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The motion of a rotating helical body in a viscoelastic fluid is considered. In the case of force-free

swimming, the introduction of viscoelasticity can either enhance or retard the swimming speed and

locomotive efficiency, depending on the body geometry, fluid properties, and the body rotation rate.

Numerical solutions of the Oldroyd-B equations show how previous theoretical predictions break down

with increasing helical radius or with decreasing filament thickness. Helices of large pitch angle show an

increase in swimming speed to a local maximum at a Deborah number of order unity. The numerical

results show how the small-amplitude theoretical calculations connect smoothly to the large-amplitude

experimental measurements.
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Much has been learned about the swimming of micro-
organisms in viscous environments over the last decade [1].
The peculiar behavior of complex fluids has also seen a
recent burst of renewed interest, particularly as applied to
biological systems. Progress in both fields has begun to
blur together, since many organisms commonly swim in
shear-thinningor viscoelastic fluids. Someof those fluids are
complex specifically because of suspensions of microorgan-
isms swimming and diffusing throughout [2–7]. Examples
of microorganisms swimming in complex fluid environ-
ments include mammalian spermatozoa through cervical
fluid [8], the Lyme disease spirochete B. burgdorferi
through the extracellular matrix of our skin [9,10], and the
nematodeC. elegans inwater-saturated soil [11]. Organisms
such as H. pylori have even been found to reduce fluid
elasticity in order to swim through mucus [12].

A puzzle has recently emerged in the study of swimming
through complex fluids. Theory, experiment, and simula-
tion have indicated the possibility of both enhancement
and retardation of swimming speeds in viscoelastic fluids
[see Figs. 1(a)–1(f)]. Helically shaped bacteria such as
Leptospira [13] and B. burgdorferi swim faster in solutions
with methylcellulose than in nonviscoelastic solutions of
the same viscosity [9,14]. C. elegans, however, which
propels itself by planar body undulations, swims slower
in a viscoelastic fluid than in a viscous fluid [15].
Spermatozoan cells swim slower when the fluid has an
elastic response, but along straighter paths due to resultant
changes in the flagellar shape, with hyperactivated sper-
matozoan cells swimming faster than normal cells [16].
The consequences of fluid viscoelasticity on swimming is

not, then, a question that can be answered broadly; effects
appear to depend sensitively upon the geometry of the
swimming stroke and the rheology of the complex fluid.
There have also been a number of recent analytical,

numerical, and scale-model explorations. Analysis is com-
monly performed on the Oldroyd-B equations, which
describe a viscoelastic flow with no shear thinning or
thickening [17,18]. Using the Oldroyd-B model and others,
Lauga showed that an infinite sheet passing small ampli-
tude waves always swims slower with the introduction of
viscoelasticity [19]. An identical factor of swimming speed
reduction was recovered by Fu et al. for a nearly cylindrical
body of small pitch angle when passing helical waves [20],
and similarly for the passage of planar waves [21]. Teran
et al. showed that finite undulatory bodies of large wave
amplitude can swim faster in a viscoelastic fluid [22], while
Curtis and Gaffney showed the same for a three-sphere
swimmer [23], as did Espinosa-Garcia et al. for flexible
swimmers [24]. Finally, Liu et al. studied experimentally
the motion of a rotating, force-free helical filament in a
(viscoelastic) Boger fluid, finding that the swimming speed
increased or decreased with viscoelasticity depending on
the body geometry and rotation rate [see Fig. 1(f)] [25].
Other investigations have shown increases or decreases in
speed depending on fluid properties [26].
In this Letter we bridge the gap between the analytical

predictions and the experimental and numerical observa-
tions just described. By studying numerically the swim-
ming of a helical body in an Oldroyd-B model fluid, we
show that the theoretical efforts do indeed capture the
effects of viscoelasticity when the helical pitch angle is
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small and the filament radius is large: namely, that the
swimming speed of a rotating helical body in this regime
is always smaller than the same in a Newtonian fluid. We
will then show how these theories break down for helices of
large pitch angle and that the swimming speed can increase
with the introduction of viscoelasticity. The results may
improve our understanding of mammalian fertility and the
spread of bacterial infections and diseases [10].

