (28)
by requiring it to be a valid solution ansatz for the geodesic EPDiff equation (1) in polar
coordinates.

4. Azimuthally symmetric peakons

4.1. Derivation of equations

We seek azimuthally symmetric solutions of the geodesic EPDiff equation (1) in polar
coordinates (r, φ), for which

m = mr(r, t)r̂ + mφ(r, t)φ̂ ≡ (mr(r, t), mφ(r, t)). (30)

We shall rederive the momentum map (28) and the canonical Hamiltonian equations for its
parameters (qa, pa, Ma) by assuming solutions in the form

m(r, t) =
N∑

i=1

(pi(t)r̂ + vi(t)φ̂)
δ(r − qi(t))

r
. (31)

These solutions represent concentric circular momentum filaments that are rotating around the
origin. The corresponding velocity components are obtained from

(ur(r, t), uφ(r, t)) =
∫

r ′G(r, r ′)(mr(r
′, t), mφ(r ′, t)) dr ′, (32)

where G(r, r ′) = G(r ′, r) is the (symmetric) Green function for the radial Helmholtz operator
given in formula (13). Hence, the fluid velocity corresponding to the solution ansatz (31)
assumes the form

u(r, t) =
N∑

j=1

(pj (t)r̂ + vj (t)φ̂)G(r, qj (t)), (33)

with Green function, G(r, qj (t)), as in formula (13). In addition, the kinetic energy of the
system is given by

KE( p, q, v) = 1

2

∫
u · mr dr = 1

2

N∑
i,j=1

(pipj + vivj )G(qi, qj ). (34)

Substitution of the solution ansatz (31) for the momentum and its corresponding velocity (33)
into the radial equation (8) gives the system∑

i

(
ṗi

δ(r − qi)

r
− piq̇i

δ′(r − qi)

r

)
+

∑
i,j

{
pipjG(r, qj )

[
−δ(r − qi)

r2
+

δ′(r − qi)

r

]

+2pipj

δ(r − qi)

r

∂G

∂r
(r, qj ) + (pipj − vivj )

δ(r − qi)

r2
G(r, qj )

+vivj

δ(r − qi)

r

∂G

∂r
(r, qj )

}
= 0.

Multiplying this system by the smooth test function rψ(r) and integrating with respect to r

yields dynamical equations for pi and qi . In particular, the ψ(qi) terms yield

ṗi = −
∑

j

(
pipj

∂G

∂qi

+ vivj

{
∂G(qi, qj )

∂qi

− G(qi, qj )

qi

})
(35)
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and after integrating by parts, the ψ ′(qi) terms yield

q̇i =
∑

j

pjG(qi, qj ). (36)

By equation (33) we see that q̇i (t) = r̂ · u(qi, t), so the radius of the ith cylinder moves with
the radial velocity of the flow.

This procedure is repeated for the φ component of the EPDiff equation by substituting the
solution ansatz (31) and (33) into equation (9), to find the system

∑
i

(
v̇i

δ(r − qi)

r
− vi q̇i

δ ′(r − qi)

r

)
+

∑
i,j

{
vipjG(r, qj )

[
−δ(r − qi)

r2
+

δ′(r − qi)

r

]

+vipj

δ(r − qi)

r

(
∂G

∂r
(r, qj ) + 2

G(r, qj )

r

) }
= 0.

Upon multiplying this system by rψ(r) and integrating with respect to r , the term proportional
to ψ ′(qi) again recovers exactly the qi equation (36). The term proportional to ψ(qi) gives

v̇i = −vi

qi

∑
j

pjG(qi, qj ) = −vi

q̇i

qi

(37)

after using the qi equation (36) in the last step. This integrates to

viqi = Mi = const, (38)

where Mi are N integration constants. From the Hamiltonian viewpoint, this was expected:
the angular momentum, Mi , is conserved for each circular peakon because each circle may be
rotated independently without changing the energy.

Equations (35) and (36) for pi and qi may now be recognized as Hamilton’s canonical
equations with Hamiltonian

H( p, q, M) = 1

2

∫
u · mr dr = 1

2

N∑
i,j=1

(
pipj +

MiMj

qiqj

)
G(qi, qj ). (39)

This is the same Hamiltonian as obtained from substituting the momentum map (28) into the
kinetic energy, KE, in equation (34). Hence, we may recover the reduced equations (35) for
pi , equation (36) for qi and equation (38) for Mi from the Hamiltonian (39) and the canonical
equations,

ṗi = −∂H

∂qi

, q̇i = ∂H

∂pi

, Ṁi = −∂H

∂φi

= 0. (40)

This result proves the following proposition.

