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Abstract

Numerical solutions to the radiative transfer equation are typically computationally expensive. The large
expense arises because the solution has a high dimensionality with NM degrees of freedom, where the
N and M arise from spatial and angular degrees of freedom, respectively. Here, a numerical method is
presented that aims for fast and low-memory calculations, in the sense of computational cost and memory
requirements of only O(N). The method uses a discontinuous Galerkin (DG) spectral element method
and hp-adaptive mesh refinement to reduce the number of spatial degrees of freedom from N to n, thereby
reducing the total cost and memory to nM , with the aim of achieving nM approximately equal to N .
After this reduction in memory to O(N), in order to ensure a computational cost of O(N), a suitable
preconditioner is identified and utilized. Numerical examples are presented in two spatial dimensions to
allow calculation of high-resolution reference solutions for comparison, while the methodology is general
and applies in either two or three spatial dimensions. The numerical examples show large memory
reduction ratios N/n and fast O(N) computational cost. A variety of examples is shown, including
smooth spatial variations or steep gradients, and Rayleigh (isotropic) or Mie (anisotropic) scattering.
The methods could enable more tractable computations for many applications, such as medical imaging
and weather and climate prediction.

Keywords: spectral element | discontinuous Galerkin | hp-adaptivity | three-dimensional (3D) radiative
transfer

1. Introduction

1.1. Background and motivation

The radiative transfer equation is important in a variety of applications, such as astrophysics [87, 76,
92], medical imaging [54, 56, 84, 2], neutron transport [81, 60, 61], underwater imaging [77, 48], satellite
remote sensing [7, 15, 83], and weather and climate prediction [10, 98, 44, 45].

A large computational expense arises in radiative transport because the radiative intensity, I(x, y, z, θ, φ),
is a function of five or more coordinates, including spatial coordinates (x, y, z) and angular coordinates
(θ, φ) that characterize different directions of photon propagation. Additional coordinates may also arise,
for example, from different frequencies ν of electromagnetic radiation or from evolution in time t. In any
of these cases, radiative transfer is a high-dimensional problem. In discrete form for numerical calcula-
tions, storage of I(x, y, z, θ, φ) would typically require NM degrees of freedom, where N and M are the
number of spatial (x, y, z) and angular (θ, φ) degrees of freedom, respectively. The value of M can also
be even larger, for example, due to different wavelengths of electromagnetic radiation.

In many applications, such as weather and climate prediction, the computational cost of radiative
transfer is so large that a comprehensive treatment is abandoned. To decrease the computational cost,
simplified treatments are often adopted (see, e.g., the ECMWF model [44, 45] and the RRTMG model
[65, 11, 75]). For example, one common simplification is the two-stream approximation (also called
plane-parallel or one-dimensional), which resolves photon propagation in only two directions or streams.

In the present paper, however, the aim is to avoid these traditional simplifications and to instead
present methods to solve for the full quantity I(x, y, z, θ, φ). Such an approach is often called three-
dimensional (3D) radiative transfer [7] to emphasize that photons may propagate in any direction. Here,
we investigate numerical methods for the partial differential equation (PDE) of radiative transfer, with
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the aim of a cost that is not the prohibitive O(NM) but is instead only O(N). In order to achieve such
a savings, a cost reduction factor of O(M) is needed in order to counteract the increased cost of O(M)
from the angular degrees of freedom. To do so, the goal is to reduce the number of spatial degrees of
freedom from N to n, so the overall cost, nM , is approximately N .

If such a reduction were enacted naively—for instance, by simply increasing the grid spacing of a finite
difference or finite volume method—then the result of the reduction from N to n would be a substantial
loss of accuracy. However, there are other computational strategies that can represent functions with
greater flexibility and reduced cost. Here it is shown that a discontinuous Galerkin (DG) spectral element
method can be used to obtain the goal of adequate accuracy with only n spatial degrees of freedom in
a variety of scenarios. A suitable preconditioner is also needed in order to ensure that the overall cost
is O(N). In addition, in complex cases of Mie (anisotropic) scattering or steep spatial gradients in the
absorption or scattering coefficients, an hp-adaptive refinement strategy brings further improvement, and
facilitates more general applicability, as described in more detail below.

The use of hp-adaptivity here is one of few examples of this technique for the radiative transfer
equation, or for related equations of kinetic theory such as the Boltzmann equation or neutron transport
equation [39, 95, 32]. While adaptivity in h has provided sound results for radiative transfer [52, 30, 74],
we find here that hp-adaptive refinement is important, rather than h-adaptive refinement or p-refinement
alone, for achieving a method that is both low-memory and fast, for a range of scenarios including steep
gradients and Mie (anisotropic) scattering. The technique of hp-adaptivity has also been used on an
approximation of the radiative transfer equation called the simplified PN approximation [59, 35, 36], and
on other equations such as the convection–diffusion equation [90, 104, 34].

There are other memory-saving techniques which can be used for numerically solving radiative transfer
equations, such as sparse grid [99], dynamical low-rank approximation [57], PN approximation [35, 36],
or truncated approximation to the scattering phase function [31, 85]. These techniques can provide
accurate results in certain cases, and could potentially benefit from combined use with hp-adaptivity.

Without hp-adaptivity, the use of high-p methods such as spectral methods or DG methods have
been advanced in recent years and can provide accurate solutions in many scenarios [53, 102, 103, 3, 42,
23, 29, 49]. However, it is known that steep gradients can present difficulties for non-adaptive high-p
methods. Since steep gradients are an important aspect in many applications (such as medical imaging
or clouds in the atmosphere), here we investigate hp-adaptive methods for general use.

1.2. The radiative transfer equation

In the paper we consider the time-independent radiative transfer equation,

s · ∇I(x, s) + βe(x)I(x, s) = βe(x)(1− ω̃(x))B(x, s) +
βe(x)ω̃(x)

|S|

∫
S

p(s, s′)I(x, s′)ds′, (1a)

for x ∈ Ω ⊂ Rd. In Eq. (1), I(x, s) represents the radiation intensity at x and along the direction
s ∈ S := Sd, where Sd denotes the unit sphere in Rd, and |S| denotes the area of S. The parameters
βe(x), ω̃(x), and B(x, s) represent the extinction parameter, the single-scattering albedo, and the black
body radiation, respectively. Finally, p(s, s′) denotes the scattering phase function which has the following
form:

p(s, s′) =
1− g2

c(1 + g2 − 2g cos ang(s, s′))3/2
. (1b)

This is the Henyey-Greenstein phase function and is most widely used as a model phase function for
anisotropic scattering [73]. In Eq. (1b), ang(s, s′) represents the angle between the directions s and
s′, while g is the asymmetric parameter which typically takes values in [0, 1]. For isotropic scattering
we have g = 0, while for strongly forward scattering case such as the scattering of short-wave (solar)
radiation in water clouds, g can takes values from 0.8 to 0.9 [91].

Equation Eq. (1a) is not uniquely solvable until boundary conditions are included. Here we consider
the inflow boundary condition

I(s) = Ibd(s) for s · nΓ ≤ 0 on Γ := ∂Ω, (1c)

where nΓ is the normal vector pointing outward from the domain Ω. For a priori estimates of solutions
of Eq. (1), we refer to [27, 28] and the references therein.

2



1.3. Considerations for Memory, Cost, and Accuracy

In this section we aim to give a heuristic estimate for the memory reduction ratio by using DG spectral
element method, compared to traditional low-order methods such as finite-volume/finite-difference. The
strategy here involves a reduction in the number of spatial degrees of freedom from N to n, where N can
be taken as the number of grid cells from a uniform grid if one were to use a typical finite difference or
finite volume method. With such a reduction, it is important to ensure that adequate accuracy can still
be maintained. As a preliminary consideration, the balance between cost and accuracy can be estimated
heuristically as follows.

