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ABSTRACT

A linear stability analysis is presented for fluid dynamics with water vapor and precipitation, where the

precipitation falls relative to the fluid at speed VT. The aim is to bridge two extreme cases by considering the

full range of VT values: (i) VT 5 0, (ii) finite VT, and (iii) infinitely fast VT. In each case, a saturated pre-

cipitating atmosphere is considered, and the sufficient conditions for stability and instability are identified.

Furthermore, each condition is linked to a thermodynamic variable: either a variable us, which denotes the

saturated potential temperature, or the equivalent potential temperature ue. When VT is finite, separate

sufficient conditions are identified for stability versus instability: due/dz . 0 versus dus/dz , 0, respectively.

WhenVT5 0, the criterion dus/dz5 0 is the single boundary that separates the stable and unstable conditions;

and when VT is infinitely fast, the criterion due/dz 5 0 is the single boundary. Asymptotics are used to ana-

lytically characterize the infinitely fast VT case, in addition to numerical results. Also, the small-VT limit is

identified as a singular limit; that is, the cases of VT 5 0 and small VT are fundamentally different. An energy

principle is also presented for each case of VT, and the form of the energy identifies the stability parameter:

either dus/dz or due/dz. Results for finite VT have some resemblance to the notion of conditional instability:

separate sufficient conditions exist for stability versus instability, with an intermediate range of environmental

states where stability or instability is not definitive.

1. Introduction

Various notions of stability and instability have been

valuable in understanding moist convection. For exam-

ple, two common types are potential instability and

conditional instability. Furthermore, conditional in-

stability can be defined in multiple ways, in terms of

lapse rates or in terms of parcel buoyancy (Schultz et al.

2000; Sherwood 2000), and it can be further modified to

include or neglect various aspects of moist convection

(Xu and Emanuel 1989; Williams and Renno 1993;

Emanuel 1994).

As their definitions come in a multitude of forms, sta-

bility and instability can be investigated using amultitude

of approaches. The present paper utilizes a set of equa-

tions for idealized precipitating fluid dynamics. The

equations include moist thermodynamics in a simplified

form, which facilitates analytical calculations; at the

same time, the equations also have a representation of

the fall speed of precipitation, which adds an extra el-

ement of realism beyond traditional analytical ap-

proaches. To put this approach in perspective, we next

summarize some broader ultimate goals and some of

the approaches used in their pursuit. As is the case for

all approaches, the present approach falls short of a
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complete answer but nevertheless provides an interesting

perspective.

The ultimate question concerning deep moist con-

vection can perhaps be summarized as follows: Given an

unsaturated profile of the environmental thermody-

namic state [e.g., potential temperature u(z) and water

vapor mixing ratio qy(z)], what is the probability that

cumulus convection and/or precipitation will form?

Refinements to this question could include further de-

tails, such as a measure of the convective intensity in

terms of cloud-top height or maximum vertical velocity.

In the end, because of the complexity of the question,

the ultimate answer will likely not be a simple yes or no

answer but an answer in terms of probabilities. As such,

this question could potentially be answered probabilisti-

cally using a numerical forecasting perspective, although

at considerable computational expense. Instead, in-

vestigations have traditionally sought a simpler answer in

terms of environmental lapse rates and/or single-column

models of plumes or rising parcels (Xu and Emanuel

1989; Williams and Renno 1993; Emanuel 1994; Schultz

et al. 2000; Sherwood 2000), which perhaps are not

as accurate as the numerical forecasting perspective,

but which are advantageous for their conceptual

simplicity.

Difficulties abound in this ultimate question. Two

examples are the following. First, a nonlinear switch

arises between the unsaturated and saturated states.

As a result, the buoyancy has a different form in the

unsaturated and saturated states (Stevens 2005). Sec-

ond, the formulas for cloud microphysics and pre-

cipitation are mathematically intractable and, hence,

amenable only to numerical computations. More spe-

cifically, these equations typically take a complex form

involving nonlinear switches (i.e., the Heaviside func-

tion) and polynomial nonlinearities (Grabowski and

Smolarkiewicz 1996; Seifert and Beheng 2001, 2006;

Morrison and Grabowski 2008b). Consequently, the

ultimate question is perhaps impossible to answer ana-

lytically precisely as stated.

To circumvent these difficulties, various simplifications

are traditionally employed. For example, one simplifica-

tion is to ignore the nonhydrostatic pressure gradient

force, which is essentially tantamount to ignoring hy-

drodynamics altogether. Such an assumption leads to the

commonly used parcel dynamics and parcel theory for

analyzing atmospheric stability (Xu and Emanuel 1989;

Williams and Renno 1993; Xu and Randall 2001). As

another example, one could ignore the effect of con-

densate loading (or hydrometeor drag) on buoyancy by

assuming a pseudoadiabatic thermodynamic process rather

than a reversible process. As a last example, in some

analytical theories it is necessary to assume saturated

conditions in order to circumvent the nonlinear switch

between the unsaturated and saturated states.

Analytical theories typically neglect the rainfall ve-

locity VT. An exception is the work of Emanuel (1986),

who considered the linear stability of an idealized sat-

urated atmosphere with precipitation that falls at speed

VT. Emanuel (1986) showed that upright or tilted modes

could exist and be unstable. Further work by Bretherton

(1987b) examined the same model and focused on the

limit of infinitely small spatial scales.

The use of finite VT helps bridge two extreme cases:

those that ignore VT and those that assume VT is in-

finitely fast (e.g., with the result that liquid water is

removed immediately when it forms in a rising parcel).

The work of Emanuel (1986) presents illuminating re-

sults in this direction, but its main aim is geared toward

the dynamical consequences of finite VT, such as tilted

updrafts of propagating squall lines. In the present

paper, the focus is not on the detailed structure of the

unstable eigenmodes but rather on the atmospheric

conditions for guaranteeing stability or instability. In

other words, one aim here is to put the finite-VT case in

the context of lapse rate criteria for moist atmospheric

stability and instability.

The main results presented here consider three possi-

ble cases: (i) the case VT 5 0, (ii) finite VT, and (iii) the

limit VT / ‘. For finite VT, it is shown that two separate

conditions arise for instability versus stability: the suffi-

cient condition for instability (dus/dz, 0) is determined

by a variable us 5 ue 2 u0qt that we call the saturated

potential temperature, whereas the equivalent potential

temperature gradient provides a sufficient condition for

stability (due/dz. 0). This is in contrast to the previously

derived case of VT 5 0, where a single quantity (dus/dz)

provides the sufficient conditions for both stability and

instability. Two other interesting results also arise from

analyzing cases (i)–(iii): the limitVT/ 0 is shown to be a

singular limit (i.e., the case of small VT is fundamentally

different from the case of VT 5 0), and the limit VT / ‘
leads to stability and instability conditions determined

by a single quantity, the equivalent potential temperature

gradient due/dz. Finally, all of these conditions are related

to the energy principle that arises in each case.