Proposition 4.1. The Poisson map (28) is a valid ansatz for rotating peakon solutions of the
EPDiff equation (1) for geodesic motion.

This is the explicit result for plane polar coordinates of the general theorem presented in
Holm and Marsden [11] for the singular momentum map arising from the left action of
diffeomorphisms on smoothly embedded subspaces in R

n. The dynamics reduces to canonical
Hamiltonian equations (40) precisely because the Poisson map (28) is a momentum map.
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4.2. Solution properties

The remaining canonical equation for the ith Lagrangian angular frequency is,

φ̇i = ∂H

∂Mi

=
∑

j

Mj

qiqj

G(qi, qj ) = 1

qi

∑
j

vj (t)G(qi, qj ). (41)

Thus, as expected, the ignorable canonical angle variables φ = {φi}, with i = 1, 2, . . . , N ,
decouple from the other Hamiltonian equations. In addition, we see that

qiφ̇i(t) = φ̂ · u(qi, t) (42)

and so the angular velocity of the ith cylinder also matches the angular velocity of the flow.
Therefore, we have shown the following proposition.

Proposition 4.2. The canonical Hamiltonian parameters in the momentum map and solution
ansatz (28) provide a Lagrangian description in polar coordinates of the flow governed by the
EPDiff equation (1).

Angular momentum, fluid circulation, and collapse to the centre. Finally, the fluid circulation
of the ith concentric circle, ci , which is travelling with velocity u, may be computed from
equations (30) and (31) (with a slight abuse of notation) as∮

ci (u)

m · dx =
∮

ci (u)

rmφdφ = 2πvi = 2πMi

qi

. (43)

We see that the ‘angular velocity’ vi = Mi/qi is the fluid circulation of the ith concentric
circle. Since the angular momentum, Mi , of the ith circle is conserved, its circulation, vi(t),
varies inversely with its radius. Consequently, this circulation would diverge if the ith circle
were to collapse to the centre with nonzero angular momentum.

Remark. As mentioned earlier, propositions 3.1, 4.1, and 4.2 are special cases for circular
symmetry of a general theorem for the singular momentum map presented in Holm and
Marsden [11].

5. Numerical results for radial peakons

5.1. Radial peakon collisions

We consider purely radial solutions of equation (8), with mφ = 0, that satisfy

∂mr

∂t
= −1

r
∂r(rmrur) − mr∂rur . (44)

Such radial solutions have no azimuthal velocity. Without azimuthal velocity, the vector peakon
solution ansatz (31) for momentum reduces to the scalar relation

mr(r, t) =
N∑

i=1

pi(t)
δ(r − qi(t))

r
. (45)

The corresponding radial velocity is

ur(r, t) =
N∑

i=1

pi(t)G(r, qi(t)), (46)

where the Green function, G(r, qi(t)), for the radial Helmholtz operator is given by
formula (13). Radial peakons of this form turn out to be the building blocks for the solution of
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Figure 2. The initial value problem: a Gaussian profile splits into peakons.

any radially symmetric initial value problem. We have found numerically that the initial value
problem for equation (45) with any initially confined radial distribution of velocity quickly
splits up into radial peakons. This behaviour is illustrated in figure 2. The initial distribution
of velocity splits almost immediately into a train of radial peakons arranged by height or,
equivalently, speed.

The head-on ‘peakon–antipeakon’ collisions are of special interest. In the case of equal
strength radial peakon–antipeakon collisions, the solution appears to develop an infinite slope
in finite time, see figure 3. This behaviour is also known to occur for peakon–antipeakon
collisions on the real line. If the strengths of the peakon and antipeakon are not equal, then the
larger one of them seems to ‘plough’ right through the smaller one. This is shown in figure 4.

