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ABSTRACT

Simplified asymptotic models are developed to investigate tropical-extratropical interactions. Two kinds of
interactions are illustrated in the model: (i) MJO initiation through extraction of energy from barotropic
Rossby waves and (ii) MJO termination via energy transfer to extratropical Rossby waves. A new feature, in
comparison to previous simplified models, is that here these waves interact directly in the presence of a
climatological mean flow given by the Walker circulation. The simplified models are systems of ordinary
differential equations (ODEs) for the amplitudes of barotropic Rossby waves and the MJO, and they are
systematically derived from the MJO skeleton model by using multiscale asymptotics. The simplified ODEs
allow for rapid investigation of a wide range of model parameters, such as initial conditions and wind shear.
Zonally uniform wind shear is shown to have only a minor effect on these interactions here, in contrast to
the important role of the zonally varying wind shear associated with the Walker circulation. The models
illustrate some realistic features of tropical-extratropical interactions on intraseasonal to seasonal time
scales. A key aspect of the models here is that the water vapor and convective activities are interactive
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components of the model, rather than specified external heating sources.

1. Introduction

The Madden—Julian oscillation (MJO) is the dominant
component of intraseasonal (=~30-60 days) variability in
the tropics (Madden and Julian 1971, 1972, 1994). It is an
equatorial wave envelope of complex multiscale convec-
tive processes, coupled with planetary-scale (=~10000-
40000 km) circulation anomalies. Individual MJO events
propagate eastward at a speed of roughly Sms™ ', and
their convective signal is most prominent over the Indian
and western Pacific Oceans (Zhang 2005). In addition to
its significance in its own right, the MJO also significantly
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affects many other components of the atmosphere—
ocean—Earth system, such as monsoon development,
intraseasonal predictability in midlatitudes, and the
development of El Nifio—Southern Oscillation (ENSO)
(Lau and Waliser 2012; Zhang 2005, 2013).

Besides its strong tropical signal, the MJO interacts
with the global flow on the intraseasonal time scales.
Teleconnection patterns between the global extratropics
and the MJO have been described in early observational
analyses by Weickmann (1983), Weickmann et al. (1985),
and Liebmann and Hartmann (1984). Their results
demonstrate coherent fluctuations between extratropical
flow and eastward-propagating outgoing longwave radi-
ation (OLR) anomalies in the tropics. In a later study,
Matthews and Kiladis (1999) illustrate the interplay be-
tween high-frequency transient extratropical waves and
the MJO. More recently, Weickmann and Berry (2009)
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demonstrate that convection in the MJO frequently
evolves together with a portion of the activity in a global
wind oscillation. Gloeckler and Roundy (2013) argued by
using lagged composite analysis that the high-amplitude
extratropical circulation pattern is associated with si-
multaneous occurrence of both the MJO and the equa-
torial Rossby wave events.

Besides observational analyses, models have also
been used to study the interactions between the MJO
and extratropical waves. By including tropical convec-
tion forcing data in a barotropic model, Ferranti et al.
(1990) found significant improvement in the model’s
predictability. Hoskins and Ambrizzi (1993) argued
from their model that a zonally varying basic state is
necessary for the MJO to excite extratropical waves by
forcing perturbations to a barotropic model. To view the
extratropical response to convective heating, Jin and
Hoskins (1995) forced a primitive equation model with a
fixed heat source in the tropics in the presence of a cli-
matological background flow and obtained the Rossby
wave train response as a result. To diagnose the specific
response to patterns of convection like those of the ob-
served MJO, Matthews et al. (2004) forced a primitive
equation model in a climatological background flow
with patterns of observed MJO. The resulting global
response to that heating is similar in many respects to
the observational analysis. The MJO initiation in re-
sponse to extratropical waves was illustrated by Ray and
Zhang (2010). They show that a dry-channel model of
the tropical atmosphere developed MJO-like signals in
tropical wind fields when forced by reanalysis fields at
poleward boundaries. In addition, Lin et al. (2009)
showed the significance of midlatitude dynamics in trig-
gering tropical intraseasonal response by including ex-
tratropical disturbances in a tropical circulation model.
Frederiksen and Frederiksen (1993) used a two-level
primitive equation eigenvalue model and found large-
scale basic-state flow and cumulus heating to be necessary
for generating MJO modes with realistic structures. Many
other interesting studies on tropical-extratropical inter-
actions have been carried out. For example, see the re-
view by Roundy (2011).