Suppose that polynomial accuracy is desired with respect to N , so that the error E scales as

E ∼ CN−q1 , (2)

where q is the polynomial order, C is a constant, and N1 is the number of degrees of freedom in one
spatial dimension, so that Nd

1 = N , where d is the number of spatial dimensions. For instance, d = 3
for three-dimensional space (x, y, z), and q = 1 for first-order accuracy, q = 2 for second-order accuracy,
etc. The error is then CN−1

1 for first-order accuracy, CN−2
1 for second-order accuracy, etc.

Note that the desired accuracy in Eq. (2) is only polynomial accuracy, even though a DG spectral
element method is proposed here. As is well known, typical use of the spectral element method would
result in a much smaller error with decay which could be as fast as exponential decay rather than only
polynomial decay [72, 4]. Here, however, the high accuracy of the DG spectral element method will be
used in a different way, not because it provides minuscule errors, but instead to provide an adequate
accuracy for a greatly reduced cost and reduced degrees of freedom.

In terms of the reduced degrees of freedom, n, by using a DG spectral element method, it is possible
to achieve errors that decay exponentially, proportional to

E ∼ exp(−cn1), (3)

for constant c, and where n1 is the number of degrees of freedom in one dimension, so that nd1 = n
[72, 4]. Note that this is an idealized case which might not be true in certain cases, such that when the
solution has poor regularity. However, it suffices as a heuristic estimate of the potential of high-order
DG spectral element methods in reducing memory.

By comparing the estimates above in terms of N and n, from Eq. (2) and Eq. (3), one can estimate
how small n can be, or how large M can be. The value of n can be estimated by comparing the n-based
error from DG spectral elements with the desired error,

exp(−cn1) ∼ CN−q1 ,

which would ensure the polynomial accuracy with respect to N . By taking a logarithm, one can rewrite
this as

n1 ∼
q

c
logN1, (4)

or

n ∼
( q
cd

logN
)d
, (5)

where C was assumed to be small compared to Nq
1 . If n is chosen to follow this scaling, or to be larger,

then the desired accuracy of order q should be achieved. The value of M can then be as large as

M ∼ N

n
∼
(
cd

q

)d
N

(logN)
d
. (6)

The above estimate suggests that the memory reduction ratio (N/n, or M) should be more significant if
we have a larger system size N , or if a higher precision level is desired (by Eq. (2)). In addition to the
system size and the precision level, the savings of the memory could also depend on the factors such as
the types of the error norms (e.g., L2 or L∞) being used, the regularity of the solution, the quality of the
error estimators and the refinement strategies (for AMR methods), and so on. A systematic investigation
of this topic exceeds the scope here. In this introductory section we aim for an approximate estimate of
the memory reduction ratio with respect to the size of the system.

Consider an example of how large M could be, based on Eq. (6). For instance, for a three-dimensional
case with first-order accuracy, suppose d = 3, q = 1, and c = 1. If the solution is desired on a grid with
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100 grid points per spatial dimension, then N1 = 100 and N = Nd
1 = 106. Inserting these values into

Eq. (6) leads to

M ∼ 33 106

(log 106)
3 ≈ 104. (7)

If, instead, second-order accuracy is desired, then this M value would be reduced by a factor of qd =
23 = 8 but would still be a large value of over 1,000.

While the estimates above are for accuracy and memory, a further consideration is cost. At best, for
a numerical solution with N degrees of freedom, one can aim for a cost of O(N) in terms of the number
of floating-point operations. Additional cost can potentially arise, depending on the numerical methods
and the matrix solver for the corresponding linear system. For the present paper, DG spectral element
methods are used with hp refinement, and the cost is expected to be larger than but close to O(N).
Numerical experiments will be used below to examine the cost in several test cases.

For practical applications, the values of M from Eq. (6) and Eq. (7) are large enough for many
demanding scenarios. For example, consider an application in weather prediction. One contribution to
M is the number of wavelength or frequency bands for the ν coordinate of I(x, y, z, θ, φ, ν), and this
number can be as large as 200 or 300 [44, 45]. Another contribution to M is the number of angular
dimensions, or streams. If a ten-stream method is used [50, 51], then the total value of M would be
M = 2000 to 3000; or, if the angular dimensions are better resolved with 20 or 30 streams, then the value
of M could become nearly 10,000. These challenging scenarios are within the realm of the estimates from
Eq. (6) and Eq. (7), and they suggest that the present methods could be applicable in practical settings.

1.4. Organization of the paper

In Section 2, we introduce the numerical methods, including the choices of the spectral element
(SE) approximation spaces, the discontinuous Galerkin (DG) schemes, and the iterative solvers. The
discussion on hp-adaptivity is put in Section 3, including the error and smoothness estimator, and the
refinement strategy. Finally in Section 4, we present numerical experiments, in both the Rayleigh and
the Mie scattering cases.

2. Numerical Methods

In this section, we describe the numerical approach that is motivated by the goals of being fast and
low-memory. For a low-memory representation of the solution, a DG spectral element method is first
introduced. Then, for a fast solver, options for iterative methods and preconditioners are discussed.

2.1. Low-memory representation by DG spectral element

The solution I of Eq. (1) can present both spatial and angular inhomogeneity. Taking the cloud
radiation model as an example, while the spatial inhomogeneity is caused by the inhomogeneous distri-
bution of clouds in the atmosphere, the angular inhomogeneity is a result of the collimated property of
the sunbeam and the large asymmetry parameter of cloud droplets. As a consequence, from the per-
spective of finding optimal approximation spaces, adopting spectral elements (SE) is ideal in the sense
that it combines the advantages of the spectral methods and the finite element (FE) methods, allowing
an efficient low-memory representation of the solution at the places where the solution is smooth, while
keeping the flexibility of finite element at resolving local features of the solution.

Here we demonstrate the main procedures of constructing the spectral element DG space for Eq. (1).
For simplicity, we consider the two-dimensional radiative transfer model used in [55, 62, 38], for which
we have I = I(x, y, θ) with (x, y) ∈ Ω and θ ∈ [0, 2π], and the radiation direction vector s = (cos θ, sin θ).
Let Th be a non-conforming triangulation of Ω by rectangular cells. We require that Th is 1-irregular,
i.e., for any element K ∈ Th, there are at most two neighbour elements connecting to K through each
edge. Here h is both an index for the triangulations Th and also the mesh-size, which is defined as
h := maxK∈Th hK where hK represents the diameter of K. For each K ∈ Th, we associate it with an

angular discretization, denoted by T a,Kh , of the angular space [0, 2π]. Then we have

Ω× [0, 2π] = ∪K∈Th ∪Ka∈T a,Kh
K ×Ka.

Since K is rectangular, for each spatial–angular element K ×Ka, we have the following decomposition:

K ×Ka = [xK0 , x
K
1 ]× [yK0 , y

K
1 ]× [θK

a

0 , θK
a

1 ]
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The above decomposition allows us to construct a basis on K ×Ka based on tensor products:

φK×K
a

m (x, s) = φ
[xK0 ,x

K
1 ]

m1 (x)φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θK

a

0 ,θK
a

1 ]
m3 (θ), where

m1 = 1, ..., pKx + 1, m2 = 1, ..., pKy + 1, m3 = 1, ..., pK
a

+ 1.

Let V (K ×Ka) be the space spanned by the above basis. The global approximation space is defined as

Vh :=
∏
K∈Th

∏
Ka∈T a,Kh

V (K ×Ka).