The figures shown were produced from numerical simulations of the Eulerian PDE (44).
The momentum, mr , was advanced in time using a fourth-order Runge–Kutta method. The
time step was chosen to ensure the Hamiltonian 1

2

∫
m ·ur dr was conserved to within 0.1% of

its initial value. The spatial discretizations ranged from dr = 10−4 to dr = 0.02, depending
on the desired resolution and the length of the spatial domain, and the spatial derivatives were
calculated using finite differences. Fourth- and fifth-order centred differencing schemes were
used for the first and second derivatives, respectively. The momentum, mr , was found from the
velocity, ur , using the finite difference form of the radial Helmholtz operator, and the velocity,
ur , was found from the momentum, mr , by inverting the radial Helmholtz matrix. For the
peakon interaction simulations, the initial conditions were given by a sum of peakons of the
form (46) for some chosen initial pi and qi . For a peakon collapsing to the centre, which will
be described next, the boundary condition at the origin is important. If the PDE (44) were
extended to r < 0, then the velocity would be an odd function about the origin. In addition,
when the peakon was sufficiently close to the origin (qi < 0.1), the sign of its momentum mr

was reversed to begin its expansion away from the origin.
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Figure 4. Peakon–antipeakon collision of unequal strength. The smaller peakon’s trajectory
undergoes a large phase shift.
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For comparison with the simulations of the Eulerian PDE (44), simulations of the
Lagrangian ODEs (40) were also performed. A fourth-order Runge–Kutta method was used
to advance the system in time, and a time step was chosen to ensure the Hamiltonian (39) was
conserved to within 0.1%. The results of these simulations agreed with those of the Eulerian
PDE simulations to within 1%.

5.2. Bouncing off the centre

Let us first consider the case when only one peakon collapses onto the centre with the angular
momentum being zero. The Hamiltonian in this case is

H = 1
2p2I1(q)K1(q),

which can be approximated when q → 0 as

H = (
1
4 + o(q)

)
p2.

Thus, the momentum p(t) is nearly constant just before the collapse time, t∗, and is
approximately equal to −2

√
H ; more precisely,

p = −2
√

H + o(q).

The equation of motion for q(t) yields q̇ = pI1(q)K1(q) = −√
H +o(q). If q → 0 at t → t∗,

then we necessarily have

q(t) =
√

H(t∗ − t) + o((t∗ − t)2)

near the time of collapse t → t∗.
The case of N radial peakons can be considered similarly. If only one peakon (let us say,

number a) collapses into the centre at time t∗, so that qa(t) → 0 as t → t∗, and the motion
of the peakons away from the centre is regular in some interval (t∗ − δ, t∗ + δ) (as will be the
case unless a peakon–antipeakon collision occurs during this interval), then conservation of
the Hamiltonian implies

p2
aG(qa, qa) + 2paA + B = 2H, (47)

where

A =
∑
i �=a

piG(qa, qi),

B =
∑

(i,j) �=a

pipjG(qi, qj ).

Since qa = min(q1, . . . , qN), the Helmholtz Green function in expression (13) implies that
the quantities A and B are bounded at times close to t∗ and that G(qa, qa) is bounded as well.
Consequently, equation (47) implies that pa is also bounded at times close to t = t∗.

Numerical simulations confirm our predictions: at the moment of the impact at the centre,
the amplitude of the peakon remains bounded and approaches the value of −√

H ≈ −2.23,
as illustrated in figure 5.

The slope of the solution at the origin has to diverge. This can be seen on the example of
a single peakon as follows. Since

∂u

∂r

∣∣∣∣
r=0

= p(t)I ′
1(0)K1(q) = 1 + o(q)

2

p(t)

q(t)
,

if q(t) → 0 as t → t∗, the slope ∂ru(r = 0, t) must diverge. Therefore, the following
proposition is true.

Proposition 5.1. A radially symmetric peakon with no angular momentum, collapsing to the
centre, has bounded momentum and unbounded slope at the origin close to the moment of
collapse.
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Figure 5. Impact of a peakon onto the centre.

6. Numerical results for rotating peakon circles

Simulations of rotating peakons were performed for the Eulerian system of PDEs (8) and (9)
using the same numerical methods as those used for nonrotating peakons. Figure 6 shows
the results of an initial value problem simulation when ur is initially 0 and uφ is initially a
Gaussian function. A radial velocity in both directions is almost immediately generated, and
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rotating peakons that move both inwards and outwards. The radial velocity, ur , the angular velocity,
uφ , and the velocity magnitude, |u|, are all shown.
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Figure 7. A rotating peakon turns around near the origin. The radial velocity changes sign as the
angular velocity reaches a maximum.

rotating peakons soon emerge, moving both inwards and outwards but all rotating in the same
direction. A rotating peakon approaches the centre but turns around before reaching the origin.