In this paper, saturated conditions will be the focus. As

such, the processes leading to saturation are not addressed,

and the approach falls short of the goals in the ultimate

question described above. Nevertheless, several realistic

features are included in the hydrodynamic theory here but

neglected in typical parcel theories; this includes the

nonhydrostatic pressure gradient force (and hence hy-

drodynamics) and finite rainfall velocity VT.

The nonlinear version of the model was described by

Hernandez-Duenas et al. (2013). In that work, the
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model was named the Fast Autoconversion and Rain

Evaporation (FARE) model because of the assumption

of fast microphysical time scales. In many ways, the

nonlinear FARE model is similar to the earlier models

of Seitter andKuo (1983),Majda et al. (2010), Sukhatme

et al. (2012), and Deng et al. (2012), all of which employ

an assumption of infinitely fast autoconversion: small cloud

droplets instantaneously collide and amalgamate to form

large rain drops. Short- and long-time, two-dimensional

simulations with fast autoconversion were studied, re-

spectively, in Seitter andKuo (1983) and Sukhatme et al.

(2012). To investigate cyclogenesis, Majda et al. (2010)

considered fast autoconversion, together with a weak

temperature gradient (WTG) approximation, and later

Deng et al. (2012) relaxed WTG to allow for the effects

of inertia–gravity waves. What distinguishes the FARE

model from these earlier models is the additional as-

sumption of fast rain evaporation: if rainwater falls into

unsaturated air, it is instantaneously evaporated until

saturation is reached or until all rainwater is depleted.

Hernandez-Duenas et al. (2013) show that the FARE

model can reproduce the basic regimes of precipitating

turbulent convection: scattered convection in an envi-

ronment of low wind shear and a squall line in an envi-

ronment with strong wind shear. These two cases are

reproduced here in Fig. 1. While a linearized version of

the FARE model is used in the present paper, these

nonlinear results lend confidence to the idealizations

used in the model.

The rest of the paper is organized as follows. In section 2,

the nonlinear equations of the FARE model are de-

scribed, followed by the linearized models for saturated

and unsaturated regions. Energy principles are also

presented for each case, and some initial insight into

stability conditions can be gleaned from the form of the

energy. Section 3 describes the linear stability analysis

for three cases: (i) the case VT 5 0, (ii) finite VT, and

(iii) the limitVT/ ‘. In section 4, results of the infinitely
fast VT case are obtained analytically using asymptotics.

A concluding discussion is presented in section 5.

2. The FARE model and energy

a. Background and derivation

A typical cloud-resolving model (CRM) would be

based on the equations of motion for a compressible fluid

or on the anelastic approximation filtering acoustic waves

but allowing for vertical motions of depth comparable to

the density scale height (Ogura and Phillips 1962; Lipps

and Hemler 1982). The thermodynamics would be as

comprehensive as possible, including multiple phases of

water (vapor, cloud water, rain, snow, ice, hail, graupel,

etc.), and often modeling the detailed cloud micro-

physics of individual water droplets (Grabowski and

Smolarkiewicz 1996; Seifert and Beheng 2001, 2006;

Grabowski and Morrison 2008). Although this compre-

hensive approach is necessary for weather prediction,

some physical insights into the fundamental processes of

moist convection may be more easily extracted from

simplified systems. For example, in the context of orga-

nized convection, valuable insights have been gained

from simplified perspectives (Moncrieff and Green 1972;

Moncrieff and Miller 1976; Moncrieff 1981; Emanuel

1986; Moncrieff 1992; Garner and Thorpe 1992; Fovell

and Tan 2000). In a similar simplified spirit, although not

aimed at organized convection, we here consider the

minimal FARE model, based on Boussinesq fluid dy-

namics (Spiegel and Veronis 1960) and simplified ther-

modynamics retaining only water vapor and precipitating

rainwater. The reduction supports a system of equations

with conservation of an equivalent potential tempera-

ture, as well as conservation of total water and rainwater

potential temperature in the limit of vanishing rainfall

speed. Preservation of these basic conservation laws is

presumably key to model utility in the absence of de-

tailed physics. When the system is written in terms of

total water and equivalent potential temperature (or

rainwater potential temperature), then the source terms

for condensation and evaporation do not appear explic-

itly, thus eliminating the need for closuremodels of phase

changes. The FARE model is fully three-dimensional

FIG. 1. Contours of rainwater qr (g kg
21) for two numerical simulations using the nonlinear FARE model. The two cases are (left)

scattered convection and (right) a squall line. Reprinted with permission from Hernandez-Duenas et al. (2013).
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(3D) and, in principle, able to resolve turbulent motions

at small scales. The Boussinesq approximation for shal-

low vertical motions is, of course, unrealistic for the real

atmosphere, but our numerical computations have dem-

onstrated that some regimes of convective organization

(scattered convection and squall line formation) are

supported by a Boussinesq atmosphere; thus, FARE’s

minimal nature appears to outweigh its restrictions for

our purposes.

The limit of fast autoconversion eliminates the need

to carry cloud water as a variable as well as the need to

model autoconversion of cloud water to rainwater. On

the other hand, autoconversion occurs on a time scale on

the order of minutes, whereas the condensation time

scale is on the order of seconds (Rogers and Yau 1989;

Houze 1993; Morrison andGrabowski 2008a). Thus, it is

sensible to also assume fast condensation. As a further

simplification, Hernandez-Duenas et al. (2013) pro-

posed an assumption of fast evaporation of rainwater;

such an assumption differs from the rain evaporation

model of Seitter and Kuo (1983). Taken together,

these simplifications form the model denoted FARE,

with fast condensation and fast rain evaporation in

addition to fast autoconversion. In such a model, there

is no possibility for supersaturation, because the water

vapor is instantaneously relaxed back toward the sat-

uration profile. Furthermore, rainwater cannot exist in

unsaturated air, because it is instantaneously evapo-

rated until water vapor is increased to the saturation

level.

The FARE model may be written as

Du

Dt
52$p1 k̂g

�
u

uo
1 «oqy 2qr

�
, $ � u5 0 and (1)

Du

Dt
5

L

cp
(Cd 2Er),

Dqy
Dt

52Cd1Er,
Dqr
Dt

2VT

›qr
›z

5Cd 2Er , (2)

whereD/Dt5 ›t 1 u � $ is the material derivative, u(x, t)

is the 3D velocity vector with components (u, y, w),

u(x, t) is the potential temperature, p(x, t) is the pressure,

and qy(x, t) and qr(x, t) denote the mixing ratios of water

vapor and rainwater, respectively. The source terms Cd

and Er represent phase changes of water substance, re-

spectively: condensation Cd of water vapor to form rain-

water, and evaporation Er of rainwater to form water

vapor. The unit vector k̂ is the direction of gravity (not to

be confused with the wavevector k introduced below).

