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Simulations of precipitating convection would typically use a non-Boussinesq dynam-
ical core such as the anelastic equations, and would incorporate water substance in all
of its phases: vapor, liquid and ice. Furthermore, the liquid water phase would be sepa-
rated into cloud water (small droplets suspended in air), and rain water (larger droplets
that fall). Depending on environmental conditions, the moist convection may organize
itself on multiple length and time scales. Here we investigate the question, “What is
the minimal representation of water substance and dynamics that still reproduces the
basic regimes of turbulent convective organization?” The simplified models investigated
here use a Boussinesq atmosphere with bulk cloud physics involving equations for water
vapor and rain water only. As a first test of the minimal models, we investigate orga-
nization or lack thereof on relatively small length scales of approximately 100 km and
time scales of a few days. It is demonstrated that the minimal models produce either
unorganized (“scattered”) or organized convection in appropriate environmental condi-
tions, depending on the environmetal wind shear. For the case of organized convection,
the models qualitatively capture features of propagating squall lines that are observed
in nature and in more comprehensive cloud resolving models, such as tilted rain-water
profiles, low-altitude cold pools, and propagation speed corresponding to the maximum
of the horizontally averaged, horizontal velocity.
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Figure 1. Contours of rain water in g kg−1 for two cases of numerical solutions using the
FARE minimal model of this paper. The two cases are scattered convection (top) and squall
lines (bottom).



Minimal models for precipitating turbulent convection 3

1. Introduction

Convection occurs in the atmosphere in many different contexts, from the planetary
boundary layer, to storms that convect through the depth of the troposphere, to the
global atmospheric circulation between the equator and the poles. In this paper, the
focus is convection in the tropical troposphere, where deep precipitating clouds can be
organized into distinctive patterns and sometimes propagate long distances (Houze 2004).

Moist convection in the atmosphere is characterized by the presence of water in its dif-
ferent phases – vapor, liquid, and ice – and phase changes between them (Emanuel 1994;
Stevens 2005). Dry convection is a useful baseline for comparison (e.g., Chandrasekhar
1961; Deardorff 1965; Asai 1970; Krishnamurti 1970a,b; Castaing, Gunaratne, Kadanoff,
Libchaber & Heslot 1989). However, beyond the basic physics of dry convection, moist
convection involves a multitude of additional physical process: phase changes of water,
collisions between cloud droplets, and absorption of infrared radiation by water, to name
a few. Ultimately, these processes are manifested as the clouds and storm systems seen
all around the world.

In the tropical atmosphere, deep moist convection creates a rich variety of cloud struc-
tures on many different scales. Individual cloud systems appear on horizontal scales of
roughly 100 km and 1 hour to 1 day, and they are commonly called “mesoscale convective
systems” (MCSs; Houze 2004). Several MCSs, in turn, can sometimes interact with prop-
agating waves to form even larger-scale structures such as convectively coupled equatorial
waves (Kiladis, Wheeler, Haertel, Straub & Roundy 2009) and the Madden–Julian Os-
cillation (MJO; Zhang 2005; Lau & Waliser 2011). The MJO is at the largest end of this
hierarchy: its oscillation period is 30–60 days and its wavelength is roughly 20,000 km,
comparable to the 40,000-km circumference of the earth at the equator. Also included
in this hierarchy are the familiar phenomena of hurricanes and monsoons, which makes
it clear that understanding and predicting organized tropical convection has important
practical implications.

Despite the importance of organized tropical convection, numerical simulation of it
remains a major challenge (Kim, Sperber, Stern, Waliser, Kang, Maloney, Wang, Weick-
mann, Benedict, Khairoutdinov et al. 2009; Straub, Haertel & Kiladis 2010). It is believed
that computational shortcomings are related to gaps in theoretical understanding of the
physical processes involved (see Moncrieff, Shapiro, Slingo & Molteni (2007); Majda &
Stechmann (2011) and references therein). In order to improve theoretical understanding
of tropical convection, one can argue that the focus should be on MCSs (Mapes, Tulich,
Lin & Zuidema 2006), since they are the “building blocks” of larger-scale structures such
as the MJO (Nakazawa 1988; Hendon & Liebmann 1994; Grabowski & Moncrieff 2001).
Thus these MCSs, the small-scale (100 km) moist turbulent coherent structures in the
atmosphere, are the focus of the present paper.

Two of the most striking features of MCSs are the different cloud patterns that can arise
and their propagation characteristics. For understanding these features, it is common
to divide the total system into a large-scale background environment and the smaller-
scale convection. From this perspective, observational analyses have shown that it is
the vertical shear of the horizontal background wind, ∂ū/∂z and ∂v̄/∂z, that controls
the organization of the cloud structures: convection is typically unorganized (“scattered”)
when the wind shear is weak, and it can organize into distinctive patterns in the presence
of strong wind shear (Moncrieff & Green 1972; Barnes & Sieckman 1984; LeMone, Zipser
& Trier 1998; Grabowski, Wu, Moncrieff & Hall 1998). Figure 1 shows a preview of these
two cases – scattered and organized convection – from the present paper’s model. The
case with strong background wind shear – a jet profile here – leads to a common type
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of MCS called a “squall line,” where the clouds are organized in a line and propagate in
the direction perpendicular to the line.
Besides observational analysis, numerical models called cloud resolving models (CRMs)

have also been valuable tools for understanding convective organization. These models
are so-named because they use grid spacings of roughly 1 km and hence can, in princi-
ple, resolve the the dynamics of individual clouds or MCSs; this is opposed to general
circulation models (GCMs) that use grid spacings of roughly 100 km and must parame-
terize clouds as a subgrid-scale process. While both CRMs and GCMs have deficiencies
in representing the largest-scale features of tropical convection (such as the MJO – see
Moncrieff et al. (2007) and references therein), CRMs can be used to faithfully simulate
MCSs. In particular, on smaller domains with horizontal scales of 100–1000 km, CRMs
are able to reproduce different cloud regimes – e.g., scattered convection vs. a squall
line – in response to different background wind shear (Grabowski et al. 1998), and they
can provide further details that are often unavailable from observational data. It has
also been shown that some basic regimes of organization can be reproduced in a two-
dimensional (x, z) setup, where it is assumed that structures are uniform in one of the
horizontal directions (y) (Lafore & Moncrieff 1989; Grabowski, Wu & Moncrieff 1996;
Xu & Randall 1996; Wu, Grabowski & Moncrieff 1998; Lucas, Zipser & Ferrier 2000; Liu
& Moncrieff 2001).
For better or for worse, CRMs are comprehensive in the sense that they attempt

to include all relevant physical processes (as discussed further below). While this is a
proper approach when trying to make weather predictions or detailed comparisons with
observations, it may be obscuring some fundamental aspects of precipitating convection,
as it is not clear which processes are “essential,” in some sense, and which are not. For
example, are there fundamental features of precipitating convection that are more-or-less
insensitive to many model details? In particular, is there a theoretical explanation for the
preferred cloud patterns (or lack thereof) that appear due to a given background wind
shear, ∂ū/∂z and ∂v̄/∂z (LeMone et al. 1998; Grabowski et al. 1998)? Questions such
as these have long been investigated by the atmospheric science community (see reviews
by Lilly (1979), Houze (2004), Moncrieff (2010) and further discussion at the end of
this section). These are difficult questions to answer if all of the comprehensive physics
of CRMs is essential, but it may be more tractable if a minimal number of essential
processes can be identified. Here, a further step in this direction is demonstrated: a
much simpler model than typical CRMs can reproduce the basic regimes of precipitating
turbulent convection.
In other words, in the present paper, one of the main goals is to identify and inves-

tigate a minimal model that can capture the broad features of precipitating turbulent
convection. Specifically, the minimal model should capture the basic regimes of convective
organization – scattered convection vs. a squall line – in response to different background
wind shears, and the basic realistic features of the squall line should be captured: prop-
agation direction, propagation speed, circulation, and tilted cloud structure. It is shown
here that these features can be captured by a set of equations that is simpler than those
used by comprehensive CRMs; it is, in fact, quite similar to those typically used for non-
precipitating moist convection (Kuo 1961; Bretherton 1987; Grabowski & Clark 1993;
Cuijpers & Duynkerke 1993; Spyksma, Bartello & Yau 2006; Stevens 2007; Spyksma &
Bartello 2008; Pauluis & Schumacher 2010, 2011). Precipitation-cooled downdrafts are
a main feature distinguishing deep convection (vertical scales approximately the height
of the troposphere, 10 km) from nonprecipitating shallow convection (vertical scales of
approximately 1 km). The presence of rain water and a rainfall velocity in our models is
thus a key difference from similar models used to understand aspects of shallow convec-
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tion and/or focusing specifically on small-scale moist turbulence. For shallow convection,
simplified moist models are concerned mainly with water vapor and cloud water (small
liquid droplets suspended in air).
The minimal models include simplifications in two main aspects: thermodynamics and