The Letter is organized as follows. We begin by present-
ing the mathematical model of a rotating, force-free helical
body in an Oldroyd-B fluid, followed by a dimensional
analysis and a description of the numerical method.
Helices of small pitch angle are explored, for which we
show a continuous departure of the small amplitude ana-
lytical theories from the results of the full model. We then
turn to helices of large pitch angle where fluid elasticity is
shown to increase the swimming speed to a local maximum
at a Deborah number of order unity. Both helical waves and
rigid body rotations are considered, and the locomotive
efficiency is addressed. We conclude with a summary and a
discussion of future directions.

The experiments of Liu et al. suggest that the force-free
swimming speed of a helical filament is broadly indepen-
dent of its length [25]. We therefore consider a
right-handed helical body of infinite length with center-
line xðs; tÞ ¼ b½cosðksþ!tÞx̂þ sinðksþ!tÞŷ' þ ð½1!
ðbkÞ2'1=2sþU(tÞẑ. Here, b is the helical radius, k is the
wave number, s is the arc length,! is a fixed rotation rate,
and U( is the swimming speed. The body is shaped such
that the boundary in a cross-sectional plane perpendicular
to the ẑ axis is circular with radius A=k. The distinction
between helical waves and rigid body rotation is a rotation
of this circle about the centerline in the latter.

At the length and velocity scales relevant for micro-
organisms, viscous effects dominate inertial effects [1]
and the momentum and mass conservation equations are
rp ¼ r ) ! and r ) u ¼ 0, where p is the pressure and !
is the total deviatoric stress tensor. In the Oldroyd-B
model, ! is the sum of a Newtonian solvent contribution,
!s ¼ !s _", and an extra polymeric contribution, !p, where
!s is the solvent viscosity, _" ¼ ruþruT is the rate-of-
strain tensor, and u is the fluid velocity. Meanwhile, !p is
described by an upper-convected Maxwell model in which
a single elastic relaxation time scale, "1, and a viscous
retardation time scale, "2, are introduced (with "2 ¼
"1!s=!< "1 and ! the total zero shear rate viscosity)
[17,18]. Scaling lengths on 1=k, time on 1=!, velocities
on !=k, and stresses on !!, the total deviatoric stress is
found to satisfy the dimensionless constitutive relation,

! þ De !
5 ¼ _"þ ð!s=!ÞDe _"

5
: (1)

Here we have defined the dimensionless Deborah number,
De ¼ "1!, which compares the body rotation rate to
the rate of elastic relaxation. The upper convective time

derivative in Eq. (1) is defined as !
5 ¼ !t þ u )r! !

ruT ) ! ! ! )ru. More complex models include features
such as multiple relaxation time scales and finite polymer
extensibility [17].
The Deborah numbers relevant to microorganism motil-

ity are likely to span a very wide range. Relaxation times of
cervical mucus have been measured from "1 ¼ 0:03 s to
"1 ¼ 100 s; spermatozoa in this environment undulate
with frequencies between 20 and 50 Hz, corresponding to
Deborah numbers that are Oð1Þ or much larger (see
Refs. [19,27]). An intriguing example of Deborah number

