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ABSTRACT

Simplified asymptotic models are developed to investigate tropical–extratropical interactions. Two kinds of

interactions are illustrated in the model: (i) MJO initiation through extraction of energy from barotropic

Rossby waves and (ii) MJO termination via energy transfer to extratropical Rossby waves. A new feature, in

comparison to previous simplified models, is that here these waves interact directly in the presence of a

climatological mean flow given by the Walker circulation. The simplified models are systems of ordinary

differential equations (ODEs) for the amplitudes of barotropic Rossby waves and the MJO, and they are

systematically derived from theMJO skeleton model by using multiscale asymptotics. The simplifiedODEs

allow for rapid investigation of a wide range of model parameters, such as initial conditions and wind shear.

Zonally uniform wind shear is shown to have only a minor effect on these interactions here, in contrast to

the important role of the zonally varying wind shear associated with the Walker circulation. The models

illustrate some realistic features of tropical–extratropical interactions on intraseasonal to seasonal time

scales. A key aspect of the models here is that the water vapor and convective activities are interactive

components of the model, rather than specified external heating sources.

1. Introduction

The Madden–Julian oscillation (MJO) is the dominant

component of intraseasonal (’30–60 days) variability in

the tropics (Madden and Julian 1971, 1972, 1994). It is an

equatorial wave envelope of complex multiscale convec-

tive processes, coupled with planetary-scale (’10 000–

40 000 km) circulation anomalies. Individual MJO events

propagate eastward at a speed of roughly 5ms21, and

their convective signal is most prominent over the Indian

and western Pacific Oceans (Zhang 2005). In addition to

its significance in its own right, the MJO also significantly

affects many other components of the atmosphere–

ocean–Earth system, such as monsoon development,

intraseasonal predictability in midlatitudes, and the

development of El Niño–Southern Oscillation (ENSO)

(Lau and Waliser 2012; Zhang 2005, 2013).

Besides its strong tropical signal, the MJO interacts

with the global flow on the intraseasonal time scales.

Teleconnection patterns between the global extratropics

and the MJO have been described in early observational

analyses byWeickmann (1983),Weickmann et al. (1985),

and Liebmann and Hartmann (1984). Their results

demonstrate coherent fluctuations between extratropical

flow and eastward-propagating outgoing longwave radi-

ation (OLR) anomalies in the tropics. In a later study,

Matthews and Kiladis (1999) illustrate the interplay be-

tween high-frequency transient extratropical waves and

the MJO. More recently, Weickmann and Berry (2009)
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demonstrate that convection in the MJO frequently

evolves together with a portion of the activity in a global

wind oscillation. Gloeckler andRoundy (2013) argued by

using lagged composite analysis that the high-amplitude

extratropical circulation pattern is associated with si-

multaneous occurrence of both the MJO and the equa-

torial Rossby wave events.

Besides observational analyses, models have also

been used to study the interactions between the MJO

and extratropical waves. By including tropical convec-

tion forcing data in a barotropic model, Ferranti et al.

(1990) found significant improvement in the model’s

predictability. Hoskins and Ambrizzi (1993) argued

from their model that a zonally varying basic state is

necessary for the MJO to excite extratropical waves by

forcing perturbations to a barotropic model. To view the

extratropical response to convective heating, Jin and

Hoskins (1995) forced a primitive equationmodel with a

fixed heat source in the tropics in the presence of a cli-

matological background flow and obtained the Rossby

wave train response as a result. To diagnose the specific

response to patterns of convection like those of the ob-

served MJO, Matthews et al. (2004) forced a primitive

equation model in a climatological background flow

with patterns of observed MJO. The resulting global

response to that heating is similar in many respects to

the observational analysis. The MJO initiation in re-

sponse to extratropical waves was illustrated by Ray and

Zhang (2010). They show that a dry-channel model of

the tropical atmosphere developed MJO-like signals in

tropical wind fields when forced by reanalysis fields at

poleward boundaries. In addition, Lin et al. (2009)

showed the significance of midlatitude dynamics in trig-

gering tropical intraseasonal response by including ex-

tratropical disturbances in a tropical circulation model.

Frederiksen and Frederiksen (1993) used a two-level

primitive equation eigenvalue model and found large-

scale basic-state flowand cumulus heating to be necessary

for generatingMJOmodeswith realistic structures.Many

other interesting studies on tropical–extratropical inter-

actions have been carried out. For example, see the re-

view by Roundy (2011).

Among the past studies based on climate models,

typically the effect of the MJO is represented by forced

perturbations (Hoskins and Ambrizzi 1993; Jin and

Hoskins 1995; Matthews et al. 2004), or the influences of

the midlatitude variations are treated as boundary ef-

fects for the tropical circulation model (Ray and Zhang

2010; Lin et al. 2009; Frederiksen and Frederiksen 1993;

Roundy 2011). Such simplifications are useful for iso-

lating individual processes within these complexmodels.

As a next step, it would be desirable to design a sim-

plified model where both the MJO and extratropical

waves are simultaneously interactive, rather than ex-

ternally imposing one of these two components; such an

approach was recently taken by Chen et al. (2015), as

described next.

Chen et al. (2015) developed a simplified model that

includes both the MJO and tropical–extratropical in-

teractions. Specifically, this model combines (i) the in-

teractions of the dry barotropic mode and first baroclinic

mode, which have been studied by Majda and Biello

(2003) and Khouider and Majda (2005), with (ii) the

MJO skeleton model of Majda and Stechmann (2009,

2011). TheMJO skeleton model includes the interactive

dynamics of moisture q and convective activity envelope

a. It has captured the main features of the MJO at the

intraseasonal/planetary scale: (i) the slow phase speed

of ’5m s21; (ii) the peculiar dispersion relation of

dv/dk’ 0; and (iii) the horizontal quadrupole vortex

structure. By combining the barotropic equations and

the MJO skeleton, the model of Chen et al. (2015) il-

lustrated applications to MJO initiation and termi-

nation, including three-wave interaction cases of

(i) interaction of the MJO, equatorial baroclinic Rossby

waves, and barotropic Rossby waves; and (ii) interaction

of the MJO, baroclinic Kelvin waves, and barotropic

Rossby waves. In those cases, the barotropic Rossby

wave acts like a catalyst for the interaction between the

MJO and dry equatorial waves, but its own amplitude is

nearly unchanged. One of the main purposes of the

present paper is to investigate scenarios in which the

barotropic Rossby waves may significantly exchange

energy with the MJO. Two possible factors are wind

shear and sea surface temperature (SST) variations and

the accompanying variations in the climatological trop-

ical circulation, the Walker circulation (Webster 1972,

1981, 1982; Hoskins and Jin 1991; Majda and Biello

2003). The present work will investigate the effects of

regional varying SST and global shear flow in the in-

teractions between the MJO and barotropic Rossby

waves. It will be seen that the presence of the Walker

circulation allows significant energy exchanges between

barotropic Rossby waves and the MJO.

Last, it is worth noting that, for an investigation of

MJO initiation and termination such as the present

study, the MJO skeleton model has several important

properties that make it an appropriate choice of model.

First, the MJO skeleton model has been shown to re-

produce the initiation and termination of wave trains of

two to three MJO events in succession (Thual et al.

2014), similar to MJO events in nature (Yoneyama et al.

2013). Second, the MJO skeleton model reproduces

statistics of MJO events, such as the number and dura-

tion of events, that are similar to the statistics of MJO

events in nature (Stachnik et al. 2015). These aspects of
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MJO events are in addition to the MJO’s more basic

features; in particular, the MJO skeleton model predicts

the speed and structure of the MJO (Majda and

Stechmann 2009, 2011; Thual and Majda 2015, 2016).