cloud microphysics. As discussed in more detail below, the simplified thermodynamics
will be based on the following design priniciple: the conservations laws for momentum,
energy, moist entropy, and total water should all be retained, but they should have the
simplest nontrivial form possible. Furthermore, the cloud microphysics will not only ne-
glect ice, but it will also assume that cloud droplets, once formed, grow rapidly to the
size of rain drops, which fall relative to the air in which they reside. In other words,
this “autoconversion process” is assumed to be fast compared to the dynamical scales of
interest. Two-dimensional simulations of a similar model were investigated by Seitter &
Kuo (1983), and instabilities of a linear model with fast autoconversion were investigated
in Emanuel (1986). Fast autoconversion was also used by Majda, Xing & Mohammadian
(2010) with a weak-temperature-gradient approximation for studying the hurricane em-
bryo. Relaxing the weak temperature gradient approximation and allowing inertia-gravity
waves, Sukhatme, Majda & Smith (2012) studied 2D precipitating stratified turbulence
with fast autoconversion, and Deng, Smith & Majda (2012) used a 3D Boussinesq model
with fast auto-conversion to investigate the competing effects of moisture and low-altitude
vertical shear for cyclogenesis. Here the simplified microphysics is put to a further test,
where it is used with a dynamical core that includes internal gravity wave dynamics, and
where the ultimate goal is to achieve a full range of convective organization.
Even more simplified than the models considered here, there is a class of archetypal

models which is two-dimensional and steady in the reference frame moving with the
squall line (Moncrieff & Green 1972; Moncrieff & Miller 1976; Moncrieff 1981, 1992).
Solutions to the 2D steady models provide a theoretical basis for canonical circulation
patterns and momentum transport associated with different inflow-outflow boundary
conditions and background shear profiles. These solutions can be combined to capture
elements of more complicated patterns associated with observed and computed regimes
of organized convection, including squall lines (Moncrieff 1992, 2010). Here, in contrast,
we investigate models which are three-dimensional and unsteady, but which nevertheless
reflect a minimalist approach to incorporate phase changes of water and precipitation
within the context of a 3D dynamical core. They allow for turbulence, even though our
modest resolutions (1 km in the horizontal directions) do not capture turbulence at the
smallest atmospheric scales, as is also the case in typical contemporary CRM simulations.
The paper is organized as follows. In section 2, the minimal models are introduced

and compared with the equations of a comprehensive CRM. In sections 3 and 4, three-
dimensional numerical simulations of the minimal models are presented for the basic
regimes of convective organization (scattered convection and a squall line). In sections
5 and 6 sensitivity studies are used to explore the robustness of the results. Finally, in
section 7, the main conclusions are summarized.
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Figure 2. Schematic diagrams of cloud physics in numerical models. Top: A representative form
of cloud physics in a comprehensive CRM without ice processes. Three categories of water are
used. See (2.1)–(2.6). Bottom: A simplified form of “Fast Autoconversion” cloud physics where
autoconversion (Ar) of cloud water qc to rain water qr is assumed to occur rapidly. Only two
categories of water are used. See (2.9)–(2.13) and (2.35)–(2.38).

2. Model descriptions

In this section, three models are described. First, a representative comprehensive CRM
is presented as a basis for comparison. Then two simplified models are presented and used
as the main models of the present paper.

2.1. A Representative Comprehensive Model

An atmospheric Cloud Resolving Model (CRM) could be based on the anelastic equa-
tions for moist air with at least three phases of water: cloud water qc, rain water qr and
water vapor qv. Each of the quantities qv, qc, qr is a mixing ratio measured in kilograms
of water per kilogram of dry air. More comprehensive models would include other phases
of water such as ice. Derivations of the anelastic equations can be found in, e.g., Ogura
& Phillips (1962); Lipps & Hemler (1982); Bannon (1996); Vallis (2006). Here we use the
symbols ρ̃(z), p̃(z), T̃ (z), θ̃(z) to denote the anelastic background states of density, pres-
sure, temperature and potential temperature, respectively. The anelastic approximation
assumes that ρ̃(z) and p̃(z) are hydrostatically balanced and that all deviations from the
background state variables are small. The depth of the fluid motions is comparable to
the density scale height Hρ = −ρ̃(dρ̃/dz)−1; time scales are comparable to the buoyancy
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time scale and much longer than the time scale associated with acoustic waves. Including
cloud physics, the anelastic equations may be written as

Du

Dt
= −∇

(

p′

ρ̃(z)

)

+ k g

(

θ − θ̃(z)

θ̃(z)
+ εo(qv − q̃v(z))− qc − qr

)

(2.1)

∇ · (ρ̃(z)u) = 0 (2.2)

Dθ

Dt
=

Lθ̃(z)

cpT̃ (z)
(Cd − Er) (2.3)

Dqv
Dt

= −Cd + Er (2.4)

Dqc
Dt

= Cd −Ar − Cr (2.5)

Dqr
Dt

−
1

ρ̃(z)

∂

∂z
(ρ̃(z)VT qr) = Ar + Cr − Er (2.6)

where u(x, t) is the velocity vector with components (u, v, w), k is the direction of gravity,
and the material derivative is defined as D/Dt = ∂/∂t+u ·∇. The total thermodynamic
variables ρ(x, t), p(x, t), θ(x, t), and T (x, t) are all decomposed into the anelastic back-
ground and deviation, e.g. ρ(x, t) = ρ̃(z)+ρ′(x, t) with |ρ′| ≪ |ρ̃|, etc. Similarly the total
water vapor qv(x, t) = q̃v(z) + q′v(x, t). The relation between temperature and potential
temperature is

T =

(

p

po

)Rd/cp

θ, (2.7)

where po ≈ 105 kg m−1 s−2 is the pressure reference at the surface. The source terms
on the right-hand-side of (2.3)-(2.6) are condensation Cd of water vapor to form cloud
water, evaporation Er of rain water to form water vapor, auto-conversion Ar of cloud
water to form rain water, and collection Cr of cloud water to form rain water. Each
source term requires modeling of either the detailed microphysics involving individual
droplets, or the bulk physics with closures involving the mixing ratios qv, qc, qr (Kessler
1969; Houze 1993; Emanuel 1994; Grabowski & Smolarkiewicz 1996). The condensation
Cd and evaporation Er depend on a saturation profile qvs(p, T ) determined using the
Clausius-Clayperon relation (Rogers & Yau 1989; Houze 1993; Emanuel 1994; Pruppacher
& Klett 1997). One must also specify the rain velocity VT , which in principle depends
on droplet size. The remaining quantities appearing in the system (2.1)-(2.6) are the
specific heat at constant pressure cp, the latent heat factor L, and the ratio of gas
constants Rv/Rd = εo + 1 for water vapor (Rv) and dry air (Rd). Typical values are
cp ≈ 103 J kg−1 K−1, L ≈ 2.5×106 J kg−1, Rd ≈ 287 J kg−1 K−1, Rv ≈ 462 J kg−1 K−1

and εo ≈ 0.6.

2.2. An Approximation for the Saturation Water Vapor Profile

As mentioned above, the cloud physics source terms depend on the saturation water
vapor qvs(p, T ), which is a function of temperature and pressure only (Rogers & Yau
1989). This function qvs(p, T ) is the maximum amount of water vapor that air can hold:
if qv reaches the value of qvs, then some water vapor will condense into liquid water qc
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Figure 3. Saturation moisture profile qvs(z) computed using relations (A 7)-(A 8) and
qvs,o = 20 g kg−1.

in order to maintain qv 6 qvs. In a comprehensive treatment of moist thermodynamics,
which would be required for a CRM such as (2.1)–(2.6), the form of the function qvs(p, T )
is determined by the Clausius–Clapeyron relation (Rogers & Yau 1989). Here, for the
simplified models that are presented next, qvs(p, T ) is approximated as qvs(z), a function
of height only.
To arrive at the approximation qvs ≈ qvs(z), recall the anelastic approximation assumes

that p(x, t) ≈ p̃(z) and T (x, t) ≈ T̃ (z). Hence

qvs(p, T ) ≈ qvs(p̃(z), T̃ (z)) ≡ qvs(z). (2.8)

A systematic asymptotic analysis of (2.8) and higher-order terms is given by Klein &
Majda (2006). The form of qvs(z) used here is shown in Figure 2.2 and described in more
detail in appendix A.