Among the past studies based on climate models,
typically the effect of the MJO is represented by forced
perturbations (Hoskins and Ambrizzi 1993; Jin and
Hoskins 1995; Matthews et al. 2004), or the influences of
the midlatitude variations are treated as boundary ef-
fects for the tropical circulation model (Ray and Zhang
2010; Lin et al. 2009; Frederiksen and Frederiksen 1993;
Roundy 2011). Such simplifications are useful for iso-
lating individual processes within these complex models.
As a next step, it would be desirable to design a sim-
plified model where both the MJO and extratropical
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waves are simultaneously interactive, rather than ex-
ternally imposing one of these two components; such an
approach was recently taken by Chen et al. (2015), as
described next.

Chen et al. (2015) developed a simplified model that
includes both the MJO and tropical-extratropical in-
teractions. Specifically, this model combines (i) the in-
teractions of the dry barotropic mode and first baroclinic
mode, which have been studied by Majda and Biello
(2003) and Khouider and Majda (2005), with (ii) the
MJO skeleton model of Majda and Stechmann (2009,
2011). The MJO skeleton model includes the interactive
dynamics of moisture g and convective activity envelope
a. It has captured the main features of the MJO at the
intraseasonal/planetary scale: (i) the slow phase speed
of ~5ms~'; (ii) the peculiar dispersion relation of
dwl/dk ~ 0; and (iii) the horizontal quadrupole vortex
structure. By combining the barotropic equations and
the MJO skeleton, the model of Chen et al. (2015) il-
lustrated applications to MJO initiation and termi-
nation, including three-wave interaction cases of
(i) interaction of the MJO, equatorial baroclinic Rossby
waves, and barotropic Rossby waves; and (ii) interaction
of the MJO, baroclinic Kelvin waves, and barotropic
Rossby waves. In those cases, the barotropic Rossby
wave acts like a catalyst for the interaction between the
MJO and dry equatorial waves, but its own amplitude is
nearly unchanged. One of the main purposes of the
present paper is to investigate scenarios in which the
barotropic Rossby waves may significantly exchange
energy with the MJO. Two possible factors are wind
shear and sea surface temperature (SST) variations and
the accompanying variations in the climatological trop-
ical circulation, the Walker circulation (Webster 1972,
1981, 1982; Hoskins and Jin 1991; Majda and Biello
2003). The present work will investigate the effects of
regional varying SST and global shear flow in the in-
teractions between the MJO and barotropic Rossby
waves. It will be seen that the presence of the Walker
circulation allows significant energy exchanges between
barotropic Rossby waves and the MJO.

Last, it is worth noting that, for an investigation of
MJO initiation and termination such as the present
study, the MJO skeleton model has several important
properties that make it an appropriate choice of model.
First, the MJO skeleton model has been shown to re-
produce the initiation and termination of wave trains of
two to three MJO events in succession (Thual et al.
2014), similar to MJO events in nature (Yoneyama et al.
2013). Second, the MJO skeleton model reproduces
statistics of MJO events, such as the number and dura-
tion of events, that are similar to the statistics of MJO
events in nature (Stachnik et al. 2015). These aspects of



OCTOBER 2016

MJO events are in addition to the MJO’s more basic
features; in particular, the MJO skeleton model predicts
the speed and structure of the MJO (Majda and
Stechmann 2009, 2011; Thual and Majda 2015, 2016).
The paper is organized as follows. Section 2 describes
the barotropicfirst baroclinic MJO skeleton model,
including SST regional variations and the resulting
Walker circulation. Unbalanced moisture and cooling
source terms with spatial variations are taken into ac-
count in the MJO skeleton to represent the effect of
SST, in which case the Walker circulation can be found
as the steady-state solution of the baroclinic system. The
energy principle and asymptotic expansions are also
presented. In section 3, the resonance condition is
identified in the presence of an idealized Walker circu-
lation, which mediates the interaction between the MJO
and the barotropic Rossby waves. Two cases are nu-
merically computed for the ODE system: (i) MJO initi-
ation and (ii) MJO termination and excitation of
barotropic Rossby waves. Section 4 considers more gen-
eral Walker circulation cases composed of two different
wavenumbers. New ODE systems are derived for the
resonant condition, and numerical results are presented.
Section 5 investigates the effect of a zonally uniform
shear flow. Finally, section 6 is a concluding discussion.