FIG. 1 (color online). Experiments, theories, and simulations of swimming in viscoelastic fluids. With increasing fluid elasticity,
(a) the helical bacterium Leptospira swims faster (see also Fig. 7 of Ref. [13], courtesy of J. H. Carr, CDC, 2103) [9,14]; (b) the
nematode C. elegans swims slower [15] (courtesy of X. N. Shen and P. E. Arratia, 2013); (c) a two-dimensional swimming sheet of
small wave amplitude swims slower [19]; (d) a nearly cylindrical swimmer passing helical waves of small pitch angle swims slower
with the same factor of reduction as for the two-dimensional sheet [20]; (e) a finite undulatory swimmer swims faster for a range of
beating frequencies (instantaneous body velocity and mean-squared polymer distention field are shown [22], courtesy of J. Teran, L.
Fauci, and M. Shelley, 2013); (f) and a thin helical body of arbitrary length can swim faster or slower, depending on the geometry and
rotation rate [25]. (g) The axial component of fluid velocity generated by a rotating, force-free helical filament is shown; a helical fluid
volume external to the coil is carried upward with the translating body, while a helical fluid volume internal to the coil is shuttled
downward.
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variation is exhibited in the swimming of H. pylori, which
rotates a helical flagellum at up to 5 Hz in viscoelastic
mucus with a relaxation time of approximately 100 s, but
releases pH-increasing urease enzymes that decrease the
local relaxation time to nearly 0.05 s, thereby decreasing
the Deborah number from Oð1000Þ to Oð1Þ [12].

Due to the interaction with the fluid, the helical filament
translates along the axial direction with dimensionless
speed U, as illustrated in Fig. 2(a). A no-slip condition is
assumed on the body surface, and for computational pur-
poses we place the filament inside a very large container
where we set u ¼ 0. The container is made sufficiently
large so that further increases in its size have a negligible
effect on the reported results. The problem is closed by
requiring that the axial component of force on the body is
zero. The constant swimming speed U is determined by
assuming that a locomotive steady state has been achieved
and by exploiting helical symmetry: the flow and stress
fields everywhere are given by translation and rotation of
the flow field through the z ¼ 0 plane. Conversion to a
helical coordinate system allows for z derivatives to be
written as planar derivatives on z ¼ 0. In a periodic steady
state, time derivatives may be written as z derivatives, and
hence by planar derivatives as well. The Oldroyd-B

equations are solved numerically using a mixed pseudo-
spectral and finite differences approach. The mathematical
model and numerical method are described in greater detail
in the Supplemental Material [28].
We first compare the numerical results to the analytical

work of Fu et al. [20] in the case of a helical wave with a
small pitch angle. For c ¼ #=40, the normalized swim-
ming speed is shown in Fig. 2(b) for a range of Deborah
numbers and filament sizes. Here as in the remainder of the
Letter we fix the viscosity ratio to !s=! ¼ 0:5. Each solid
line corresponds to a different filament radius, A ¼ 2n!2,
for n ¼ 0; 1; . . . ; 6. By increasing the filament thickness
the swimming speed converges monotonically to the ana-
lytical result, shown as a dashed line. Viscoelasticity in this
case decreases the swimming speed of helices with small
pitch angles, even for slender bodies, contrasting with the
enhanced speeds predicted in a viscous fluid in the pres-
ence of stationary obstacles [29]. The departure of the
results from the analytical theory are logarithmic in A,
consistent with the analytical development [20].
The analytical results for small pitch angles have been

recovered, but can the increased swimming speeds seen in
experiments be found? Figure 2(c) shows the normalized
swimming speed as a function of the Deborah number for

FIG. 2 (color online). (a) Schematic of the dimensionless setup. The body rotates counterclockwise with unit angular speed when
seen from above and swims in the axial direction with dimensionless speed U. (b) Helical-wave swimming speed (normalized by the
Newtonian swimming speed) of filaments of varying thickness, A ¼ 2n!2. Here c ¼ #=40 and !s=! ¼ 0:5. Deviations from the
theoretical result of Fu et al. [20] (dotted line) are logarithmic in A. (c) Viscoelasticity leads to faster swimming for helices of a
sufficiently large pitch angle. The filament thickness is fixed, A ¼ 0:5. Solid lines denote helical waves, dashed lines denote rigid body
rotation, and symbols denote pitch angle, c ¼ #=40, #=10, and #=5. (d) Larger swimming speeds are achieved by thinner filaments
of the same pitch angles as in (c); here A ¼ 0:2. (e) The normalized swimming efficiency for helical waves and rigid body rotations.
Symbols denote the same helices as in (c).
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three different pitch angles, c ¼ #=40, #=10, and #=5,
with A ¼ 0:5. Helical wave and rigid body rotation results
are shown as solid and dashed lines, respectively. For small
Deborah numbers we observe U=UN ¼ 1þOðDe2Þ, as
required by symmetry. In both cases, for a given Deborah
number in the regime considered, the swimming speed
increases as the pitch angle is increased to c ¼ #=5.
Moreover, beyond a critical pitch angle we find a range
of Deborah numbers for which the swimming speed is
larger in a viscoelastic fluid than in a Newtonian fluid,
just as observed in experiments [25].