Figure 7 shows a rotating peakon as it approaches the origin. A sort of angular momentum
barrier is reached, and the peakon turns around and moves away from the origin. Thus,
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a peakon’s behaviour as it approaches the origin is reminiscent of Sundman’s theorem.
Sundman’s theorem states that three or more bodies with nonzero total angular momentum will
not all simultaneously collide. Likewise, if a circular peakon has nonzero angular momentum,
then a full collapse to the origin will not occur. This result can be understood as follows. For a
single rotating peakon, the Hamiltonian (39) becomes

H =
(

p2 +
M2

q2

)
G(q, q). (48)

From the theory of Bessel functions we know that G(q, q) → 1
2 when q → 0, and G(q, q) > 0

for all q. Moreover, it can be shown that

G(q, q) � 1

4(1 + q2)
.

Thus, we have

H � M2

q2
G(q, q) � M2

4q2(1 + q2)
.

Therefore, we conclude that q2(1 +q2) � M2/(4H). Since q2 is positive, we necessarily have
q � q∗(M, H) > 0 with

q2
∗(M, H) = 1

2

(√
1 +

M2

H
− 1

)
(49)

and so a peakon carrying angular momentum never collapses to the origin. This result can be
formulated as the following proposition.

Proposition 6.1. Consider a rotating radial peakon with given values of M, H > 0. In the
process of its canonical evolution using Hamiltonian (48), this peakon cannot approach closer
to the origin than q∗(M, H) in equation (49).

Remark. For M → 0, q∗(M, H) ∼ M/
√

4H + O(M3). Thus, for the same energy H ,
a circular peakon with smaller angular momentum, M , may approach closer to the origin.

7. Conclusions

The momentum map (16) for the action of diffeomorphisms on (closed) curves in the plane
was used to generate invariant manifolds of singular solutions of EPDiff, the Euler–Poincaré
equation (1) for geodesic motion on the diffeomorphism group. The H 1 norm of the fluid
velocity was chosen for the kinetic energy of a class of solutions whose momentum support
set was a family of N closed curves arranged as concentric circles on the plane. These finite-
dimensional invariant manifolds of circularly symmetric solutions generalized the N -peakon
(soliton) solutions of the Camassa–Holm equation from motion of points along the real line
to motion in polar coordinates. This motion included rotation or, equivalently, circulation,
which drives the radial motion. The momentum map with nonzero circulation for these
concentric circles yielded a generalization of the circular CH peakons that included their
rotational degrees of freedom. The canonical Hamiltonian parameters in the momentum
map and solution ansatz (28) for the concentric rotating circular peakons provided a finite-
dimensional Lagrangian description in polar coordinates of the flow governed by the Eulerian
EP partial differential equation for geodesic motion (1). Numerically, we studied the basic
interactions of these circular peakons amongst themselves, by collisions and by collapse to the
centre, with and without rotation.
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The main conclusions from our numerical study are the following.

• Momentum plays a key role in the dynamics. Radial momentum drives peakons to collapse
into the centre, and azimuthal momentum prevents this collapse from occuring. Circular
peakons were found to exhibit elastic collision behaviour (with its associated momentum
and angular momentum exchanges, but with no excitation of any internal degrees of
freedom) just as occurs in soliton dynamics. The same type of elastic collision behaviour
has been verified to occur in the other, more geometrically complicated cases in [10].

• Collapse to the centre without rotation occurs with a bounded canonical momentum and
with a vertical radial slope in velocity at r = 0, at the instant of collapse.

• For nonzero rotation, collapse to the centre cannot occur and the slope at r = 0 never
becomes infinite.

The main questions that remain are the following.

• Numerical simulations show that a near-vertical or vertical slope occurs at head-on
collision between two peakons of nearly equal height. A rigorous proof of this fact is
still missing.

• It remains for us to discover whether a choice of Green’s function exists for which the
reduced motion is integrable on our 2N -dimensional Hamiltonian manifold of concentric
rotating circular peakons for N > 1.

• How does one determine the number and speeds of the rotating circular peakons that
emerge from a given initial condition?

• How does the momentum map with internal degrees of freedom generalize to n

dimensions?