2.3. A Boussinesq Model with Fast Auto-conversion (FA)

One can see that there are many functions to be specified when implementing the anelas-
tic model (2.1)-(2.6): ρ̃(z), p̃(z), T̃ (z), θ̃(z), q̃v(z), Cd, Er, Ar, Cr, VT . To target particular
atmospheric conditions, one may choose the background thermodynamic state from ob-
servations. However, here we aim to reduce the number of externally defined functions
and parameters while still retaining essential features of precipitating, organized con-
vection. It is natural (though unjustified for deep convection) to invoke the Boussinesq
approximation, which requires that the depth of fluid motions be small compared to
the density scale height Hρ = −ρ̃(dρ̃/dz)−1 (Spiegel & Veronis 1960; Vallis 2006). Then
the un-differentiated base state density, pressure, temperature and potential tempera-
ture in (2.1)-(2.6) may be replaced by constant values, where each has been decomposed
as e.g. θ̃(z) = θo + θ̃′(z). Then we need only specify dθ̃(z)/dz, dq̃v(z)/dz as well as
Cd, Er, Ar, Cr, VT .
Next we consider the limit of fast auto-conversionAr such that water vapor is converted

directly to rain water (Majda et al. 2010; Deng et al. 2012). In this scenario, the excess
water vapor above saturation can be interpreted as cloud water, and there is no need to
solve explicitly for cloud water qc, or to include expressions for auto-conversion Ar and
collection Cr. This simplification means that we must use bulk models for condensation
Cd and evaporation Er (as opposed to detailed cloud microphysics). Finally, assuming
a constant rainfall velocity VT and a linear background potential temperature θ = θo +
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Bz + θ′(x, t), θo = To ≈ 300 K, B ≈ 3 × 10−3 K m−1, we arrive at a Boussinesq model
with fast auto-conversion and denoted FA:

Du

Dt
= −∇φ+ k g

(

θ − θ̃(z)

θo
+ εo(qv − q̃v(z))− qr

)

(2.9)

∇ · u = 0 (2.10)

Dθ

Dt
=

L

cp
(Cd − Er) (2.11)

Dqv
Dt

= −Cd + Er (2.12)

Dqr
Dt

− VT
∂qr
∂z

= Cd − Er (2.13)

where φ = p′/ρo. So far, one could argue that the only adjustable parameters/functions
in the FA model are the expressions for condensation Cd, evaporation Er, background
vapor profile q̃v(z), water vapor at saturation qvs(z) and rainfall velocity VT , since the
values of cp, L, To, θo and B are well-established from observations.
Following Majda et al. (2010); Deng et al. (2012), we adopt the closures

Cd = τ−1
c (qv − qvs(z))

+, Er = τ−1
e q−1

∗
(qvs(z)− qv)

+qr (2.14)

where the notation ()+ denotes the positive part and qvs(z) is shown in Figure 2.2 and
given in the appendix in (A 7)-(A 8). Equations (2.14) imply that condensation occurs
if the water vapor exceeds the saturation value, and similarly evaporation occurs if the
fluid is under-saturated and if rain is present. In our simulations we use q∗ = 0.01 kg
kg−1. The time scales τc and τe are analogous to chemical reaction rates and the related
Damköhler numbers in turbulent combustion (Peters 2000; Majda & Souganidis 2000).

2.4. A Boussinesq Model with Fast Autoconversion and Rain Evaporation (FARE)

Condensation occurs on a time scale of several seconds, whereas the characteristic time
for auto-conversion or rain evaporation is many minutes (Rogers & Yau 1989; Houze
1993; Morrison & Grabowski 2008). Thus is it sensible to formulate a model with fast
condensation τc → 0 and fast rain evaporation τe → 0 in addition to fast auto-conversion.
This model is referred to here as the Fast Autoconversion and Rain Evaporation (FARE)
model. In such a model there is no possibility for supersaturation, i.e., for qv − qvs >
0, because qv is instantaneously relaxed back toward qvs(z). Furthermore, rain water
qr cannot exist in unsaturated air because it is instantaneously evaporated until qv is
brought up to saturation qvs. In summary, in the limit τc, τe → 0, the source terms Cd

and Er maintain the following constraints and are actually defined so as to maintain
these constraints:

either qv < qvs, qr = 0 (unsaturated) (2.15)

or qv = qvs, qr > 0 (saturated) (2.16)

This formulation is commonly used in CRMs except with qc rather than qr (e.g., Grabowski
& Smolarkiewicz 1996). Due to these constraints, the two variables qv and qr are now
more than necessary to determine the partitioning of water substance in the system. This
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is because the single variable qt = qv+qr, called the total water mixing ratio, is sufficient
to determine both qv and qr using the constraints (2.15)–(2.16):

qv = qt, qr = 0 if qt < qvs (unsaturated) (2.17)

qv = qvs, qr = qt − qvs if qt > qvs (saturated) (2.18)

Consequently, only two thermodynamic variables are needed now instead of the three
variables θ, qv, qr.
For particular choices of thermodynamic variables in this limit of τc, τe → 0, it is

convenient to choose variables that are conserved in the sense that the source terms
Cd and Er do not change their values. From (2.11)–(2.13), one can see three different
conserved variables,

θe = θ +
L

cp
qv (2.19)

θr = θ −
L

cp
qr (2.20)

qt = qv + qr, (2.21)

which satisfy the equations

Dθe
Dt

= 0 (2.22)

Dθr
Dt

= −
L

cp
VT

∂qr
∂z

(2.23)

Dqt
Dt

= VT
∂qr
∂z

(2.24)

These variables are called the equivalent potential temperature, θe, the rain water po-
tential temperature, θr, and the total water mixing ratio, qt, and they are linearized ver-
sions of analogous variables used in comprehensive treatments of moist thermodynamics
(Rogers & Yau 1989; Emanuel 1994; Stevens 2005). Notice that we have ‘minimized’
even more from the FA model in the sense that we do not need to specify closures for
condensation Cd and evaporation Er.
The FARE model consists of (2.9), (2.10) together with two of (2.22)-(2.24). A common

choice is to use θr and qt (Stevens 2005, 2007) and this choice is used in the present paper.
For the buoyancy term in (2.9), one must compute θ, qv, and qr from θr and qt; this is
done using (2.17)–(2.21):

θ = θr +
L

cp
qt −

L

cp
min (qt, qvs(z)) (2.25)

qv = min (qt, qvs(z)) (2.26)

qr = max (qt − qvs(z), 0) (2.27)

In other words, while the buoyancy is a linear function of θ, qv, and qr, it is a piecewise
linear function of θr and qt. Specifically, b = b(θr, qt, z) is given by

b = g























θr − θ̃(z)

θo
+ εo(qt − q̃v(z)) if qt < qvs

θr − θ̃(z)

θo
+

(

L

cpθo
− 1

)

(qt − qvs(z)) + εo(qvs(z)− q̃v(z)) if qt > qvs.

(2.28)
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FARE is similar to models used for non-precipitating shallow convection in the atmo-
sphere (Cuijpers & Duynkerke 1993; Stevens 2005, 2007) or moist Rayleigh–Bénard con-
vection (Schumacher & Pauluis 2010; Pauluis & Schumacher 2011), which use nearly the
same equations except with VT = 0. Here we will show that, despite their relative sim-
plicity, the FARE equations are sufficient to capture the basic features of precipitating
organized convection.
In summary, one could take two different viewpoints of the FARE model. On the one

hand, it can be obtained from a comprehensive CRM by employing some simplifica-
tions: the limit of fast cloud physics time scales (for autoconversion, condensation, and
rain evaporation), and assuming a Boussinesq rather than anelastic atmosphere. From a
mathematical point of view, these simplifications follow a design principle of obtaining
the simplest set of equations that retain conservation principles for θe, θr, and qt. On the
other hand, the FARE model can be obtained from a non-precipitating convection model
(e.g., Cuijpers & Duynkerke 1993; Stevens 2007) by allowing the condensed water to fall
at speed VT . From a physical point of view, this is similar to assuming an atmosphere
where all liquid droplets are large enough to fall relative to the surrounding air.

2.5. Summary of the FA and FARE Models

For clarity, we write the final form of the FA and FARE models.

FA Model:

Du

Dt
= −∇φ+ k g

(

θ − θ̃(z)

θo
+ εo(qv − q̃v(z))− qr

)

(2.29)

∇ · u = 0 (2.30)

Dθ

Dt
=

L

cp
(Cd − Er) (2.31)

Dqv
Dt

= −Cd + Er (2.32)

Dqr
Dt

− VT
∂qr
∂z

= Cd − Er (2.33)

Cd = τ−1(qv − qvs(z))
+, Er = τ−1q−1

∗
(qvs(z)− qv)

+qr (2.34)

FARE Model:

Du

Dt
= −∇φ+ k b(θr, qt, z) (2.35)

∇ · u = 0 (2.36)

Dθr
Dt

+
L

cp
VT

∂qr
∂z

= 0 (2.37)

Dqt
Dt

− VT
∂qr
∂z

= 0 (2.38)
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where the form of the buoyancy b(θr, qt, z) is given in (2.28). In both FA and FARE,
we use standard values of thermodynamic constants cp ≈ 103 J kg−1 K−1, L ≈ 2.5 ×
106 J kg−1, θo ≈ 300 K, To ≈ 300 K, po ≈ 105 kg m−1 s−2, Rd ≈ 287 J kg−1 K−1,
Rv ≈ 462 J kg−1 K−1, εo ≈ 0.6, qvs,o = (Rd/Rv)(es,o/po) = 2 × 10−2 kg kg−1, es,o ≈
3500 kg m−1 s−2. The rainfall velocity is fixed at VT = 5 m s−1 and the background
moisture profile q̃v(z) will be slightly undersaturated at all altitudes. The background
potential temperature gradient is B ≈ 3× 10−3 K m−1.