Rigid body motion, which generates an extra rotational
flow around the helical filament as compared to helical
waves, amplifies the effects of viscoelasticity, particularly
for small pitch angles where rotational flow is dominant.
Viscoelastic effects are amplified with decreasing !s=! as
well (not shown). Filament thickness is also important;
Fig. 2(d) shows the helical-wave swimming speeds of
slender filaments (A ¼ 0:2), which are greater than those
shown in Fig. 2(c). In particular, for the intermediate pitch
angle c ¼ #=10, reducing the filament thickness introdu-
ces a regime in a small Deborah number for which the
relative swimming speed is greater than unity.

A microorganism may benefit by swimming with
greater efficiency rather than greater speed. We evaluate
a common measure of swimming efficiency, E ¼ U2=P,
where P ¼ ð1=2ÞRz¼0 _":!dS is the rate of energy dissi-
pation in the fluid per unit length [19,20,22]. The results
are shown in Fig. 2(e) for the same helical shapes con-
sidered in Fig. 2(c). An important distinction between the
passage of helical waves and rigid body rotation is
observed. For rigid body rotation, the work done on the
fluid does not vary dramatically with the Deborah num-
ber; just as was found for planar undulations, the swim-
ming speed is a proxy for swimming efficiency in the case
of rigid body rotation [22]. The rotation of helices of large
pitch angle therefore presents a means of swimming that
is both faster and more efficient in a viscoelastic fluid
when the rotation rate is properly tuned to the fluid
environment. For helical waves, however, the swimming
speed is not so clearly linked to the efficiency; for c ¼
#=10 the relative swimming speed decreases with De
while the relative efficiency increases. By inspection of
the no-slip boundary condition, the differences between
rigid body rotation and helical waves are expected to
diminish rapidly with both decreasing filament size and
increasing pitch angle.

The effects of viscoelasticity on the swimming of helices
are not easily predicted by thought experiments. The flow
field created by a rotating helix in a Newtonian fluid is
intricate; the extra polymeric stresses that develop due to
this flow field, the response of the flow field to the poly-
meric stresses, and the interaction of solvent and polymeric
forces with the helix all provide for a complex and highly
nonlinear system.

We do, however, observe a distinction in the polymeric
stresses between cases where viscoelasticity either reduces
or increases the swimming speed. Consider the spatial
distribution of trð!pÞ for the passage of helical waves along
two different helical geometries. This quantity measures
the mean-squared distention of the elastic polymers, and is
shown for helices of small and large pitch angle in Fig. 3.
For small Deborah numbers, the polymers are stretched
most in regions of large fluid shear, which are at the left-
most and rightmost points of the circular boundaries in
Fig. 3 (the inner and outer edges of the filament, respec-
tively). Fluid shear is largest in these regions due not only
to the motion of the filament through the z ¼ 0 plane, but
also to the arrangement of the axial fluid velocity, as shown
for De ¼ 0 in Fig. 1(g).
Increasing the Deborah number, however, shows a dis-