The rainfall speed VT is normally in the range 0 # VT #

10ms21 [see Table 8.1 inRogers andYau (1989)] and will

be allowed to vary in the stability analysis of section 3. The

other parameters will be fixed at standard values: the la-

tent heat factorL5 2.53 106 Jkg21, the specific heat cp5
103 Jkg21K21, the ratio of gas constantsRy/Rd5 «o1 15
1.6, the acceleration of gravity g 5 9.81ms22, and the

reference potential temperature uo 5 300K.

In the limit of fast condensation and evaporation, the

source terms Cd and Er maintain the following con-

straints and are actually defined so as to maintain these

constraints:

either qy , qys(z), qr 5 0 (unsaturated) (3)

or qy 5 qys(z), qr $ 0 (saturated), (4)

where qys(z) is an approximation for the saturation

water vapor profile (Majda et al. 2010; Deng et al. 2012;

Hernandez-Duenas et al. 2013). The formulation (3) and (4)

is commonly used in CRMs (Grabowski and Smolarkiewicz

1996) and in more idealized models of moist convection

(Bretherton 1987a; Pauluis and Schumacher 2010), but

with qc rather than qr. Because of constraints (3) and (4),

only two thermodynamic variables are needed, instead

of the three variables u, qy, and qr.

Here, we choose to rewrite FARE in terms of themixing

ratio of total water qt 5 qy 1 qr and the (conserved)

equivalent potential temperature ue 5 u1 (L/cp)qv, which

is a linearization of the actual potential temperature

u exp[Lqy/(cpT)] (Stevens 2005). We use the relations

qy 5min(qt,qys), qr 5max(0, qt 2 qys) , (5)

which follow from (3) and (4). Next, the last two equa-

tions of (2) are used to write the combined source terms

Cd 2Er 5

�
0, if qt # qys
2wdqys(z)/dz , if qt . qys

.

Finally, combining the first and third equations of (2)

leads to

Du

Dt
52$p1 k̂g

"
ue
uo

1

 
«o2

L

cpuo

!
qy 2 qr

#
,

$ � u5 0 and (6)

Due
Dt

5 0,
Dqt
Dt

2VT

›qr
›z

5 0. (7)

Note that the total water qt is conserved whenVT5 0. In a

dry or unsaturated atmosphere, there is additional con-

servation of the (linearized) virtual potential temperature

uy 5 uo(u/uo 1 «oqy 2 qr), but the same will not be true

for saturated regions.

When using the FARE model, water vapor and rain-

water are computed from total water qt using (5). Thus,
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the model consists of (6) and (7), together with (5) and

the relation u5 ue 2 (L/cp)qy. Note that nonlinear

switches are still present in (5), presenting a challenge

for analysis. Here, we focus on linear analysis of com-

pletely unsaturated or completely saturated regions far

enough away from the threshold for nonlinear effects of

phase changes.

Analogously to Hernandez-Duenas et al. (2013), one

can show that the FARE model has an energy consis-

tency equation:

›

›t

�u � u
2

1P
�
1$ �

h
u
�u � u

2
1P1 p

�i
2

›

›z
[VTg(z2 a)qr]52VTgqr , (8)

where the potential energy P is given by (Vallis 2006;

Pauluis 2008)

P(ue,qt, z)52

ðz
a

g

uo
uy(ue, qt,h) dh , (9)

and the linear virtual potential temperature uy as a

function of ue, qt, and z is given by

uy 5 uy(ue, qt, z)5 ue 2 uoqt

1 uo

 
«o2

L

cpuo
1 1

!
min[qt,qys(z)] . (10)

The integration in (9) assumes ue and qt are fixed, and a is

an arbitrary reference height satisfying qys(a) 5 0. The

energy sink term involving the rainfall speed VT is consis-

tent with physical interpretation of2gqr as a frictional drag

force on the surrounding air whenVT. 0. The energy [(8)]

involves the total dynamic and thermodynamics field vari-

ables and is valid in general, including across phase changes.

In a later section on energetics, we will assume a qui-

escent background environment that is either un-

saturated or saturated, away from phase changes. For

these environments, (8) takes a simpler form, with P
given by an explicit quadratic function of fluctuations

from the background thermodynamic state and the

pressure redefined to absorb background thermody-

namic fields. It is important to note that there is a direct

pathway from (8) to (28) below, but the algebra is

rather tedious and so will be omitted for brevity.

b. The linearized equations

To perform the linear stability analysis, we consider

perturbations from an unsaturated or saturated rest-

ing state. Thus, all thermodynamical variables are

decomposed into a background function of altitude and

fluctuating part according to (�)5f(�)1 (�)0. For a more

general analysis, one could also consider a height-

dependent background horizontal velocity, but the rest

state ~u5 0 allows for explicit calculation of linear eigen-

modes using periodic boundary conditions. For simplic-

ity, the background potential temperature will be linear
~u5 uo 1Bz with uo 5 300K. As mentioned above, the

FARE model also assumes a saturation water vapor

qys(z) that is a function of height only. Our minimal

modeling approach allows us to treat the background

potential temperature gradient B as independent from

the gradient of the saturation profile dqys/dz 5 Bys, both

taken to be constant. Unless otherwise stated, we fix the

value of B 5 3Kkm21 corresponding to a standard

Brunt–Väisälä frequency of N5
ffiffiffiffiffiffiffiffiffiffiffiffi
gB/uo

p
’ 1022 s21 and

then vary Bys.

As will be shown, different (in)stability parameters

and (in)stability boundaries arise for the different cases:

unsaturated regions; saturated nonprecipitating regions

withVT5 0; saturated precipitating regions withVT. 0;

and saturated precipitating regions with VT / ‘. The
(in)stability parameters Gy, Gs, and Ge involve back-

ground gradients of the thermodynamic variables and

are defined in Table 1.

1) UNSATURATED REGIONS

In unsaturated regions of the atmosphere with qr 5 0,

the linearized FARE model may be written as

›u0

›t
52$f1 k̂g

�
u0

uo
1 «oq

0
y

�
, $ � u05 0 and

(11)

›u0

›t
1Bw05 0,

›q0y
›t

1w0d~qy
dz

5 0, (12)

where the background virtual potential temperature

has been absorbed into the modified pressure such that

f5 p2 (g/uo)
Ð z
0
~uy(h) dh, with ~uy 5 uo(~u/uo 1 «o~qy).

TABLE 1. Definition of thermodynamic quantities used throughout

this paper.