All these challenging problems are beyond the scope of the present paper, and we will leave
them as potential subjects for future work.
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Appendix A. Extension of one-dimensional linear peakons to two dimensions

In this appendix, we show how to obtain the momentum line peakons, which are generalization
of the line peakons. The standard ansatz for the regular one-dimensional peakon is

m(x, t) =
N∑

i=1

pi(t)δ(x − qi(t)), (50)
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where m satisfies the one-dimensional version of equation (1). We propose the following
extension of these solutions:

m(x, t) =
N∑

i=1

(pi(t)x̂ + vi(t)ŷ)δ(x − qi(t)), (51)

where x̂, ŷ are unit vectors in the x, y directions, respectively. The solution lives on line
filaments, which are parallel to the y-axis and propagate by translation along the x-axis.
However, the y component of momentum now has a nontrivial value. Such solutions represent
momentum lines that propagate perpendicular to the shock’s front and ‘slide’ parallel to the
front, moving surrounding ‘fluid’ with it. Upon substituting equation (51) into the equations
of motion (1), we see that the x and y components of (1) both give the same equation of motion
for qi(t):

q̇i (t) =
∑

j

pjG(qi, qj ).

This compatibilty is what makes the factorized solution (51) possible. The equation of motion
for pi is

ṗi(t) =
∑

j

(pipj + vivj )G
′(qi, qj ),

and for vi ,

v̇i = 0.

Thus, vi can be considered as a set of parameters. (pi, qi) still satisfy Hamilton’s canonical
equations, with the Hamiltonian now given by

H = 1

2

N∑
i,j=1

(pipj + vivj )G(qi, qj ). (52)

Finally, the ‘angle’ variables yi(t) conjugate to vi(t) with canonical Poisson bracket
{yi, vj } = δij satisfying

ẏi (t) =
∑

j

vjG(qi, qj ).

Appendix B. Singular momentum solutions in cylindrical coordinates

The motion of N concentric circular rotating peakons in the plane may be extended into the third
dimension, z, by envisioning a set of N circular rotating singular momentum ‘rings’ moving
concentrically in various horizontal planes along a vertical cylindrical axis, as follows:

m(r, z, t) =
N∑

a=1

(
P a(t)r̂ +

Ma(t)

Qa(t)
φ̂ + Wa(t)ẑ

)
1

r
δ(r − Qa(t))δ(z − Za(t)). (53)

By definition, the corresponding velocity is given by

u(r, z, t) =
∑

i

(Gi ∗ mi)î =
N∑

a=1

P a(t)Gr(r, Q
a, z, Za)r̂ +

Ma(t)

Qa
r (t)

Gφφ̂ + Wa(t)Gzẑ. (54)
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The Green functions, Gi , for the three cylindrical components are found from the defining
relations for the momentum in these coordinates,

mr(r, z, t) = r̂ · (u − �u) = ur − ur,rr − 1

r
ur,r +

1

r2
ur − ur,zz,

mφ(r, z, t) = φ̂ · (u − �u) = uφ − uφ,rr − 1

r
uφ,r +

1

r2
uφ − uφ,zz,

mz(r, z, t) = ẑ · (u − �u) = uz − uz,rr − 1

r
uz,r − uz,zz.

Here the subscripts , r and , z denote differentiation with respect to r and z, and � is the
Laplacian operator in cylindrical coordinates. The Green functions, Gi , are then

Gr(r, r
′, z, z′) = e−k|z−z′|

2k
√

1 − k2

{
I1(

√
1 − k2r)K1(

√
1 − k2r ′), r < r ′,

I1(
√

1 − k2r ′)K1(
√

1 − k2r), r > r ′,

Gφ(r, r ′, z, z′) = Gr(r, r
′, z, z′),

Gz(r, r
′, z, z′) = e−k|z−z′|

2k
√

1 − k2

{
I0(

√
1 − k2r)K0(

√
1 − k2r ′), r < r ′,

I0(
√

1 − k2r ′)K0(
√

1 − k2r), r > r ′,

where k is a constant that we may choose with the restriction 0 < k < 1. (We have been
using α = 1 for all of this. The constant k arises when solving for the Green functions using
separation of variables.)

For solutions where m and u are functions of r , z, and t , but not φ, the equations of motion
become

∂mr

∂t
= −1

r
∂r(rmrur) − (rmφ)∂r

(uφ

r

)
− ∂z(mruz),

∂(rmφ)

∂t
= −1

r
∂r(r

2mφur),

∂mz

∂t
= −1

r
∂r(rmzur) − (rmφ)∂z

(uφ

r

)
− ∂z(mzuz).

