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Abstract

The inverse problem for radiative transfer is important in many applications, such
as optical tomography and remote sensing. Major challenges include large memory re-
quirements and computational expense, which arise from high-dimensionality and the
need for iterations in solving the inverse problem. Here, to alleviate these issues, we
propose adaptive-mesh inversion: a goal-oriented hp-adaptive mesh refinement (AMR)
method for solving inverse radiative transfer problems. One novel aspect here is that
the two optimizations (one for inversion, and one for mesh adaptivity) are treated simul-
taneously and blended together. By exploiting the connection between duality-based
mesh adaptivity and adjoint-based inversion techniques, we propose a goal-oriented er-
ror estimator, which is cheap to compute, and can efficiently guide the mesh-refinement
to numerically solve the inverse problem. We use discontinuous Galerkin spectral el-
ement (DGSE) methods to discretize the forward and the adjoint problems. Then,
based on the goal-oriented error estimator, we propose an hp-adaptive algorithm to
refine the meshes. Numerical experiments are presented at the end and show conver-
gence speed-up and reduced memory occupation by the goal-oriented mesh adaptive
method.

1 Introduction

This paper concerns the numerical solution of inverse radiative transfer equation, which
serves as the mathematical foundation for applications such as optical tomography [2, 4, 32],
remote sensing [34, 13, 14, 29], and neutron transport [27, 28, 30]. Despite its wide appli-
cations, devising numerical methods for inverse radiative transfer is notoriously challenging
because of the high-dimensionality of the forward problem, for which standard discretiza-
tions with sufficient accuracy would usually require large memory occupation, and can render
the solver too slow to be applicable. Therefore, it is of great interest to devise numerical
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methods which use fewer degrees of freedoms (DOFs) or less memory, while still maintain
the accuracy requirement.

Among the various types of memory reduction methods, we are interested in hp-adaptive
mesh refinement (hp-AMR) methods. This is for several reasons. Firstly, the method is
versatile in the sense that it can efficiently represent the solution in regions where it is smooth,
while also capturing local features. This advantage is especially beneficial for applications
such as optical tomography and remote sensing, for which it is common to observe a pattern
with a few local features embedded in a smooth background distribution (clouds in the
sky for remote sensing; narrow, dirac-delta like inflow laser beam for optical tomography;
etc.). Another reason concerns the well-developed theoretical understanding of adaptive
mesh refinement (AMR), and its success in the field of solid and fluid mechanics. Indeed,
the concept of hp-AMR traces back to at least the 1980s by the pioneering work of Babuška
and his collaborators [18]; see also the review paper [5] for hp-finite element methods (FEM).
It was shown that hp-adaptive FEM can achieve exponential convergence even when the
solution presents singularities. This suggests the great potential of using hp-AMR to reduce
the DOFs for radiative transfer. Our recent work [15] demonstrates this potential for the
forward problem, while here we consider solving the inverse radiative transfer problem.

Before we proceed to the introduction of our proposed method, we first review some
related existing work on inverse radiative transfer, or more generally on inverse transport
problems. The well-posedness of inverse transport problems was studied in [12, 37, 6] by ex-
ploiting the singular decomposition of the albedo operators. Then, the stability of the inverse
problem in different scaling was studied in [10, 11, 25, 26]. For the numerical discretization
of the inverse problem, the time-independent inverse radiative transfer was considered in
[24, 22, 23, 1], and the frequency domain problem was considered in [33]. Finally, [32]
gives a review on the numerical techniques for the inverse transport problems in medical
imaging. In [3], the effect of the numerical error on the quality of the reconstruction was
discussed, where it was shown that the numerical error on the forward/adjoint solver can
lead to significant errors in the reconstruction of the optical images.

Considering the efficiency of AMR in reducing numerical error, it is not surprising to
see that AMR has also been applied to inverse problems. In [19, 20], the authors consid-
ered the diffuse optical imaging problem, where the connection between the forward/adjoint
solver error and the reconstruction error was studied theoretically, and an AMR method was
proposed based on their theoretical findings. In [36, 35], finite volume (FV) based AMR
methods for fluorescence/luminescence imaging were studied numerically. In [7, 8], a FEM
based AMR method was proposed for fluorescence-enhanced optical tomography, and a large
savings in DOFs was observed in numerical tests.

In this paper, we propose a goal oriented hp-AMR method which is distinctive to the
existing AMR approaches of solving the inverse radiative transfer equation in the follow-
ing aspects. First, we devise a novel goal-oriented error estimator, which provides more
efficient mesh-refinement strategies compared to energy or L2-norm based error estimators;
see [9, 39]. In addition, we use hp-AMR instead of only h-AMR with fixed p. The extra
p-adaptivity allows more efficient representation of the solution where it is smooth. Finally,
we consider the full radiative transfer equation instead of its diffusion-type approximation.
The full radiative transfer equation is a more computationally challenging task because of
the interplay of both the advection and the scattering terms. Since we aim for maximal
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generality of our method for the different regimes of the radiative transfer equation, we use
discontinuous Galerkin (DG) methods to approximate the forward and the adjoint equations.
The DG methods can handle well both the advection-dominated and the diffusive regimes,
by their flexible choices of the numerical traces. For instance, upwind-type fluxes allow the
schemes to suppress unphysical oscillations in the advection-dominated regime, while in the
diffusive regime, HDG-type fluxes enable the techniques of static condensation to save more
DOFs. Finally, the DG setting allows a straightforward implementation of hp-adaptivity,
which lies at the center of our memory reduction method.

The development of our method is based on two key observations. The first is that
there exists a goal function, and by minimizing this goal function, the discretized error
landscape Φhpσq will be sandwiched by the original landscape Φpσq in the PDE setting (see
(4) and (13) for their definitions). This observation motivates the use of this goal function
for devising error estimators for AMR. Another observation is that when the numerical error
is large, we can use the adjoint solution, which was originally calculated for updating the
optical parameters, to also devise the goal-oriented error estimators for doing AMR. This
observation suggests that the goal-oriented AMR is especially suitable for the inverse problem
setting, since the adjoint solution only needs to be solved for one time but can serve two
purposes, namely, the gradient calculation and the error estimator calculation.

The rest of the paper is organized as follows. In Section 2, we consider the forward and
the inverse problems of the radiative transfer in the PDE setting, and propose an algorithm
of reconstructing the optical coefficients. This algorithm will serve as the “PDE map” for
the numerical discretization of the inverse equation. In Section 3, we first introduce the
DG discretization for the forward and the adjoint problems, and the gradient calculation.
Then, we propose the goal function and devise the goal-oriented error estimators. At the
end, we combine the discretization and the error estimator and propose an algorithm of
reconstructing the optical coefficient with hp-mesh adaptivity. Finally, in Section 4, we
present numerical experiments to test the performance of our proposed method.