Quantity Definition

Total water mixing ratio qt
Water vapor mixing ratio qy 5min(qt, qys)

Rainwater mixing ratio qr 5max(qt 2qys, 0)

Potential temperature u

Virtual potential temperature uy 5 u1 uo(«oqy 2qr)

Buoyancy frequency squared, unsaturated Gy 5 (g/uo)d~uy /dz

Saturated potential temperature us 5 ue 2 uoqt
Buoyancy frequency squared, VT 5 0 Gs 5 (g/uo)d~us/dz
Equivalent potential temperature ue 5 u1 (L/cp)qy
Buoyancy frequency squared, VT / ‘ Ge 5 (g/uo)d~ue/dz

Rainwater potential temperature ur 5 u2 (L/cp)qr
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One can directly compare the unsaturatedmoist and dry

dynamics in the sense that the buoyancy b5 (g/uo)u
0
y 5

g(u0/uo 1 «oq
0
y) here includes water vapor but the material

derivatives of both u and qy are zero, as in the dry Bous-

sinesq dynamics. Rescaling and adding the two equations

in (12) gives Duy/Dt5 0 or, equivalently,

Db

Dt
52Gyw

0, Gy 5
g

uo

d~uy
dz

5
gB

uo
1 g«o

d~qy
dz

. (13)

As shown below, the stability condition is dictated by

the gradient Gy, which involves the negative slope

d~qy/dz. The presence of moisture will introduce in-

stabilities if d~qy/dz is negative enough, even if the at-

mosphere is stably stratified with B . 0. However, we

note that for B 5 3Kkm21, the instability interface

occurs at d~qy/dz5216:67 g kg21 km21. For an atmo-

sphere of height 15 km, the difference in moisture be-

tween the top and bottom would be more than

200 g kg21, which is not a realistic scenario.

2) SATURATED REGIONS

In completely saturated regions of the FARE atmo-

sphere, the mixing ratio of water vapor is equal to the

saturation profile qy 5 qys(z); thus, it follows that the

rainwater is given by qr 5 qt 2 qys and q0r 5 q0t. To

ensure a steady-state background, we choose a constant

background rain ~qr 5 qr,o 5 ~qt 2qys with d~qr/dz5 0 and

d~qt/dz5 dqys/dz5Bys. Then the linearized version of

(6) and (7) may be written as

›u0

›t
52$f1 k̂g

�
u0e
uo

2 q0r

�
, $ � u0 5 0 and (14)

g

uo

›u0e
›t

1Gew
0 5 0, g

›q0r
›t

1 (Ge 2Gs)w
02VTg

›q0r
›z

5 0,

(15)

where

Ge 5
g

uo

d~ue
dz

5
g

uo

 
B1

L

cp
Bys

!
,

Gs 5
g

uo

d(~ue 2 uo~qt)

dz
5

g

uo

 
B1

L

cp
Bys

!
2 gBys, and

(16)

Ge2Gs5 g
d~qt
dz

5 gBys . (17)

The modified pressure is f5 p2 (g/uo)
Ð z
0
~uy(h) dhwith

~uy 5 uo(~u/uo 1 «oqys 2 qr,o). Given the appearance of Gs

in (16), it is sensible to define a variable us 5 ue 2 uoqt,

which we will call the saturated potential temperature

and which will be an important variable for linear

(in)stability of a saturated environment. The parameter

Ge is positive when the background of the equivalent

potential temperature increases with height, whereas

the difference Gs 2Ge 52gd~qt/dz52gBys is positive

when the moisture background decreases with height

(always assumed here). In the second equation of (15),

the term involving VT leads to nonconservation of the

virtual potential temperature uy; consequently, as shown

next, the linearized energy equation takes a form differ-

ent from the cases of unsaturated and nonprecipitating

saturated environments, both of which have the same

form as the dry dynamics.

c. Energetics

In the following sections on energetics, we consider

the nonlinear system in various regimes: unsaturated,

saturated with VT 5 0, and saturated with VT . 0. We

choose to decompose the thermodynamics variables

into background and fluctuations in order to extract the

stability boundaries defined in terms of background

gradients Gy, Gs, and Ge of thermodynamics quantities.

1) ENERGY EQUATION IN UNSATURATED

REGIONS

With u5 ~u1 u0 and qy 5 ~qy 1 q0y , the nonlinear dy-

namics in unsaturated regions takes the form

Du

Dt
52$f1 k̂g

�
u0

uo
1 «oq

0
y

�
, $ � u5 0 and (18)

Du0

Dt
1Bw5 0,

Dq0y
Dt

1w
d~qy
dz

5 0. (19)

It follows that the kinetic kuk2/2 and ‘‘potential’’

b2/(2Gy) energies satisfy the equations

D

Dt

�
1

2
kuk2

�
52$ � (uf)1wb,

D

Dt

�
b2

2Gy

�
52wb .

(20)

Here, b5 g(u0/uo 1 «oq
0
y) is the buoyancy in unsaturated

regions. Exchange of kinetic and potential energy is

possible as a result of the wb term in each equation, and

the energy equation in conservation form is obtained

after adding the two equations in (20):

›E

›t
1$ � [u(E1f)]5 0, E5

1

2
kuk21 b2

2Gy

. (21)
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From the form of this energy, it is clear that a sufficient

condition for stability is Gy . 0.1 What is not clear from

the energy alone is the sufficient condition for in-

stability, although it is well known to be Gy , 0 from

linear stability analysis analogous to the dry dynamics

(Vallis 2006).

2) ENERGY EQUATION IN SATURATED REGIONS

WITH VT 5 0

With ue 5 ~ue 1 u0e, qr 5 ~qr 1 q0r, the nonlinear dynam-

ics in saturated regions takes the form

Du

Dt
52$f1 k̂g

�
u0e
uo

2 q0r

�
, $ � u5 0 and (22)

g

uo

Du0e
Dt

1Gew5 0, g
Dq0r
Dt

1 (Ge 2Gs)w2VTg
›q0r
›z

5 0.

(23)

SettingVT5 0 and subtracting the two equations in (23),

one finds

Du

Dt
52$f1 k̂b, $ � u5 0,

Db

Dt
52Gsw , (24)

with buoyancy b5 (g/uo)u
0
y 5 g(u0e/uo 2 q0r). Notice that

the equation for the buoyancy in (24) has the same form

as (13) for unsaturated environments, with Gy in (13)

replaced by Gs. Defining the energy

E5
1

2
kuk21 b2

2Gs

(25)

leads to

›E

›t
1$ � [u(E1f)]5 0. (26)

From the form of the energy in (25), it is clear that a

sufficient condition for stability is Gs . 0. What is not

immediately clear from (25) alone is a sufficient condi-

tion for instability. However, since the mathematical

form of (24) is the same as (13) (i.e., the unsaturated

case, but with Gy replaced by Gs), it follows that Gs, 0 is a

sufficient condition for instability. Taking this mathe-

matical equivalence further, explicit expressions for the

frequencies of the linear eigenmodes are s6 5
6(kh/k)G

1/2
s , where k5 (kx, ky, kz) is the wavevector,

k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x 1 k2y 1 k2z

q
is thewavenumber, andkh 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x 1 k2y

q
is the horizontal equivalent.