tinct difference in the organization of polymeric stress in
these two cases. For the helix of smaller pitch angle the
primary regions of extra stress rotate clockwise. As these
regions are displaced, they affect the underlying flow field,
and both conspire to reduce the filament swimming speed.
For the helix of larger pitch angle, however, we observe the
opposite shift: extra polymeric stresses have shifted coun-
terclockwise. Much as in the case of flow past a cylinder,
the reorganization of elastic fluid stress acts to shift the
distribution of pressure, which further contributes to
adjustments in both vertical and horizontal fluid forces
on the body [30].
Recall that a Deborah number of order unity indicates a

helical rotation rate comparable to the rate of elastic re-
laxation. When De * 1, polymers distended by the motion
of the body release stored elastic energy on a special time

FIG. 3 (color online). The mean-squared polymer distention
fields, trð!pÞ, from the passage of helical waves are shown for
three Deborah numbers, for filament thickness A ¼ 0:2 and pitch
angles (a) c ¼ #=40 and (b) c ¼ #=5. The swimming speed
decreases with the Deborah number in (a) and increases in (b).
The path of the body during rotation is indicated by a white
dashed line in the bottom left panel. The largest polymer
distention appears along the second and fourth quadrants in
case (a), and along the first and third quadrants in case (b),
with the regions of maximal distention indicated by
symbols.
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scale. Namely, a time scale such that the body can revisit
the viscoelastic wake created on each pass through the
same location. For helices of small pitch angle, the motion
of the body in the z ¼ 0 plane is muted, and fluid parcels
do not make large excursions in the plane. With a larger
pitch angle, the filament travels on a much wider circuit
relative to its thickness, the body can interact with its own
viscoelastic wake, and elastic stresses can be transmitted
from the wake back onto the body upon its return. This
heuristic also suggests that a smaller filament thickness
(with pitch angle fixed) may lead to increased swimming
speeds, as we have already observed in Fig. 2(d).

We have shown that the introduction of viscoelasticity
can either decrease or increase the force-free swimming
speed and swimming efficiency of a rotating helical fila-
ment, depending on the helical geometry, the material
properties of the fluid, and the body rotation rate. The
results of our investigation connect the small amplitude
theories, experimental observations, and numerical inves-
tigations of the biological and mechanical experiments
shown in Fig. 1. Our findings may add context to the recent
discovery thatH. pylori reduces mucus elasticity to a range
more suitable for effective locomotion [12]. Future work
will explore the effects of viscoelasticity on the propulsion
of elastic helical filaments, on flagellar bundling, and on
more intricate biological structures such as those relevant
to bacterial polymorphism [31–33]. Similar behaviors are
expected in a nearby fluid pumping problem, where fluid is
transported downward either faster or slower than the same
in a Newtonian setting.
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In this document we describe in greater detail the numerical method used for the study described in the
primary text, and tabulate a selection of rheological measurements and microorganism geometries relevant
to our investigation. In §I the filament geometry and the Oldroyd-B equations are written in a helical
coordinate system. The numerical discretization and method of solution are then described; numerous
differential operations in the helical coordinate system are included in an accompanying appendix. In §II
we provide the measured fluid rheologies and biological data from recent experiments.

I. NUMERICAL METHOD

Filament geometry and nondimensionalization

In our investigation the Stokes/Oldroyd-B equations are solved numerically in a cross-sectional plane of
an infinitely long, rotating helical filament. A material point on the filament centerline is described in the
fixed lab frame by

x0(s, t) = b[cos(ks + Ωt)x̂ + sin(ks + Ωt)ŷ] +
�
αs + U

∗
t
�
ẑ, (1)

where b is the helical radius, k is the wavenumber, Ω is a fixed rotation rate, and U
∗ is the swimming

speed. The parameter s is made the arc-length by setting α =
�

1 − (bk)2. The body is shaped such that
the boundary in a cross-sectional plane perpendicular to the ẑ axis is circular with radius A/k. Scaling
velocities on Ω/k, lengths on 1/k, and time upon 1/Ω, the dimensionless filament centerline is given by

x0(s, t) = β [cos(s + t)x̂ + sin(s + t)ŷ] + (αs + Ut) ẑ, (2)

with β = bk (hence α2 + β2 = 1) and U = U
∗
k/Ω, where all variables are understood to be dimensionless.