The paper is organized as follows. Section 2 describes

the barotropic–first baroclinic MJO skeleton model,

including SST regional variations and the resulting

Walker circulation. Unbalanced moisture and cooling

source terms with spatial variations are taken into ac-

count in the MJO skeleton to represent the effect of

SST, in which case the Walker circulation can be found

as the steady-state solution of the baroclinic system. The

energy principle and asymptotic expansions are also

presented. In section 3, the resonance condition is

identified in the presence of an idealized Walker circu-

lation, which mediates the interaction between theMJO

and the barotropic Rossby waves. Two cases are nu-

merically computed for the ODE system: (i) MJO initi-

ation and (ii) MJO termination and excitation of

barotropic Rossby waves. Section 4 considers more gen-

eral Walker circulation cases composed of two different

wavenumbers. New ODE systems are derived for the

resonant condition, and numerical results are presented.

Section 5 investigates the effect of a zonally uniform

shear flow. Finally, section 6 is a concluding discussion.

2. Model description

a. The barotropic–first baroclinic MJO skeleton
model

The barotropic–first baroclinic b-plane equations with

water vapor and convection can be written as

›v

›t
1 v � =v1 yv? 1=p52

1

2
= � (v5 v) , (1a)

= � v5 0, (1b)

for the barotropic mode and

›v

›t
1 v � =v2=u1 yv? 52v � =v , (1c)

›u

›t
1 v � =u2= � v5 d2(Ha2 Su) , (1d)

›q

›t
1 v � =q1 ~Q= � v52d2(Ha2 Sq) , (1e)

›a

›t
1 v � =a5Gqa . (1f)

for the first baroclinic mode. These equations combine

the MJO skeleton model (Majda and Stechmann 2009)

and nonlinear interactions between the baroclinic and

barotropic modes (Majda and Biello 2003). The details

of this model are described in Chen et al. (2015). Here,

v5 (u, y), v? 5 (y, 2u) and p are barotropic velocity

and pressure, respectively. The barotropic streamfunction

c can be used to rewrite (1a) and (1b) as

›

›t
Dc1 v � =Dc1c

x
1

1

2
= � [2(vu)

y
1 (vy)

x
]5 0. (2)

The other variables, v5 (u, y) and u are baroclinic ve-

locity and potential temperature; and q is water vapor

(sometimes referred to as ‘‘moisture’’). The coefficients

H and ~Q are prefactors to giveHa the units of a heating

rate and a vertical moisture gradient parameter, respec-

tively. The tropical convective activity envelope is de-

noted by d2a, where d is a small parameter thatmodulates

the scales of the tropical convection envelope. We define

d2 as the ratio of radiative cooling rate of 1Kday21 di-

vided by the reference heating rate scale at 10Kday21.

Likewise, d2 is also incorporatedwith the radiative cooling

and the moisture sources, Su and Sq. Here, for simplicity,

we consider d2Su and d2Sq to be spatially varying and time

independent, although, in general, they have both spatial

and temporal variations.

b. Walker circulation and energy evolution

First, consider the baroclinic system (1c)–(1f) with the

barotropic velocity ignored. When the system has un-

balanced moistening and cooling sources (i.e., Sq 6¼ Su),

the Walker circulation is formed for the baroclinic

equations with zero barotropic winds. When v5 0,

the Walker circulation is the steady-state solution

for the baroclinic system (Ogrosky and Stechmann

2015):

2=u
W
1 yv?W 5 0, (3a)

= � v
W
5 d2

Su 2 Sq

12 ~Q
, (3b)

q
W
5 0, (3c)

a
W
5

Sq 2 ~QSu

H(12 ~Q)
. (3d)

When the Walker circulation variables are subtracted

from the baroclinic variables, the baroclinic system has

energy conservation for the anomalies: dE BCa/dt5 0,

where

E
BCa

5
1

2

ðY
2Y

ðX
0

1

2
[jv2 v

W
j2 1 (u2 u

W
)2]

1
1

~Q(12 ~Q)
[q1 ~Q(u2 u

W
)]2

1
d2

~QG
[Ha2 a

W
log(a)]dx dy . (4)
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Now consider the full coupled system (1), includ-

ing both the barotropic and baroclinic components.

When the barotropic energy E BT 5 (1/2)
Ð Y
2Y

Ð X
0
jvj2 dx dy

is also considered, the total energy for the anomalies

is E 5E BCa 1E BT, and it evolves according to the

following:

dE
dt

52
1

2

ðY
2Y

ðX
0

v � =[v
W
5 v

W
1 (v2 v

W
)5 v

W
1 v

W
5 (v2 v

W
)]

1 (v2 v
W
) � (v

W
� =v1 v � =v

W
)1 [ ~Qq1 (11 ~Q2)(u2 u

W
)]v � =u

W
dx dy . (5)

Note that the right-hand side of this equation depends

on the strength of theWalker circulation, and in general

it is not zero, so the energy is not conserved. TheWalker

circulation here behaves as an energy source/sink for the

MJO mode and the barotropic Rossby wave.

c. Asymptotic ansatz

The asymptotic expansion is now carried out by in-

troducing equatorial long-wave scaling,

x0 5 dx, t0 5 dt, and y0 5
1

d
y , (6)

as well as the longer time scales:

T
1
5 dt0, T

2
5 d2t0 . (7)

Hence, in the asymptotic model, three long time scales

are involved: t0, T1, and T2. Their characteristic time

scales are 1, 3, and 10 days, respectively. In addition,

small-amplitude variables are also assumed for asymp-

totic expansion:

(c, u, y0, u, q)5 d2(c
1
,u

1
, y

1
, u

1
, q

1
)1 d3(c

2
, u

2
, y

2
, u

2
,q

2
)

1 d4(c
3
,u

3
, y

3
, u

3
, q

3
)1O(d5) ,

(8a)

a5 a1 da
1
1 d2a

2
1 d3a

3
1O(d4) , (8b)

where each of the variables on the right-hand side of (8)

is a function of x0, t0, T1, and T2, although this de-

pendence has been suppressed in (8) to ease notation.

For the moisture source and radiative cooling, it is as-

sumed that

Sq 5 Sq 1 dSq
1, Su 5 Su 1 dSu

1 , (9)

where (⋯)5
Ð
(⋯) dx dy is the mean value over the hor-

izontal domain. We further assume that Sq 5 Su 5H a,

which is a necessary consistency condition to ensure

the existence of a steady Walker circulation (Majda

and Klein 2003).

Under this assumption for Sq and Su, the Walker cir-

culation would only appear in the leading order, so the

baroclinic variables at the leading order can be written

as follows:

(u
1
, y

1
, u

1
,q

1
, a

1
)5 (u

1
, y

1
, u

1
, q

1
, a

1
)
W

1 (u
1
, y

1
, u

1
,q

1
, a

1
)
a
, (10)

where the subscript W stands for Walker circulations,

and the subscript a stands for the leading-order anom-

alies from the Walker circulation.

d. Meridional basis truncation

To carry out the multiscale analysis, a meridional

truncated basis is used for all of the variables. The main

reason for introducing a meridional truncation is that

the linear eigenmodes of (1) are not known, whereas the

linear eigenmodes of a truncated version of this system

are known and were previously described by Majda and

Stechmann (2009). We adopt the same meridional

structure described in Chen et al. (2015), and the baro-

tropic wind is assumed as

c(x, y, t)5B(x, t) sin(Ly) , (11)

where L is the meridional wavenumber. For the baro-

clinic variables, the meridional structures are assumed

to be

l(x, y, t)5 l(0)(x, t)F
0
(y)1 l(2)(x, t)F

2
(y) , (12a)

r(x, y, t)5 r(0)(x, t)F
0
(y)1 r(2)(x, t)F

2
(y) , (12b)

y(x, y, t)5 y(1)(x, t)F
1
(y) , (12c)

q(x, y, t)5 q(0)(x, t)F
0
(y)1 q(2)(x, t)F

2
(y) , (12d)