Then the numerical solution Ih can be written as

Ih =
∑
K∈Th

∑
Ka∈T a,Kh

∑
m

IK×K
a

m φK×K
a

m (x, s),

where IK×K
a

m represents the DOFs of Ih on the element K ×Ka.
Note that we use piece-wise polynomials to approximate the angular variation of the radiation inten-

sity I. This approximation setting was known as angular finite element in some references [9]. Here we
shall call it angular discontinuous Galerkin (DG) to emphasize the fact that no continuity is enforced
among any neighbour angular elements. If the polynomial degree is fixed to be zero, then the angular
DG becomes the (angular) finite volume method [66], which is equivalent to the discrete ordinate method
with a special choice of the quadrature rules [33, 58]. The angular discretization can also have an effect
on the choice of the best iterative solver. The current paper focuses on the spatial hp-AMR techniques,
and it could be combined with any choice of angular discretization.

When d = 3, a direct discretization based on the polar and azimuth angles can lead to a non-uniform
and inefficient meshing of the angular sphere due to the singularity presented at the north/south poles.
In this case, it could be better to consider the discretization based on a different parameterization rule
of the angular sphere. For instance, the cubed sphere approach [89, 86] parameterizes the unit sphere
without introducing any singularities at the poles. Alternatively, one can also discretize directly the unit
sphere [66, Section 16.6].

2.2. Discontinuous Galerkin

Discontinuous Galerkin (DG) methods were originally proposed for neutron transport in [82]. Then
they were applied to a wide range of problems including convection-diffusion [14, 8], Stokes and Navier-
Stokes [12, 5], elasticity [41, 78, 25], and Maxwell’s equations [13, 43, 26]. The versatility of DG originates
from the fact that it combines the advantages of both finite volume and finite element methods. To be
more specific, DG can be thought as a generalization of finite volume methods to arbitrary high-order,
while on the other hand, it extends the classical class of finite element methods by relaxing or adjusting
their inter-element conformity, by its flexible choices of the numerical traces.

We next derive a DG method for Eq. (1) based on the DG spectral element approximation space
Vh introduced above. To begin with, we multiply Eq. (1a) with a test function v and integrate it on a
spatial-angular element K ×Ka:∫

Ka

∫
K

(s · ∇I)v = −
∫
Ka

∫
K

βeIv +

∫
Ka

∫
K

βe(1− ω̃)Bv +

∫
K

βeω̃

|S|

∫
Ka

∫
S

p(s, s′)v(s)I(s′)ds′ds.

By an integration by parts of the left term of the above equation, and then symbolically replacing I in
K and I on ∂K by the approximation Ih and Îh, respectively, we obtain the following general form of
DG methods: find Ih ∈ Vh such that

ah(Ih; vh) = F (vh) ∀vh ∈ Vh, (8a)

5



where

ah(I; v) :=
∑
K∈Th

∑
Ka∈T a,Kh

(∫
Ka

∫
∂K

Îv(s · n) (8b)

−
∫
Ka

∫
K

Is · ∇v +

∫
Ka

∫
K

βeIv

−
∫
K

βeω̃

|S|

∫
Ka

∫
S

p(s, s′)I(s′)v(s)ds′ds

)
,

F (v) :=
∑
K∈Th

∑
Ka∈T a,Kh

∫
Ka

∫
K

βe(1− ω̃)Bv. (8c)

The numerical trace Î needs to be specified to complete the definition. Here we consider the upwinding
form:

Î(s) =

{
Iout(s) if s · n∂K < 0,

Iin(s) if s · n∂K ≥ 0,
(8d)

where Iin is the restriction of I on ∂K from inside, and Iout comes from either the neighbouring elements
or the boundary data Ibd. Other choices of the numerical fluxes exist, such as those introduced in
[100, 101, 79], which can give positive and asymptotic-preserving schemes.

For many atmospheric models, the coefficients such as βe, ω̃ are provided only on a grid of points.
Therefore, to solve Eq. (8), we will have to first interpolate the data on the uniform grid to the hp-AMR
grid Th. Then, after solving Eq. (8) and obtaining the desired quantities (for intance, the radiative
heating rate), we interpolate these data back to the original grid. Note that the computational cost of
the interpolation is usually O(N) while the computational cost of solving Eq. (8) is O(nM). Since we
aim for reducing N to n such that nM ≈ N , the cost of the interpolation is at most the cost of solving
the reduced system. In practice, considering that solving a linear system of size N usually has a cost of
more than N , the cost of the interpolation should be small compared to the cost of solving Eq. (8) in
most cases.

2.3. Iterative method and preconditioner

Equation Eq. (8) can be rewritten into the following compact form:

A[Ih] = F + S[Ih], (9)

where [Ih] is an array representing the DOFs of Ih, the matrix A represents the summation of the
advection and the extinction, the matrix S represents the scattering operator, and the array F represents
the black-body radiation; see the appendix for details on how A, S, and F are calculated.

Since [Ih] usually involves a large number of DOFs and the operator A is sparse by the locality of the
advection operator, Eq. (9) are solved by iterative methods in most cases. A popular choice (although
not our choice) of solving Eq. (9) is by source iteration, which starts with an initial guess I0

h, and then
repeatedly calculates

[In+1
h ] = A−1 (F + S[Inh ]) ,

where each iteration step requires an inversion of A, usually manifested by a sweeping algorithm combined
with an element-reordering strategy [70, 39]. Sweeping becomes difficult to implement if the triangulation
of the spatial-angular domain is adapted differently throughout space [19].

Therefore, here we consider an alternative approach by a (Preconditioned) Krylov subspace methods,
which can be shown faster than source iteration in many cases. To be more specific, we adopt the
restarted Generalized Minimal RESidual (GMRES(k)) method [88] to solve Eq. (9). Here k is the
number of iterations before a restart. Since the cost of the iterations grows fast in O(n2) with n as the
iteration counts, the restarted GMRES helps save memory cost. To speed up the convergence of the
GMRES, we consider a right preconditioner by A−1, where the inversion is calculated by a multifrontal
LU factorization such as UMFPACK [21, 20]. Note that only A needs to be explicitly assembled for an
inversion. The scattering operator S can be applied independently for each spatial SE quadrature point
so the full matrix S does not need to be explicitly assembled. For more on the iterative methods, such as
those acceleration techniques in the diffusion and the Fokker-Planck/angular-diffusion regimes, we refer
to [1, 67, 97, 24] and the references therein.
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3. hp-adaptivity

In order to allow more general applicability to problems with steep gradients, an hp-adaptive mesh re-
finement method is presented in this section. The aim is to obtain a mesh and polynomial approximation
setting such that the solution can be most efficiently represented. To achieve this, we will need

1. An error estimator ηK which gives an estimate for the error on each element K ∈ Th.

2. A refinement strategy which utilizes the error estimator to instruct on which elements need to be
refined.

3. A hp-steering criteria for determining whether to perform local h or p refinement.

For the rest of this section we discuss these three ingredients of hp-adaptivity with more details.

3.1. Error estimator

Since DG methods are used for the discretization of the radiative transfer equation, the solution
Ih has jumps across the interfaces between neighbour elements. As the mesh is refined, these jumps
approach zero at about the same rate of convergence as the numerical solution. This fact makes these
jumps a natural choice for error estimators:

ηK :=

(
1

|∂K|

∫
∂K

∣∣[[∫
S

Ih]]
∣∣2)1/2

, (10)

where the jump notation is defined as [[Ih]] := I+
h n

+ + I−h n
−, and |∂K| represents the area (d = 3) or

the length (d = 2) of ∂K. The jump-based estimator is inexpensive to compute and stands out for its
simplicity. Here we only use the intensity moment of Ih, which is justified in [96]. In addition, using
only the intensity moment of Ih helps us focus on spatial adaptivity.