2.6. Conservation principles

As mentioned above, both the FA and FARE models conserve the equivalent potential
temperature θe, the rain-water potential temperature θr and total water qt. It seems
likely that these conservation relations are an underlying reason why the FA and FARE
models are able to capture broad features of organized convection shown below.
In addition, the FARE model has an energy consistency equation given by

∂

∂t

(

u · u

2
+ Π

)

+∇·

[

u

(

u · u

2
+ Π+ φ

)]

−
∂

∂z

[

VT g(z − a)qr

]

= −VT gqr. (2.39)

In (2.39), the potential energy Π is given by (Vallis 2006; Pauluis 2008)

Π(θr, qt, z) = −

∫ z

a

g b(θr, qt, z
′) dz′ (2.40)

where the integral is taken with θr and qt held fixed, and a is an arbitrary reference height.
The derivation of (2.39) is given in appendix B. Notice the two terms in (2.39) with a
factor of VT : a rain flux term and a sign-definite energy sink. The energy sink term is
consistent with an interpretation of the −gqr term of the buoyancy (Houze 1993; Pauluis
et al. 2000; Pauluis & Dias 2012): if liquid droplets fall (i.e., VT 6= 0) relative to the
surrounding air, then they should exert a frictional drag force −gqr on the surrounding
air. The FARE energy equation (2.39) is an interesting additional feature of the model,
but we leave an in-depth investigation of the energetics for future work.

2.7. Numerical scheme and simulation details

The 3D simulations in Sections 3 and 4 are computed in a numerical domain (x, y, z)
of size 128 km × 128 km × 15 km, with periodic boundary conditions in the horizon-
tal directions and a combination of Dirichlet/Neumann boundary conditions on vertical
boundaries. The numerical scheme is based on a pseudo-spectral decomposition in the
horizontal directions, and 2nd-order centered differences on a staggered grid in the ver-
tical direction. In order to be comparable to studies of organized convection with com-
prehensive CRMs (Grabowski et al. 1996; Grabowski et al. 1998), we use 1km horizontal
grid spacing and 0.15 km vertical grid spacing, i.e. ∆x = ∆y = 1 km and ∆z = 0.15 km).
For our 3D domain, this choice leads to 128 Fourier modes in each horizontal direction
and 100 levels in the vertical direction. The 2D sensitivity studies in Sections 5 and 6 use
a numerical domain of size 256 km× 15 km, again with ∆x = 1 km and ∆z = 0.15 km,
and thus 256 Fourier modes in the horizontal direction and 100 levels in the vertical
direction.
For no flow through the top and bottom of the domain, the vertical velocity w satisfies

the zero Dirichlet conditions

w
∣

∣

z=0,H
= 0,

where H = 15 km. In the spirit of constructing a minimal model, we do not attempt to
model or resolve the atmospheric boundary layer. The horizontal velocity satisfies zero
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Figure 4. Cooling (left) and moistening (right) rate profiles used as a large scale forcing in
the 3D simulations.

Neumann boundary condition at the top and zero Dirichlet boundary condition at the
bottom such that

∂uh

∂z

∣

∣

z=H
= 0, uh

∣

∣

z=0
= 0.

For all other variables, zero Neumann boundary conditions are applied to perturbations
f from the background states such that

∂f

∂z

∣

∣

z=0,H
= 0

for f = θ′, q′v, qr, θ
′

r, θ
′

e, q
′

t.
The FA and FARE systems are integrated in time using a third-order Runge-Kutta

scheme. The time step is usually ∆t ≈ 2.2 s, and satisfies the CFL condition, a condition
that samples the highest-frequency inertia-gravity wave with at least 10 steps per period,
and a condition that restricts the time step to be less than one half of the relaxation
time scales used in the squall line simulations. We use the same dissipation in each of
the equations, with the goal of reducing as much as possible the effects of dissipation
on the grid box of 1 km × 1 km × 0.15 km. Since the molecular viscosity does not
act on these scales, the dissipation operators and coefficients are artificial and can be
viewed as a device to dissipate a sufficient amount of energy; here we do not attempt
to provide a more sophisticated sub-grid model. For simplicity of implementation within
our numerical scheme, we choose a normal viscosity operator µ2∂

2f/∂2z in the vertical
direction (with finite-differences), and a fourth-order hyperviscosity operator −µ1∇

4
hf

(with Fourier decomposition), where f = uh, w, θ, qv , qr, θr, qt. The coefficients µ1 and
µ2 were chosen by experimentation to be as small as possible while still providing an
adequate range of super-grid scales with rapid decay of energy in the tail of the vertically-
averaged kinetic energy spectrum.
The rainfall velocity VT of a droplet depends on several conditions such as the drop

size, temperature and pressure. Obtained at sea level conditions, a table of typical rainfall
velocities as a function of the diameter of the droplets is shown in Rogers & Yau (1989).
The velocity changes from approximately 0.3 to 10 m s−1 for droplets of size 0.1 to 6 mm,
respectively. A constant rainfall velocity of VT = 5.5 m s−1 in the middle of the range
has been adopted for all simulations aimed at keeping the model minimal. An exception
occurs in Section 6.1, where a sensitivity study to different values of VT is presented.
A moisture source is needed to sustain precipitating convection and replenish the water

lost through precipitation. A natural moisture source is the flux of moisture from the
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Figure 5. The water vapor at t = 0 (solid line) is initially set close to saturation (dashed line).

surface, which is transported to higher altitudes through turbulence in the moist atmo-
spheric boundary layer (Stevens 2005, 2007). These processes mostly operate on subgrid
scales in the current setup, and, for the sake of simplicity, no attempt has been made to
parameterize these effects here. Instead, another moisture source that is commonly used
is a “large-scale forcing” that is independent of x and y (e.g., Grabowski et al. 1996; Jung
& Arakawa 2005). This large-scale forcing is meant to represent the effects of larger-scale
phenomena—such as moisture convergence due to larger-scale waves—on the simulated
domain. While this large-scale forcing is somewhat artificial, it is commonly used in con-
junction with periodic boundary conditions and when computational expense demands
a limited domain size. Figure 4 shows the vertical profiles for the moistening/cooling
rates used in the 3D simulations here, with maximum moistening rate roughly 17 g kg−1

day−1 and maximum cooling rate 25 Kelvin day−1. The rates have been reduced by a
factor of 2 in the 2D studies, in accord with the twice-larger horizontal domain length in
those cases, and Section 6.4 shows that the rates may be further reduced (or eliminated)
in even larger horizontal domains.
The initial conditions for all variables in all runs are the same, with the exception of

the zonal velocity which is zero for scattered convection and has a jet profile for squall
line runs. The relaxation of the horizontal velocities to the appropriate background winds
is described in Section 3. The initial water vapor profile is close to saturation, and given
by equation (A 8) in the appendix with qv,0 = 18 g kg−1 instead of qvs,0 = 20 g kg−1.
Both the initial water vapor and water vapor at saturation are plotted in Figure 5. The
rain water qr and the vertical velocity w are initially zero. The potential temperature
is a random perturbation chosen from a uniform distribution in [−0.1, 0.1] at all points
(x, y, z) with 0 6 z 6 2 km. In the squall line simulation, organization of the clouds
occurs after a spin-up time of several hours.
The following notation will be needed in the description of the numerical results and

figure captions. For any variable f(x, y, z, t), the horizontal and vertical averages f̄(z, t)
and 〈f〉(x, y, t) are defined respectively as

f̄(z, t) :=
1

Ah

∫

f(x, y, z, t)dxdy

and

〈f〉(x, y, t) :=
1

H

∫ H

0

f(x, y, z, t)dz.

Here Ah is the horizontal area, and H = 15 km is the vertical extent of the numerical
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domain. In addition, the fluctuation of f from its horizontal mean is defined as

f ′′(x, y, z, t) := f(x, y, z, t)− f̄(z).
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Figure 6. Scattered convection in a 3D simulation of the FARE model at time t = 4.8 hours.
Top: contours of vertically averaged rain water 〈qr〉(x, y). Bottom: contours of rain water qr in
the (x, z) plane at y = 7 km. Rain water is measured in units of g kg−1. The top plot shows a
typical scattered convection pattern whereas the bottom plot shows the vertical cloud structure.