Ha(x, y, t)2 Su(x, y, t)5Ha(0)(x, t)F
0
(y) , (12e)

where l52(u1 u)/2 and r5 (u2 u)/2 are the Riemann

invariants for the baroclinic system, and F(y) are the

parabolic cylinder functions. The motivation for this

particular truncation is mainly to have the simplest

system that includes the Kelvin wave and the first sym-

metric equatorial Rossby wave; see Chen et al. (2015)

for further discussion. The details of the parabolic cylinder

functions can be found in the appendix. In addition, we
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also assume that the variations for moisture source and

radiative cooling share the same zonal structure:

Sq
1 5

~Sqy(y)~Sx(x), Su
1 5

~Suy(y) ~Sx(x) , (13)

although in general they often have different zonal struc-

tures. Further, themeridional structures are assumed to be

proportional to the leading parabolic cylinder function:

~Sqy(y)5 c
q
F

0
(y), ~Suy(y)5 c

u
F

0
(y) , (14)

The asymptotic expansions in (8) are then applied to

the meridional truncated system, which is described in

the appendix. At the leading order, the truncated system

is linear, and the baroclinic and barotropic systems are

decoupled. The four major eigenmodes for the baro-

clinic system were described in Majda and Stechmann

(2009), and they are theKelvin,MJO,moist Rossby, and

dry Rossby modes, as shown in Fig. 1.

3. Direct tropical–extratropical interaction
mediated by Walker circulation

This section provides the reduced ODE model that

includes direct tropical–extratropical interactions me-

diated by the Walker circulation. In particular, numer-

ical computations for two cases will be given for this

interaction mechanism: (i) MJO initiation and (ii) MJO

termination and excitation of barotropic Rossby waves.

a. The reduced model

For the interaction of theMJO and barotropic Rossby

wave, in the presence of the Walker circulation, their

wavenumbers and frequencies must satisfy the reso-

nance condition (Majda 2003):

k
MJO

1 k
W
1 k

T
5 0, (15a)

v
MJO

1v
T
5 0, (15b)

where kMJO, kW , and kT are the wavenumbers for theMJO,

the Walker circulation, and the barotropic Rossby wave,

respectively; and vMJO and vT are the wave frequencies for

theMJOand the barotropicRossbywave, respectively. The

frequency for theWalker circulationvW is zero.This type of

resonance condition is analogous to topographic resonance

(Majda et al. 1999); the Walker circulation here plays an

analogous role to the effect of topography. Because the

MJO and barotropic Rossby waves travel in opposite di-

rections, (15) implies that the wavenumber of the Walker

circulation has to satisfy the following condition:

jk
W
j$ 2.

A Walker circulation with wavenumber kW 5 2 can be

viewed in Fig. 2. One can view this wavenumber-2

Walker circulation as an idealization of the two main

circulation cells in nature, which are centered over the

Maritime Continent and South America (Stechmann and

Ogrosky 2014; Ogrosky and Stechmann 2015). The reso-

nance conditionwithkMJO 5 1 andkT 5 1 is shown inFig. 3.

To proceed with the multiscale analysis, we write the

leading-order baroclinic solution as

U
1
5a(T

1
,T

2
)ei(kMJOx

02vMJOt
0)r

MJO
1 e(ikWx0)r

W
1C.C.,

(16)

and the leading-order barotropic solution as

B
1
5

1ffiffiffiffiffiffiffiffiffiffi
2pL

p b(T
1
,T

2
)ei(kTx

02vTt
0) 1C.C., (17)

FIG. 1. Dispersion relation for linear waves. The dispersion curve of the Kelvin mode is

denoted with open circles, the MJO with asterisks, the moist baroclinic Rossby mode with

closed circles, the dry baroclinic Rossby mode with squares, and the barotropic Rossby mode

with no symbols.

OCTOBER 2016 CHEN ET AL . 4105



where C.C. stands for the complex conjugate, rMJO is the

right eigenvector for the MJO mode, and rW is the right

eigenvector of the Walker circulation. The eigenvector

for the MJO mode is normalized by the baroclinic en-

ergy, as described by Stechmann and Majda (2015).

Next, the second- and third-order systems are con-

sidered in order to determine the evolution of a(T1, T2)

and b(T1, T2) from (16) and (17) on the long time scales

T1 andT2. A systematic multiscale asymptotic analysis is

carried out to ensure the sublinear growth of the second-

and third-order terms of the asymptotic expansion in

(8). Following similar procedures as in Chen et al.

(2015), the result is a reduced ODE model for the am-

plitudes of the modes:

›
T2
b 1 id

2
b1 h

3
a*5 0, (18a)

›
T2
a1 id

4
a2a*1 id

5
a1 h

6
b*5 0, (18b)

where coefficients d and h are shown in Table 1 and are

pure real values, and where the asterisk denotes com-

plex conjugate. Three groups of interacting terms ap-

pear in this ODE system: the cubic self-interaction term

id4a
2a* corresponding to the nonlinear q–a interaction,

the linear self-interaction terms id2b and id5a related to

dispersive terms in the barotropic–baroclinic system,

and the coupled linear terms h3a* and h6b* related to

theWalker circulation. The coefficients d and h are from

the procedure of multiscale asymptotic analysis. In

contrast to the ODE system derived by Chen et al.

(2015), in which the coupling terms are quadratic, here

the coupling terms h3a* and h6b* are linear. This is

because the Walker circulation is involved in this cou-

pling, but it is a stationary mode with fixed amplitude, so

one part of the quadratic term is a fixed value.

The values of h3 and h6 in (18) are determined by the

strength of the variations in the source terms, Sq
1 and Su

1,

or their meridional projection coefficients, cq and cu,

from (14). In this paper, for simplicity, the two co-

efficients are fixed so that cq 5 1:2 and cu 5 1, which re-

sults in the Walker circulation shown in Fig. 2.

According to (18), the coupled linear terms determine

the energy exchange between the two modes:

djaj2
dT

2

522h
3
Re(ab),

djbj2
dT

2

522h
6
Re(ab) , (19)

where Re denotes the real part. At the leading order, the

total energy E for the anomalies is

E5 jaj2 1 jbj2 , (20)

which is only conserved when h3 1 h6 5 0. However, this

is generally not the case. In the computations carried out

in this study, the coefficients h3 and h6 have opposite

signs, indicating from (19) that as one mode is gaining

energy, the other one is losing energy, but the total en-

ergy is not necessarily constant.

Here the simplified asymptotic equations in (18) are

utilized to gain insight into the interactions between the

MJO and the barotropic Rossby waves. For this pur-

pose, the reduced model is integrated numerically for

two sets of initial data: (i) MJO initiation: ajT250 5 0 and

bjT250 5 1; and (ii) MJO termination and excitation of

barotropic Rossby waves: ajT250 5 1 and bjT250 5 0. The

computation time is up to 200 days to observe the

properties of the solutions on the long T2 time scale. A

FIG. 2. Walker circulation with wavenumber kW 5 2. The con-

tours denote the convective activity Ha, with positive (negative)

anomalies denoted by solid (dashed) contours and with the zero

contour removed. The contour interval is equal to one-fourth of the

maximum value of Ha. The vectors denote the horizontal velocity

field at the lower troposphere.

FIG. 3. Resonance condition for the interaction of the MJO,

Walker circulation, and barotropic Rossby wave with wave-

numbers kMJO 5 1, kW 522, and kT 5 1 as described in (15).

TABLE 1. Coefficients in (18).

d2 h3 d4 d5 h6

20.0053 20.1261 20.0519 0.0017 0.4132
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standard fourth-order Runge–Kutta time discretization

is adopted as the basic numerical method. The accuracy

of the numerical solution is checked by doubling and

halving the time steps and ensuring the relative differ-

ence between these solutions at 200 days is within 0.1%.