There exist other types of estimators that could be more efficient, but they all require extra computa-
tional expense. For instance, many goal-oriented estimators are designed based on the observation that
in many applications, only partial statistics of the solution are needed (e.g. solution on a small fraction
of the domain, or solution in certain angles). This observation motivates the usage of duality-based
estimators, which require one to first solve a dual system. We refer to [6] for more details. Another type
of estimator requires the solution on a more refined mesh, such as Th/2, and then compare Ih with Ih/2
to estimate the error. Apparently, this estimator can give a good estimate since Ih/2 is a much better
approximation to the exact solution I when it is compared to Ih. But the extra computational cost of
obtaining Ih/2 is much more expensive than evaluating the jumps.

3.2. Refinement strategy

Now we present our hp-refinement algorithm. The given quantities are a tolerance TOL > 0, a

maximum iteration number Niter, an initial mesh T (0)
h , and an initial polynomial degree distribution

p(0). Setting l = 0 to start, our refinement algorithm can be formulated as the following steps:

1. Calculate the solution I
(l)
h,p based on the hp-mesh (T (l)

h ,p(l)).

2. Calculate the error indicator ηK and the global indicator η =
∑
K∈Th ηK .

3. Check whether the stopping criterion is satisfied. Namely, if η ≤ TOL or l ≥ Niter, then STOP the
iteration.

4. Sort ηK in increasing order. Mark the largest rref (10% ∼ 20%) percentage of the elements for
refinement.

5. For the marked elements, use the hp-steering criteria (see Section 3.3) to determine whether an

h-refinement or a p-refinement should be performed. This step gives us (T (l+1)
h ,p(l+1)).

6. Set l = l + 1 and GOTO step 1.

If performing h-refinements naively, the 1-irregular criteria for the mesh Th can be violated. An hp-
mesh violating the 1-irregular criterion can potentially offer stronger representational capacity but will
also suffer from an increased complexity of the inter-element communication. Therefore, a balance point
between mesh representational capacity and inter-element communication efficiency is needed. Here we
adopt the 1-irregular criterion for its simplicity and consider it as our initial step of the exploration.
To guarantee that the 1-irregular criterion is met throughout the refinement procedure, we adopt a
recursive refinement subroutine. Namely, if an element K is instructed to be refined, we shall also refine
its neighbour elements if the child elements of K and the neighbour elements of K violate the 1-irregular
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Figure 1: Demonstration of an h-refinement. Left: the mesh before refinement; the grey element is marked to be h-refined.
Middle: a refinement violating the 1-irregular criteria. Right: recursively refining such that 1-irregular criterion is met.

criterion. This procedure will be recursively performed such that the whole mesh can be guaranteed to
satisfy the 1-irregular criterion. See Figure 1 for a visualization.

For p-refinement, a similar trade-off exists between mesh representational capacity and inter-element
communication efficiency. Suppose the maximal degree is pmax. Then the total number of the different
types of the inter-element communication matrices is O(p3

max) for the 1-irregular criterion. In general,
for an n-irregular mesh, this number is O(p2n+1

max ). When pmax is large, it quickly becomes infeasible to
store these communication matrices. In this case, these matrices have to be calculated on-the-fly, which
can lead to a slow-down for the sweeping algorithm or the assembly of the mass or stiffness matrices.
To avoid this issue, we adopt the even-degree criterion for the hp-mesh, which reduces the number to
O(p2

max). To be more specific, if an element K connects to multiple neighbour elements through an
edge, then we require that these neighbour elements have the same degree. When implementing the
p-refinement, if an element K is marked to be refined, we check whether even-degree criterion is met
between K and its neighbours. If the criterion is not met, we perform p-refinement for the neighbour
elements of K which share the same mesh-size. This procedure is recursively carried out and repeated
until the even-degree criterion is met for the whole mesh. See Figure 2 for a visualization.

6 6

5
3 3

3 3

6 6

5
4 3

3 3

6 6

5
4 4

4 3

Figure 2: Demonstration of a p-refinement where the number represents the polynomial degree. Left: the mesh before
refinement; the grey element is marked to be p-refined. Middle: a refinement violating the even-degree criterion. Right: a
refinement such that even-degree criterion is met.

3.3. hp-steering criteria

To complete the refinement strategy presented in the previous subsection, it remains to specify the
hp-steering criteria so that we can determine whether h or p refinement should be performed. Here we
consider a method estimating the local regularity of the solution by investigating the decaying pattern of
the coefficients obtained from a Legendre expansion of Ih. Once an estimate of the solution regularity is
obtained, p-refinement will be performed if the solution is indicated to be smooth enough, or otherwise
we will adopt h-refinement. Here we briefly explain how this regularity estimate is done; more details
can be found in [47]. For simplicity, we consider a solution u defined on a reference element [−1, 1]2.
Similar arguments apply for any physical element [x0, x1] × [y0, y1]. On [−1, 1]2, u can be expressed as
a linear combination of the tensor basis hm(x)hn(y):

u(x, y) =

px+1∑
m=1

py+1∑
n=1

umnhm(x)hn(y).

Our goal is to estimate the regularity of u based on the coefficients umn. To proceed, we let {Lk}∞i=0 be
the Legendre polynomial on [−1, 1]. Then u can have another expansion:

u(x, y) =

∞∑
i,j=0

aijLi(x)Lj(y).

8



Then we can calculate aij as follows:

aij =
(2i+ 1)(2j + 1)

4

∫
[−1,1]2

u(x, y)Li(x)Lj(y)dxdy

=
(2i+ 1)(2j + 1)

4

px+1∑
m=1

py+1∑
n=1

umn

∫
[−1,1]2

hm(x)hn(y)Li(x)Lj(y)dxdy.

Note that the spectral element basis {hj}p+1
j=1 are associated with the LGL quadrature points and weights

{(ξj , wj)}p+1
j=1 . Thus,

aij ≈
(2i+ 1)(2j + 1)

4

px+1∑
m=1

py+1∑
n=1

umnwmwnLi(ξm)Lj(ξn) for i = 0, ..., px, j = 0, ..., py.

Since the LGL quadrature is exact for polynomials of degree up to 2p− 1 [93], the above approximation
sign can be replaced by an equal sign when i < px and j < py. Also, by the definition of Legendre
polynomials, we know aij = 0 when i > px or j > py. Once aij are obtained, one can estimate the
regularity of u by using the method introduced in [46, 47]. Namely, we compute

(axi )2 :=

∞∑
j=0

|ai,j |2
2

2j + 1
, (ayj )2 :=

∞∑
i=0

|ai,j |2
2

2i+ 1
, lp =

1

2

 log( 2px+1
2|axpx |

2 )

2 log px
+

log(
2py+1
2|aypy |2

)

2 log py

 .

(11)

Then u is predicted to belong to H
lp− 1

2−ε
w ([−1, 1]2) where 0 < ε ≤ lp − 1

2 . If k ≥ 0 is an integer index,
then the weighted Sobolev space Hk

w([−1, 1]2) is defined as follows:

Hk
w([−1, 1]2) =

{
u ∈ L2([−1, 1]2) :

k∑
i=0

∫
[−1,1]2

|D(i)u|2w dx <∞

}
,

where the weight function is w(x, y) := (x+ 1)2(1− x)2. The space Hk
w with non-integer k is defined by

the K-method of interpolation [46]. Now, we use the following criteria to determine whether an h or a
p refinement should be applied: If lp − 1

2 ≥
px+py

2 + 1, we perform h-refinement, otherwise, we perform
p-refinement.