3. Numerical Results for the 3D FARE Model

This section is devoted to the numerical results of the FARE model. As explained
in the introduction, the vertical shear of the horizontally averaged, horizontal velocity
∂ūh(z)/∂z controls the organization of the cloud structures. Scattered convection is ob-
served when the background wind shear is weak (Section 3.1), while a strong-enough
background jet profile is favorable for organization of the convection into a squall line
(Section 3.2). Note that, while “cloud water” is not explicit in our models by the as-
sumption of fast auto-conversion, we will nevertheless use the terminology “cloud” for
saturated regions with qr > 0, which represent suspensions of sedimenting water drops.

3.1. Scattered convection

In the simulations designed to represent scattered convection, the horizontal velocities are
initially set to zero. Then the horizontally averaged, horizontal velocity ūh(z) is relaxed
towards zero during the simulation by adding a source term to the right hand side of the
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u and v equation:

−

(

1

τu
ū(z),

1

τv
v̄(z)

)

,

with relaxation time scales τu = τv = 4 hours. This type of relaxation is meant to
represent the effects of larger-scale atmospheric processes that are not explicitly resolved
here but strongly influence the winds on scales of the domain length (Grabowski et al.
1996). The relaxation keeps the wind shear weak, and thus the clouds are expected to
stay unorganized. The lack of organization is evident in the vertically averaged rain water
〈qr〉(x, y) shown at time t = 4.8 hours in Figure 6 (top). The clouds form in clusters in
different parts of the domain, but no coherent structure develops in this simulation. The
horizontal extent of the clouds is roughly 15 km, and the largest values of rain water (after
the vertical average) are roughly 3 g kg−1. Figure 6 (bottom) shows (x, z) contours of
the rain water qr at y = 7 km, t = 4.8 hours, which exhibits the vertical structure of the
clouds at a particular y-slice. The height of the tallest cloud in this snapshot is roughly
9 km. The heaviest rain is observed to be approximately 9 g kg−1.
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Figure 7. Velocity background ubg(z) used in the squall line simulations.

3.2. Squall Lines

To create an environment favorable for squall line formation, the zonal velocity u is
initially ubg given by (Majda & Xing 2010):

ubg(z) =







a (cos (πz/H0)− cos (2πz/H0)) if z < H0

−2a otherwise,
(3.1)

where H0 = 12 km, and a = 11.11 m s−1 (see Figure 7). This ubg(z) is similar to the
tropical jets in which squall lines often form, and the low-altitude shear should create an
eastward-propagating squall line (Lucas et al. 2000). Thereafter, the following source term
is added to the (u, v) momentum equations in order to keep ūh(z) close to (ubg(z), 0):

(

−
1

τu
(ū(z)− ubg(z)),−

1

τv
v̄(z)

)

. (3.2)

As in the scattered convection runs, the relaxation time scales are chosen as τu = τv = 4
hours, similar to the value of 2 hours that is typically used (e.g., Grabowski et al. 1996).
Section 6.1 explores the sensitivity to τu, τv in 2D simulations. Since we initiate with
random perturbations in the potential temperature field, there is a spin-up time of ap-
proximately 5-10 hours during which the convective organization takes place. Relaxation
to the background wind is necessary at least during the spin-up time because random con-
vection will tend to reduce the shear that, in nature, would be maintained by larger-scale
processes not represented explicitly in our simulations. It may be possible to increase the
relaxation time after spin-up, or eliminate Rayleigh damping altogether, but we chose
to keep the relaxation parameter fixed throughout any give run for simplicity. Figure
8 shows the horizontal mean of the horizontal velocity components ū(z) and v̄(z) at
t = 0, 46 hours. Deviation in ū from the background zonal profile ubg results from con-
vective momentum transport, however, we observe only very small variations in v̄ from
zero.
The organization of the clouds is observed in the contours of the vertically averaged

rain water 〈qr〉(x, y) shown in the left panel of Figure 9 (the figure has been shifted
to locate the squall line at the center of the domain). A very clear coherent structure is
aligned with the y-direction. The direction of propagation cannot be seen in one snapshot,
but it will be shown below that the squall line propagates eastward in the line-normal
direction. The horizontal extent of the squall line is roughly 40 km. This is smaller
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Figure 8. 3D FARE model simulation. The solid lines are the background zonal (left) and
meridional (right) profiles. The dotted lines are the horizontal means ū(z) (left) and v̄(z) (right)
at y = 64 km at time t = 46 hours.
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Figure 9. Organization of the clouds in a squall line simulation using the 3D FARE model. The
clouds have been organized by the background wind of Figure 8 and the squall line is moving
to the right in the positive x-direction. Left: contours of the vertically averaged rain water
〈qr〉(x, y) in g kg−1 at t = 14.4 hours. Right: contours of the potential temperature fluctuation
θ′′ in Kelvin at z = 0.4 km.

than in CRMs with warn-rain microphysics or ice microphysics [see Figure 5 of (Wu &
Moncrieff 1996)], and it is consistent with decreasing size as microphysical time scales
decrease. The strongest clouds here have local values of vertically-averaged rain water
approximately 2 g kg−1. Negative fluctuations of the potential temperature beneath the
squall line (at low altitudes) represent the so-called cold pools, a characteristic feature of
squall lines (Fovell & Ogura 1988; Houze 2004). Contours of the potential temperature
fluctuation θ′′ at z = 0.4 km are shown in Figure 9 (right). Negative fluctuations are
observed underneath the squall line, which delimits the cold pool. The strongest area of
the cold pool (white) is located underneath the heaviest rain.
Another characteristic of squall lines is the typical tilted pattern in the vertical struc-

ture of the organized clouds (Fovell & Ogura 1988; Houze 2004). As warm, moist air
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Figure 10. Vertical structure of the FARE model squall line and its cold pool are shown.
Top: contours of rain water qr in g kg−1 at y = 103 km, t = 14.4 hours. Bottom: contours
of the potential temperature fluctuation θ′′ in Kelvin at y = 103 km, t = 14.4 hours. The
corresponding (u′′, w) vector field is also shown in both plots. Maximum zonal and vertical
velocities of 20 m s−1 are observed. The clouds have been shifted to the center of the subdomain
[30 km , 90 km ]× [0 km , 15 km ].

rises, it condenses and moves to the back of the cloud, resulting in a tilted rain-water
profile. Figure 10 (top) shows the (x, z) contours of rain water qr at y = 103 km, t = 14.4
hours. A striking tilted profile can be identified, where the heaviest rain is observed to-
ward the front of the squall line and the intensity decays toward the rear of the squall
line. Moderate rain between 3 and 6 g kg−1 is observed up to 8 km high. However, the
cloud may reach 10 km high with weak rain between 0.1 and 3 g kg−1. The (u′′, w)
vector field is shown in the same plot: a very clear circulation pattern emerges, which
is also typical (Wu & Moncrieff 1996). We observe strong winds at the bottom of the
clouds, towards the front of the squall line, in the line-normal direction. Updrafts are
present near the heavy rain and downdrafts develop toward the back of the clouds. In
the vector field anomaly, maximum zonal and vertical velocities reach 20 m s−1. Figure
10 (bottom) shows the potential temperature fluctuation from its horizontal mean, θ′′,
where the cold pool underneath the cloud is evident. Strong winds in the line-normal
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direction are present inside the cold pool, indicating that the cold air forces the warm
less dense air to move upwards. The potential temperature anomaly from its horizontal
mean inside the cold pool is approximately -3 Kelvin, and the height of the cold pool is
roughly 2 km. The tilted profile is also noticeable in the vertical structure of θ′′.
We now test whether the FARE model captures the propagation of a squall line as

in nature (e.g., LeMone et al. 1998; Houze 2004). The coherent structure is expected to
propagate in the line-normal direction with speed corresponding to the maximum line-
normal velocity, i.e., the maximum horizontally averaged, horizontal velocity max ūh(z)
[Jorgensen, LeMone & Trier (1997),LeMone et al. (1998)]. In the present setting, ūh(z)
is relaxed towards (ubg(z), 0), with dubg(z)/dz > 0 at low altitudes and thus the squall
line is expected to propagate eastward. The direction and speed of propagation can be
measured using (x, t) contours of the vertically averaged rain water 〈qr〉(x, y, t) at a
particular value of y = y0, e.g., Figure 11 (top left) for y0 = 64 km. As expected, the
clouds move to the right (eastward). The dotted line has slope equal to the time-averaged
maximum ū during the time window [12,24] hours, and agrees well with the squall line
propagation speed. After the spin-up time, the propagation speed of the squall line does
not significantly vary during the simulation. Figure 11 (top right) shows the potential
temperature fluctuation from its x-average at y = 64 km. The cold pool is always lo-
cated underneath the squall line and propagates with the squall line. The bottom plot
shows (x, z) contours of the time-averaged rain water during the time window of [22,24]
hours. The time average was taken in the frame of reference of the squall line by first
subtracting the approximate speed of propagation to obtain a quasi-steady squall line,
and then averaging in time. The time-averaged (u′′, w) vector field shows clear updrafts
and downdrafts with the circulation pattern typical of squall lines. The horizontal extent
of the tilted profile is roughly 60 km.
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Figure 11. The propagation of the FARE model squall lines and the vertical structure of the
time averaged rain water are shown here. Top left: (x, t) contours of the vertically averaged
rain water 〈qr〉(x, y, t) at y = 64 km; the line has slope equal to the time-averaged maximum ū
during the time window [12,24] hours. Top right: (x, t) contours of θ′′ at z = 0.4 km. Bottom:
time average of qr and (u′′, w) vector field in a reference frame moving with the squall line.
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Figure 12. Contours of 2D data in a 3D simulation obtained using the 3D FA model. Top:
vertically averaged rain water 〈qr〉(x, y) at time t = 19.2 hours. Bottom: contours of rain water
in the (x, z) plane at y = 113 km and t = 19.2 hours. Rain water is measured in units of g kg−1.