Note that the wavenumbers kMJO, kW , and kT are

selected a priori in the present study to take values

similar to nature. One could select different values in

order to examine the behavior of different scenarios. In

earlier studies, the wavelength of the MJO was instead

allowed to arise naturally from the nonlinear and/or

stochastic dynamics (Majda and Stechmann 2011; Thual

et al. 2014, 2015; Ogrosky and Stechmann 2015; Stachnik

et al. 2015). For example, Stachnik et al. (2015) com-

puted empirical orthogonal functions (EOFs) of stochas-

tic skeleton model simulation data, and the structure of

the leading EOFs is composed most heavily of zonal

wavenumber 1, in agreement with the leading EOFs of

observational data (Wheeler and Hendon 2004); quanti-

tatively, the simulationEOFs and observational EOFs are

highly correlated with pattern correlations in the range

from 0.80 to 0.98 (Stachnik et al. 2015).

b. MJO initiation

To simulate a case of MJO initiation, the initial con-

ditions are set to be ajT250 5 0 and bjT250 5 1. From the

reduced model in (18), it can be seen that the nonzero

value of bwill excite a through the coupled linear terms.

The numerical simulation in Fig. 4 shows this behavior

initially when the MJO gains energy and the barotropic

Rossby wave is losing energy, and the total energy is

increasing until it peaks at around 70 days. After this

time, the MJO mode decays in amplitude as the

barotropic Rossby wave gains energy and returns to the

original state. This pattern repeats itself to be a non-

linear cycle with time period of roughly 140 days.

To illustrate the spatial variations, Fig. 5 shows the

Hovmöller diagram forHa1a, the leading-order anomaly

of the convective activity. In this figure, the MJO is

traveling eastward at a speed of ’5m s21, and the wave

amplitude is zero at 0 days, peaks at around 70 days, and

returns to zero amplitude at 140 days. This corresponds

to a wave train of roughly one or two MJO events, de-

pending on the spatial location, similar to the organization

of sequences of MJO events in nature (Yoneyama et al.

2013; Thual et al. 2014). In Fig. 6, the horizontal velocity

fields in the lower troposphere are shown for the MJO,

the barotropic Rossby wave, and the Walker circulation.

The Walker circulation is a stationary field. For the MJO,

FIG. 4. Solution of the reducedmodel in (18) for the case ofMJO

initiation with kMJO 5 1, kW 522, and kT 5 1. (top),(middle)

Amplitudes for the MJO and barotropic Rossby wave, respec-

tively, and (bottom) the total energy for the system.

FIG. 5. Hovmöller diagram ofHa1a convective activity for the case

of MJO initiation.
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the velocity field is zero at 0 days and achieves its maximum

at 70 days. The barotropic Rossby wave is at its maximum

initially and achieves its smallest magnitude at 70 days.

What determines the 140-day time scale for initiation

and decay of a wave train of MJO events in the model?

This time scale is related to the energy transfer between

the MJO and barotropic Rossby waves. In (18), the

coupling terms between theMJO and barotropic Rossby

waves have coefficients of h3 and h6, and therefore one

expects h3 and h6 to play a key role in determining the

time scale of energy exchange. [Note that the other

terms in (18) can also contribute to the energy exchange

time scale; their role is implicitly included in (19) in the

Re(ab) factor.] Based on linear theory, if we linearize

system (18) around (a, b)5 (0, 0), the nondimensional

time scale can be written as

T
osci

5
2p

d3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d

2
1 d

5
)2 2 4h

3
h
6

q . (21)

In the above expression, because h3 and h6 usually have

opposite signs, the value inside the square root is usually

positive. With plugging the coefficient values in Table 1,

the dimensional time scale is 147 days, similar to the

nonlinear time scale of ’140 days seen in Figs. 4 and 5.

c. MJO termination and excitation of barotropic
Rossby waves

To consider MJO termination and the excitation of

barotropic Rossbywaves, the initial condition is set to be

ajT250 5 1 and bjT250 5 0. Figure 7 shows the numerical

simulation from the ODE solver. Similar to the MJO

initiation case, theMJOmode and the barotropic Rossby

waves are exchanging energy. The oscillation cycle is

similar to MJO initiation at around 140 days. Different

from the MJO initiation case, the MJO is losing energy,

whereas the barotropic Rossby wave is gaining energy at

0 days, and the total energy of these two modes is de-

caying at first, until’70 days. The amplitudes and energy

return to their original state at around 140 days.

4. More general Walker circulation

In the previous section, the case for the sinusoidal

Walker circulation with wavenumber kW 5 2 is dis-

cussed. The realistic Walker circulation, on the other

hand, is composed of a variety of wavenumbers. For

example, Ogrosky and Stechmann (2015) described sim-

plified versions of the Walker circulation using one or

three Fourier modes in their study. In this section, another

mode for theWalker cell, kW 5 3, is included in addition to

FIG. 6. Velocity field (lower tropospheric) of threemodes for the case ofMJO initiation at (left) 0 and (right) 70 days: (top)MJO; (middle)

barotropic Rossby wave; and (bottom) Walker circulation.
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kW 5 2. The Walker circulation in this case is shown in

Fig. 8. In this situation, two sets of resonant triads arise

corresponding with the two Walker cell wavenumbers:

k
MJO1

1 k
W1

1 k
T1

5 0, (22a)

v
MJO1

1v
T1

5 0, (22b)

and

k
MJO2

1 k
W2

1 k
T2

5 0, (23a)

v
MJO2

1v
T2

5 0, (23b)

where kW1 522 and kW1 523. The other wavenumbers

are selected in the following way. To go along with these

Walker cell wavenumbers, we consider standard wave-

numbers 1 and 2 for the MJO, and then we select baro-

tropic Rossby wavenumbers that complete the resonance

conditions in (22) and (23). One could also imagine other

reasonable choices, such as wavenumber 3, for the MJO,

butwewill restrict attention towavenumbers 1 and 2 here

as some initial reasonable choices for illustration. More

specifically, the values for kMJO1 and kT1 are both fixed to

be 1, and two cases are considered: (i) kMJO2 5 1 and

kT2 5 2; and (ii) kMJO2 5 2 and kT2 5 1. For case (i), kMJO1

and kMJO2 represent the same k5 1 MJOmode. For case

(ii), kT1 and kT2 are the same wavenumber, but they

represent barotropic Rossby waves with different meridi-

onal wavelengths. In the two cases below, the strengths of

Su
1 and Sq

1 at wavenumber k5 3 are also chosen to be

cq 5 1:2 and cu 5 1, as in the previous section, for sim-

plicity, although more general situations can be applied.

a. Single MJO interacting with two barotropic waves

Here, three modes are considered: the MJO mode

with wavenumber kMJO1 5 1 and barotropic Rossby

waves with kT1 5 1 and kT2 5 2. The resonance condi-

tions for the three modes are shown in Fig. 9. Here, the

barotropic waves have two different meridional wave-

numbers, L1 and L2, so that the initial condition for the

barotropic streamfunction can be written as

c
1
5 d2 sin(L

1
y)

b
1ffiffiffiffiffiffiffiffiffiffiffi

2pL
1

p ei(kT1x
02vT1t

0)

1 d2 sin(L
2
y)

b
2ffiffiffiffiffiffiffiffiffiffiffi

2pL
2

p ei(kT2x
02vT2t

0) 1C.C., (24)

where b1 and b2 are the amplitudes for the two baro-

tropic Rossby waves. The initial condition for the baro-

clinic system is

U
1
5a(T

1
,T

2
)ei(kMJOx

02vMJOt
0)r

MJO
1 r

W1
1 r

W2
1C.C.,

(25)

where rW1 and rW2 are the Walker circulation compo-

nents at wavenumbers kW5 2 and 3. These two resonant

triads lead to the reduced ODE system:

›
T2
b
1

1 id
21
b
1
1 h

31
a*5 0, (26a)

›
T2
b
2

1 id
22
b
2
1 h

32
a*5 0, (26b)

›
T2
a1 id

4
a2a*1 id

5
a1 h

61
b
1
*1 h

62
b
2
*5 0, (26c)

where coefficients d and h are shown in Table 2. The deri-

vation, not shownhere, is similar toChen et al. (2015). From

system (26), we can see that both barotropic waves interact

with the MJO mode a, but there is no direct interaction

between the two barotropic Rossby waves b1 and b2.