For more on other hp-steering methods, we refer to [64].

4. Numerical Experiments

In this section we carry out numerical experiments to test the performance of the methods. In
particular we investigate the memory reduction and cost, and we do so in different scenarios, to compare
and contrast cases of smooth solutions versus steep gradients, and isotropic (Rayleigh) scattering versus
anisotropic (Mie) scattering. First we consider Rayleigh scattering, and later Mie scattering.

4.1. Rayleigh scattering - smooth solution

For the scenario of Rayleigh (isotropic) scattering, the following scattering phase function is used:

p(θ, θ′) =
1

3π

(
1 + (cos θ cos θ′ + sin θ sin θ′)2

)
.

This phase function is relatively smooth as a function of θ and θ′ compared to the strongly-peaked phase
function of anisotropic (Mie) scattering. Due to the phase function’s smoothness, Rayleigh scattering is
a good first test to compare cases of spatially smooth solutions versus steep spatial gradients, without
additional complicating factors.

In the first experiment, we consider a smooth exact solution I1(x, y, θ) = Is1(x, y)Ia(θ), where

Is1(x, y) = 1 + cos(
2πx

Lx
) sin(

πy

Ly
),

Ia(θ) =

 sin(π2 (1− 2θ
π )) θ ∈ [0, π2 ],

( 2
π (θ − 3π

2 ))3 θ ∈ [ 3π
2 , 2π],

0 else.
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Here Is1 is defined on the domain [0, Lx]× [0, Ly] with Lx = 3 and Ly = 2; see Figure 3 for a visualization
of I1. For this numerical test, the angular component Ia is adapted from the one used in Experiment 1
of [38]. Dirichlet boundary conditions are used for the top and the bottom boundaries of the domain,
while periodic boundary conditions are applied for the left and right sides. We set βe = 2 and ω̃ = 0.5,
and use the method of manufactured solution. Namely, we define B so that I1(x, y, θ) satisfies Eq. (1a):

B(x, y, θ) =
1

βe(1− ω̃)

(
s · ∇I + βeI − βeω̃

1

|S|

∫
S

p(s, s′)I(s′)ds′
)
.

Then, the explicit functional formula for B is obtained by using Matlab’s symbolic computation toolbox
to evaluate the derivatives and integrals in this expression for B. We fix the angular discretization with
four elements where each element uses a P7 approximation. In this way we ensure that the dominating
error comes from the spatial discretization. We use the preconditioned GMRES (GMRESprc) iteration
method which is described above. We stop the iteration when the relative l2 error of the solution array
reaches 10−10.

For I1, we show in Figure 3 the performance of four methods: h-refinement, p-refinement, h-AMR,
and hp-AMR. The hp-AMR method is the proposed method in its full generality, including hp-adaptive
mesh refinement in space. For comparison, the h-AMR method is the same as hp-AMR except the
polynomial degree is fixed as P0 for the spatial approximation. As two additional comparisons, the h-
refinement case uses a spatially uniform mesh with fixed P0 approximation, and the mesh size is decreased
by half for each refinement iteration; and the p-refinement case starts with a 4 × 4 uniform mesh with
P0 approximation and increases the polynomial order by 1 for each refinement iteration.

Figure 3 shows that the hp-AMR algorithm is both fast and low-memory. It is fast in the sense that
the solver time is approximately a linear function of the number of degrees of freedom. It is low-memory
in the sense that the memory reduction ratio, N/n, is large.

As further detail regarding the memory reduction ratio, recall from the heuristic estimate in Eq. (6)
that N/n is the ratio of, on the one hand, the number of spatial degrees of freedom N for a finite
difference or finite volume type of method, and, on the other hand, the number of spatial degrees of
freedom n for a low-memory method such as the proposed hp-AMR. To evaluate N/n, we consider an
error E, and we define n as the number of DOFs needed for a given method to achieve error E, so
a different value of n is found for each of the four methods (h-refinement, p-refinement, h-AMR, and
hp-AMR). As the value of N , we use the estimated number of DOFs for a first-order method to reach
the same error: E = CN−1/d = CN−1/2. Here C is estimated by averaging the samples of E/N−1/2

from the h-refinement experiments, since the h-refinement method uses a P0 approximation and can
therefore act as a typical finite difference or finite volume type of method; hence N/n ≈ 1 in Figure 3
for the h-refinement method, since it is not a low-memory method. The h-AMR method also displays
N/n ≈ 1 in Figure 3 and is not a low-memory method. On the other hand, both the hp-AMR and
p-refinement methods provide a large memory-reduction ratio N/n and hence are low-memory methods,
for this example solution I1.

In essence, the low-memory property is a different interpretation of the well-known spectral accuracy
property. A typical view of spectral accuracy is that one can achieve errors that decrease very rapidly
(e.g., approximately exponentially), as shown in Figure 3, top-right. As a different viewpoint, one can
say that spectral accuracy allows a certain error to be achieved with a large memory savings (Figure 3,
bottom-right), relative to a typical finite difference or finite volume method. The memory reduction
ratio can be written, based on the heuristic estimates from Eq. (6), as

N

n
∼ 1

n
exp

(
cd

q
n1/d

)
, (12)

which shows very rapid (roughly exponential) growth with respect to n. Hence an exponentially decaying
error could be interpreted instead as an exponentially increasing savings in memory.

4.2. Rayleigh scattering - steep gradients

In the second experiment, as a test of the challenges associated with steep spatial gradients, we
consider a different solution I2(x, y, θ) = Is2(x, y)Ia(θ), where

Is2 = x(Lx − x)

(
Ly + y tanh

(
20(x− Lx

2.2
)

))
.
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Figure 3: Fast and low-memory numerical solution for the smooth exact solution I1 with Rayleigh scattering. Top-left:
Illustration of the mean intensity for the smooth exact solution I1. Top-right: Relative L2 error versus number of degrees
of freedom in each spatial dimension, n1/d, with d = 2 here. Bottom-left: Cost of the iterative solver versus total number of
degrees of freedom, nM . The inset shows the scaling as fit to a power law. Bottom-right: Memory reduction factor, N/n,
versus number of degrees of freedom in each spatial dimension, n1/d, with d = 2 here. Comparisons are shown for four
different refinement strategies: h-refinement, p-refinement, h-AMR, and hp-AMR. The hp-AMR and p-refinement methods
are fast and low-memory methods for this example, as shown by the approximately linear scaling in cost (bottom-left) and
large amount of memory reduction (bottom-right).
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The above function has a steep gradient near x = Lx
2.2 . Note that we avoid using Lx

2 since this leads to a
special case in which the interface aligns with element boundaries.

From Figure 4 for I2, we observe again that hp-AMR is significantly more efficient than h-refinement
and h-AMR, as was also the case for the smooth solution I1. The main change due to steep gradients
is that the cost of p-refinement is much higher (Figure 4, bottom-left) and it scales with n not as the
fast, linear scaling of O(n) but as O(n1.42). Figure 5 takes into account the different costs of different
methods, and it shows a plot of error versus cost. From this perspective as well, p-refinement is less
efficient than hp-AMR. Hence, with steep gradients, hp-AMR stands out as the only method here that
is both fast and low-memory.
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Figure 4: Fast and low-memory numerical solution for exact solution I2, which has a steep spatial gradient, with Rayleigh
scattering. Top-left: Illustration of the steep gradient in the mean intensity of exact solution I2, and an example mesh
from hp-AMR. Top-right: Relative L2 error versus number of degrees of freedom in each spatial dimension, n1/d, with
d = 2 here. Bottom-left: Cost of the iterative solver versus total number of degrees of freedom, nM . The inset shows the
scaling as fit to a power law. Bottom-right: Memory reduction factor, N/n, versus number of degrees of freedom in each
spatial dimension, n1/d, with d = 2 here. Comparisons are shown for four different refinement strategies: h-refinement,
p-refinement, h-AMR, and hp-AMR. The hp-AMR method is a fast and low-memory method for this example, as shown
by the approximately linear scaling in cost (bottom-left) and large amount of memory reduction (bottom-right). The
p-refinement method has a higher cost in this example, due to the presence of steep gradients in the solution.