3) ENERGY EQUATION IN SATURATED REGIONS

WITH VT . 0

The quantity (25) is not conserved if VT . 0;

hence, a different form is required in this case. To

arrive at an energy conservation principle for VT . 0 re-

quires a separate scaling for each term in the buoyancy

b5 g(u0e/uo 2 q0r). Defining a precipitating energy

Ep 5
1

2
kuk21 (gu0e/uo)

2

2Ge

1
(gq0r)

2

2(Gs 2Ge)
, (27)

one finds

›Ep

›t
1$ � [u(Ep 1f)]2VT

›

›z

"
(gq0r)

2

2(Gs 2Ge)

#
5 0. (28)

One can also arrive at the quadratic energy equation in

(28) from (8) by using the decompositions ue 5 ~ue 1 u0e
and qt 5 ~qt 1 q0t and then manipulating the correspond-

ing equations (not shown).

As in the other cases above, this energy Ep offers in-

sight into the stability condition. As mentioned above,

the difference Gs 2 Ge is positive for decreasing profile of

saturation water vapor. Therefore, for Bys , 0, the con-

dition Ge . 0 gives a positive definite energy and is a

sufficient condition for stability when VT . 0. Note that

this stability condition for VT . 0 is different from the

stability condition forVT5 0.Also, what is not clear from

the form of Ep is a sufficient condition for instability,

which will be explored next.

3. Linear instability analysis of a saturated
environment

While the energetics in section 2 offers some insight

into stability boundaries, it does not fully characterize

instability boundaries. In particular, a more detailed lin-

ear instability analysis is needed to analyze how finite

rainfall speed VT . 0 affects the stability. As in Emanuel

(1986), we consider the simplest case of periodic bound-

ary conditions and look for growing solutions to the sys-

tem (14) and (15). Here, we focus on stability/instability

boundaries.

a. Eigenvalue problem and characteristic polynomial

Starting from (14) and (15) and assuming Ge 6¼ 0, it is

convenient to introduce the rescaled variables

1 Since energy is conserved, the condition Gy . 0 ensures that

both kinetic and potential energies are positive and thus remain

bounded assuming appropriate boundary conditions. On the other

hand, if Gy , 0, the oppositely signed kinetic and potential energies

can grow without bound while the total energy remains fixed, in-

dicating the possibility of instability.
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Qe 5
g

uo

u0e
jGej1/2

, and Q5
gq0t

(Gs 2Ge)
1/2

. (29)

We note again that Gs2Ge is always positive, but Gemay

be negative in physically relevant parameter regimes.

Written in terms of the new variables in (29), the line-

arized equations become

›u0

›t
52$f1 k̂[jGej1/2Qe 2 (Gs2Ge)

1/2Q],

$ � u0 5 0 and (30)

›Qe

›t
1 sign(Ge)jGej1/2w0 5 0,

›Q

›t
2 (Gs 2Ge)

1/2w02VT

›Q

›z
5 0. (31)

Periodic boundary conditions allow for solutions of the

form (�)(x, t;k)5 (̂�)(k) expfi[k � x2s(k)t]g with wave-

vector k5 (kx, ky, kz). After taking the divergence of the

momentum equation in (30) and using the continuity

condition, a Fourier transform yields

f̂52
ikz
k2

jGej1/2Q̂e1
ikz
k2

(Gs 2Ge)
1/2Q̂ . (32)

Derivation of the remaining Fourier coefficients fol-

lows from substitution of (32) into the Fourier trans-

forms of the momentum equation in (30) and (31):

2isû52ikxf̂5
2kxkzjGej1/2

k2
Q̂e 1

kxkz
k2

(Gs2Ge)
1/2Q̂ ,

2isŷ52ikyf̂5
2kykzjGej1/2

k2
Q̂e 1

kykz

k2
(Gs 2Ge)

1/2Q̂ ,

2isŵ52ikzf̂1 jGej1/2Q̂e 2 (Gs 2Ge)
1/2Q̂5

k2h
k2

jGej1/2Q̂e

2
k2h
k2

(Gs 2Ge)
1/2Q̂ ,

2isQ̂e 52sign(Ge)jGej1/2ŵ, and

2isQ̂5 (Gs 2Ge)
1/2ŵ1 ikzVTQ̂ . (33)

Slaving of û, ŷ introduces a zero eigenvalue associated

with the vortical mode. When kh 6¼ 0, the equations for

ŵ, Q̂e, Q̂ can be written in matrix form (indicated by

square brackets):

2664 0 ikhk
21jGej1/2 2ikhk

21(Gs 2Ge)
1/2

2i sign(Ge)khk
21jGej1/2 0 0

i(Gs2Ge)
1/2khk

21 0 2kzVT

3775
264 kk21

h ŵ

Q̂e

Q̂

3755s

264 kk21
h ŵ

Q̂e

Q̂

375 . (34)

For brevity, we do not show the special case kh 5 0.

The matrix above is Hermitian when Ge is positive

[sign(Ge) 5 1]; hence, in this case, all eigenvalues are

real, and the system is neutrally stable. For the general

case, the characteristic polynomial is given by

(k2s31 kzVTk
2s22 k2hGss2 k2hkzVTGe)s5 0, (35)

where the zero eigenvalue was also included.

b. Eigenmodes

To make a connection to the eigenmodes of the dry

dynamics, we first consider the special caseVT5 0 and

kh 6¼ 0, and then the precipitating case VT . 0 will be

considered.

For VT 5 0, and in the case kh 6¼ 0, the four eigen-

values are

s0,q5 0,s6 56
kh
k
G1/2
s . (36)

The four eigenmodes of (33) are five-component vec-

tors (û, ŷ, ŵ, Q̂e, Q̂). The eigenmodes corresponding

to (36) are

f05 k21
h

266666664

2ky

kx

0

0

0

377777775,

fq 5 (Gs 2Ge 1 jGej)21/2

2666666664

0

0

0

(Gs 2Ge)
1/2

jGej1/2

3777777775
, and

(37)
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f6 5 k21jGsj1/2(Gs2Ge1 jGsj1 jGej)21/2

3

26666666664

ikxkzk
21
h

ikykzk
21
h

2ikh

7k sign(Ge) jGej1/2G21/2
s

6k(Gs 2Ge)
1/2G21/2

s

37777777775
. (38)

Comparing to the dry dynamics, s0 5 0, f0 can be

identified with the zero-frequency vortical mode. The

eigenvalues s6 in (36) have the same form as the gravity

waves frequencies of the dry, stratified case, but there

is a stability boundary at Gs5 0: for Gs. 0, there are two

neutrally stable, propagating modes; for Gs , 0, there is

one growing mode and one decaying mode. There is an

additional zero eigenvalue sq 5 0 and eigenmode fq

associated with potential temperature and rainwater

fluctuations.