2. Model description

a. The barotropic—first baroclinic MJO skeleton
model

The barotropic—first baroclinic B-plane equations with
water vapor and convection can be written as

%+V.Vv+yvi+Vﬁ=—%V'(V®")’ (1a)

V.-v=0, (1b)
for the barotropic mode and
A B _

5+V~Vv—V6+yv =—v-Vy, (1e)

90 2(FF 0
E+V~V0—V-v=6(Ha—S), (1d)

aq = S — _S2(F, _ 9
E-I—v-Vq—f—Qwa 6°(Ha— §7), (1le)
2—?+V-Va=an. (1f)

for the first baroclinic mode. These equations combine
the MJO skeleton model (Majda and Stechmann 2009)
and nonlinear interactions between the baroclinic and
barotropic modes (Majda and Biello 2003). The details
of this model are described in Chen et al. (2015). Here,
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v=(u, v), v: = (v, —u) and p are barotropic velocity
and pressure, respectively. The barotropic streamfunction
i can be used to rewrite (1a) and (1b) as

P _ 1
APV VAP, 5V [, + (w),]=0. ()

The other variables, v = (i, v) and 0 are baroclinic ve-
locity and potential temperature; and g is water vapor
(sometimes referred to as ““moisture”’). The coefficients
H and Q are prefactors to give Ha the units of a heating
rate and a vertical moisture gradient parameter, respec-
tively. The tropical convective activity envelope is de-
noted by 6%a, where 6 is a small parameter that modulates
the scales of the tropical convection envelope. We define
82 as the ratio of radiative cooling rate of 1K day ' di-
vided by the reference heating rate scale at 10K day ..
Likewise, 8° is also incorporated with the radiative cooling
and the moisture sources, S? and S9. Here, for simplicity,
we consider 825 and 857 to be spatially varying and time
independent, although, in general, they have both spatial
and temporal variations.

b. Walker circulation and energy evolution

First, consider the baroclinic system (1¢)—(1f) with the
barotropic velocity ignored. When the system has un-
balanced moistening and cooling sources (i.e., $7 # S%),
the Walker circulation is formed for the baroclinic
equations with zero barotropic winds. When v=0,
the Walker circulation is the steady-state solution
for the baroclinic system (Ogrosky and Stechmann
2015):

—Vo,, + yviy =0, (3a)
0 _ §9

Vv, = 2o = (3b)
1-0

qyw =0, (3¢)
q _ A Qo

g, =2 — 95 (3d)
H(1-0)

When the Walker circulation variables are subtracted
from the baroclinic variables, the baroclinic system has
energy conservation for the anomalies: dZpc,/dt =0,
where

G —

1 Y Xl , )
Faen=3 | | 5y vl 66,07

-Y

1 ~ 2
+ m[q +0(0—06,)]

+ % [Ha—ay, log(a)]dxdy. “4)
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Now consider the full coupled system (1), includ-
ing both the barotropic and baroclinic components.
When the barotropic energy &gt = (1/2)]:,]0)( V[ dx dy
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is also considered, the total energy for the anomalies
is & = &pca + & BT, and it evolves according to the
following:

A N
d—’=——J JV-V[VW®VW+(v—vW)®VW+VW®(V—VW)]
-y

dt 2 0

+(v=vy) (v, VV+V-Vv,)+[0g+ 1+ 0%)(0—0,)V- Vo, dxdy. 5)

Note that the right-hand side of this equation depends
on the strength of the Walker circulation, and in general
itis not zero, so the energy is not conserved. The Walker
circulation here behaves as an energy source/sink for the
MJO mode and the barotropic Rossby wave.

c. Asymptotic ansatz

The asymptotic expansion is now carried out by in-
troducing equatorial long-wave scaling,

/

1
X =6x, ¢ =05t and v’=5v, (6)

as well as the longer time scales:

T,=6f, T,=8%. (7)
Hence, in the asymptotic model, three long time scales
are involved: ¢, T, and T». Their characteristic time
scales are 1, 3, and 10 days, respectively. In addition,
small-amplitude variables are also assumed for asymp-
totic expansion:

(, u,v',0, q) = 62(‘//1’ u,v,, 615 ql) + 63(1112’ U,,v,, 027 CI2)
+ 64(‘/’37 Ll3, U37 03’ C]3) + 0(85) ’

(8a)

a=a+da, +&a,+8a, + 08, (8b)

where each of the variables on the right-hand side of (8)

is a function of x', ¢, Ty, and T, although this de-

pendence has been suppressed in (8) to ease notation.