2 Forward and inverse problems

In this section, we introduce the forward and the inverse problems of the radiative transfer
equation. Then, an algorithm (Algorithm 1) is proposed to reconstruct the optical coefficients
in the PDE setting.

2.1 Forward problem

Let Ω Ă Rd be a bounded Lipschitz domain, and S represent the unit sphere in Rd. Let BΩ
be the boundary of Ω, and n the outward-pointing unit normal vector on the boundary. We
denote by

Γ` :“ tpx, sq P BΩ ˆ S : n ¨ s ě 0u, Γ´ :“ tpx, sq P BΩ ˆ S : n ¨ s ď 0u,
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the outflow and the inflow boundary of Ω ˆ S, respectively. We consider the following
(time-independent) radiative transfer equation: find u P V such that

Dpσqrus :“ s ¨ ∇u ` pσa ` σsqu ´ σs

ż

S

P ps, s1
qups1

q “ f in Ω ˆ S, (1a)

u “ g on Γ´, (1b)

In the above equation, upx, sq is the radiative intensity at spatial location x and along the
direction s P S, while σapxq ě 0, σspxq ě 0, fpx, sq, and gpx, sq are the absorption coefficient,
the scattering coefficient, the source term, and the inflow radiation, respectively. We assume
the scattering phase function P ps, s1q to have the form of the Henyey-Greenstein function:

P ps, s1
q “

1 ´ g2

cp1 ` g2 ´ 2g cos θq3{2
, (2)

where g is the asymmetric parameter, and c is chosen such that
ş

S
P ps, s1qds1 ” 1. Here V

is the solution space

V :“ tu P L2
pΩ ˆ Sq : s ¨ ∇u P L2

pΩ ˆ Squ, V g :“ tu P V : u “ g on Γ´
u,

where V g is the affine space of V satisfying the inflow condition (1b). Note that V 0 is a
subspace of V .

To render the presentation more concise, we rewrite (1) into a more compact form.
Let F “ pf, gqT , and Lpσq “ pDpσq, γ´qT , where γ´ is the trace operator to L2pΓ´q, and
σ represents the collection of both σe and σs, namely σpxq :“ pσepxq, σspxqq. Then the
equation (1) transforms into

Lpσqrus “ F. (3)

In the equation (1) (or (3)), we use the square bracket r¨s to indicate that Dpσq (or Lpσq)
depends linearly on u; the round bracket suggests that D (or L) can depend non-linearly
on σ. In the setting of the forward problem, the optical property represented by σ and the
source/boundary term F are given as input data. Then the task it to solve the equation
(1) (or (3)) for the radiative intensity u. We refer to [16] and the references therein for the
well-posedness of the forward problem.

2.2 Inverse problem

In the setting of the inverse problem, we are given certain measurements of the solution,
here denoted as Mu, while the task is to infer the distribution of the optical property σ or
the source term f . The former task fits into the field of optical tomography, while the latter
one is usually referred to as inverse source problems. We refer to [2, 6] for a review on these
topics.

In this paper, we focus on the optical tomography problem. To be more specific, we
consider the task of reconstructing the optical property of the medium σ, based on a set
of tests determined by the source terms F i with i “ 1, ..., Nt, and a set of measurements
on the outflow boundary Γ`, here denoted as Mj with j “ 1, ..., Nm. This problem can be
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formulated as an optimization problem. Suppose σ˚ is the target optical coefficient we would
like to reconstruct. We define yij “ Mjui “ MjpLpσ˚qq´1rF is as the measurement data. For
many applications, the data are polluted by noise. In such a case we define yij :“ Mjui ` δij
where δij represent the noise. The optical tomography problem becomes

min
σ

Φpσq :“
Nt
ÿ

i“1

Nm
ÿ

j“1

wij|Mj
pLpσqq

´1
rF i

s ´ yij|2 ` αRpσq, (4)

where wij are the weights associated to each test-measurement signal yij. A typical choice
is wij “ 1

|yij |2
; see [32]. Here, αRpσq is the regularization term and α is the regularization

parameter. Some widely used examples of regularization include the L2-regularization, for
which we choose Rpσq “ }σ´σ}L2pΩq (where σ is a spatial average), or H1-regularization, for
which we choose Rpσq “ }∇σ}L2pΩq. For more on regularization techniques and the choices
of regularization parameters, we refer to the monograph [17] and the references therein.

Note that Φpσq is nonlinear and there is no explicit expression for Φpσq in general cases.
To proceed, we transform (4) into a PDE-constrained optimization problem:

min
σ,u

Φpσ, uq :“
Nt
ÿ

i“1

Nm
ÿ

j“1

wij|Mjui
´ yij|2 ` αRpσq, (5a)

subject to Lpσqrui
s “ F i for i “ 1, ..., Nt. (5b)

To solve the problem, we introduce the Lagrangian

Ψpσ, u, vq “ Φpσ, uq `
ÿ

i

xLpσqrui
s ´ F i, viy, (6)

where vi is the Lagrange multiplier. By the Karush-Kuhn-Tucker (KKT) necessity condition
[38], the solution of (5a), if exists, is also the first-order stationary point of Ψ in (6). By
taking Fréchet derivatives of (6), we obtain

δΨ

δσ
rδσs “ αR1

pσqrδσs `
ÿ

i

xL1
pσqrδσsrui

s, viy, (7a)

δΨ

δui
rδui

s “ 2
Nm
ÿ

j“1

wijpMjui
´ yijqMjδui

` xδui,Lpσq
˚
rvisy i “ 1, ..., Nt, (7b)

δΨ

δvi
rδvis “ xLpσqrui

s ´ F i, δviy i “ 1, ..., Nt, (7c)

where x¨, ¨y is the trial-test bracket, manifiested as the summation of the L2-inner product
on Ω ˆ S and Γ´, and Lpσq˚ is the adjoint operator of Lpσq.