In the main text we described the geometry in terms of the pitch angle, ψ, with (α, β) = (cos(ψ), sin(ψ)).
We now describe a time-dependent, helical coordinate system (r, θ, ζ) that conforms to the helical body

as it translates with constant dimensionless speed U and rotates with unit angular velocity through the fluid.
Defining the unit vectors (x̂(ζ, t), ŷ(ζ, t)), which rotate and translate along with the body, a point in space is



2

written as

x = (β + r cos(θ)) x̂(ζ, t) + r sin(θ) ŷ(ζ, t) + (ζ + Ut) ẑ, (3)
x̂(ζ, t) = cos(ζ/α + t)x̂ + sin(ζ/α + t)ŷ, (4)

ŷ(ζ, t) = − sin(ζ/α + t)x̂ + cos(ζ/α + t)ŷ, (5)

where r is the (dimensionless) distance from the filament centerline in the plane perpendicular to ẑ (a plane
of constant ζ). Holding (r, θ) fixed, the line parameterized by ζ is helical and periodic on ζ ∈ [0, 2πα];
holding r = A fixed, the material filament surface is parameterized by (ζ, θ). A polar coordinate system
(r, θ) is used to parameterized space in a cross-sectional plane of the helical body, where

r̂ = cos(θ)x̂ + sin(θ)ŷ, θ̂ = − sin(θ)x̂ + cos(θ)ŷ. (6)

The velocity boundary conditions for rigid body motion (applying the no-slip condition) are then written as

u(r = A, θ, ζ) = −A sin(θ) x̂ + (β + A cos(θ)) ŷ + Uẑ = β sin(θ)r̂ + (A + β cos(θ))θ̂ + Uẑ, (7)

with the ζ dependence implicit in the definitions of r̂ and θ̂, while the passage of a helical wave requires
instead that

u(r = A, θ, ζ) = β ŷ + Uẑ = β sin(θ)r̂ + β cos(θ)θ̂ + Uẑ. (8)

The boundary conditions differ by an extra rotation about the filament centerline in the former, with dimin-
ishing consequences for decreasing A/β.

Oldroyd-B equations in the helical coordinate system

Given that the helical filament is of infinite length, the steady-state (with respect to the body frame) is
instantaneously described by the velocity and stress fields in any cross-sectional plane perpendicular to ẑ.
As described in the main text, in the fluid domain we solve the Oldroyd-B equations in the Stokes limit,

∇p = ∇ · τ , (9)
∇ · u = 0, (10)

where u is the fluid velocity, p is the pressure, and τ is the total (deviatoric) viscoelastic stress tensor,
τ = ηsγ̇ + τp. Here ηs is the solvent viscosity, γ̇ = ∇u + ∇uT is the rate-of-strain tensor, and τp is the extra
stress contributed by the polymer suspension. In the Newtonian case, where τp = 0, the divergence of the
stress reduces to ∇ · τ = ηs∆u. In the Oldroyd-B model, the polymer stress is given by

τp + λ1
�
τp = ηpγ̇, (11)

where ηp is the polymer suspension viscosity, η = ηs + ηp is the total viscosity, and λ1 is the polymer
relaxation time-scale [1, 2]. The upper convective time derivative is defined by

�
τ = τt + u · ∇τ − ∇uT · τ − τ · ∇u. (12)

Manipulation of Eqn. (11) leads to an equation for the total stress, τ ,

τ + λ1
�
τ = η

�
γ̇ + λ2

�
γ̇
�
, (13)
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with λ2 = (ηs/η)λ1. Scaling time on 1/Ω, velocities on Ω/k and stresses on ηΩ, we find the dimensionless
constitutive relation as stated in the main text,