For the moisture source and radiative cooling, it is as-
sumed that

§1=184+88], S§=5"+35S, )

where (---) = J(-++) dx dy is the mean value over the hor-
izontal domain. We further assume that S7=S% = Hag,
which is a necessary consistency condition to ensure
the existence of a steady Walker circulation (Majda
and Klein 2003).

Under this assumption for $7 and S%, the Walker cir-
culation would only appear in the leading order, so the

baroclinic variables at the leading order can be written
as follows:

(uy,v1,0,,q,,a)) = (u,,v,,6,,9,,a,),

+ (u,v,,0,,q,,4a,),, (10)

where the subscript W stands for Walker circulations,
and the subscript a stands for the leading-order anom-
alies from the Walker circulation.

d. Meridional basis truncation

To carry out the multiscale analysis, a meridional
truncated basis is used for all of the variables. The main
reason for introducing a meridional truncation is that
the linear eigenmodes of (1) are not known, whereas the
linear eigenmodes of a truncated version of this system
are known and were previously described by Majda and
Stechmann (2009). We adopt the same meridional
structure described in Chen et al. (2015), and the baro-
tropic wind is assumed as

Y(x,y,t) = B(x,t)sin(Ly), (11)
where L is the meridional wavenumber. For the baro-
clinic variables, the meridional structures are assumed
to be

10x,y,0) = 19(x,)D(y) + 12 (x, )P, (y), (12a)
r(x,y,0) = rO, n®y(y) + r® (x, )P, (y), (12b)
v(x,y,t) = v(l)(x, NP, (y), (12¢)
q(x.y.0) = 4V (2, )@ () + 4P (2, )P, (). (12d)
Ha(x,y,1) — 8°(x,y,t) = Ha® (x, NP, (y), (12¢)

where [ = —(u + 0)/2 and r = (u — 0)/2 are the Riemann
invariants for the baroclinic system, and ®(y) are the
parabolic cylinder functions. The motivation for this
particular truncation is mainly to have the simplest
system that includes the Kelvin wave and the first sym-
metric equatorial Rossby wave; see Chen et al. (2015)
for further discussion. The details of the parabolic cylinder
functions can be found in the appendix. In addition, we
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0.4 :
d | —6— Kelvin
5 ‘\ o —— MJO
= 03l U —e— moist b.c. Rossby
3 | —a&— dry b.c. Rossby
g a ‘ —— b.t. Rossby
5 N \‘ ()
: 0.2f Ki \‘
(8]
c N |
g o I ¢
@ 0.1F -\
L= E\\‘:r‘
L = N
O 1 =S L s
-10 -5 0 5 10

wavenumber (2pi/40000km)

F1G. 1. Dispersion relation for linear waves. The dispersion curve of the Kelvin mode is
denoted with open circles, the MJO with asterisks, the moist baroclinic Rossby mode with
closed circles, the dry baroclinic Rossby mode with squares, and the barotropic Rossby mode

with no symbols.

also assume that the variations for moisture source and
radiative cooling share the same zonal structure:

ST =5"()8" (), Sf=8"(1)S ), (13)
although in general they often have different zonal struc-

tures. Further, the meridional structures are assumed to be
proportional to the leading parabolic cylinder function:

D) =, B0). $70) = ¢,B,0),

The asymptotic expansions in (8) are then applied to
the meridional truncated system, which is described in
the appendix. At the leading order, the truncated system
is linear, and the baroclinic and barotropic systems are
decoupled. The four major eigenmodes for the baro-
clinic system were described in Majda and Stechmann
(2009), and they are the Kelvin, MJO, moist Rossby, and
dry Rossby modes, as shown in Fig. 1.