As some additional details of the behavior of the hp-AMR algorithm, for the I2 case, we also plot
the error landscape, the polynomial degree p, and the regularity estimation index lp (see Eq. (11)) in the
last step of the hp-AMR refinement; see Figure 6. From this figure, we observe that the mesh-adaptive
algorithm correctly captures the interface of the irradiance. For the error landscape, we plot both the
real error and the estimated error, and we see that they share similar spatial structures and have similar
magnitudes.

Furthermore, in designing a fast solver, we chose the preconditioned GMRES solver (GMRESprc)
as the fastest solver among several options, as described above. Figure 7 shows a comparison of its
performance against several other options: the original GMRES, source iteration (srcIter), and the
Matlab default sparse matrix solver UMFpack. From Figure 7, we observe that the GMRES by itself is
expensive and does not scale linearly with respect to n. Both source iteration and GMRESprc are fast in
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Figure 5: Error versus cost, as measured in solver compute time, for numerical solution I2 from the case with Rayleigh
scattering (see also Figure 4). The hp-AMR method achieves the lowest error for a given cost for errors smaller than 10−1.

Figure 6: Error landscape (real and estimated errors), polynomial degree, and regularity index, for I2 numerical solution.
Data collected at last step of the hp-AMR algorithm. Note that the numerical solution of I2 and the numerical mesh are
shown in Figure 4.
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the sense that the solver time scales approximately linearly with respect to n. However, GMRESprc is
overall faster than source iteration and is therefore used as the method of choice here. The Matlab solver
UMFpack is the fastest solver when n is small; however, as n increases, UMFpack becomes slower than
GMRESprc. We have observed that UMFpack uses a much larger amount of memory than GMRESprc,
which could be the reason why UMFpack becomes slow when n increases.
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Figure 7: Cost in terms of solver computing time, as a function of the total number of degrees of freedom, nM , for the
hp-AMR method for the solution I2 with Rayleigh scattering. Comparisons are shown for four different iterative solvers:
the original GMRES, source iteration (srcIter), the Matlab default sparse matrix solver (UMFpack), and a preconditioned
GMRES solver (GMRESprc). Two solvers are fast in the sense of approximately linear O(n) scaling of the cost—srcIter
and GMRESprc—and the overall cost of GMRESprc is lower than srcIter.

4.3. Test 3 - Mie Scattering

As another test case, we now consider the challenges that arise from Mie (anisotropic) scattering, for
which the scattering phase function is highly peaked as a function of the angular coordinate. For such a
case, we use the Henyey-Greenstein scattering phase function in Eq. (1b) with g = 0.8. We consider the
domain [0, Lx]× [0, Ly] with Lx = 3 and Ly = 2, and incident radiation coming from the top boundary:

I3(x, Ly, θ) =

{
16
π if θ ∈ [ 3

2π,
3
2π + π

16 ],
0 else,

where the solution is denoted I3 for this test case. No incident radiation is applied on the bottom
boundary, and periodic boundary conditions will be used for the left and right sides of the domain. The
single scattering albedo will be fixed as ω̃ = 10

11 . We chose the extinction parameter βe to be

βe =
1.1

1 + exp (−2k0r(x, y))
, where

r(x, y) :=
Ly
5
−
√

(x− Lx
2

)2 + (y − Ly
2

)2. (13)

See Figure 8 for an illustration of the shape of the scatterer, which is localized in space, similar to an
idealized cloud in the atmosphere, and has steep spatial gradients. Since no exact solution is provided in

this case, we use the error indicator ηK to estimate the global L2 error by calculating
√∑

K∈Th η
2
K |K|,

where ηK is given in Eq. (10). For the angular discretization, we use 32 elements with P0 approximation,
which is equivalent to a discrete ordinate discretization for the angular space, and which we use in order
to focus here on the spatial hp-adaptivity. For the spatial discretization, we again consider the four
different refinement methods, namely, h-refinement, p-refinement, h-AMR, hp-AMR, and we use the
preconditioned GMRES and stop the iteration at the accuracy level 10−10.

For this case of Mie scattering, results of the numerical experiments are shown in Figure 9. In this
figure, we observe essentially the same conclusions as in the test case of Rayleigh scattering in Figure 4.
In particular, the hp-AMR method is fast and low-memory, in the sense that the solver cost is O(n1.16)
and hence nearly O(n) (Figure 9, bottom-left), and the memory-reduction ratio is large (Figure 9,
bottom-right).
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Figure 8: Illustration of the extinction parameter, βe, defined in Eq. (13), for the case of Mie (anistropic) scattering. The
scatterer is localized in space, similar to an idealized cloud in the atmosphere, and has steep spatial gradients. Corresponding
numerical solution I3 is shown in Figure 9.
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Figure 9: Fast and low-memory numerical solution for I3, a case with Mie (anisotropic) scattering. Top-left: Illustration
of the mean intensity of solution I3, and an example mesh from hp-AMR. Top-right: Relative L2 error versus number of
degrees of freedom in each spatial dimension, n1/d, with d = 2 here. Bottom-left: Cost of the iterative solver versus total
number of degrees of freedom, nM . The inset shows the scaling as fit to a power law. Bottom-right: Memory reduction
factor, N/n, versus number of degrees of freedom in each spatial dimension, n1/d, with d = 2 here. Comparisons are
shown for four different refinement strategies: h-refinement, p-refinement, h-AMR, and hp-AMR. The hp-AMR method is
a fast and low-memory method for this example, as shown by the approximately linear scaling in cost (bottom-left) and
large amount of memory reduction (bottom-right). The p-refinement method has a higher cost in this example, due to the
presence of steep gradients in the solution.
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Note that in Figure 9 the p-refinement method appears to have a lower error and larger memory
reduction than the hp-AMR method, for a given n. However, the p-refinement method has a higher cost
(Figure 9, bottom-left). Consequently, in a comparison of error versus cost, in Figure 10, we observe
that hp-AMR is most efficient.
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Figure 10: Error versus cost, as measured in solver compute time, for numerical solution I3 from the case with Mie
(anisotropic) scattering (see also Figure 9). The hp-AMR method achieves the lowest error for a given cost.

Finally, we test the memory occupied by the assembled sparse matrix A (see Eq. (9)) for the three
test scenarios we considered previously, namely, for (1) the test using the smooth solution I1, for (2) the
test using the solution with steep gradients I2, and for (3) the Mie scattering test with the solution I3.

The top row of the Figure 11 shows how the memory occupation of the matrix A increases as we
increase the DOFs of the numerical solution. We observe that the high-order methods (hp-AMR and
p-ref) use more memory to assemble the matrix A compared to the low-order methods (h-AMR, h-ref),
for a given number of solution DOFs. This result is expected since a higher polynomial degree p will
lead to a larger non-sparsity pattern due to the assembly of the advection term

∫
Ka

∫
K

(Is ·∇v); we refer
to the Appendix B for more details on this term. Between the high-p methods, the hp-AMR method
uses less memory than p-ref in the two cases with steep gradients (I2 and I3). Also, while this top row
of panels is informative for comparisons at a fixed number of solution DOFs, it is also informative to
compare the matrix A memory that is used to achieve a certain accuracy or error.