Written out explicitly, these equations are

mr,t = −2mrur,r − urmr,r − 1

r
mrur − mφuφ,r +

1

r
mφuφ − uzmr,z − mruz,z − mzuz,r , (55)

mφ,t = −mφur,r − urmφ,r − 2

r
mφur − uzmφ,z − mφuz,z, (56)

mz,t = −urmz,r − mzur,r − mrur,z − 1

r
mzur − mφuφ,z − 2mzuz,z − uzmz,z. (57)

We shall obtain canonical equations of motion for the Lagrangian variables Qi , Pi , Mi , Zi , and
Wi , where the solution ansatz for m and u given by (53) and (54) is inserted into the equations
of motion (55)–(57). Upon integrating the resulting equations against an arbitrary smooth test
function, f (r, z), the following equations are obtained,

Ṗ a = −
N∑

b=1

P aP b∂rGr(Q
a, Qb, Za, Zb) +

MaMb

QaQb

(
∂rGφ − Gφ

Qa

)

+WaWb∂rGz(Q
a, Qb, Za, Zb), (58)

Q̇a =
N∑

b=1

P bGr(Q
a, Qb, Za, Zb), (59)
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Ża =
N∑

b=1

WbGz(Q
a, Qb, Za, Zb), (60)

∂t

(
M

Qa

)
= −Ma

Qa

1

Qa

N∑
b=1

P bGr(Q
a, Qb, Za, Zb), (61)

Ẇ a = −
N∑

b=1

P aP b∂zGr +
MaMb

QaQb
∂zGφ + WaWb∂zGz. (62)

Relationships (58), (61) and 62) are obtained, from the r , φ and z components of momentum,
respectively, by equating the terms f (Qa, Za). Equations (59) and (60) are obtained from each
of the momentum equations by considering the terms containing ∂rf and ∂zf , respectively.
In fact, these considerations yield three copies of the evolution equations (59) and (60). Note
that equation (61) simplifies to

Ṁa = 0 (63)

and so the Ma with a = 1, . . . , N , provide N integrals of motion. With this in mind, we can
see that the motion is Hamiltonian, with canonical variable pairs P a, Qa and Za, Wa . The
corresponding Hamiltonian is

H = 1

2

∫
m · u = 1

2

N∑
a,b=1

P aP bGr +
MaMb

QaQb
Gφ + WaWbGz. (64)

This Hamiltonian system has one additional conservation of motion, namely the total
z-momentum; that is,

W =
N∑

a=1

Wa = const

is conserved.
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l’hydrodynamique des fluids parfaits Ann. Inst. Fourier, Grenoble 16 319–61

[2] Camassa R and Holm D D 1993 An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71
1661–4

[3] Camassa R, Holm D D and Levermore C D 1996 Long-time effects of bottom topography in shallow water
Physica D 98 258–86

[4] Kruse H P, Schreule J and Du W 2001 A two-dimensional version of the CH equation Symmetry and Perturbation
Theory: SPT 2001 ed D Bambusi et al (New York: World Scientific) pp 120–7

[5] Degasperis A, Holm D D and Hone A N W 2002 A new integrable equation with peakon solutions Theor. Math.
Phys. 133 1463–74

[6] Dullin H R, Gottwald G and Holm D D 2001 An integrable shallow water equation with linear and nonlinear
dispersion Phys. Rev. Lett. 87 194501–04

[7] Dullin H R, Gottwald G and Holm D D 2003 Camassa–Holm, Korteweg-de Vries-5 and other asymptotically
equivalent equations for shallow water waves Fluid Dyn. Res. 33 73–95

[8] Fringer O and Holm D D 2001 Integrable vs nonintegrable geodesic soliton behavior Physica D 150 237–63
[9] Holm D D and Staley M F 2003 Wave structures and nonlinear balances in a family of evolutionary PDEs SIAM

J. Appl. Dyn. Syst. 2 323–80
[10] Holm D D and Staley M F Interaction dynamics of singular wave fronts SIAM J. Appl. Dyn. Syst. at press
[11] Holm D D and Marsden J E 2004 Momentum maps and measure-valued solutions (peakons, filaments and
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[14] Holm D D, Rananather J T, Younes L and Trouvé A 2004 Soliton dynamics in computational anatomy
NeuroImage at press

[15] Ortega J-P and Ratiu T S 2004 Momentum maps and Hamiltonian reduction Progress in Mathamatics vol 22
(Basle: Birkhaüser)
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