(14)

3. Direct tropical-extratropical interaction
mediated by Walker circulation

This section provides the reduced ODE model that
includes direct tropical-extratropical interactions me-
diated by the Walker circulation. In particular, numer-
ical computations for two cases will be given for this
interaction mechanism: (i) MJO initiation and (ii) MJO
termination and excitation of barotropic Rossby waves.

a. The reduced model

For the interaction of the MJO and barotropic Rossby
wave, in the presence of the Walker circulation, their
wavenumbers and frequencies must satisfy the reso-
nance condition (Majda 2003):

ko + Ky +kp =0, (15a)

o T @ =0, (15b)
where ko, kw, and k1 are the wavenumbers for the MJO,
the Walker circulation, and the barotropic Rossby wave,
respectively; and wygo and wr are the wave frequencies for
the MJO and the barotropic Rossby wave, respectively. The
frequency for the Walker circulation wy is zero. This type of
resonance condition is analogous to topographic resonance
(Majda et al. 1999); the Walker circulation here plays an
analogous role to the effect of topography. Because the
MJO and barotropic Rossby waves travel in opposite di-
rections, (15) implies that the wavenumber of the Walker
circulation has to satisfy the following condition:

k| =2.

A Walker circulation with wavenumber kw = 2 can be
viewed in Fig. 2. One can view this wavenumber-2
Walker circulation as an idealization of the two main
circulation cells in nature, which are centered over the
Maritime Continent and South America (Stechmann and
Ogrosky 2014; Ogrosky and Stechmann 2015). The reso-
nance condition with kygo = 1 and k7 = 1 is shown in Fig. 3.

To proceed with the multiscale analysis, we write the
leading-order baroclinic solution as

U, = a(T,, T,)emo® oy 4+ ehw¥)y 4+ C.C,

(16)
and the leading-order barotropic solution as
B -1 B(T,, T,)e*k*~or) - C.C.,  (17)
L St L
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y (1000 km)

x (1000 km)

FIG. 2. Walker circulation with wavenumber ky = 2. The con-
tours denote the convective activity Ha, with positive (negative)
anomalies denoted by solid (dashed) contours and with the zero
contour removed. The contour interval is equal to one-fourth of the
maximum value of Ha. The vectors denote the horizontal velocity
field at the lower troposphere.

where C.C. stands for the complex conjugate, ryjo is the
right eigenvector for the MJO mode, and ry is the right
eigenvector of the Walker circulation. The eigenvector
for the MJO mode is normalized by the baroclinic en-
ergy, as described by Stechmann and Majda (2015).

Next, the second- and third-order systems are con-
sidered in order to determine the evolution of a(7}, T,)
and B(Ty, T) from (16) and (17) on the long time scales
T, and T5. A systematic multiscale asymptotic analysis is
carried out to ensure the sublinear growth of the second-
and third-order terms of the asymptotic expansion in
(8). Following similar procedures as in Chen et al.
(2015), the result is a reduced ODE model for the am-
plitudes of the modes:

0, B +idyB+ha*=0,  (18a)

g o+ id,o’a* + idsa + h8* =0, (18b)
where coefficients d and 4 are shown in Table 1 and are
pure real values, and where the asterisk denotes com-
plex conjugate. Three groups of interacting terms ap-
pear in this ODE system: the cubic self-interaction term
idyo®a* corresponding to the nonlinear g—a interaction,
the linear self-interaction terms id,8 and ids« related to
dispersive terms in the barotropic-baroclinic system,
and the coupled linear terms hza* and heB* related to
the Walker circulation. The coefficients d and / are from
the procedure of multiscale asymptotic analysis. In
contrast to the ODE system derived by Chen et al.
(2015), in which the coupling terms are quadratic, here
the coupling terms hza* and hgB* are linear. This is
because the Walker circulation is involved in this cou-
pling, but it is a stationary mode with fixed amplitude, so
one part of the quadratic term is a fixed value.

The values of /13 and /¢ in (18) are determined by the
strength of the variations in the source terms, $Y and §9,
or their meridional projection coefficients, ¢, and cg,
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— MJO
— — moist Rsby
b.t. Rossby

frequency (cycle/day)
o

_005 1 1 1 1
-4 -2 0 2 4

wavenumber (2pi/40000km)

FIG. 3. Resonance condition for the interaction of the MJO,
Walker circulation, and barotropic Rossby wave with wave-
numbers kyjjo = 1, kw = —2, and k7 =1 as described in (15).

from (14). In this paper, for simplicity, the two co-
efficients are fixed so that ¢, = 1.2 and ¢y = 1, which re-
sults in the Walker circulation shown in Fig. 2.