In the bottom row of Figure 11, we show how fast the numerical errors decrease based on the memory
occupation of the matrix A. We observe that our proposed hp-AMR is the most efficient method in
reducing the corresponding errors for a given amount of matrix A memory occupation, for test 2 and
test 3. For test 1, it behaves closely to the p-refinement method and is much more efficient than the
other methods (h-AMR and h-ref). These results further strengthen our conclusion that hp-AMR is the
most memory-efficient and versatile method in reducing the numerical error.

5. Concluding Discussion

Given the large memory needed to represent the radiant intensity I(x, y, z, θ, φ), and the steep gra-
dients that arise in applications such as medical imaging and atmospheric clouds, an hp-AMR strategy
was investigated here as a candidate for a fast, low-memory method.

For all cases of numerical tests here—smooth or steep gradients, Rayleigh or Mie scattering—high-
order methods are significantly more efficient than low-order methods. In other words, methods with
high p substantially outperform methods with fixed smaller p such as h-AMR. Of the two high-order
methods here, hp-AMR is more efficient at representing the solution than p-refinement at places where
the solution has steep gradients. The use of hp-AMR for radiative transfer has received little attention,
as described in the Introduction section. An important result here is the potential benefit of hp-AMR
for helping to overcome the prohibitive memory expense that commonly occurs for radiative transfer.

Extensions of the present methods could provide even further speedup and memory reduction. For
instance, note that the memory reduction was in the spatial dimensions here, as a first investigation as
it already produces substantial savings. One could consider similar methods in the angular dimensions
and possibly in the electromagnetic frequency dimension, which we leave as future work. Furthermore,
the two-dimensional case is presented here since it allows a high-resolution solution to be computed as a
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Figure 11: Memory occupation of the matrix A, quantified as #A, the number of the non-zero entries of A. Top row: the
ratio #A

nM
versus the the number of degrees of freedom nM of the solution Ii, where i = 1, 2, 3 corresponds to the left,

middle, and right panels, respectively. Bottom row: (#A)1/d (with d = 2 here) versus the error for the solution Ii, where
i = 1, 2, 3 corresponds to the left, middle, and right panels, respectively.

basis of comparison for assessing accuracy. The three dimensional case is expected to be amenable to a
similar framework with appropriate modifications, and DG and spectral element methods in general are
efficiently scalable in parallel computations [22, 69]. Also, note that the two-dimensional case is already
potentially relevant for multi-scale modeling frameworks in climate modeling (sometimes called “super-
parameterization”), for which the fine-scale models are typically two-dimensional atmospheric models
[37, 80, 71, 40]. Furthermore, in two or three dimensions, the use of AMR for radiative transfer could
also be useful for some recent efforts on atmospheric fluid dynamics simulations with mesh refinement
in the vertical direction [68, 63].

Additional benefit could also come from theoretical advances for AMR methods, such as finding or
proving reliable and efficient error estimators [94, 6], and refinement strategies which guarantee sufficient
error reduction [18, 17, 16]. The theory for AMR is relatively well-developed for h-AMR and elliptic
type problems. For hp-AMR and transport equations, theoretical works are less developed, and heuristic
approaches are widely used and are based on theoretical ideas and show successful results but can benefit
from advances in provable guarantees for designing error estimators and refinement strategies.

With the memory reduction achieved with hp-AMR, it is possible that the computational cost of 3D
radiative transfer could be significantly more affordable. Many applications are possible for future work,
including medical imaging, satellite remote sensing, and weather and climate prediction.
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Appendix A. Low-memory representation by DG spectral element: Further details

Here we explain how the basis functions, the mass and the stiffness matrices are constructed. We
begin by considering the one-dimensional basis functions. Let {hm(x̂)}p+1

m=1 (p as the polynomial degree)
be the spectral element basis on the reference element [−1, 1]. When x̂ /∈ [−1, 1], we let hm(x̂) = 0
for convenience. Here we consider the nodal basis. Namely, we choose {hm}p+1

m=1 to be the Lagrange
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polynomials associated with the Legendre–Gauss–Lobatto (LGL) points {ξi}p+1
i=1 such that hj(ξi) = δij .

We also let {wi}p+1
i=1 be the associated quadrature weights. Let F[a,b] be the affine map from [−1, 1] to

[a, b]. Then the basis on [a, b] are constructed as follows:

φ[a,b]
m (x) := hm ◦ F−1

[a,b](x).

For any given function f(x) with sufficient regularity, we have∫ b

a

f(x)φ[a,b]
m (x)dx =

|b− a|
2

∫ 1

−1

f(F[a,b](x̂))hm(x̂)dx̂ ≈ |b− a|
2

wmf(F[a,b](ξm)).

We remark that the quadrature rule by {ξi, wi}p+1
i=1 is exact for function in P2p−1 [93]. If we replace f

by gφ
[c,d]
j , then∫ b

a

g(x)φ[a,b]
m (x)φ

[c,d]
j (x)dx =

∫ b

a

g(x)hm ◦ F−1
[a,b](x)hj ◦ F−1

[c,d](x)dx =
|b− a|

2

∫ 1

−1

hm(x̂)(g hj ◦ F−1
[c,d]) ◦ F[a,b](x̂)dx̂

≈ g ◦ F[a,b](ξm)
|b− a|

2
wmhj ◦ F−1

[c,d] ◦ F[a,b](ξm) =: g ◦ F[a,b](ξm)M
[a,b]←[c,d]
mj ,

where the matrix M
[a,b]←[c,d]
mj represents the transfer of the degrees of freedoms (DOFs) from the element

[c, d] to [a, b]. Specifically, if [a, b] = [c, d], then we write

M
|b−a|
mj := M

[a,b]←[a,b]
mj =

|b− a|
2

wmδjm.

Note that the above mass matrix is diagonal, allowing an efficient inversion.
Finally, we consider the integration of the following form as the matrix responsible for advection:∫ b

a

φ
[a,b]
j (x)∂xφ

[a,b]
m (x)dx =

∫ b

a

φ
[a,b]
j (x)∂x̂hm ◦ F−1

[a,b](x)
2

|b− a|
dx =

∫ 1

−1

hj(x̂)∂x̂hm(x̂)dx̂ ≈ wj∂x̂hm(ξj) =: Sjm.

This form will appear in the discretization of the advection operator s · ∇I in the radiative transfer
equation.

Appendix B. Discontinuous Galerkin: Further details

In this section, we rewrite the integral terms of Eq. (8) into matrix forms, which can be directly used
for implementation. We will put an underline to these matrices for the ease of identification. For each
spatial-angular element K×Ka ∈ Th×T a,Kh , we have K×Ka = [xK0 , x

K
1 ]× [yK0 , y

K
1 ]× [θK

a

0 , θK
a

1 ]. Thus,
we can express the numerical solution Ih as follows:

Ih =
∑
K∈Th

∑
Ka∈T a,Kh

∑
m1,m2,m3

IK×K
a

m1,m2,m3
φ

[xK0 ,x
K
1 ]

m1 (x)φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θK

a

0 ,θK
a

1 ]
m3 (θ),

where IK×K
a

m1,m2,m3
represents the DOFs of Ih on the elementK×Ka. Let v = φ

[xK0 ,x
K
1 ]

m′1
(x)φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ)

be the test function. Then, for the advection term, we have∫
Ka

∫
K

Ihs · ∇v =
∑

m1,m2,m3

IK×K
a

m1,m2,m3

∫
Ka

∫
K

φ
[xK0 ,x

K
1 ]

m1 (x)φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θK

a

0 ,θK
a

1 ]
m3 (θ)