Now, the optimization problem reduces to finding the stationary point pσ˚, u˚, v˚q such
that equations (7) equal 0. Based on (7), we propose the following Algorithm 1 of finding
σ˚. In the algorithm, the forward and the adjoint problems associated with (7c) and (7b) are
first solved to obtain ui and vi, which are then used to update σ by an updating direction δσk

and the step length γ ą 0. The step length γ can be determined by a line search [31]. The
updating direction can be simply chosen as the gradient given by (7a), or by Quasi-Newton
method such as the BFGS method. We refer to [31] more details.
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Algorithm 1 Reconstructing optical coefficients - PDE setting

1: Set the maximal iteration count Nmax iter and the error tolerence ϵ ą 0
2: Initialize σ0

3: Set k “ 0
4: while k ď Nmax iter do
5: Using σk, solve (7c) “ 0 to obtain ui

6: Using σk and ui, solve (7b) “ 0 to obtain vi

7: Using σk, ui, vi, and (7a) to obtain the updating direction δσk

8: Update the optical coefficients by σk`1 “ σk ´ γ δσk, where γ is determined by a line
search

9: Update the iteration count: k “ k ` 1
10: if |Φpσkq ´ Φpσk´1q|{|Φpσkq| ă ϵ then
11: Break the loop
12: end if
13: end while

3 Numerical discretization

In this section, we introduce the numerical approximations to the inverse problem (4), man-
ifested by using the discontinuous Galerkin spectral element (DGSE) methods to discretize
the forward problem (7c)=0, the adjoint problem (7b)=0, and the gradient calculation (7a).
Then, we propose a goal-oriented error estimator which can be easily calculated based on
the forward and the adjoint numerical solution. Finally, based on the error estimator, we
introduce an hp-adaptive mesh refinement algorithm to solve the inverse radiative transfer
problem numerically.

3.1 Discontinuous Galerkin

3.1.1 Approximation spaces

We begin by considering the approximation spaces. For simplicity, we restrict ourselves to
consider only a 2D domain Ω discretized by rectangular meshes Th. The generalization to
3D and polyhedral meshes is straightforward under the DG setting. Since any K P Th is
rectangular, we can write K “ KxˆKy. We require that the mesh Th satisfies the 1-irregular
condition, i.e., for any element K P Th, there are at most 2 neighbour elements connecting to
K through each edge. Here h is both an index for the triangulations Th and the mesh-size,
which is defined as h :“ maxKPTh hK . For each K P Th, we denote by T a,K

h the triangulation
of the unit sphere S. We also let FK be the collection of the faces of K. Now we introduce
the approximation space:

Vh :“ t
ÿ

KPTh

ÿ

KaPT a,K
h

ÿ

i,j,k

ui,j,k ϕ
Kx

i pxqϕKy

j pyqϕKa

k pθq : ϕK‹

i

ˇ

ˇ

pK‹ `1

i“1
are a set of polynomial bases on K‹

u,

where pK‹ represents the polynomial degree and ‹ P tx, y, au. Here we choose ϕ
ra,bs

i pxq “

ϕi ˝ F´1
ra,bs

pxq where ϕi supported on r´1, 1s is the Lagrange polynomial basis associated
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to the i-th Gauss-Legendre-Lobatto quadrature points, and Fra,bsppxq “ b´a
2

ppx ` 1q ` a is
the push-forward map. This choice of basis gives us spectral element methods. Note that
the space Vh is completely determined by the mesh discretization Th and the polynomial
degrees pKa , pKy , and pKa which are associated to each spatial-angular element K ˆKa. We
will sometimes write Thp to denote the mesh Th encoded with also the polynomial degree
information. Finally, to incorporate the boundary condition, we introduce

V g
h :“ tuh

ˇ

ˇ

pΩ˝ˆSqYΓ` P Vh : uh

ˇ

ˇ

Γ´ “ gu.

As a special case, V 0
h is a subspace of Vh with zero inflow radiation.

For notation conciseness, we define

pf, gqKˆKa :“

ż

K

ż

Ka

fpx, sqgpx, sqdsdx

as the L2 inner product on K ˆ Ka, and we denote the associated norm as }f}KˆKa :“

pf, fq
1{2
KˆKa . Also, when there are two elements K` and K´ which share a common face F ,

we introduce the jump notation rruhss :“ u`
hn

` ` u´
hn

´. If the face F is an exterior face,
namely, if F Ă BΩ, then rruhss :“ 0.

3.1.2 DG for the forward and adjoint problems

Now we are ready to introduce the DG numerical discretization for the radiative transfer
equations. We first define the following bilinear form:

ahpuh, vhq :“
ÿ

KPTh

ÿ

KaPT a,K
h

˜

ż

BK

ż

Ka

ps ¨ nqpuhvh ´

ż

K

ż

Ka

uhs ¨ ∇vh (8a)

`

ż

K

ż

Ka

pσa ` σsquhvh ´

ż

K

σs

ż

Ka

ż

S

P ps, s1
quhps1

qds1vhpsqds

¸

,

where we take the upwind numerical trace puh:

puh

ˇ

ˇ

BK
:“

"

unbr
h if s ¨ nF ă 0 and F is an interior face,

uh

ˇ

ˇ

BK
otherwise,

(8b)

and unbr
h is the restriction of uh from the neighbour elements of K on F .

The DG approximation for the i-th test of the forward problem (7c) reads as

find ui
h P V gi

h such that ahpui
h, v˚q “

ż

Ω

ż

S

f iv˚ @v˚ P V 0
h . (9)

On the other hand, the DG approximation for the i-th test of the adjoint problem (7b) reads
as

find vih P V 0
h such that ahpu˚, v

i
hq “ M i

pui
hqru˚

s @u˚ P V 0
h , (10)
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where

M i
pui

hqru˚
s :“ 2

ÿ

j

wijpy
ij

´ Mjui
hqMju˚ (11)

are the measurements. For different tests, we choose different underlying hp-meshes. We
denote by T i

hp and T ‹´i
hp as the underlying hp-mesh for the i-th test of the forward and the

adjoint problem, respectively. We shall assume that T ‹´i
hp is obtained by refining T i

hp. For

instance, T ‹´i
hp can be a one-level h or p-refinement of T i

hp. This extra refinement for the
adjoint meshes will be essential for devising the error estimators for the inverse problem,
and will be discussed in more detail in Section 3.2.2.

3.1.3 Gradient calculation in the discrete setting

For the rest of this subsection, we consider how to use the forward and the adjoint numerical
solutions, namely ui

h and vih, to calculate the gradient and update the optical parameter in
the DG setting. Namely, we consider the DG discretization for the gradient calculation (7a).

We begin by introducing the approximation spaces for the optical parameter σ. Since we
use the DG spectral element method as our radiative transfer equations solver, it is natural
to choose the discretized optical parameter σh to live in a DG spectral element space. We
shall denote by T σ

hp as the underlying mesh for this space, and by Σh, or ΣhpT σ
hpq as the space.

Here we adopt the parametric reconstruction method [32] as a regularization to relieve
the ill-posedness of the original inverse problem (4). This means that we shall set T σ

hp to live
in a coarse mesh with large mesh-size. In the extreme case, we choose T σ

hp to be the one-
element mesh covering the whole domain Ω. Then, the polynomial degree p can be adjusted
in the sense that a lower degree p represents a stronger regularization effect (restriction to
the low-frequency modes) and vice versa.