4. Numerical Results for the 3D FA Model

The two settings used in Section 3 for scattered and organized convection are here
investigated using the 3D FAmodel. The condensation and evaporation time scales chosen
in this section are τc = 2.25 minutes and τe = 13.5 seconds. We have found that the FA
model is sensitive to the condensation and evaporation time scales and other parameters
used in the simulation. In particular, coherent 3D squall lines were not robust when we
used τc = τe = 2.25 minutes as in (Majda et al. 2010; Deng et al. 2012). Note that the
product τ−1

e q−1
∗

appears in the expression for evaporation (2.14), and reference value q∗
has been chosen as q∗ = 0.01 kg kg−1. Alternatively, q∗ could have been decreased with τe
held fixed, so it may be more appropriate to interpret our results in terms of decreasing
the product τ−1

e q−1
∗

, rather than in terms of decreasing τe alone. The relaxation time
scales for maintaining the background winds are the same as in the previous section using
the FARE mode, namely τu = τv = 4 hours.
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4.1. Scattered convection

The initial conditions are identical to those of Section 3.1. Figure 12 (top) shows 〈qr〉(x, y)
at t = 19.2 hours, at which time scattered convection is clear. The rain water intensity is
comparable to that observed with the FARE model in the previous section. The vertical
structure of the clouds at y = 113 km is exhibited in the (x, z) contours of rain water
shown in Figure 12 (bottom). The height of the tallest cloud here is about 9 km. Note
that, while “cloud water” is not explicit in our models by the assumption of fast auto-
conversion, we will nevertheless use the terminology “cloud” for saturated regions with
qr > 0, which represent suspensions of sedimenting water drops.
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Figure 13. 3D FA model simulation. The solid lines are the background zonal (left) and merid-
ional (right) profiles. The dotted lines are the horizontal means ū(z) (left) and v̄(z) (right) at
y = 64 km at time t = 46 hours.
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Figure 14. Organization of the clouds in a squall line simulation using the 3D FA model. Left:
contours of the vertically averaged rain water 〈qr〉(x, y) in g kg−1 at t = 45.6 hours. Right:
contours of the potential temperature fluctuation θ′′ in Kelvin at z = 0.4 km.

4.2. Squall Lines

The initial conditions in this simulation are identical to those of Section 3.2. Figure 13
for FA is analogous to Figure 8 for FARE. The deviations of ū from the background zonal
profile ubg due to convective momentum transport are similar in the two models FA and
FARE.
Figure 14 (left) shows the vertically averaged rain water 〈qr〉(x, y) at t = 45.6 hours,

where the coherent structure is evident. The figure has been shifted to locate the squall
line at the center of the domain. The horizontal extend of the clouds is roughly 50 km,
comparable to the extent observed in the FARE simulations. As it will be shown below,
the clouds propagate eastwards in the line-normal direction maintaining the coherent
structure. Fluctuations of the potential temperature from its horizontal mean at low
altitudes are shown in right panel of Figure 14. Negative values are observed underneath
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Figure 15. Vertical structure of the FA model squall line and its cold pool are shown. Top:
contours of rain water qr(x, y, z) in g kg−1 at y = 7 km, t = 45.6 hours. Bottom: contours of
the potential temperature fluctuation θ′′ in Kelvin at y = 7 km, t = 45.6 hours. The corre-
sponding (u′′, w) vector field is also shown in both plots. Maximum zonal and vertical veloc-
ities of 15 m s−1 are observed. The clouds have been shifted to the center of the subdomain
[30 km, 110 km]× [0 km, 15 km].

the coherent structure, which demonstrates that the FA model captures the cold pool
observations.
Figure 15 (top) shows the (x, z) contours of rain water qr at y = 7 km, t = 45.6 hours,

where a tilted profile and a circulation pattern are observed. The height of the tallest
cloud in this snapshot is roughly 11 km. The (x, z) contours of θ′′ are shown in Figure
15 (bottom). Negative fluctuations at low altitudes underneath the cloud detects the
position of the cold pool. The height of the cold pool is roughly 1.5 km, comparable to
the 2 km observed with the FARE model.
We note that in the present simulation, the spin-up time for the squall line to form was

significantly longer than for the FARE model. Although the clouds move to the east, their
alignment in the y-direction is not evident during the first day. In contrast, the alignment
in the FARE model was achieved roughly 10 hours after the initial perturbation was
introduced. Figure 16 shows the (x, t) contours of the vertically averaged rain water 〈qr〉
at y = 64 km during the second day (left), when we observe a clear propagating squall
line. The dotted line has slope equal to the maximum ū during the time window [46,48]
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Figure 16. Propagation of the FA model squall line and the vertical structure of the time
averaged rain water are shown here. Top left: (x, t) contours of the vertically averaged rain
water 〈qr〉 at y = 64 km during the second day; the line has slope equal to the time-averaged
maximum ū during the time window [46, 48] hours. Top right: (x, t) contours of θ′′ at y = 64
km, z = 0.4 km. Bottom: time average of qr and (u′′, w) vector field in a reference frame moving
with the squall line.

hours, and agrees well with the squall line propagation speed. Figure 16 (right) shows
the (x, t) contours of the potential temperature fluctuation from its x-average at y = 64
km, z = 0.4 km. The cold pool always resides underneath the squall line and propagates
with the squall line. Similar to Figure 11, the bottom plot shows (x, z) contours of the
time-averaged rain water during the time window of [31,33] hours. The time-averaged
(u′′, w) vector field shows clear updrafts and downdrafts with the circulation pattern
typical of squall lines.
Lastly, we point out again that the parameter values τc = 2.25 minutes and τe = 13.5

s are different from those used by Majda et al. (2010); Deng et al. (2012). In particular,
coherent 3D squall lines were not robust when we used τc = τe = 2.25 minutes as in
Majda et al. (2010); Deng et al. (2012). In nature and comprehensive CRMs, the rain
evaporation time scale τe is actually longer than the condensation time scale τc, and the
autoconversion time scale is also longer than τc. In a model where the autoconversion
time scale has been taken to be zero, it is not necessarily the case that realistic values
of τe and τc produce a realistic squall line. Our results suggest that, for squall lines, if
the autoconversion time scale is taken to zero, then the other microphysical time scales
should be taken to zero for consistency. One may speculate as to why the squall line
results are more sensitive to τe than the Majda et al. (2010); Deng et al. (2012) studies
of individual convective towers and their merger. A longer evaporation time scale will
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lead to less evaporative cooling as rain falls behind the leading edge of the squall line.
Less cooling in turn leads to reduced downdrafts and a weaker cold pool behind the
squall line, and thus less of the characteristic tilted circulation pattern. The sensitivity
to τc and τe is explored in 2D simulations in the next section.
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Figure 17. A comparison of results obtained with the 2D FARE model and the 2D FA model
with different values of τc and τe. The squall line propagation is shown for the 2D FARE model
(top left), and the 2D FA model with τc = τe = 0.225 minutes (top right), τc = τe = 2.25
minutes (bottom left), and τc = τe = 6.75 minutes (bottom right).

5. Comparison of the FARE and FA Models in 2D

The FARE model was obtained from the FA model by assuming fast condensation and
evaporation of rain. The FARE model can therefore be seen as the limit of FA as the
time scales τc, τe due to condensation and rain evaporation go to zero,

FARE = lim
τc,τe→0

FA.