τ + De
�
τ = γ̇ + (ηs/η)De

�
γ̇, (14)

and τ = (ηs/η)γ̇ + τp. The Deborah number compares the rate of rotation to the rate of elastic relaxation
in the fluid, De = λ1Ω. Once again, all variables are understood to be dimensionless in the above. The
dimensionless momentum balance equation (9) is then given by

∇p = (ηs/η)∆u + ∇ · τp, (15)

Note that in the limit of De → 0, we have τp = (1 − (ηs/η))γ̇, τ = γ̇, and ∇p = ∇ · τ = ∆u as expected.
Finally, the dimensionless fluid force per wavelength acting axially (in the ẑ direction) at any time or station
in z is given by

Fz = 2παA

� 2π

0

�
(β/α) sin(θ)(p − τzz) + τrz

�
r=A

dθ. (16)

Exploiting helical symmetry

Under the transformation to helical coordinate system shown in (3), we have

∂

∂x
= cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ
, (17)

∂

∂y
= sin(θ)

∂

∂r
+

1
r

cos(θ)
∂

∂θ
, (18)

∂

∂z
=
∂

∂ζ
− 1
α

��
1 +
β cos(θ)

r

�
∂

∂θ
+ β sin(θ)

∂

∂r

�
. (19)

Consider a steady-state with respect to the body frame. Invoking helical symmetry, for any scalar quantity
Φ we have that ∂Φ/∂ζ = 0. Equation (19) then shows how an axial (z) derivative may be written solely in
terms of r and θ derivatives. Hence, it is straightforward to show that the del operator may be written as

∇ = x̂∂x + ŷ∂y + ẑ∂z = r̂∂r + θ̂
1
r
∂θ + ẑ

�
− 1
α

��
1 +
β cos(θ)

r

�
∂θ + β sin(θ)∂r

��
, (20)

(see Appendix A). The gradient of any scalar variable such as the pressure is then given simply by

∇p = r̂
∂p

∂r
+ θ̂

1
r

∂p

∂θ
+ ẑ
∂p

∂z
, (21)

where

∂p

∂z
= − 1
α

��
1 +
β cos(θ)

r

�
∂p

∂θ
+ β sin(θ)

∂p

∂r

�
. (22)

Similarly, the divergence of a vector field u = ur̂ + vθ̂ + wẑ is given by

∇ · u = ∂u
∂r
+

1
r

�
∂v

∂r
+ u

�
+
∂w

∂z
, (23)
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where again ∂w/∂z is written in terms of only r and θ derivatives. Numerous differential operations in the
helical coordinate system are included in Appendix A.

A final simplification comes with the consideration of time-derivatives. For this simplification, we
choose to solve the equations of motion in a translating plane of constant z

� = z + (α − U)t, or equivalently
for constant ζ� = ζ + αt, in which the filament geometry (though not material) appears to be fixed in space.
The equations of motion go unchanged in the translating frame as a consequence of Galilean invariance.
Assuming a steady state of flow and stress relative to the body geometry we have for any scalar function
Φ(x, t) that

0 =
d

dt
Φ(x, t)

����
r,θ,ζ�
= Φt + xt · ∇Φ

����
r,θ,ζ�
, (24)

with subscripts denoting partial derivatives. A partial time derivative may therefore be written in terms of
spatial derivatives confined to a plane of constant ζ�,

Φt

����
r,θ,ζ�
= (α − U)Φz

����
r,θ,ζ�
=
�
U

α
− 1
� ��

1 +
β cos(θ)

r

�
Φθ + β sin(θ)Φr

� ����
r,θ,ζ�
. (25)

Discretization and method of solution

The Oldroyd-B equations in the periodic steady-state are solved as just described using a mixed pseudo-
spectral / finite differences approach. To begin, all variables are described in a Fourier basis in the azimuthal
angle θ,

p(r, θ) =
N�

k=−N

p̂k(r)eikθ, u(r, θ) =
N�

k=−N

ûk(r)eikθ, τ (r, θ) =
N�

k=−N

τ̂k(r)eikθ. (26)