Now, the discretized version of (7a) becomes

δΨh

δσh

rδσhs “ αR1
pσhqrδσhs `

Ntst
ÿ

i“1

ÿ

KPT i
h

ÿ

KaPT a,K
h

`

pui
hv

i
h, δσa,hqKˆKa ` pui

hv
i
h ´ ui,s

h vih, δσs,hqKˆKa

˘

,

(12)

for any test function δσh P Σh, where ui,s
h :“

ş

S
P ps, s1qui

hps1qds1, and ui
h and vih are the

solution of (9) and (10), respectively. By letting the test function δσh go over all the basis
polynomials of Σh, we obtain a vector as the updating gradient for σh.

We conclude Section 3.1 by the following Algorithm 2.

3.2 Goal-oriented error estimator

3.2.1 The goal function

The numerical solver (9) and (10) can be rewritten in a compact form as follows:

ui
h “ DGSEpT i

hp, σqrF i
s, vih “ DGSE˚

pT i
hp, σqrM i

pui
hqs,
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Algorithm 2 Reconstructing optical coefficients - DG discretization

1: Set the mesh for the optical parameter - T σ
hp

2: Set the mesh for each test i - T i
hp for the forward and T ‹´i

hp for the adjoint problem
3: Set the maximal iteration count Nmax iter and the error tolerence ϵ ą 0
4: Initialize σ0

h

5: Set k “ 0
6: while k ď Nmax iter do
7: Using σk

h, solve (9) to obtain ui
h

8: Using σk
h and ui

h, solve (10) to obtain vih
9: Using σk

h, u
i
h, v

i
h, and (12) to obtain the updating direction δσk

h

10: Update the optical coefficients by σk`1
h “ σk

h ´ γ δσk
h, where γ is determined by a line

search
11: Update the iteration count: k “ k ` 1
12: if |Φhpσk

hq ´ Φhpσk´1
h q|{|Φhpσk

hq| ă ϵ (Φh defined in (13)) then
13: Break the loop
14: end if
15: end while

where DGSE and DGSE˚ represent the forward and the adjoint solver, respectively. Using
this notation, the discretized inverse problem (4) becomes

min
σ,T I

hp

Φhpσ, T I
hpq :“

Nt
ÿ

i“1

Nm
ÿ

j“1

wij|Mj DGSEpT i
hp, σqrF i

s ´ yij|2 ` αRpσq, (13)

where I :“ t1, ..., Ntu is the index set for all tests. Note that the discretized error landscape
functional Φh depends both on the optical property σ and the set of the hp-meshes T I

hp. If
we denote

Errhpσq :“
Nt
ÿ

i“1

Errihpσq :“
Nt
ÿ

i“1

Nm
ÿ

j“1

wij|δ
ij
h pσq|

2,

δijh pσq :“ Mj
pLpσqq

´1
rF i

s ´ Mj DGSEpT i
hp, σqrF i

s,

then the error landscape Φpσq can be related to its discretized version Φhpσ, Thp) as follows:

Φhpσ, T I
hpq ď 2 pΦpσq ` Errhpσqq , Φpσq ď 2

`

Φhpσ, T I
hpq ` Errhpσq

˘

, @σ, @T I
hp.

As a result, when Errhpσq Ñ 0, we have

1

2
Φpσq ď Φhpσ, T I

hpq ď 2Φpσq.

The above estimate suggests that, when the error Errhpσq goes to zero, the minimizer of
Φpσq also minimizes Φpσ, T I

hpq and vice versa. This observation suggests that we should aim
for devising numerical methods such that Errhpσq is reduced in the most efficient way. We
next explain how this can be achieved in more detail.
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Toward this aim, for simplicity, write uipσq :“ pLpσqq´1rF is and ui
hpσq :“ DGSEpT i

hp, σqrF is.
Recall that we denote by σ˚ the minimizer of Φpσq so we have yij “ Mjuipσ˚q by definition.
Now, for each test i, we introduce the functional J ipσq:

J i
pσqrφs :“ 2

ÿ

j

wijMj
pui

pσq ´ ui
hpσqqMjφ.

Then, it holds that

J i
pσqrui

pσq ´ ui
hpσqs “ 2

Nm
ÿ

j“1

wij|δ
ij
h pσq|

2
“ 2Errihpσq.

The above identity suggests that we can use the functional J ipσq to devise error estimators
to guide the mesh-refinement of T i

hp. This approach fits into the well-known framework of
goal-oriented error control and adaptive mesh refinement; see [9]. To be more specific, the
error estimators are obtained by solving the dual equation

ahpu˚, z
i
hq “ J i

pσqru˚s @u˚ P V 0
h ,

which coincides with (10) except the right-hand-side term is different. Now note that

J i
pσqrφs “ 2

ÿ

j

wijMj
pui

pσq ´ ui
hpσqqMjφ

“ M i
pui

hpσqqrφs ` 2
ÿ

j

wijpMjui
pσq ´ yijqMjφ.

Therefore, when |yij ´ Mjuipσq| Î |yij ´ Mjui
hpσq|, or namely, when the numerical error

dominates the error caused by optical parameters, we have

J i
pσqrφs « M i

pui
hpσqqrφs.

Thus, in this case, we can use M ipui
hpσqq as an alternative of J ipσq to devise error estimators

to guide the mesh refinement of T i
hp. As a result, we have zih « vih. This suggests that we do

not need to solve another adjoint equation for zih but can simply use vih to devise the error
estimators.

3.2.2 The error estimators

For the rest of this subsection, we show how a goal-oriented error estimator can be devised
based on a given functional J in the DG setting. Namely, we would like to control |Jpu´uhq|

by a posteriori error estimators. To make the presentation concise, we shall consider the
forward problem (1), and its DG discretization formulated as follows: find uh P V g

h such that

ahpuh, v˚q “

ż

Ω

ż

S

fv˚ @v˚ P V 0
h . (14)

Before we present the main result, we first introduce two lemmas on the consistency and the
Galerkin orthogonality of the DG bilinear form (8a).
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Lemma 3.1 (Consistency of the DG bilinear form). Suppose u solves (1). Then

ahpu, v˚q “

ż

Ω

ż

S

fv˚ @v˚ P V. (15)

Proof. By multiplying (1a) with v˚ and integrating on K ˆ Ka, we obtain

ż

Ka

ż

BK

ps ¨ nquv˚ ´

ż

Ka

ż

K

su ¨ ∇v˚ `

ż

Ka

ż

K

pσa ` σsquv˚

´

ż

Ka

ż

K

σs

ż

S

P ps, s1
qups1

qds1v˚psqds “

ż

Ka

ż

K

fv˚.

Since u is the exact solution, we have ps ¨ nqu “ ps ¨ nqpu by the consistency of the numerical
trace, see (8b). Then we take summation for all K P Th and Ka P T a,K

h . This completes the
proof.