In principle, either one of the barotropic waves can

potentially initiate the MJO. To consider each wave

separately, two cases are computed numerically:

(i) ajT25050,b1jT25051, andb2jT25050; and (ii)ajT25050,

b1jT250 5 0, andb2jT250 5 1. Furthermore, additional cases,

such as investigations of MJO termination, were also car-

ried out. The results, not shown here, demonstrate that

the energy is exchanged mainly between the MJO and

the barotropic Rossby wave with kT 5 1, whereas the

FIG. 8. As in Fig. 2, but for aWalker circulation with wavenumbers

kW 5 2 and 3 as described in section 4.

FIG. 7. As in Fig. 4, but with initial conditions corresponding to the case

of MJO termination and excitation of barotropic Rossby waves.
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wavenumber kT 5 2 Rossby wave (which has meridio-

nal wavelength of 2p/L2 ’ 840 km) exchanges only a

very small amount of energy with the MJO.

b. Two MJO modes interacting with two barotropic
Rossby waves

In this section, four modes are considered: the MJO

modes with wavenumbers kMJO1 5 1 and kMJO2 5 2 and

two barotropic Rossby waves with the same zonal

wavenumbers kT1 5 kT2 5 1 but different meridional

wavenumbers L1 and L2. Figure 9 (right) shows the

resonance condition for the interactions between the

four modes. The ansatz for the barotropic wind can still

be written as (24), and

U
1
5a

1
(T

1
,T

2
)ei(kMJO1x

02vMJO1t
0)r

MJO1

1a
2
(T

1
,T

2
)ei(kMJO2x

02vMJO2t
0)r

MJO2
1 r

W1
1 r

W2
1C.C.

(27)

for the baroclinic modes, where a1 and a2 stand for

amplitudes for the MJO at wavenumbers kMJO1 5 1 and

kMJO2 5 2. The following coupledODE system describes

the interaction mechanism:

›
T2
b
1

1 id
21
b
1
1 h

31
a
1
*5 0, (28a)

›
T2
a
1
1 id

41
a2
1a1
*1 ig

1
a
1
a
2
a
2
*1 id

51
a
1
1h

61
b
1
*5 0, (28b)

›
T2
b
2

1 id
22
b
2
1 h

32
a
2
*5 0, and (28c)

›
T2
a
2
1 id

42
a2
2a2
*1 ig

2
a
2
a
1
a
1
*1 id

52
a
2
1h

62
b
2
*5 0, (28d)

where coefficients d and h are shown in Table 3. Again,

the derivation, not shown here, is similar to Chen et al.

(2015). In this ODE system, besides the existing coupled

linear terms between the MJO–barotropic Rossby wave

interactions, additional cubic interactions appear be-

tween the two MJO modes. Specifically, the terms for

FIG. 9. Resonance conditions in (22) and (23) with more realistic Walker circulation. (left) One MJO mode interacting with two

barotropic Rossby waves as in section 4a; (right) two MJO modes interacting with two barotropic Rossby waves as in section 4b. Open

circles correspond with (22) and asterisks correspond with (23).

TABLE 2. Coefficients in (26).

d21 h31 d22 h32 d4 d5 h61 h62

20.0053 20.0630 20.0106 0.0060 20.0519 0.0017 0.2066 20.0158
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MJO–MJO interactions are ig1a1a2a2* in (28b) and

ig2a2a1a1* in (28d). These cubic interactions arise from

the nonlinear q–a interaction in the MJO skeleton

model, similar to the cubic self-interaction terms in

Chen et al. (2015).

Figure 10 shows the MJO initiation with initial con-

ditions a1jT250 5a2jT250 5 0 and b1jT250 5b2jT250 5 1. It

can be seen from the reduced system (28) that the baro-

tropic Rossby waves b1 and b2 are necessary to initiate

MJO modes a1 and a2, respectively. In Fig. 10, the two

MJO modes interact with each other, and the solutions

do not follow a periodic pattern. Also, notice that the

MJO is significantly weakened for times 110–140 days,

but it is not completely terminated. To illustrate this

more clearly, Fig. 11 is the Hovmöller diagram for the

convective envelope of the leading-order MJO waves

with wavenumbers 1 and 2. A wave packet is presented

in the diagramwith a life cycle around 150 days. These cases

illustrate that incorporating more realistic zonal variation

into the Walker circulation yields more realistic zonal var-

iation of the MJO (Ogrosky and Stechmann 2015).

Note that the Hovmöller diagram in Fig. 11 displays a

westward group velocity, which occurs here in the

presence of theWalker circulation. This westward group

velocity has also been documented in cases without ex-

tratropical wave interactions (Majda and Stechmann

2011), in the presence of a warm pool, and it is also

consistent with observational analyses of the MJO, as

seen in Hendon and Salby (1994) and Adames and Kim

(2016). In a more idealized setting with a zonally uni-

form base state (Majda and Stechmann 2011), the MJO

skeleton model instead displays an eastward group ve-

locity at some wavelengths.

5. Effects of wind shear

This section includes the effect of the horizontal and

vertical wind shear in the model. In the past, dry models

(Webster 1972, 1981, 1982; Hoskins and Jin 1991; Majda

and Biello 2003) suggest that wind shear can signifi-

cantly affect energy transfer between the barotropic

waves and tropical waves. Both zonally uniform and

TABLE 3. Coefficients in (28).

d21 h31 d22 h32 d41 g1 d51 h61 d42 g2 d52 h62

20.0053 20.1261 20.0064 20.0959 20.0519 20.0375 0.0017 0.4132 20.0984 20.1503 0.0044 0.3960

FIG. 10. Solution of the reduced model (28) for the case of MJO initiations with two MJO modes: kMJO1 5 1 and

kMJO2 5 2, as described in section 4b.
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zonally varying wind shear have been considered in

these past studies. However, the MJO, water vapor, and

convective activity were not explicitly included in these

models. Motivated by previous studies, here we consider

both barotropic and baroclinic wind shear that is O(d2):

[~u(x, y, z), ~y(x, y, z), ~w(x, y, z)]5 [ ~U(y, z), 0, 0], (29)

where

~U(y, z)5 d2[U
0
1L sin(Ly)B

0

1 cos(pz)(u
(0)
0 F

0
1 u

(2)
0 F

2
)] . (30)

Here, U0 is the constant global mean flow, B0 is the

strength of the barotropic wind shear in the meridional

direction, and u
(0)
0 and u

(2)
0 are the strengths of the baro-

clinic wind shear in the first two symmetric meridional

basis functions. Note that we consider only zonally

uniform wind shear in the present study; it would be

interesting to consider a zonally varying barotropic wind

shear in the future.

A similar multiscale analysis is carried out, and the

resonance condition is not affected by the wind shear.

The reduced ODE model for the MJO–barotropic

Rossby wave interaction is:

›
T2
b 1 i(d

2
1 f

1
)b1h

3
a*5 0, (31a)

›
T2
a1 id

4
a2a*1 i(d

5
1 f

2
)a1h

6
b*5 0, (31b)

where coefficients d, f, and h when U0 5B0 5 1 are

shown in Table 4. The wind shear introduces two addi-

tional linear terms with coefficients f1 and f2, both of

which are real values. In the derivation of (31), only the

effect of baroclinic shear arises. In order for the baro-

clinic shear to have an effect, it must instead be assumed

to have an amplitude ofO(d); in such a case (not shown),

the inclusion of the baroclinic shear also introduces

similar self-interacting linear terms so that the reduced

ODE is in the same form as (31) in any case.