According to (18), the coupled linear terms determine
the energy exchange between the two modes:

dig’ _

dT,

dlef’ _
dT,

—2h, Re(ap), —2h, Re(ap), 19)
where Re denotes the real part. At the leading order, the
total energy E for the anomalies is

E= "+ |BI", (20)
which is only conserved when A3 + hs = 0. However, this
is generally not the case. In the computations carried out
in this study, the coefficients s3; and hs have opposite
signs, indicating from (19) that as one mode is gaining
energy, the other one is losing energy, but the total en-
ergy is not necessarily constant.

Here the simplified asymptotic equations in (18) are
utilized to gain insight into the interactions between the
MIJO and the barotropic Rossby waves. For this pur-
pose, the reduced model is integrated numerically for
two sets of initial data: (i) MJO initiation: e[, _, = 0 and
,/3|T2:0 =1; and (ii) MJO termination and excitation of
barotropic Rossby waves: a|r,_, =1 and |;,_, = 0. The
computation time is up to 200 days to observe the
properties of the solutions on the long 75 time scale. A

TABLE 1. Coefficients in (18).

dz h3 d4 d5 hﬁ
—0.0053 —0.1261 —0.0519 0.0017 0.4132
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MJO
_2 ‘
St
0 1 1 1
0 50 100 150 200
b.t. Rossby
— 1 ‘ ‘ ‘ |
30.5\/\
O 1 1 1
0 50 100 150 200
Energy
4 : ‘ ‘
0 1 1 1
0 50 100 150 200
t (days)

FI1G. 4. Solution of the reduced model in (18) for the case of MJO
initiation with kyvjo =1, kw = =2, and ky =1. (top),(middle)
Amplitudes for the MJO and barotropic Rossby wave, respec-
tively, and (bottom) the total energy for the system.

standard fourth-order Runge—Kutta time discretization
is adopted as the basic numerical method. The accuracy
of the numerical solution is checked by doubling and
halving the time steps and ensuring the relative differ-
ence between these solutions at 200 days is within 0.1%.

Note that the wavenumbers kyyo, kw, and kg are
selected a priori in the present study to take values
similar to nature. One could select different values in
order to examine the behavior of different scenarios. In
earlier studies, the wavelength of the MJO was instead
allowed to arise naturally from the nonlinear and/or
stochastic dynamics (Majda and Stechmann 2011; Thual
etal. 2014, 2015; Ogrosky and Stechmann 2015; Stachnik
et al. 2015). For example, Stachnik et al. (2015) com-
puted empirical orthogonal functions (EOFs) of stochas-
tic skeleton model simulation data, and the structure of
the leading EOFs is composed most heavily of zonal
wavenumber 1, in agreement with the leading EOFs of
observational data (Wheeler and Hendon 2004); quanti-
tatively, the simulation EOFs and observational EOFs are
highly correlated with pattern correlations in the range
from 0.80 to 0.98 (Stachnik et al. 2015).

b. MJO initiation

To simulate a case of MJO initiation, the initial con-
ditions are set to be a|,_, =0 and B|,_, = 1. From the
reduced model in (18), it can be seen that the nonzero
value of B8 will excite « through the coupled linear terms.
The numerical simulation in Fig. 4 shows this behavior
initially when the MJO gains energy and the barotropic
Rossby wave is losing energy, and the total energy is
increasing until it peaks at around 70 days. After this
time, the MJO mode decays in amplitude as the
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-10 -5 (I) 5

x107°

FIG. 5. Hovméller diagram of Hay, convective activity for the case
of MJO initiation.

barotropic Rossby wave gains energy and returns to the
original state. This pattern repeats itself to be a non-
linear cycle with time period of roughly 140 days.

To illustrate the spatial variations, Fig. 5 shows the
Hovmoller diagram for Ha,,, the leading-order anomaly
of the convective activity. In this figure, the MJO is
traveling eastward at a speed of ~5ms~', and the wave
amplitude is zero at 0 days, peaks at around 70 days, and
returns to zero amplitude at 140 days. This corresponds
to a wave train of roughly one or two MJO events, de-
pending on the spatial location, similar to the organization
of sequences of MJO events in nature (Yoneyama et al.
2013; Thual et al. 2014). In Fig. 6, the horizontal velocity
fields in the lower troposphere are shown for the MJO,
the barotropic Rossby wave, and the Walker circulation.
The Walker circulation is a stationary field. For the MJO,
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FIG. 6. Velocity field (lower tropospheric) of three modes for the case of MJO initiation at (left) 0 and (right) 70 days: (top) MJO; (middle)
barotropic Rossby wave; and (bottom) Walker circulation.

the velocity field is zero at 0 days and achieves its maximum
at 70 days. The barotropic Rossby wave is at its maximum
initially and achieves its smallest magnitude at 70 days.