Lemma 3.2 (Galerkin orthogonality). Suppose u solves (1) and uh solves (14). Then

ahpuh ´ u, v˚q “ 0 @v˚ P V 0
h . (16)

Proof. We simply choose v˚ P V 0
h in (15) and then take the difference between (14) and (15).

This completes the proof.

Consider the following dual equation: find z P V 0 such that

ahpv, zq “ Jpvq @v P V 0, (17)

Then we define

ηKˆKa :“ ρ1KˆKaw1
KˆKa ` ρ2KˆKaw2

KˆKa , ηK :“
ÿ

KaPT a,K
h

ηKˆKa , (18a)

where

ρ1KˆKa :“ }f ´ ∇uh ¨ s ´ pσa ` σsquh ´ σs

ż

S

P ps, s1
quhps1

q}KˆKa , (18b)

w1
KˆKa :“ }z ´ φh}KˆKa , (18c)

ρ2KˆKa :“ }ps ¨ nqrruhss}BKˆKa , (18d)

w2
KˆKa :“ }z ´ φh}BKˆKa . (18e)

In the above equations, φh can be any function in V 0
h .

Proposition 3.1. Let u P V g be the solution of (1), uh P V g
h solves (14), and z P V 0 be the

solution of the dual problem (17). Then, we have

|Jpu ´ uhq| ď
ÿ

KPTh

ÿ

KaPT a,K
h

`

ρ1Kw
1
K ` ρ2Kw

2
K

˘

.

11



Proof. Since uh P V g
h and u P V g, we know pu ´ uhq P V 0. Thus, we can let v “ u ´ uh in

(17), which gives us

Jpu ´ uhq “ ahpu ´ uh, zq “ ahpu ´ uh, z ´ φhq @φh P V 0
h ,

where the Galerkin orthogonality identity (16) is used for the second equal sign. Then, by
the definition of the bilinear form (8a) and its consistency property (15), we can proceed as
follows:

|Jpu ´ uhq| “ |ahpu, z ´ φhq ´ ahpuh, z ´ φhq|

“

ˇ

ˇ

ˇ

ÿ

KPTh

ÿ

KaPT a,K
h

ż

K

ż

Ka

fpz ´ φhq

´
ÿ

KPTh

ÿ

KaPT a,K
h

˜

ż

BK

ż

Ka

ps ¨ nqppuh ´ uhqpz ´ φhq `

ż

K

ż

Ka

p∇uh ¨ sqpz ´ φhq

`

ż

K

ż

Ka

pσa ` σsquhpz ´ φhq ´

ż

K

σs

ż

Ka

ż

S

P ps, s1
qups1

qds1
pz ´ φhqpsqds

¸

ˇ

ˇ

ˇ

ď
ÿ

KPTh

ÿ

KaPT a,K
a

ˇ

ˇ

ˇ

ˆ

f ´ ∇uh ¨ s ´ pσa ` σsquh ` σs

ż

S

P ps, s1
qups1

qds1, z ´ φh

˙

KˆKa

ˇ

ˇ

ˇ

`
ÿ

KPTh

ÿ

KaPT a,K
h

| pps ¨ nqpuh ´ puhq, z ´ φhq
BKˆKa |.

Now, note that

| pps ¨ nqpuh ´ puhq, z ´ φhq
BKˆKa | “ |

ÿ

FPFK

pps ¨ nqpuh ´ puhq, z ´ φhqFˆKa |

ď
ÿ

FPFK

}ps ¨ nqpuh ´ unbr
h q}FˆKa}z ´ φh}FˆKa

ď
ÿ

FPFK

}ps ¨ nqrruhss}FˆKa}z ´ φh}FˆKa .

This completes the proof.

Proposition 3.1 suggests that we need to solve a dual equation (17) to calculate the error
estimators. Since a direct solve for z is not feasible, we calculate an approximate solution to
z by zh. Here zh should live in a more refined space than the space for uh. Otherwise, we
can choose φh “ zh and this will render the error estimators vanishing. To be more specific,
we seek zh P Ṽ 0

h such that

ahpv˚, zhq “ Jpv˚q v˚ P Ṽ 0
h .

Here Ṽh is a more refined space than Vh. For instance, we can choose Ṽh to be an h-
refined or p-refined version of Vh. In this paper, we shall use the p-refined version since it is

12



straightforward to implement. Once zh is calculated, we choose φh “ ΠV zh where ΠV is the
L2 projection onto the space Vh. Namely, the weighting terms become

w1
K “ }zh ´ ΠV zh}KˆKa , w2

K “ }zh ´ ΠV zh}BKˆKa .

For the rest of this section, we use the error estimators derived here to design an hp-adaptive
mesh refinement method to solve the inverse radiative transfer problem (4).

3.3 Goal-oriented mesh adaptation for the inverse problem

Up to this point we have introduced the forward solver (9), the adjoint solver (10), the
gradient calculation (12), and the error estimators (18). Next, we show how they can be
combined to solver the inverse problem (13) with mesh adaptation. We shall first go over
the basic elements of the hp-adaptive mesh refinement and then propose the full algorithm.

3.3.1 hp-adaptive mesh refinement

Given a mesh Thp, we can refine it based on the error estimators introduced in (18). For h-
refinement only, (18) is sufficient for an adaptive mesh refinement algorithm. For hp-adaptive
mesh refinement (hp-AMR), we will need an additional smoothness estimators to complete
the algorithm. Since we use a more refined mesh for the duality solution vh, the dominating
error comes from uh. Hence, here we use uh for devising the smoothness estimator.

We consider the smoothness estimators proposed in [21]. These estimators are obtained
by examining the decaying pattern of the coefficients obtained from a Legendre expansion of
the numerical solution. To be more specific, given the forward solution uh, we first calculate
its mean intensity umI

h :“
ş

S
uh. Then, for any element K P Th, we calculate the Legendre

expansion coefficients of umI
h on K, here denoted as aKi,j with i “ 0, ..., px and j “ 0, ..., py,

where px and py are the polynomial degrees of the tensor-product basis function on K in the
x and the y directions, respectively. Then, the smoothness estimator is defined as follows:

ηsK :“
1

2

¨

˝

logp
2px`1
2|axpx |2

q

2 logppxq
`

logp
2py`1

2|aypy |2
q

2 logppyq

˛

‚, where paxi q
2 :“

py
ÿ

j“0

|aKi,j|
2 2

2j ` 1
, payj q

2 :“
px
ÿ

i“0

|aKi,j|
2 2

2i ` 1
.

(19)

With the error estimator ηK (defined in (18)) and the smoothness estimator ηsK (defined in
(19)), we propose the following Algorithm 3 to refine a given mesh Thp.
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Algorithm 3 hp-adaptive mesh refinement

1: Sort all element K P Th in increasing order according to the error estimator ηK defined
in (18).

2: Mark the largest rref percentage of the elements for refinement – T mark
h .