(cos θ, sin θ) ·
(
∂xφ

[xK0 ,x
K
1 ]

m′1
(x)φ

[yK0 ,y
K
1 ]

m′2
(y), φ

[xK0 ,x
K
1 ]

m′1
(x)∂yφ

[yK0 ,y
K
1 ]

m′2
(y)
)
φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ) dxdydθ

≈
∑

m1,m2,m3

IK×K
a

m1,m2,m3

(
Sm1,m′1

M
|yK1 −y

K
0 |

m2,m′2
cos(F[θK

a
0 ,θK

a
1 ](ξm3

))

+M
|xK1 −x

K
0 |

m1,m′1
Sm2,m′2

sin(F[θK
a

0 ,θK
a

1 ](ξm3
))
)
M
|θK

a

1 −θK
a

0 |
m3,m′3

.
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For the extinction term, we have∫
Ka

∫
K

βeIhv =
∑

m1,m2,m3

IK×K
a

m1,m2,m3

∫
Ka

∫
K

βe(x, y)φ
[xK0 ,x

K
1 ]

m1 (x)φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θK

a

0 ,θK
a

1 ]
m3 (θ)

φ
[xK0 ,x

K
1 ]

m′1
(x)φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ) dxdydθ

≈
∑

m1,m2,m3

IK×K
a

m1,m2,m3
βe ◦ FK(ξm1 , ξm2)M

|xK1 −x
K
0 |

m1,m′1
M
|yK1 −y

K
0 |

m2,m′2
M
|θK

a

1 −θK
a

0 |
m3,m′3

.

For the scattering term, we have∫
K

βeω̃

|S|

∫
Ka

∫
S

p(s, s′)Ih(s′)v(s)ds′ds

=

∫
K

βeω̃

|S|

∫
Ka

∫
S

p(θ, θ′)φ
[xK0 ,x

K
1 ]

m′1
(x)φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ)∑

Ka
∗∈T

a,K
h

∑
m1,m2,m3

I
K×Ka

∗
m1,m2,m3φ

[xK0 ,x
K
1 ]

m1 (x)φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θ
Ka∗
0 ,θ

Ka∗
1 ]

m3 (θ′) dθ′dθdxdy

≈
∑

Ka
∗∈T

a,K
h

∑
m1,m2,m3

I
K×Ka

∗
m1,m2,m3 (

βeω̃

|S|
) ◦ FK(ξm1

, ξm2
)M
|xK1 −x

K
0 |

m1,m′1
M
|yK1 −y

K
0 |

m2,m′2
wm3

wm′3
|Ka
∗ ||Ka|

4
p(FKa(ξm′3),FKa

∗
(ξm3

)).

For the boundary advection term, we have∫
Ka

∫
∂K

Îhv(s · n) =
∑
F∈FK

∫
Ka

∫
F

Îhv(s · n)

=
∑
F∈FK

∫
Ka∩{s·nF≥0}

∫
F

Ihv(s · nF ) +
∑
F∈FK

∫
Ka∩{s·nF≤0}

∫
F

Inbrh v(s · nF ),

where Inbrh is the restriction of Ih on ∂K from the neighbour elements of K, and FK represents the
collection of the faces of K. Let us next consider a specific case that F is the right face of the element
K, namely, F = {xK1 } × [yK0 , y

K
1 ]. Then we can write the first term as follows:

∫
Ka∩{s·nF≥0}

∫
F

Ihv(s · nF ) =

∫
Ka∩{s·nF≥0}

∫ yK1

yK0

pKx ,p
K
y ,p

Ka∑
m1,m2,m3=1

IK×K
a

m1,m2,m3
φ

[xK0 ,x
K
1 ]

m1 (xK1 )φ
[yK0 ,y

K
1 ]

m2 (y)φ
[θK

a

0 ,θK
a

1 ]
m3 (θ)

φ
[xK0 ,x

K
1 ]

m′1
(xK1 )φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ) (cos(θ), sin(θ)) · (1, 0) dxdydθ

≈
∑

m1,m2,m3

IK×K
a

m1,m2,m3
δm1,pKx

δm′1,pKx M
|yK1 −y

K
0 |

m2,m′2
M
|θK

a

1 −θK
a

0 |
m3,m′3

cos(F[θK
a

0 ,θK
a

1 ](ξm3
))1cos(F

[θK
a

0 ,θK
a

1 ]
(ξm3

))≥0,

where 1 is the indicator function. For the second boundary integral term, we can proceed as follows:∫
Ka∩{s·nF≤0}

∫
F

Inbrh v(s · nF )

=

∫
Ka∩{s·nF≤0}

∫ yK1

yK0

∑
Kn∈IK,Fnbr

∑
Ka
∗∈T

a,Kn

h

pK
n

x ,pK
n

y ,p
Ka∗
a∑

m1,m2,m3=1

I
Kn×Ka

∗
m1,m2,m3φ

[xK
n

0 ,xK
n

1 ]
m1 (xK

n

0 )φ
[yK

n

0 ,yK
n

1 ]
m2 (y)φ

[θ
Ka∗
0 ,θ

Ka∗
1 ]

m3 (θ)

φ
[xK0 ,x

K
1 ]

m′1
(xK1 )φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ) (cos(θ), sin(θ)) · (1, 0) dxdydθ

≈
∑

Kn∈IK,Fnbr

∑
Ka
∗∈T

a,Kn

h

∑
m1,m2,m3

I
Kn×Ka

∗
m1,m2,m3 δm1,1δm′1,pKx M

[yK0 ,y
K
1 ]←[yK

n

0 ,yK
n

1 ]

m′2,m2

M
[θK

a

0 ,θK
a

1 ]←[θ
Ka∗
0 ,θ

Ka∗
1 ]

m′3,m3
cos(F[θK

a
0 ,θK

a
1 ](ξm′3))1cos(F

[θK
a

0 ,θK
a

1 ]
(ξm′3

))≤0,
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where IK,Fnbr represents the collection of neighbour elements of K through the face F . Similar calculation
can be performed for the other faces of K (the top, left, and bottom face) and we will not repeat here.
Finally for the forcing term, we have∫

Ka

∫
K

B̃v =

∫
Ka

∫
K

B̃(x, y)φ
[xK0 ,x

K
1 ]

m′1
(x)φ

[yK0 ,y
K
1 ]

m′2
(y)φ

[θK
a

0 ,θK
a

1 ]

m′3
(θ) dxdydθ

≈|K||K
a|

8
wm′1wm′2wm′3B̃(F[xK0 ,x

K
1 ](ξm′1), F[yK0 ,y

K
1 ](ξm′2)).

The above discretized forcing term can be written into an array which has the same size of the free DOFs
of the numerical solution Ih.
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error estimates for the hp-version of the local discontinuous Galerkin method for convection–
diffusion problems. Mathematics of Computation, 71(238):455–478, 2002.

[9] Rafael O Castro and Juan Pablo Trelles. Spatial and angular finite element method for radiative
transfer in participating media. Journal of Quantitative Spectroscopy and Radiative Transfer,
157:81–105, 2015.

[10] Subrahmanyan Chandrasekhar. Radiative Transfer. Dover Publications, New York, 1960.

[11] SA Clough, MW Shephard, EJ Mlawer, JS Delamere, MJ Iacono, K Cady-Pereira, S Boukabara,
and PD Brown. Atmospheric radiative transfer modeling: A summary of the AER codes. Journal
of Quantitative Spectroscopy and Radiative Transfer, 91(2):233–244, 2005.

[12] Bernardo Cockburn, Guido Kanschat, Dominik Schötzau, and Christoph Schwab. Local discontinu-
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