For VT . 0, the solution to the characteristic poly-

nomial is nontrivial, and VT plays a central role in the

structure of the eigenmodes. Assuming the most general

case Ge 6¼ 0, Gs 6¼ 0, Gs2Ge 6¼ 0, kh 6¼ 0, kz 6¼ 0, the vortical

mode is the only eigenfunction with zero eigenvalue

s05 0, and the vortical eigenmodef0 is given by (37). In

addition, there are three more eigenvalues given by the

cubic polynomial

k2s31 kzVTk
2s22 k2hGss2 k2hkzVTGe 5 0 (39)

[see (35)]. The corresponding eigenvectors are

fq,6 5 fk21 k2h[jGejjsq,6j22 1 (Gs 2Ge)jsq,6 1 kzVT j22]g21/2

3

26666666664

ikxkzk
21
h

ikykzk
21
h

2ikh

2kh(s
q,6)21sign(Ge)jGej1/2

kh(s
q,6 1 kzVT)

21(Gs 2Ge)
1/2

37777777775
, (40)

where the superscript q,6 makes sense, since the ei-

genvalues sq,6 and the eigenmodes fq,6 given by (40)

converge to the VT 5 0 expressions given by (36), (37),

and (38).

In addition to the special case whenVT5 0, kh 6¼ 0, one

can also compute the eigenvalues and eigenvectors for the

other special cases, such as kz5 0, Ge2 Gs5 0, but we will

not present those cases for the sake of brevity.

For the case of (39) and (40), there is a real eigenvalue

defining a neutrally stable mode that propagates, and

there are two more eigenvalues that could be real or

could be complex conjugates. In other words, these last

two eigenmodes could be both neutrally stable or could

be a stable/unstable pair, depending on the specific

values of Ge, Gs, VT , kh, and kz.

c. Numerical results

To further probe the stability and instability, we now

turn to numerical computations of the eigenvalues from

(39). Of particular interest are the VT . 0 cases, for

which the instability properties are not as easily deduced

analytically.

The behavior for varying VT and horizontal wave-

number kh is illustrated in Fig. 2. The growth rate is

plotted versus horizontal wavenumber using fixed ver-

tical wavenumber kz 5 2p/15 km21, potential tempera-

ture gradient B 5 3Kkm21, and saturation profile

gradient Bys 5 21.28 g kg21 km21. The horizontal

wavenumber kh has been scaled by 2p/40 000 km21, and

VT has the realistic values VT 5 0.5, 1, 1.5, 2, . . . , 5m s21

(Rogers andYau 1989).When the rainfall speed is small,

the instabilities occur in a finite band of smaller hori-

zontal wavenumbers (larger horizontal scales). As VT

increases, instabilities appear at increasingly smaller

scales, but the growth rate appears to saturate. Quali-

tatively similar behavior is observed for growth rate

versus total wavenumber and for growth rate versus kz
for fixed kh (not shown). While it is unclear whether the

large-scale unstable modes have physical significance,

instability arises on scales of 50 km and smaller for

reasonable values of VT (larger than roughly 0.6m s21)

and may be relevant for the growth of individual cu-

mulus clouds.

Figure 3 shows the (in)stability regions in the

kh(2p/40 000 km
21) versus Bys plane for VT 5 0 (left),

VT 5 0.01 (middle left), VT 5 1 (middle right), and

VT 5 10ms21 (right). The gray region denotes the un-

stable scales. The dashed line Ge 5 0 clearly separates
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regions where all scales are stable from those where in-

stabilities arise either in a finite band or at all scales. As the

rainfall speed increases, the unstable region approaches

the dashed line Ge 5 0. This suggests that Ge 5 0 is the

stability boundary of the FARE model in saturated re-

gions asVT/‘. The other extreme limitVT/ 0 appears

to be a singular limit, in the sense that there is a qualitative

change between VT 5 0 and VT / 0 [see also (19) in

Emanuel (1986)]. The insert in the middle-left panel of

Fig. 3 shows a zoom at large scales, where, for VT 5
0.01ms21, we verify that instabilities occur at large scales

provided that Ge , 0. Our numerical calculations in-

dicate that for any positive VT and Ge , 0, there will be

instabilities at large-enough scales (perhaps larger than

planetary scales). On the other hand, the limiting case

VT 5 0 has all scales stable if Gs . 0 and all scales un-

stable if Gs , 0.

The conditional nature of the instabilities shown here

is perhaps better understood in the (Bys 5 dqys/dz,

B5d~u/dz) plane, allowing bothBys andB to change.We

let B vary about the standard value of 3Kkm21. Al-

though it is much harder to identify a typical Bys, we

use values close to a decrease of 20 g kg21 over 15 km.

Figure 4 shows the stability regions for VT 5 0 (left),

VT 5 0.05 (middle left), VT 5 5 (middle right), and

VT5 1000m s21 (right). In each panel, the dashed line is

Ge 5 0, and the solid line is Gs 5 0. In the left panel with

VT 5 0, we clearly identify Gs to be the stability pa-

rameter. In the right panel with VT 5 1000ms21 very

large, Ge replaces Gs as the stability boundary. As in-

dicated by the middle-left panel with very small but

positive VT 5 0.05m s21, the region where Gs . 0, Ge ,
0 is unstable at large horizontal scales but stable at small

horizontal scales (1 km). In other words, for small VT,

the large scales become unstable in the region where the

equivalent potential temperature background decreases

with height, and the small scales become unstable close

to the Gs 5 0 region. On the other hand, VT 5 0 makes

the large horizontal scales stable in the middle strip,

indicating that VT 5 0 is a singular limit. The middle-

right panel shows that for moderate values of VT, there

can be a finite wavenumber band of instabilities or in-

stability at all horizontal wavenumber, depending on the

values of B and Bys.

Figure 5 helps to further analyze the effect of rainfall

speed for the creation of instabilities. For fixed B 5
3Kkm21, the figure shows the (in)stability regions as

a function of Bys 5 dqys/dz and VT, with solid line

to denote Gs 5 0 (stability interface when VT 5 0;

Bys ’ 21.37gkg21km21), and with dashed line to denote

Ge5Gs1 gBys5 0 (Bys’21.206 gkg21 km21). One can

see that Ge . 0 is a sufficient condition for stability. The

region Ge , 0 has unstable modes and is divided into

three subregions: (dark gray) the region with in-

stabilities at both kh 5 2p km21 (small scales) and kh 5
2p/40 000 km21 (large scales); (gray) the region with

instabilities at large scales; and (light gray) the region

with no instabilities for these scales. The zoom to small

FIG. 2. Growth rates Im(s) of the unstable eigenmode as a

function of kh (2p/40 000 km21) for VT 5 0.5, 1.0, 1.5, 2, . . . ,
5ms21,kz5 2p/15km21,B5 3Kkm21, andBys521.28gkg21km21.