3: For all K P T mark
h , calculate the smoothness estimators ηsK defined in (19).

4: For all K P T mark
h , we perform the following refinement

5: if pK ` 1 ă ηsK ´ 1
2
then

6: Perform p-refinement for K.
7: else
8: Perform h-refinement for K.
9: end if

Note that for each test i, the error estimators ηiK are computed based on the forward
solution ui

h and the adjoint solution vih; see equations (18), where z is replaced by vih.

3.3.2 The full algorithm

We conclude this section by proposing the Algorithm 4 of solving the discretized inverse
problem (13) with mesh adaptation.

Algorithm 4 Reconstructing optical coefficients - DG discretization with hp-adaptive mesh
refinement
1: Set T σ

hp, the mesh for the optical parameter
2: Set the maximal iteration count Nmax iter, the maximal DOFs count Ndofs, and the error

tolerance ϵ ą 0.
3: For each test i, initialize T i

hp, the mesh for solving the forward and the adjoint problems
4: Initialize the optical parameter σ0

h.
5: Set k “ 0
6: while k ď Nmax iter and DOFs ď Ndofs do
7: Using σk

h, solve (9) to obtain ui
h

8: Using σk
h and ui

h, solve (10) to obtain vih
9: Using σk

h, u
i
h, v

i
h, and (12) to obtain the updating direction δσk

h

10: Update the optical coefficients by σk`1
h “ σk

h ´ γ δσk
h, where γ is determined by a line

search
11: Update the iteration counting: k “ k ` 1
12: if |Φhpσk

hq ´ Φhpσk´1
h q|{|Φhpσk

hq| ă ϵ (Φh defined in (13)) then
13: For each test i, refine the mesh T i

hp by Algorithm 3

14: Reinitialize the optical parameter σk
h “ λσk

h ` p1 ´ λqσ0
h

15: end if
16: end while

Note that previously in Algorithm 2, we stop the iteration when the relative difference
|Φhpσk

hq´Φhpσk´1
h q|{|Φhpσk

hq| ă ϵ. Here in Algorithm 4, we apply mesh-refinement instead of
stopping the iteration. This procedure is repeatedly applied until the maximal DOFs count
Ndofs is reached. This can prevent the algorithm from refining indefinitely. The constant
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Ndofs can be chosen according to the memory-occupation restriction or computational time
restriction. The parameter λ determines how much information will be inherited from the
optical parameter recovered in the previous mesh setting. If the previous mesh setting can
provide a relatively good approximation of σ, then we can increase λ for a better initial
guess. Otherwise, we choose λ “ 0 to avoid potential bias from an inaccurate numerical
solution. In the numerical tests we carried out in this paper, it only takes a few steps for σk

h

to converge, so we always choose λ “ 0.

4 Numerical experiments

In this section, we carry out numerical experiments to test out the performance of our
proposed numerical methods. In the first subsection, we test the goal-oriented AMR method
for the forward problem. Then, in the second subsection, we test the performance of the
method for the inverse problem.

4.1 Goal-oriented AMR for the forward problem

In this subsection, we consider the numerical approximation to the forward problem (1).
Before testing the goal-oriented AMR methods, we first test the convergence of the dis-

continuous Galerkin spectral element (DGSE) method without adaptivity. We consider a
rectangular spatial domain r0, Lxs ˆ r0, Lys with the inflow radiation coming from the top
and the left boundary:

upx, sq “
16

π
χr 7π

4
, 7π
4

` π
16

spθq, where s “ pcos θ, sin θq, px, yq P r0, Lxs ˆ tLyu Y t0u ˆ r0, Lys.

For the other sides of the boundary, we assume zero inflow radiation and zero source term
f . A scatterer is placed at the center of the domain, so that the extinction coefficient σe is

σe “
11

1 ` exp p´2k0p0.1Ly ´ rpx, yqqq
. (20)

We choose the single scattering albedo to be ω̃ “ 10
11
, so the scattering coefficient is σs “ ω̃σe

and the absorption coefficient is σa “ σe ´σs. We choose k0 “ 2. The asymmetric parameter
in the scattering phase function in (1) is chosen as g “ 0.8, which is a typical value for water
clouds in the atmosphere.

For this test we consider the DG method (9) with the polynomial degree px “ py “ 1 and
also with px “ py “ 2 for the spatial discretization. To compare, we also consider a finite
volume spatial discretization method, which is equivalent to the DG method with px “ py “

0. For all these methods, we shall uniformly partition the domain r0, Lxs ˆ r0, Lys into a
collection of elements and slowly decrease the element size. For the angular discretization, we
apply a uniform partition into 32 pieces by P0 element (finite volume angular discretization).
Figure 1 shows that the DG method has errors that converge as OpDOFs´pp`1q{d

q where the
dimension d “ 2. This is the expected optimal convergence order for the DG method and
the finite volume method (upwind).
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Figure 1: Convergence test for the forward problem, without AMR. Left: mean intensity
of the radiative solution calculated by the DG-P2 method. Right: L2 error of the mean
intensity calculated by the finite volume method, DG with P1, and DG with P2 polynomial
approximation. All methods converge at the expected rates of OpDOFs´pp`1q{d

q with dimen-
sion d “ 2, and the DG methods with larger p converge faster.

We next consider the forward problem with the goal-oriented AMR algorithm. We con-
sider a rectangular spatial domain r0, Lxs ˆ r0, Lys with the inflow radiation coming from the
top boundary:

upx, sq “
16

π
χr 3π

2
, 3π
2

` π
16

spθq, where s “ pcos θ, sin θq, x P r0, Lxs, y “ Ly.

For the other sides of the boundary, we assume zero inflow radiation and zero source term
f . For this test, we also consider a scatterer placed at the center of the domain following
the form of equation (20). To better test the AMR algorithm, here we consider the scatterer
with a sharper boundary transition by taking k0 “ 10. The other settings are the same as
the previous test; namely, we choose rω “ 10{11 and g “ 0.8. See Figure 2 for a visualization
of σe.
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Figure 2: Extinction coefficient σe, to represent an idealized cloud located at the center of
the domain.

Our aim is to find an efficient numerical approximation to Jpuq, where u is the solution
of (1). Here we set the goal function J to be (a smoothed version of) a point measurement
on the outflow radiation, located at the right side of the domain:

Jpuq “

ż Ly

0

upLx, yqhpyqdy, where hpyq “
1

pLy{20q
?
2π

exp p´0.5

ˆ

y ´
15

21
Ly

˙2

{pLy{20q
2
q.

Specifically, the (smoothed) point measurement is put at pLx,
15
21
Lyq. In the first test, we

use the error estimator ηK defined in (18) to guide mesh refinement. The mesh refinement
Algorithm 3 is repeatably applied with the refinement ratio rref “ 0.2, until the DOFs for
uh reach the threshold Nmax dof “ 2 ˆ 105. To better visualize where the meshes are refined,
here we use a fixed polynomial degree p “ 3.