Numerical simulations are performed for MJO initi-

ation with the effects of barotropic shear. The resonance

condition is the same as in section 3. Four different

barotropic shear profiles are considered: (i) U0 5 0 and

B0 5 1; (ii) U0 521 and B0 5 1; (iii) U0 5 1 and B0 5 0;

and (iv)U0 5 1 and B0 5 1. The results for the four cases

(not shown here) suggest that the barotropic shear has

little effect on themaximum amplitude attained byMJO

and the time period of the solution. The small effect of

wind shear here differs from the important effects of

wind shear seen byMajda and Biello (2003), and several

differences in the models could contribute to the dif-

ferent results. In particular, in the model of Majda and

Biello (2003), the waves are all nondispersive; resonant

interactions are included for all wavenumbers rather

than a small discrete subset of wavenumbers; and

moisture and convection are not explicitly included.

6. Concluding discussion

Asymptotic models have been designed and analyzed

here for the nonlinear interaction between theMJO and

the barotropic Rossby waves. The models involve the

combination of the barotropic and equatorial baroclinic

modes together with interactive moisture and convective

FIG. 11. Hovmöller diagram of Ha1a for MJO initiation with two

MJO modes: kMJO1 5 1 and kMJO2 5 2, as described in section 4b.

TABLE 4. Coefficients in (31).

d2 h3 d4 d5 h6

20.0053 20.1261 20.0519 0.0017 0.4132
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activity envelopes. An important feature of this frame-

work is that the tropical and extratropical dynamics are

interactive, whereas other models commonly specify one

of these components as an external forcing term or

boundary condition.

In the presence of the Walker circulation, the MJO

and the barotropic Rossby waves can interact directly.

In section 3, the reduced ODE model is derived by

identifying resonant triads that include the MJO, the

Walker circulation, and the barotropic Rossby wave.

Two cases are presented: (i) MJO initiation and (ii) MJO

termination and excitation of barotropic Rossby waves.

In contrast to the results in Chen et al. (2015), in which

the barotropic Rossby wave exchanges very little energy

with other modes, here the barotropic Rossby wave and

the MJO exchange energy directly. The time period

between initiation and termination is about 140 days,

depending on spatial location; this is a realistic time

scale, since the MJO’s oscillation period is 30–60 days

andMJO events commonly appear as wave trains of two

or three successive events (Yoneyama et al. 2013; Thual

et al. 2014; Stachnik et al. 2015).

To explore more realistic conditions, Walker circula-

tions were also considered with more general zonal

variations. Multiple resonant triads are identified to

generate energy exchange between different modes. In

particular, a four-wave MJO–MJO–barotropic Rossby–

barotropic Rossby interaction is found with MJO at

wavenumbers 1 and 2, in which the two MJO modes

interact through the nonlinear coupling term between

moisture and convective activity envelope in the MJO

skeleton equation. In this case, rather than an idealized

MJO with a single zonal wavenumber, a wave packet of

MJO events arises with an amplitude that is zonally

localized.

As a final element of additional realism considered

here, horizontal and vertical shear were incorporated in

the model. The barotropic and baroclinic shear, if zon-

ally uniform, have little effect on the energy exchange

between the MJO and the barotropic Rossby waves.

This is in contrast to the significant effect of zonally

varying wind shear as part of the Walker circulation.

Further investigations are needed to better understand

the role of wind shear in these different settings.

Besides the MJO skeleton model used here, other

models of the MJO are also in use. For example, the

MJO is described as a ‘‘moisture mode’’ by Sobel and

Maloney (2013) and Adames and Kim (2016), and other

models by Yang and Ingersoll (2013) are formulated

without moisture. One could use these models to carry

out a study of tropical–extratropical interactions. Here,

the MJO skeleton model was used for several reasons.

For instance, the MJO skeleton model predicts the

speed and structure of the MJO (Majda and Stechmann

2009, 2011; Chen and Stechmann 2016) and also its

vertical tilts (Thual and Majda 2015, 2016). Further-

more, it has been shown to reproduce the initiation and

termination of wave trains of two to threeMJO events in

succession (Thual et al. 2014), similar to MJO events in

nature (Yoneyama et al. 2013). In addition, the MJO

skeleton model reproduces statistics of MJO events,

such as the number and duration of events, that are

similar to the statistics of MJO events in nature

(Stachnik et al. 2015).

While the simplified asymptotic models in this paper

include several realistic aspects of tropical–extratropical

interactions, some other physical mechanisms are not

included. For instance, the meridional structures of the

variables here are set to be the leading parabolic cyl-

inder functions. With more complicated meridional

structures, the interaction mechanism will be richer

and more realistic, and it would allow the model to

cope with different background states, such as the bo-

real summer and/or winter, when the ITCZ is off the

equator. Such topics are interesting avenues for future

investigations.
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APPENDIX

Asymptotic Expansion of the Meridional Truncated
System

The parabolic cylinder functions that are used to de-

fine the meridional structure of the baroclinic variables

are as follows:

F
m
(y)5 (m!

ffiffiffiffi
p

p
)21/222m/2e2y2/2H

m
(y) , (A1)

with Hermite polynomials Hm(y) defined by

H
m
(y)5 (21)mey

2dme2y2

dym
. (A2)

The parabolic cylinder functions form an orthonor-

mal basis on the 1D function space. The first few

functions are
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F
0
(y)5p21/4e2y2/2,

F
1
(y)5p21/4

ffiffiffi
2

p
ye2y2/2,

F
2
(y)5p21/4 1ffiffiffi

2
p (2y2 2 1)e2y2/2 . (A3)

The parabolic cylinder functions satisfy the following

identities:

L
1
F

m
(y)5 (2m)1/2F

m21
(y),

L
2
F

m
(y)52[2(m1 1)]1/2F

m11
(y) , (A4)

which help to simplify many expressions, where the

operators L6 are defined as L6 5 ›/›y6 y.

The equations in (3) for theWalker circulation can be

written for the truncated system as

2l
(0)
1sx 1 y

(1)
1s 1

1ffiffiffi
2

p Ha
(0)
1s 5

1ffiffiffi
2

p c
q
~Sx , (A5a)

2l
(2)
1sx 5 0, (A5b)

r
(0)
1sx 1

1ffiffiffi
2

p Ha(0) 5
1ffiffiffi
2

p c
q
~Sx , (A5c)

r
(2)
1sx 2

ffiffiffi
2

p
y
(1)
s1 5 0 (A5d)

2l
(0)
1s 1

ffiffiffi
2

p
r
(2)
1s 5 0, (A5e)

~Qffiffiffi
2

p (r
(0)
1sx 2 l

(0)
1sx)1

~Qffiffiffi
2

p y
(1)
1s 1Ha

(0)
1s 5 c

u
~Sx, and (A5f)

~Qffiffiffi
2

p (r
(2)
1sx 2 l

(2)
1sx)2

~Qy
(1)
1s 5 0. (A5g)

The solution to this system of equations is the Walker

circulation in the meridional truncated system, and it

can be written as

r
(0)
1Wx 52

c
q
2 c

uffiffiffi
2

p
( ~Q2 1)

~Sx , (A6a)

l
(0)
1Wx 5

ffiffiffi
2

p
(c

q
2 c

u
)