FIG. 3. Stability regions in theBys vs kh (2p/40 000 km
21) plane for (left)–(right)VT5 0, 0.01, 1, and 10m s21. The values kz5 2p/15 km21

andB5 3Kkm21 are fixed. The gray region denotes the unstable scales. The dashed vertical line indicates Ge5 0, and the solid vertical line

indicates Gs 5 0. The middle-left panel also includes a plot with truncated values of kh from 1 to 400 (2p/40 000 km21).
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values ofVT in the right panel is necessary to see that the

stability curve for scales smaller than Earth’s circum-

ference starts at Gs 5 0 for VT / 0 and asymptotically

approaches Ge5 0 forVT large. Increasing rainfall speed

changes the linear instability interface from Gs 5 0 for

VT 5 0 to Ge 5 0 as VT increases.

Explicit expressions for the eigenvalues in the two

extreme cases VT 5 0 and VT / ‘ reveal two stability

parameters. The wave modes have a frequency of

s6 56(kh/k)G
1/2
s and s6 56(kh/k)G

1/2
e for these two

extreme cases, respectively. This shows that the gradient

Gs controls stability in nonprecipitating environments,

while the parameter Ge replaces Gs for fast precipitation

when VT / ‘. (See section 4 for more discussion of the

limit VT / ‘; also, for comparison, recall that the fre-

quencies are s6 56(kh/k)G
1/2
v in the unsaturated case,

whereGy is derived from the virtual potential temperature

uy.) A transition from one extreme to the other is shown

in Fig. 6 for the unstable region with Gs , 0, displaying

growth rates as a function of horizontal wavenumber

and various values of VT (fixed Bys 5 1.4 gkg21 km21,

B5 3Kkm21, and kz 5 2p/15 km21). The thick dashed

and solid lines are curves proportional to kh/k as a

function of kh, with constants of proportionality jGsj1/2
and jGej1/2, respectively. The intermediate curves cor-

respond to finite values of VT, where VT 5 20ms21 is

already close to the limiting curve.

4. Asymptotic analysis in saturated environments
for VT /‘

Beyond the numerical indications of the VT / ‘
limit, a limiting system of equations can also be derived

analytically. Here, we consider the nonlinear FARE

model [(5)–(7)] in saturated environments and for

rainfall speed VT / ‘ much larger than any other

FIG. 4. Stability regions in the (Bys5 dqys /dz,B5d~u/dz) plane for (left)–(right)VT5 0, 0.05, 5, and 1000m s21. The dashed line is Ge5
0, and the solid line is Gs 5 0. The light gray region indicates instabilities at large scales (chosen to be identified by the planetary scale

40 000 km); the dark gray region indicates instabilities at both large and small scales (1 km); the white region indicates no instabilities at

these scales.

FIG. 5. (In)stability regions in the (Bys 5 dqys/dz, VT) plane for kz 5 2p/15 km21, B5 3Kkm21, and Bys 2 [21.42,

21.156] g kg21 km21: (left)VT 2 [0, 10]m s21; (right)VT 2 [0, 0.02]m s21. The dark (medium) gray region indicates the

presence of unstablemodes for horizontal wavenumbers kh5 2p km21 (kh5 2p/40 000 km21). The light gray region in

(right) indicates the areawhere no instabilities were found for kh$ 2p/40 000 km21. The solid line denotesGs5 0, and the

dashed line denotes Ge 5 0. The white strip (Ge . 0) is the area with only stable modes.
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velocity scale in the system. With characteristic length

scale L and nonlinear time scale T and denoting non-

dimensional quantities with an asterisk, the equations

for the fluctuating fields become

›u*

›t*
1 u* � =*u*52=*f*1 k̂(ue* 2 qr*),

=* � u*5 0 and (41)

›ue*

›t*
1 u* � =*ue* 52Ge*w*,

›qr*

›t*
1u* � =*qr*5VT

*
›qr*

›z*
1 (Gs

*2Ge
* )w*, (42)

where u*5 (T/L)u, f*5 (T2/L2)f, ue* 5 gT2u 0
e/(Luo),

qr*5 gT2q0r/L, Ge* 5T2Ge, Gs*5T2Gs, and V
T
* 5

(T/L)VT .

Assuming that the velocity scaleL/T, Ge* , and Gs*2Ge*

are O(1), let us analyze the asymptotic behavior of the

solution as V
T
* 5 «21/‘. All variables are assumed to

admit the following expansion: (�)*5 (�)0 1 (�)1«1
(�)2«2 1 . . . . Collecting O(«21) terms in (41) and (42), it

immediately follows that ›qr,0* /›z*5 0, which implies

qr,0* 5 qr,0* (x
h
* , t) does not depend on height. Also as-

suming that rain fluctuations vanish at high-enough alti-

tude in a column of saturated air leads to the conclusion

that qr,0* 5 0. Collecting O(1) terms in the second equa-

tion of (42), we obtain a diagnostic equation for theO(«)

rainwater fluctuation in terms of the O(1) vertical

velocity: ›qr,1* /›z*5 (Gs*2Ge* )w0* . Collecting the re-

maining O(1) terms, we find a closed system for the

leading-order dynamics:

›u0*

›t*
1 u0* � =*u0* 52=*f0

* 1 k̂ue,0* ,

=* � u0* 5 0 and (43)

›ue,0*

›t*
1 u0* � =*ue,0* 52Ge*w0* . (44)

In dimensional units, the leading-order terms are

(dropping subscripts and assuming qr,0* 5 0)

Du

Dt
52$f1 k̂

gu0e
uo

, $ � u5 0,
D

Dt

gu0e
uo

52Gew . (45)

The limiting equation [(45)] has the conserved energy

E05
1

2
kuk21 (gu0e/uo)

2

2Ge

, (46)

which indicates that Ge is the stability parameter. The

nonzero eigenvalues for the corresponding linearized

system are s56(kh/k)G
1/2
e .

The stability parameter obtained for asymptotic so-

lutions as VT / ‘ in the FARE model coincides with

the numerical evidence presented in section 3: namely,

the sign of the gradient of rescaled equivalent potential

temperature determines stability for large VT.

It is interesting to note a similarity with theories for con-

vectively coupled equatorial waves (Emanuel et al. 1994;

Neelin and Zeng 2000; Frierson et al. 2004; Stechmann and

Majda 2006; Kiladis et al. 2009). In these theories, a ‘‘moist’’

phase speed cm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ~Q

q
is identified as a reduced phase

speed compared to the ‘‘dry’’ phase speed cd5 1. Themoist

phase speed cm is associatedwith amoist stability parameter

12 ~Q, which resembles a nondimensional version of

Ge 5 (g/u0)d~ue/dz5 (g/u0)[d~u/dz1 (L/cp)d~qy/dz],with the

identifications of 14d~u/dz and 2 ~Q4(L/cp)d~qy/dz.

In the theories for convectively coupled equatorial waves,

the reduced stability parameter 12 ~Q arises from an as-

ymptotic assumption: convection is in a state of quasi

equilibrium relative to the slowly varying, large-scale at-

mospheric circulation. In the present paper, interestingly,

the reduced stability parameter Ge also arises from an

asymptotic assumption: precipitation is fast (VT / ‘)
relative to the time scales of atmospheric dynamics.