To compare, we also consider a standard jump estimator

ηjump
K :“

˜

1

|BK|

ż

BK

ˇ

ˇ

ˇ

ˇ

rr

ż

S

uhss

ˇ

ˇ

ˇ

ˇ

2
¸1{2

. (21)

Since the exact solution u is not known, we calculate |Jpuhq ´ Jpũq| as an approximation to
the true functional error |Jpuhq ´ Jpuq|, where ũ is calculated on a more refined mesh than
u. Here ũ is calculated with an extra p-refinement for each element K P Th.

Figure 3 shows the numerical solutions and the meshes calculated based on the goal-
oriented estimator ηK and the standard jump estimator ηjump

K . We observe that the goal-
oriented estimator can successfully guide the mesh to refine at the place where the solution
has a sharp gradient, namely, top of the scatter. In addition, it refines along the path
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connecting the place of the sharp gradient and the place of the point measurement (located
at the right side boundary at y “ 15

21
Ly). In contrast, the standard estimator ηjump only

refines where there are sharp gradients, without taking into consideration of the effect of the
measurement J .

Figure 3: Goal-oriented AMR versus standard AMR. The plots show the mean intensity
of the radiant intensity uh and the meshes. Left: using the goal-oriented error estimator
ηK introduced in (18). Right: using the standard jump estimator ηjump

K defined in (21).
The standard jump estimator induces refinement near sharp gradients, whereas the goal-
oriented error estimator also induces refinement along the path between the scatterer and
the measurement location on the boundary at px, yq “ pLx, p15{21qLyq.

In Figure 4, we plot the error |Jpuq´Jpuhq|. We observe that the goal-oriented estimator
reduces the error efficiently while the standard estimator fails to decrease the error. This is
consistent with our observation in Figure 3, where the goal-oriented estimator refines both the
places of the sharp gradient and the path connecting to the measurement, while the standard
estimator fails to refine those elements concerning the measurement J . The experiment shows
that the goal-oriented estimator can be much more efficient than the standard one, when the
goal function is not an L2 or energy-based norm, but instead a measurement on the domain
boundary. Note that this is exactly the case for the applications such as optical tomography,
which we shall consider in the next subsection.
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Figure 4: Evaluation of the error |Jpuhq ´ Jpuq| by the goal-oriented and the standard error
estimator. The goal-oriented estimator leads to a much smaller error.

4.2 Goal-oriented AMR for the inverse problem

In this subsection, we consider the numerical tests for the inverse problem (13). We aim to
test the performance of Algorithm 4 and compare it with other mesh-refinement methods. We
consider a rectangular domain r0, Lxs ˆ r0, Lys where on each side, we put 2 inflow radiation
laser beams and 20 measurements collecting the angularly-averaged outflow radiation. As
a result, we have Ntst “ 8 and Nmsm “ 80 in the formulation (4) or (13). The absorption
is fixed as σa “ 0.1 and the asymmetric parameter is chosen as g “ 0.1. The scattering
coefficient σs is decomposed into a summation σs “ σ0

s ` σ̃s where σ0
s is a background state

and σ̃ represents a perturbation. We assume the background state σ0
s and the absorption

σa are known and we aim to recover the scattering coefficient σs. We shall consider two test
cases with the same background state σ0

s “ 1 but with different perturbations σ̃s. See the
upper-left sub-figures of Figure 6 and Figure 9 for the true scattering coefficients σs for the
first and the second test case, respectively.

To generate the data yij “ Mjũi
h, we solve the forward problem (9) on a very refined

mesh, namely, a 8 by 8 mesh with the polynomial degree chosen as p “ 9, so we can regard
ũi
h as the “true” solution. The optical parameter σh is set to live on the one-element mesh

with p “ 19.
To solve the inverse problem, we apply an H1-regularization, namely Rpσq “ }∇σ}L2pΩq,

with the regularization parameter chosen as α “ 10´1; see (4) where α was first introduced.
We implement Algorithm 4, with ϵ “ 10´3, and rref “ 0.2 for the mesh refinement Algorithm
3. For the iteration method, we use the limited memory BFGS algorithm to calculate the
updating direction δσk

h. The parameter γ is determined by a line search method, for which we
use the backtracking algorithm which starts with µ “ 1 and then followed by the candidate
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step length µ “ 2´1, 2´2, 2´3, ..., until the Armijo condition

Φpσk
h ´ µδσk

hq ď Φpσk
hq ´ c1µ∇Φpσk

hqδσk
h

is satisfied, where c1 “ 10´4. For more details on the BFGS method and the line search
algorithm, we refer to [31].

We test the performance of Algorithm 4 by comparing it with other mesh-refinement
methods. We set the initial mesh T i

hp (i “ 1, ..., Ntst) by a 4 by 4 mesh with p “ 2. To
be more specific, we shall compare Algorithm 4 with other methods, for which, instead of
applying the AMR Algorithm 3 in the Algorithm 4, we apply (1) h-refinement, for which we
partition the domain into more elements (uniformly divided), (2) p-refinement, for which we
increase the polynomial degree on each element, (3) h-AMR-goal, for which we only apply
h-refinement in the Algorithm 3, and (4) hp-AMR-standard, for which we use the standard
jump error estimator (18) to guide the mesh-refinement in the Algorithm 3. We remark that
the h-refinement method with p “ 2 is similar to a finite volume method as mesh resolution
is increased, while the p-refinement method with an increased polynomial order p is similar
to a spectral method in the sense that an exponential (spectral) convergence can be achieved
when the solution is sufficiently smooth.

Now we show the results for the first test case. Figure 5 shows that the hp-AMR-
goal method is the most efficient method in reducing the error }σh ´ σ˚

h}L2pΩq. Namely, it
uses the fewest DOFs to achieve the best recovery. The h-AMR-goal method is overall less
efficient than the hp-AMR-goal method but their performances are similar. For the hp-AMR-
standard, h-Ref, and p-Ref methods, we observe their errors first decrease and then increase,
and in all DOFs levels, their recovered optical property is poorer than the one recovered by
the hp-AMR-goal method. The error for the hp-AMR-standard method decreases fast at the
beginning but then the error increases to back to the original value, but even in its decreasing
phase its performance is less efficient than the hp-AMR-goal method. This consolidates our
claim that the goal-oriented estimator is necessary for inverse problems. For h-Ref and p-Ref
methods, we observe that they decrease the errors much more slowly than hp-AMR-goal.
In summary, the hp-AMR-goal method behaves better than other methods in almost any
measure, and the h-AMR-goal method behaves less well but similar to hp-AMR-goal.