As a result, we must anticipate that the FA model behaves similarly to FARE as τc and
τe decrease. This is investigated in this section using 2D simulations. The (x, z) domain
size is 256 km× 15 km, which is twice as long as, yet comparable to, the 3D simulations
in Sections 3 and 4, and the moistening and cooling rates have accordingly been reduced
by a factor of 2.
Figure 17 shows the (x, t) contours of the vertically averaged rain water 〈qr〉(x, t) in

g/kg from 0 to 48 hours, using the 2D FARE model (top left), and the 2D FA model
with τc = τe = 0.225 minutes (top right), τc = τe = 2.25 minutes (bottom left), and
τc = τe = 6.75 minutes (bottom right). The values of τc = τe = 0.225 minutes give the
closest qualitative results to FARE. For instance, the squall lines are more uniform and
coherent as we decrease τc and τe. The bigger values of τc and τe produce intermittent
squall lines. The same initial random perturbation in the potential temperature has been
used in all four cases.
As another comparison, Figure 18 shows the vertical structure of the clouds obtained

with the 2D FARE model (top left), and by the 2D FA model with τc = τe = 0.225
minutes (top right), τc = τe = 2.25 minutes (bottom left) and τc = τe = 6.75 minutes
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Figure 18. Another comparison between the FARE and FA models. Snapshots of rain water
qr(x, z) contours with the 2D FARE model (top left), and the 2D FA model with τc = τe = 0.225
minutes (top right), τc = τe = 2.25 minutes (bottom left), and τc = τe = 6.75 minutes (bottom
right).

(bottom right). The case with τc = τe = 0.225 minutes has a tilted profile similar to that
of 2D FARE. The bigger values of τc and τe in the FA model produce less tilted profiles.
To quantify these comparisons, a measurement of the tilt is provided by the vertical

transport of horizontal momentum, u′′w′′. A time average of this quantity (not shown)
during the last 12 hours of the second day has absolute maxima of 0.16, 0.26, 1.7, and 1.9
m2s−2 for the 2D FA model with decreasing time scales and the FARE model respectively.
The larger values of u′′w′′ correspond to the visually larger tilts in Figure 18 for the FARE
model and for the FA model with smallest τc and τe. Furthermore, the values of ū(z, t)
at t = 48 hours (not shown) display a similar trend for τc and τe values: the FARE
model and τc = τe = 0.225-minute FA model have similar ū(z) values, whereas the ū(z)
profiles for the other two FA cases are different from the FARE results. More precisely,
the normalized L1 norm of the difference between the FARE model and each of the FA
results is 1.3, 1.3, and 0.2 m s−1 in order of decreasing τc = τe. In short, the FA results
with τc = τe = 0.225 minutes are similar to the FARE model results, whereas the FA
results with τc = τe = 2.25 minutes show significant differences from the FARE model
results.
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Figure 19. A comparison of different momentum relaxation times, τu, in the squall line simula-
tion implemented by the FARE model. First row: τu = 1 hour. Second row: τu = 4 hours. Third
row: τu = 24 hours. First column: Contours of vertically averaged rain water 〈qr〉(x, t) in g/kg
and a dashed line with slope the maximum line-normal velocity are shown. The same grayscale
as in Figure 17 has been used here. Second column: Horizontal mean of the zonal velocity ū(z)
in m s−1 is shown at different times.

6. Sensitivity studies in 2D

In this section, the 2D FARE model will be used to show the sensitivity or robustness of
the results to variations in the model parameters, such as relaxation time scales, rainfall
velocity, usage of sponge layers, and moistening and cooling rates with larger domain
sizes. It will be shown that in all cases the organized convection always occurs regardless
of the parameter changes, but the detailed characteristics will vary from case to case.

6.1. Sensitivity to the relaxation time scales τu and τv

In this section, we study the sensitivity of the numerical results to the relaxation time
scales τu and τv of ūh(z) towards the horizontal velocity background (ubg(z), 0). This
relaxation is intended to maintain the horizontal mean of the horizontal velocity ūh(z)
close to the initial background. Figure 19 shows a comparison of τu = 1 hour (first row),
τu = 4 hours (second row) and τu = 24 hours (third row). The first column shows the
propagation of the squall line during the second day in each case. In all cases squall lines
are always observed. However, the speed of propagation varies as the zonal velocity ū(z)
may vary from its initial value for larger τu values. Included in each plot is a dashed line
with slope given by the maximum line-normal velocity averaged from t = 24 to 48 hours.
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Figure 20. A comparison of the 2D FARE results with different fall velocities VT is presented
here. Column 1: Contours of qr(x, z) in g/kg at t = 39 hours. Column 2: (x, t) averaged rain water
as a function of z. Row 1: VT = 2.22m s−1. Row 2: VT = 5.56m s−1. Row 3: VT = 11.11m s−1.
The same grayscale contours as Figure 18 are used here.

These dashed lines roughly follow the speed of propagation of the squall line in each case,
in agreement with the propagation of observed squall lines (LeMone et al. 1998).

6.2. Sensitivity to the fall velocity VT

We now use different values of the rain fall velocity VT to study the sensitivity of the
results to this parameter, as shown in Figure 20. The first column shows the (x, z) con-
tours of rain water, where the locations of the clouds have been shifted to the center of
the domain for visual clarity. Note that, while “cloud water” is not explicit in our mod-
els by the assumption of fast auto-conversion, we will nevertheless use the terminology
“cloud” for saturated regions with qr > 0, which represent suspensions of sedimenting
water drops. The second column plots the (x, t) averaged rain water as a function of z,
for VT = 2.22m s−1 (row 1), VT = 5.56m s−1 (row 2) and VT = 11.11m s−1 (row 3).
These are typical terminal velocities for rain drops with diameters of roughly 1–10 mm
(Pruppacher & Klett 1997). For larger values of VT , the averaged rain water is smaller,
which is consistent with the role of VT in removing water from the domain or bringing
it to lower levels where it may evaporate if the air is unsaturated. While VT does affect
the average rain amount, the presence of squall lines with tilted profiles is not sensitive
to this parameter.
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Figure 21. The sensitivity of the numerical results to sponge layers is shown. Row 1: No sponge
layer. Row 2: Sponge layer implementation. Column 1: Probability distribution functions of the
vertical velocity at z = 0.675 km, z = 7.4 km and z = 14.2 km. Column 2: Total kinetic energy
at different times, averaged over x at each z level.

6.3. Comparison with usage of sponge layers

It is customary in atmomspheric simulations to use a “sponge layer” near the top bound-
ary (e.g., Grabowski et al. 1996). The purpose of this is to damp vertically propagating
gravity waves that may otherwise reflect off the artificial rigid lid at the top boundary.
Since our goal is to keep the model as simple as possible, no sponge layers have been
used in the previous numerical results. In this section, we investigate the sensitivity of
the results to the presence of a sponge layer.
In the sponge layer setting, a linear drag term is added to the equations for all variables:

−ds(z)u, −ds(z)θ, etc. The damping rate ds(z) varies as a function of z and is nonzero
only for z > 10 km. For the sponge layer 10 km < z < 15 km, it is a square sinusoidal
function that vanishes at z = 10 km and reaches its maximum of (1 hour)−1 at the top
boundary z = 15 km.
Figure 21 shows results with the 2D FARE model without (top row) and with (bottom

row) a sponge layer. The first column shows probability distribution functions of vertical
velocity at different heights: z = 0.675 km (solid line), z = 7.4 km (dashed line), and
z = 14.1 km (dotted line). The distributions do not appear to be affected by the presence
or absence of a sponge layer. This suggests that the sponge layer may be omitted for the
sake of simplicity if one is concerned with only broad features such as the presence or
absence of an organized squall line or its pdf of vertical velocity. Nevertheless, the sponge
layer may be important for certain studies, and its effect can be seen in the kinetic energy
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Figure 22. Large-domain simulations with reduced moistening and cooling rates. Top: both
moistening and cooling implemented for the whole 2-day simulation. Middle: the cooling is
turned off after 30 hours, while keeping the moistening rate. Bottom: both cooling and moist-
ening are turned off after 30 hours.

profiles in the second column of Figure 21. The times selected in the last column were
carefully chosen to exhibit the largest kinetic energy in the uppermost levels. These
snapshots show that the kinetic energy is reduced in the sponge layer 10 km < z <
15 km, whereas the levels below z = 10 km are affected less, if at all. The statistical
comparisons in Figure 21 corroborate the visual similarity of the squall lines in the two
cases (not shown).

6.4. Sensitivity to domain size and cooling and moistening rates

In atmospheric simulations, it is customary to apply horizontally uniform moistening
and cooling forcing when the setup uses a limited domain size with periodic boundary
conditions (e.g., Grabowski et al. 1996; Jung & Arakawa 2005). This forcing is meant
to represent the effects of larger-scale phenomena—such as moisture convergence due
to larger-scale waves—on the simulated domain, and the form of the forcing could be
motivated by observational measurements (Grabowski et al. 1996). Such a forcing has
been employed here due to the limited size of the 3D domain from limitations of com-
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putational expense. In this section, we perform simulations on a larger 2D domain, with
reduced moistening and cooling rates, in order to test whether the limited domain size
affects the simulated squall lines. Furthermore, we investigate the individual effect of the
cooling rate and of the moistening rate.
In this sensitivity study, we now use a domain of size 1024 km×15 km, and the cooling

and moistening rates have been reduced accordingly by a factor of 8 from that used in
the 3D simulations with 128 km-wide domain. The maximum moistening rate becomes
then 2.1 g/kg and the maximum cooling rate about 3 Kelvin day−1.
Figure 22 shows contours of the vertically averaged rain water 〈qr〉(x, t) for three cases.