What determines the 140-day time scale for initiation
and decay of a wave train of MJO events in the model?
This time scale is related to the energy transfer between
the MJO and barotropic Rossby waves. In (18), the
coupling terms between the MJO and barotropic Rossby
waves have coefficients of /3 and hg, and therefore one
expects hi; and i, to play a key role in determining the
time scale of energy exchange. [Note that the other
terms in (18) can also contribute to the energy exchange
time scale; their role is implicitly included in (19) in the
Re(ap) factor.] Based on linear theory, if we linearize
system (18) around (e, B) = (0, 0), the nondimensional
time scale can be written as

- 2m . @1)

5%\/(d, + dy)* — 4h

osci

In the above expression, because /3 and /6 usually have
opposite signs, the value inside the square root is usually
positive. With plugging the coefficient values in Table 1,
the dimensional time scale is 147 days, similar to the
nonlinear time scale of ~140 days seen in Figs. 4 and 5.

¢. MJO termination and excitation of barotropic
Rossby waves

To consider MJO termination and the excitation of
barotropic Rossby waves, the initial condition is set to be
|y, o =1and B|;,_, = 0. Figure 7 shows the numerical
simulation from the ODE solver. Similar to the MJO
initiation case, the MJO mode and the barotropic Rossby
waves are exchanging energy. The oscillation cycle is
similar to MJO initiation at around 140 days. Different
from the MJO initiation case, the MJO is losing energy,
whereas the barotropic Rossby wave is gaining energy at
0 days, and the total energy of these two modes is de-
caying at first, until ~70 days. The amplitudes and energy
return to their original state at around 140 days.

4. More general Walker circulation

In the previous section, the case for the sinusoidal
Walker circulation with wavenumber ky =2 is dis-
cussed. The realistic Walker circulation, on the other
hand, is composed of a variety of wavenumbers. For
example, Ogrosky and Stechmann (2015) described sim-
plified versions of the Walker circulation using one or
three Fourier modes in their study. In this section, another
mode for the Walker cell, ky = 3, isincluded in addition to
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FIG. 7. Asin Fig. 4, but with initial conditions corresponding to the case
of MJO termination and excitation of barotropic Rossby waves.

kw = 2. The Walker circulation in this case is shown in
Fig. 8. In this situation, two sets of resonant triads arise
corresponding with the two Walker cell wavenumbers:

kyor T Ky + kg =0, (22a)
@yor + g =0, (22b)
and
kvios T Kyn T kpy =0, (23a)
Oypyop T @07, =0, (23b)
where kw, = —2 and ky, = —3. The other wavenumbers

are selected in the following way. To go along with these
Walker cell wavenumbers, we consider standard wave-
numbers 1 and 2 for the MJO, and then we select baro-
tropic Rossby wavenumbers that complete the resonance
conditions in (22) and (23). One could also imagine other
reasonable choices, such as wavenumber 3, for the MJO,
but we will restrict attention to wavenumbers 1 and 2 here
as some initial reasonable choices for illustration. More
specifically, the values for kyjo1 and k7 are both fixed to
be 1, and two cases are considered: (i) kyyop =1 and
sz = 2; and (ll) kMJOZ =2and krz = 1. For case (1), kMJOl
and kyjo; represent the same & = 1 MJO mode. For case
(ii), k71 and kr, are the same wavenumber, but they
represent barotropic Rossby waves with different meridi-
onal wavelengths. In the two cases below, the strengths of
SY and S7 at wavenumber k =3 are also chosen to be
¢g =12 and ¢y =1, as in the previous section, for sim-
plicity, although more general situations can be applied.

a. Single MJO interacting with two barotropic waves

Here, three modes are considered: the MJO mode
with wavenumber kyjor =1 and barotropic Rossby
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FIG. 8. Asin Fig. 2, but for a Walker circulation with wavenumbers
kw = 2 and 3 as described in section 4.

waves with k71 =1 and k7, = 2. The resonance condi-
tions for the three modes are shown in Fig. 9. Here, the
barotropic 