To see this more clearly, we plot in Figure 6, the recovered scattering coefficients by the
different refinement methods. To make a fair comparison, for all the refinement methods, we
take the snapshot at the refinement step such that the DOFs are closest to 106. The results
agree with what we observe in Figure 5. Namely, the hpAMR-goal method gives the best
approximation to the true scattering coefficient, while using the fewest number of DOFs.

As additional detail of what is seen in Figure 6, we observe that the hRef method and
hpAMR-standard method both fail to provide a satisfactory recovery to the true distribution
(left-top sub-figure). All of the pRef, hAMR-goal, and hp-AMR methods can successfully
recover the correct location and the approximate shape of the perturbation σ̃s. In further
detail, though, the h-AMR-goal and hp-AMR-goal methods provide a more accurate recovery
for the amplitude of perturbation in comparison to the p-Ref method. Note that here we
chose a fixed regularization parameter α for all refinement methods for a fair comparison.
Despite this, we remark that if it is allowed for the regularization parameter α to be adapted
properly to the different refinement algorithms, the recovery for pRef, hAMR-goal, and
hpAMR-goal might further improve.
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To visualize how the meshes are refined by the different methods, we plot the forward
solution and the corresponding meshes in Figure 7. For goal-oriented hp-AMR method, we
observe that the mesh is refined both at the place where the forward solution has a sharp
gradient, and also at the left boundary where the measurement is located. In contrast, the
standard hp-AMR method only refines the mesh where the sharp gradients are located, but
fail to refine also at the measurements. The goal-oriented h-AMR method refines both at
the sharp gradients and at the boundary where the measurements are located. However, it
does not use a high order approximation as in the hp-AMR cases. This could explain why its
performance is overall less great than hp-AMR-goal. Therefore, the goal-oriented hp-AMR
is the only method that supports both (1) a balanced refinement strategy between resolving
the forward and the adjoint solution, and (2) an automatic high-order approximation by
p-adaptivity. Considering this, it is not surprising to see that the hp-AMR-goal method
recovers the optical coefficient with the best quality in Figure 6.
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Figure 5: Total DOFs of the forward and the adjoint solutions (the summation of all tests)
versus the L2 error of the optical property }σh ´ σ˚

h}L2pΩq for the first test case
.
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Figure 6: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the first test case. L2 errors are printed at the upper-
right corners for each sub-figures.

22



Figure 7: Top row: forward solution u1
h for the first test case, by goal-oriented hpAMR (left),

goal-oriented hAMR(middle), and standard hpAMR(right) at the last step of the refinement.
Bottom row: the corresponding meshes T 1

hp, where the colorbar represents the polynomial
degrees.

To test the reliability of our proposed method, we conduct another experiment (the second
test case) with the same setting used for Figure 5 but with a different scattering coefficient
σs to be recovered; see the top-left figure of Figure 9 for a visualization of σs. From Figure 8
and Figure 9, we again observe that our proposed goal-oriented hpAMR method has the best
performance compared to all the other refinement approaches. Namely, it uses the fewest
DOFs but provides the best quality of the recovered scattering coefficient σs.
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Figure 8: Total DOFs of the forward and the adjoint solutions (the summation of all tests)
versus the L2 error of the optical property }σh ´ σ˚

h}L2pΩq for the second test case.

Figure 9: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the second test case. L2 errors are printed at the
upper-right corners for each sub-figures.

To test the robustness of the proposed goal-oriented hp-adaptive algorithm, we conduct
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additional numerical tests with noise added to the signals yij. Namely, instead of using
yij, we use ỹij :“ yijp1 ` δXijq where Xij are independent, identically distributed random
variables from a uniform distribution on r´1, 1s, and δ represents the noise level. We consider
two cases of δ “ 1% and δ “ 10%.

Figure 10 shows that when the noise level δ “ 1%, the performance of the different
refinement methods are similar to the noise-free case (Figure 5). We again observe that the
hp-AMR-goal methods gives the smallest error while using the fewest DOFs. When the noise
level δ increases to 10%, we observe an increase of the errors for most refinement methods.
Despite this, the hp-AMR-goal method still provides the overall smallest error compared to
the other refinement approaches, especially in the last refinement level. In Figure 11 and
Figure 12, we plot the recovered scattering coefficient by the different refinement methods
with the noise level 1% and 10%, respectively. The results are consistent with what we
observe in Figure 10.

We repeat the noise test for the second test case (with the true scatterer shown in the
upper-left sub-figure of Figure 9). In Figure 13, we observe that in both cases of the noise
level of δ “ 1% and δ “ 10%, the hp-AMR-goal method provides the overall smallest error.
We plot in Figure 14 and 15 the recovered scattering coefficients. The results are consistent
with what we observe in Figure 13 in the sense that the hp-AMR-goal methods provides the
best quality of the recovery in the different noise levels.
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Figure 10: Total DOFs of the forward and the adjoint solutions (the summation of all tests)
versus the L2 error of the optical property }σh ´ σ˚

h}L2pΩq for the first test case. Left: 1%
noise is added to yij. Right: 10% noise is added to yij.
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Figure 11: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the first test case. L2 errors are printed at the upper-
right corners for each sub-figures. 1% noise is added to yij.

Figure 12: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the first test case. L2 errors are printed at the upper-
right corners for each sub-figures. 10% noise is added to yij.
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Figure 13: Total DOFs of the forward and the adjoint solutions (the summation of all tests)
versus the L2 error of the optical property }σh ´ σ˚

h}L2pΩq for the second test case. Left: 1%
noise is added to yij. Right: 10% noise is added to yij.

Figure 14: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the second test case. L2 errors are printed at the
upper-right corners for each sub-figures. 1% noise is added to yij.
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Figure 15: Recovered scattering coefficients σs for the different mesh refinement methods,
with the total DOFs at around 106 for the second test case. L2 errors are printed at the
upper-right corners for each sub-figures. 10% noise is added to yij.

5 Conclusion

In this paper we propose a goal-oriented hp-adaptive mesh refinement method to solve the
inverse radiative transfer equation. The method is based on the development of a novel goal-
oriented error estimator, which is achieved by connecting two kinds of duality arguments in
different fields, namely, (1) the duality-based based mesh adaptivity for goal-oriented error
minimization, and (2) the adjoint-based inversion techniques for solving inverse problems.
The numerical tests suggest that the proposed method solves the inverse problem with the
best quality of the recovered optical coefficients, while using the fewest DOFs. While our
method is proposed here for inverse radiative transfer, the general principles of devising
the error estimators and designing the refinement algorithms should be able to be naturally
extended to enable adaptive-mesh inversion for other types of inverse problems, such as the
Calderón problem or inverse scattering.

Potential future work includes further study of combinations of more involved regular-
ization strategies, and applications to remote sensing problems.
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