~Q2 1
~Sx , (A6b)

r
(2)
1Wx 5

1ffiffiffi
2

p l
(0)
1Wx (A6c)

y
(1)
1W 5

1

2
l
(0)
1Wx , (A6d)

q
(0)
1W 5 0, and (A6e)

a
(0)
1W 5

~Qc
q
2 c

u

H( ~Q2 1)
~Sx . (A6f)

By writing the baroclinic variables as U5 [l(0), l(2), r(0),

r(2), y(1), q(0), q(2)] for the truncated system, and writing

U1 5U1a 1U1W to separate the Walker circulationU1W

from the anomaliesU1a, the asymptotic expansion of (1),

(2), (8), (11), and (12) can be written in abstract form as

follows. Expanding (1) and (2) in powers of d, the first-

order system is

L2YB
1t0 2YB

1x0 5 0, (A7a)

N U
1at0 1L

U
U

1a
5 0; (A7b)

the second-order system is

L2YB
2t0 2YB

2x0 52L2YB
1T1

, (A8a)

N U
2t0 1L

U
U

2
52U

1aT1
1F

2U1a
1F

2U1W
; (A8b)

and the third-order system is

L2YB
3t0 2YB

3x0 52L2YB
1T2

2L2YB
2T1

1YB
1x0x0 t0 1B

T3
(U

1a
,U

1a
)1B

T3
(U

1a
,U

1W
)1B

T3
(U

1W
,U

1W
), (A9a)

N U
3t0 1L

U
U

3
52U

1T2
2U

2T1
1F

3U2,U1a
1F

3U2,U1W
1B

3
(B

1
,U

1a
)1B

3
(B

1
,U

1W
). (A9b)

Here,N 5 diag(1, 1, 1, 1, 0, 1, 1, 1) is the 83 8matrix in

which the ‘‘0’’ entry is to eliminate ›ty
(1), F represents terms

from the nonlinear interactions between q and a, and B

represents the bilinear terms from the nonlinear interactions

in thedrydynamics.Thedetaileddescriptions for these terms

can be found in Chen et al. (2015).

REFERENCES

Adames, A. F., and D. Kim, 2016: The MJO as a dispersive, con-

vectively coupled moisture wave: Theory and observations.

J. Atmos. Sci., 73, 913–941, doi:10.1175/JAS-D-15-0170.1.

Chen, S., and S. N. Stechmann, 2016: Nonlinear traveling wave

solutions for MJO skeleton model. Commun. Math. Sci., 14,

571–592, doi:10.4310/CMS.2016.v14.n2.a11.

——, A. J. Majda, and S. N. Stechmann, 2015: Multiscale

asymptotics for the skeleton of the Madden–Julian oscil-

lation and tropical–extratropical interactions. Math.

Climate Wea. Forecasting, 1, 43–69, doi:10.1515/

mcwf-2015-0003.

Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990:

Tropical–extratropical interaction associated with the 30–

60 day oscillation and its impact on medium and extended

range prediction. J. Atmos. Sci., 47, 2177–2199, doi:10.1175/

1520-0469(1990)047,2177:TEIAWT.2.0.CO;2.

4114 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73

http://dx.doi.org/10.1175/JAS-D-15-0170.1
http://dx.doi.org/10.4310/CMS.2016.v14.n2.a11
http://dx.doi.org/10.1515/mcwf-2015-0003
http://dx.doi.org/10.1515/mcwf-2015-0003
http://dx.doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2


Frederiksen, J. S., and C. S. Frederiksen, 1993: Monsoon distur-

bances, intraseasonal oscillations, teleconnection patterns,

blocking, and storm tracks of the global atmosphere during

January 1979: Linear theory. J. Atmos. Sci., 50, 1349–1372,

doi:10.1175/1520-0469(1993)050,1349:MDIOTP.2.0.CO;2.

Gloeckler, L. C., and P. E. Roundy, 2013: Modulation of the ex-

tratropical circulation by combined activity of the Madden–

Julian oscillation and equatorial Rossby waves during

boreal winter. Mon. Wea. Rev., 141, 1347–1357, doi:10.1175/

MWR-D-12-00179.1.

Hendon, H. H., andM. L. Salby, 1994: The life cycle of the Madden–

Julian oscillation. J. Atmos. Sci., 51, 2225–2237, doi:10.1175/

1520-0469(1994)051,2225:TLCOTM.2.0.CO;2.

Hoskins, B. J., and F.-F. Jin, 1991: The initial value problem for

tropical perturbations to a baroclinic atmosphere. Quart.

J. Roy. Meteor. Soc., 117, 299–317, doi:10.1002/qj.49711749803.

——, and T. Ambrizzi, 1993: Rossby wave propagation on a re-

alistic longitudinally varying flow. J. Atmos. Sci., 50, 1661–1671,

doi:10.1175/1520-0469(1993)050,1661:RWPOAR.2.0.CO;2.

Jin, F.-F., and B. J. Hoskins, 1995: The direct response to tropical

heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319,

doi:10.1175/1520-0469(1995)052,0307:TDRTTH.2.0.CO;2.

Khouider, B., and A. J. Majda, 2005: A non-oscillatory balanced

scheme for an idealized tropical climate model. Part I: Algo-

rithm and validation. Theor. Comput. Fluid Dyn., 19, 331–354,

doi:10.1007/s00162-005-0170-8.

Lau, W. K. M., and D. E. Waliser, Eds., 2012: Intraseasonal Vari-

ability in the Atmosphere–Ocean Climate System. Springer,

437 pp.

Liebmann, B., and D. L. Hartmann, 1984: An observational study

of tropical–midlatitude interaction on intraseasonal time

scales duringwinter. J. Atmos. Sci., 41, 3333–3350, doi:10.1175/

1520-0469(1984)041,3333:AOSOTI.2.0.CO;2.

Lin, H., G. Brunet, and J. Derome, 2009: An observed connection

between the North Atlantic oscillation and the Madden–

Julian oscillation. J. Climate, 22, 364–380, doi:10.1175/

2008JCLI2515.1.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day

oscillation in the zonal wind in the tropical Pacific. J. Atmos.

Sci., 28, 702–708, doi:10.1175/1520-0469(1971)028,0702:

DOADOI.2.0.CO;2.

——, and——, 1972: Description of global-scale circulation cells in

the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123,

doi:10.1175/1520-0469(1972)029,1109:DOGSCC.2.0.CO;2.

——, and ——, 1994: Observations of the 40–50-day tropical

oscillation—A review.Mon. Wea. Rev., 122, 814–837, doi:10.1175/

1520-0493(1994)122,0814:OOTDTO.2.0.CO;2.

Majda, A. J., 2003: Introduction to PDEs and Waves for the At-

mosphere and Ocean. Courant Lecture Notes in Mathematics,

Vol. 9, American Mathematical Society, 234 pp.

——, and J. A. Biello, 2003: The nonlinear interaction of baro-

tropic and equatorial baroclinic Rossby waves. J. Atmos.

Sci., 60, 1809–1821, doi:10.1175/1520-0469(2003)060,1809:

TNIOBA.2.0.CO;2.

——, and R. Klein, 2003: Systematic multiscale models for

the tropics. J. Atmos. Sci., 60, 393–408, doi:10.1175/

1520-0469(2003)060,0393:SMMFTT.2.0.CO;2.

——, and S. N. Stechmann, 2009: The skeleton of tropical intra-

seasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 8417–

8422, doi:10.1073/pnas.0903367106.

——, and ——, 2011: Nonlinear dynamics and regional variations

in the MJO skeleton. J. Atmos. Sci., 68, 3053–3071, doi:10.1175/

JAS-D-11-053.1.

——, R. R. Rosales, E. G. Tabak, and C. V. Turner, 1999: In-

teraction of large-scale equatorial waves and dispersion of

Kelvin waves through topographic resonances. J. Atmos.

Sci., 56, 4118–4133, doi:10.1175/1520-0469(1999)056,4118:

IOLSEW.2.0.CO;2.