5. Concluding discussion

A linear stability analysis was presented for fluid dy-

namics with water vapor and precipitation, where the

precipitation falls relative to the fluid at speed VT. This

system is an idealization of precipitating atmospheric

convection, with a highly simplified representation of

cloud microphysics. One aim was to bridge the two

FIG. 6. Growth rates as a function of horizontal wavenumber for

dqys/dz 5 21.4 g kg21 km21 and various values of VT from 0 to

10 000m s21. The value of dqys/dz in this figure belongs to the

unstable regime Gs , 0; kz 5 2p/15 km21; and B 5 3K km21.
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extreme cases of VT by considering the full range of VT

values: (i) VT 5 0, (ii) finite VT, and (iii) the limit of

infinitely fast VT. These results are summarized in Table 2.

A second aim was to identify the appropriate energy in

each case and to relate the form of the energy to the

stability conditions.

In the VT 5 0 case, a single boundary (dus/dz 5 0)

divides the stable conditions (dus/dz . 0) and the un-

stable conditions (dus/dz , 0). The quantity us was here

called the saturated potential temperature, and it was

defined as us 5 ue 2 u0qt. This is an idealization of the

stability condition that has been previously derived

from a thermodynamic perspective fe.g., see the quan-

tity N2
m defined by Emanuel [1994, Eq. (6.2.10)]g. The

key point in this case is that, when VT 5 0, the criterion

dus/dz 5 0 is the single boundary that separates the

stable and unstable conditions. An energy principle was

also formulated for this case. The energy has the same

form as for an unsaturated atmosphere, except the

buoyancy frequency squared Gy (derived from uy) is re-

placed with Gs (derived from us). We notice that al-

though uy and us have the same fluctuation in saturated

conditions (u0y 5 u0s 5 u0e 2 uoq
0
t), their backgrounds ~uy

and ~us differ by uo[«o 2L/(cpuo)1 1]qys(z).

In the finite VT . 0 case, in contrast, separate suffi-

cient conditions are identified for stability versus in-

stability: stability for due/dz, 0 versus instability for

dus/dz, 0. The energy in this case was derived, and it is

convex only if the stability parameter Ge (derived from

ue) is positive.

Taken together, the results of these two cases (VT 5
0 and VT . 0) show that the limit VT / 0 is a singular

limit. Specifically, it is singular in the sense that the sta-

bility boundaries of theVT5 0 case and the small-VT case

are fundamentally different. When VT 5 0, stability is

guaranteed for dus/dz . 0; in contrast, for any VT . 0,

stability is guaranteed only under the more restrictive

condition due/dz . 0. Consequently, results that apply

for a nonprecipitating atmosphere (VT5 0) may not hold

for a precipitating atmosphere (VT . 0), and vice versa.

Finally, in the case of infinitely fast VT, the single

boundary due/dz 5 0 divides the stable conditions

(due/dz. 0) and the unstable conditions (due/dz, 0).

Asymptotics were used to derive a limiting system of

equations from the original fluid dynamics equations, in

the limit VT / ‘. The stability result follows from the

limiting fluid dynamics equations, and it is illustrated in

numerical results as well. Also, an energy equation is

found, and the energy is guaranteed to be positive if and

only if the stability parameter Ge (derived from ue) is

positive.

The two extreme cases here (VT 5 0 and VT / ‘) are
reminiscent of two important moist thermodynamic

processes: the reversible process and the pseudoadia-

batic process. In the reversible process, when liquid

condensate is formed, it is carried upward with the

parcel fsee Xu and Emanuel [1989, their (1)]; Williams

and Renno [1993, their (3)]; or Emanuel (1994, section

4.7)g. In other words, this is a case with VT 5 0. On the

other hand, in the pseudoadiabatic process, when liquid

condensate is formed, it is immediately removed from

the parcel fsee Xu and Emanuel [1989, their (2)];

Williams and Renno [1993, their (2)]; or Emanuel (1994,

section 4.7)g. In other words, this is a case with VT / ‘.
In these two cases, the buoyancy of a rising parcel is

different because of the inclusion or neglect of con-

densate loading, which appears here as the qr term of

(1). In the hydrodynamic model here, the smallness of

condensate loading was derived as a result of asymp-

totics in the limit of VT / ‘; such a result confirms that

these parcel-theory concepts have analogs when fluid

dynamics (and hence nonhydrostatic pressure gradients)

are included.

In the identification of separate criteria for stability

versus instability, the results here are reminiscent of the

notion of conditional instability. In particular, condi-

tional instability can be described as an atmospheric

state where the lapse rate is stable with respect to the dry

adiabatic lapse rates but unstable with respect to the

moist adiabatic lapse rate. This notion is typically ap-

plied under unsaturated conditions, in which case a

parcel must be brought to saturation in order to realize

the moist instability; consequently, conditional in-

stability can be described as a state of uncertainty with

regard to stability (Sherwood 2000; Schultz et al. 2000).

In the present paper, saturated conditions are assumed

from the outset, which precludes a precise comparison;

nevertheless, uncertainty is found with regard to stabil-

ity: it is possible for an atmospheric state to meet neither

the sufficient condition for stability (due/dz. 0) nor the

sufficient condition for instability (dus/dz, 0). Here, the

uncertainty arises from the consideration of finite VT, in

contrast to the traditional notion of conditional in-

stability defined in terms of either a reversible process

(VT 5 0) or a pseudoadiabatic process (VT / ‘).

TABLE 2. Summary of sufficient conditions for stability and in-

stability for different cases of rainfall velocityVT. For each case, the

stability (instability) criterion is a positive (negative) vertical de-

rivative d/dz of the quantity listed. Two quantities arise: equivalent

potential temperature ue and saturated potential temperature us, as

defined in Table 1.

Case Stability criterion Instability criterion

VT 5 0 dus/dz . 0 dus/dz , 0

VT finite due/dz . 0 dus/dz , 0

VT / ‘ due/dz . 0 due/dz , 0
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An interesting feature that arises for finiteVT is that the

instability or stability is wavelength dependent. Specifi-

cally, when VT is fixed at a finite value, Fig. 2 shows that

some wavelengths can be stable while other wavelengths

are unstable. [This can also be seen in Emanuel (1986).]

In contrast, when VT is zero or infinitely fast, either all

wavelengths are unstable or all wavelengths are stable;

and when parcel theory is considered, no notion of

wavelength enters into the theory at all. It is possible that

the wavelength dependence of the instability plays a role

in the formation of structures within broad areas of pre-

cipitating clouds, such as mesoscale convective systems

(MCSs; Houze 2004) for the case of deep convection or

pockets of open cells (POCs; Stevens et al. 2005;

VanZanten et al. 2005; Wood et al. 2008) for the case of

boundary layer stratocumulus clouds.
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