In the top plot, the moistening and cooling are both applied during two days. A longer
spin up time of roughly 5 hours is observed (not shown) due to the smaller moistening
rate. In the middle plot, both the moistening and cooling are applied during the first 30
hours, but then the cooling is turned off thereafter while maintaining the moistening. In
this case, the squall line keeps propagating as a free wave similarly to the previous case
(only shown from 30 to 48 hours). Finally, the bottom plot shows the results when both
the moistening and cooling are turned off at time t = 30 hours. In this case, the squall line
vanishes roughly 13 hours after the forcing is turned off. These three cases demonstrate
that the squall lines in the FARE model still form when much smaller moistening and
cooling rates are used with a larger domain. In addition, the cooling is not essential for
the maintenance of the squall line, whereas the moistening is needed in this setup. The
cooling is likely not essential here because the simplified form of the saturation water
vapor, qvs(z), is independent of the temperature in this minimal setup.



36 G. Hernández-Dueñas , A. J. Majda, L. M. Smith and S. N. Stechmann

7. Conclusions and Discussion

Two minimal models for precipitating organized convection were formulated and tested
using numerical simulations. It was shown that, under appropriate environmental con-
ditions, both models capture two basic regimes of precipitating convection: unorganized
scattered convection and organized propagating squall lines. Scattered convection results
when the background winds are weak; squall lines arise in the presence of low-altitude
shear in the background wind. Commonly observed features of squall lines are faithfully
captured by the minimal models, including tilted cloud profiles, low-altitude cold pools
and propagation speed approximately equal to the maximum line-normal velocity at
lower altitudes. The ability of the models to capture these broad features of squall lines
indicates insensitivity of such features to the detailed microphysics of phase changes.
The main simplifications that are common to both the FA and FARE models are

an assumption of a Boussinesq atmosphere and fast auto-conversion of cloud water to
rain water. With these simplifications, evolution equations for only water vapor and rain
water are retained to represent warm-rain bulk cloud physics. A design principle is that
the inviscid forms of the models conserve equivalent potential temperature θe, rain-water
potential temperature θr and total water qt, which is likely part of the reason they are
able to capture realistic tropical dynamics.
In addition to fast auto-conversion, the FARE model assumes fast evaporation of rain

water to form water vapor, and fast condensation of water vapor to form rain water. Our
simulations suggest that the FARE model is more robust than the FA model. While the
FA model is fairly robust for unorganized convection [as also seen in the earlier work of
Majda et al. (2010) and Deng et al. (2012)], its representation of organized squall lines
was seen here to be sensitive to model parameter choices. In other words, the limit of fast
auto-conversion may yield more robust results if used together with fast rain evaporation
(and fast condensation). As a demonstration of consistency of the FA and FARE model
formulations, our 2D sensitivity studies show that the FA model behaves more like the
FARE model as the relaxation times τc, τe in the model evaporation and condensation
source terms are decreased together toward zero.
A numerical modeling advantage of the FARE model is fewer model parameters: there

is no need to specify closures for condensation Cd or evaporation Er, and thus stiff source
terms have been removed. In general we found that the FARE model is less sensitive than
FA to parameters such as domain size, moistening and cooling rates and viscosity coef-
ficients. The FARE model also has the additional conservation principle for total energy
in (2.39), and implications of (2.39) will be a topic of further investigation. Finally, we
expect that the simplicity and conservation properties of the FARE model may provide
a starting point for theoretical analyses. In particular, our future plans include analy-
sis of 2D versus 3D squall lines toward understanding and characterizing 3D convective
momentum transport (Moncrieff 1992; Majda & Stechmann 2008, 2009; Khouider et al.
2012).
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Appendix A. Derivation of the approximate water vapor at

saturation

The particular choice of qvs(z) from Figure 2.2 is derived in the following way. The
thermodynamic formula for qvs is a function of pressure p and temperature T :

qvs(p, T ) =
Rd

Rv

es(T )

p
. (A 1)

In this formula, es is the partial pressure due to water vapor under saturated conditions,
and es(T ) is found from the Clausius-Clapeyron relation (Rogers & Yau 1989; Houze
1993; Emanuel 1994; Pruppacher & Klett 1997)

es(T ) = es,o exp

(

−
L

Rv

(

1

T
−

1

To

))

, (A 2)

where es,o ≈ 3500 kg m−1 s−2 is the saturation water-vapor pressure at the surface, with
surface temperature To ≈ 300 K. As described in section 2.2, an approximate form of
qvs(z) can be determined for an anelastic atmosphere:

qvs(p, T ) ≈ qvs(p̃(z), T̃ (z)) ≡ qvs(z). (A 3)

Hence a specific form of qvs(z) can be determined from (A1)–(A 3) if profiles p̃(z) and
T̃ (z) are given. These are chosen here by the requirements of an ideal gas law, p̃ = ρ̃RdT̃ ;
hydrostatic balance, dp̃/dz = −gρ̃(z); and a linear background potential temperature,
θ̃(z) = θo+Bz, where θ̃ is defined as θ̃ = T̃ (po/p̃)

Rd/cp . Determining p̃(z) and T̃ (z) from
these relations is done in the following way.
The definition

θ̃(z) = T̃ (z)

(

po
p̃(z)

)Rd/cp

(A 4)

can be rewritten, upon using the ideal gas law p̃ = ρ̃RdT̃ , as

p̃(z) = ρ̃(z)Rd

(

p̃(z)

po

)Rd/cp

θ̃(z). (A 5)

Then, using (A 5) and hydrostatic balance dp̃(z)/dz = −gρ̃(z), one obtains

d

dz

[

(

p̃(z)

po

)Rd/cp
]

= −
g

cpθ̃(z)
. (A 6)

Assuming a linear background potential temperature θ̃(z) = θo+Bz, integration of (A 6)
yields

p̃(z)

po
=

(

1−
g

Bcp
log

(

1 +
Bz

θo

))cp/Rd

≡

(

f(z)

)cp/Rd

. (A 7)

Thus an approximation to the water vapor saturation profile qvs is

qvs(z) =
qvs,o

p̃(z)/po
exp

[

−
L

Rv

(

1

f(z)(θo +Bz)
−

1

θo

)]

(A 8)

where qvs,o = (Rd/Rv)(es,o/po) is the saturation water vapor at the surface, with p̃(z)/po
and f(z) given by (A 7). In our simulations, we will use qvs,o = 20 g kg−1 consistent with
es,o ≈ 3500 kg m−1 s−2 and po ≈ 105 kg m−1 s−2 (see Figure 2.2).
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Appendix B. Derivation of total energy equation

The equation for total energy in (2.39) is derived from the FARE model (2.35)–(2.38)
in the following way. First, taking the dot product of u with (2.35) yields

D

Dt

(u · u

2

)

= −u · ∇φ+ wb. (B 1)

Next, the material derivative of the potential energy Π(θr , qt, z) from (2.40) is

DΠ

Dt
=

∂Π

∂θr

Dθr
Dt

+
∂Π

∂qt

Dqt
Dt

+
∂Π

∂z

Dz

Dt
(B 2)

= −
∂Π

∂θr

L

cp
VT

∂qr
∂z

+
∂Π

∂qt
VT

∂qr
∂z

− bw (B 3)

=

(

∂Π

∂qt
−

L

cp

∂Π

∂θr

)

VT
∂qr
∂z

− bw. (B 4)

For (B 4), the buoyancy and potential energy definitions in (2.28) and (2.40) are used
to compute

∂Π

∂qt
= −g

(

L

cpθo
− 1

)

(z−a) and
L

cp

∂Π

∂θr
= −g

L

cpθo
(z−a) if qr > 0, (B 5)

where it should again be noted that the definition of Π(θr, qt, z) in (2.40) uses an integral
with respect to z with θr and qt held fixed.
Using (B 5) to continue with (B 4) leads to

DΠ

Dt
= VT g(z − a)

∂qr
∂z

− bw (B 6)

=
∂

∂z
[VT g(z − a)qr]− VT gqr − bw. (B 7)

Combining (B 1) and (B 7) then leads to the final result (2.39). Note that the derivative
calculations here are formal due to the possible discontinuity in derivatives of qr [see
its definition in (2.27)]; the calculations should be understood as being taken from the
corresponding integral formulation of the conservation law.
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