Matthews, A., and G. N. Kiladis, 1999: The tropical–extratropical

interaction between high-frequency transients and the Madden–

Julian oscillation. Mon. Wea. Rev., 127, 661–677, doi:10.1175/

1520-0493(1999)127,0661:TTEIBH.2.0.CO;2.

——, B. J. Hoskins, andM. Masutani, 2004: The global response to

tropical heating in the Madden–Julian oscillation during the

northern winter. Quart. J. Roy. Meteor. Soc., 130, 1991–2011,

doi:10.1256/qj.02.123.

Ogrosky, H. R., and S. N. Stechmann, 2015: The MJO skeleton

model with observation-based background state and

forcing. Quart. J. Roy. Meteor. Soc., 141, 2654–2669, doi:10.1002/

qj.2552.

Ray, P., and C. Zhang, 2010: A case study of the mechanics of

extratropical influence on the initiation of the Madden–Julian

oscillation. J. Atmos. Sci., 67, 515–528, doi:10.1175/

2009JAS3059.1.

Roundy, P. E., 2011: Tropical–extratropical interactions. Intra-

seasonal Variability in the Atmosphere–Ocean Climate System,

W. K. M. Lau and D. E. Waliser, Eds., Springer, 437 pp.

Sobel, A., and E.Maloney, 2013:Moisture modes and the eastward

propagation of the MJO. J. Atmos. Sci., 70, 187–192,

doi:10.1175/JAS-D-12-0189.1.

Stachnik, J. P., D. E. Waliser, A. J. Majda, S. N. Stechmann, and

S. Thual, 2015: Evaluating MJO event initiation and decay in

the skeleton model using RMM-like index. J. Geophys. Res.

Atmos., 120, 486–508, doi:10.1002/2015JD023916.

Stechmann, S. N., and H. R. Ogrosky, 2014: The Walker cir-

culation, diabatic heating, and outgoing longwave radia-

tion. Geophys. Res. Lett., 41, 9097–9105, doi:10.1002/

2014GL062257.

——, and A. J. Majda, 2015: Identifying the skeleton of the

Madden–Julian oscillation in observational data. Mon. Wea.

Rev., 143, 395–416, doi:10.1175/MWR-D-14-00169.1.

Thual, S., and A. J. Majda, 2015: A suite of skeleton models for the

MJO with refined vertical structure. Math. Climate Wea.

Forecasting, 1, 70–95, doi:10.1515/mcwf-2015-0004.

——, and ——, 2016: A skeleton model for the MJO with refined

vertical structure. Climate Dyn., 46, 2773–2786, doi:10.1007/

s00382-015-2731-x.

——,——, and S. N. Stechmann, 2014: A stochastic skeletonmodel

for the MJO. J. Atmos. Sci., 71, 697–715, doi:10.1175/

JAS-D-13-0186.1.

——,——, and——, 2015: Asymmetric intraseasonal events in the

stochastic skeleton MJO model with seasonal cycle. Climate

Dyn., 45, 603–618, doi:10.1007/s00382-014-2256-8.

Webster, P. J., 1972: Response of the tropical atmosphere to local

steady forcing. Mon. Wea. Rev., 100, 518–541, doi:10.1175/

1520-0493(1972)100,0518:ROTTAT.2.3.CO;2.

——, 1981: Mechanisms determining the atmospheric response to

sea surface temperature anomalies. J. Atmos. Sci., 38, 554–571,

doi:10.1175/1520-0469(1981)038,0554:MDTART.2.0.CO;2.

——, 1982: Seasonality in the local and remote atmospheric response

to sea surface temperature anomalies. J. Atmos. Sci., 39, 41–52,

doi:10.1175/1520-0469(1982)039,0041:SITLAR.2.0.CO;2.

Weickmann, K. M., 1983: Intraseasonal circulation and outgoing

longwave radiation modes during Northern Hemisphere

winter. Mon. Wea. Rev., 111, 1838–1858, doi:10.1175/

1520-0493(1983)111,1838:ICAOLR.2.0.CO;2.

OCTOBER 2016 CHEN ET AL . 4115

http://dx.doi.org/10.1175/1520-0469(1993)050<1349:MDIOTP>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-12-00179.1
http://dx.doi.org/10.1175/MWR-D-12-00179.1
http://dx.doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
http://dx.doi.org/10.1002/qj.49711749803
http://dx.doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2
http://dx.doi.org/10.1007/s00162-005-0170-8
http://dx.doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2
http://dx.doi.org/10.1175/2008JCLI2515.1
http://dx.doi.org/10.1175/2008JCLI2515.1
http://dx.doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2
http://dx.doi.org/10.1073/pnas.0903367106
http://dx.doi.org/10.1175/JAS-D-11-053.1
http://dx.doi.org/10.1175/JAS-D-11-053.1
http://dx.doi.org/10.1175/1520-0469(1999)056<4118:IOLSEW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1999)056<4118:IOLSEW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2
http://dx.doi.org/10.1256/qj.02.123
http://dx.doi.org/10.1002/qj.2552
http://dx.doi.org/10.1002/qj.2552
http://dx.doi.org/10.1175/2009JAS3059.1
http://dx.doi.org/10.1175/2009JAS3059.1
http://dx.doi.org/10.1175/JAS-D-12-0189.1
http://dx.doi.org/10.1002/2015JD023916
http://dx.doi.org/10.1002/2014GL062257
http://dx.doi.org/10.1002/2014GL062257
http://dx.doi.org/10.1175/MWR-D-14-00169.1
http://dx.doi.org/10.1515/mcwf-2015-0004
http://dx.doi.org/10.1007/s00382-015-2731-x
http://dx.doi.org/10.1007/s00382-015-2731-x
http://dx.doi.org/10.1175/JAS-D-13-0186.1
http://dx.doi.org/10.1175/JAS-D-13-0186.1
http://dx.doi.org/10.1007/s00382-014-2256-8
http://dx.doi.org/10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2
http://dx.doi.org/10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1982)039<0041:SITLAR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2


——, and E. Berry, 2009: The tropical Madden–Julian oscillation

and the global wind oscillation. Mon. Wea. Rev., 137, 1601–

1614, doi:10.1175/2008MWR2686.1.

——,G.R.Lussky, and J.E.Kutzbach, 1985: Intraseasonal (30–60day)

fluctuations of outgoing longwave radiation and 250mb stream-

function during northern winter. Mon. Wea. Rev., 113, 941–961,

doi:10.1175/1520-0493(1985)113,0941:IDFOOL.2.0.CO;2.

Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time

multivariateMJO index: Development of an index for monitoring

and prediction. Mon. Wea. Rev., 132, 1917–1932, doi:10.1175/

1520-0493(2004)132,1917:AARMMI.2.0.CO;2.

Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity

waves, and the MJO: A shallow-water model. J. Atmos. Sci.,

70, 2476–2486, doi:10.1175/JAS-D-12-0255.1.

Yoneyama, K., C. Zhang, and C.-N. Long, 2013: Tracking pulses of

the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94,

1871–1891, doi:10.1175/BAMS-D-12-00157.1.

Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43,

RG2003, doi:10.1029/2004RG000158.

——, 2013: Madden–Julian oscillation: Bridging weather and cli-

mate. Bull. Amer. Meteor. Soc., 94, 1849–1870, doi:10.1175/

BAMS-D-12-00026.1.

4116 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73

http://dx.doi.org/10.1175/2008MWR2686.1
http://dx.doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
http://dx.doi.org/10.1175/JAS-D-12-0255.1
http://dx.doi.org/10.1175/BAMS-D-12-00157.1
http://dx.doi.org/10.1029/2004RG000158
http://dx.doi.org/10.1175/BAMS-D-12-00026.1
http://dx.doi.org/10.1175/BAMS-D-12-00026.1