The radial distance from the filament center, r, is discretized as rm = A + (Aout − A)((m − 1)/M)2 for
m = 1, 2, ...,M + 1. Here Aout is an outer radial distance taken large enough so that the numerical results are
not altered significantly with any further increases in its value. For example, in the helical wave case with
A = 0.5 and ψ = π/40 from the main text, it is sufficient to take Aout = 20A in order that the errors be due to
discretization alone. Moreover, the swimming speed computed using only M = 200 and N = 2 changes by
less than 0.2% with any increases in M or N. For larger pitch angles such as ψ = π/5, again with A = 0.5, we
require Aout = 30A, M = 200, and N = 6 for comparable precision, with resolution requirements increasing
with the Deborah number, and in the study of rigid body rotation. The computational costs required to
accurately study bodies of even larger pitch angle were generally found to be prohibitive in the current
approach.

The choice of a quadratic scaling in the discretization of r increases the resolution of the fluid velocity
and stress near the body where it is most needed. Radial derivatives are computed using fourth-order finite
difference formulae derived specifically for the spatially varying grid spacing in r. Formulae for derivatives
near the endpoints are skewed, depending upon variable information on the boundary and inside the domain
of computation. Azimuthal derivatives, meanwhile, are computed in Fourier space using the definitions in
(26).

Iterative scheme

Our approach is to develop an iterative numerical scheme. Initial guesses for the velocity and pressure
fields, and the swimming speed, are relaxed until the equations of motion are satisfied. As unknowns we
take the Fourier modes (with radial dependence) describing the velocity field ûk(rm) and the pressure p̂k(rm),
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and also the swimming speed U, which are all formed into a single vector ν of length 4M(2N + 1) + 1. For
a given approximation to the velocity field u and swimming speed U, the stress τ is treated as an auxiliary
variable and is determined immediately through the constitutive equation (14). This step is performed
rapidly using a Generalized Minimal Residual iterative scheme (GMRES) [3].

The momentum balance equation (9) is required to be satisfied at every radial grid point (collocation),
and when integrated against the Fourier basis functions (a Galerkin scheme) [4],

� 2π

0
e

iKθ �∇p − ∇ · τ � (rm, θ) dθ = 0, (27)

for m = 1, 2...,M + 1, and for K = −N,−N + 1, ...,N − 1,N. The momentum balance equation is replaced
by the no-slip boundary conditions for the velocity field on the innermost and outermost radial gridpoints.
Simultaneously we require that

� 2π

0
e

iKθ
�
∆p − ∇ · (∇ · τp)

�
(rm, θ) dθ = 0, (28)

again for each radial gridpoint and against each Fourier basis function. To derive the above we have used
the mass conservation equation ∇ · u = 0. This equation is replaced by the following boundary conditions
at the innermost and outermost radial boundaries,

∂p

∂r

����
r=A

= −(ηs/η) r̂ · (∇ × ∇ × u) + r̂ · (∇ · τp)
����
r=A

, (29)

1
r

∂p

∂θ

����
r=Aout

= −(ηs/η) θ̂ · (∇ × ∇ × u) + θ̂ · (∇ · τp)
����
r=Aout

. (30)

Here we are free to assert that the pressure on the outer boundary has mean zero, thereby fixing the constant
of integration (which has no bearing on the flow velocity or swimming speed). The condition that the
velocity field is divergence free is retained as a diagnostic tool and is verified at the end of each computation.

Finally, we require the net force on the swimming body to be zero, Fz = 0 (see (16)). The equations and
constraints above are written together as a large nonlinear system of 4M(2N + 1) + 1 equations, F [ν] = 0.
The solution to this system of equations is found by the application of Broyden’s method, an adaptation
of Newton’s method that updates the Jacobian matrix J = [∂F /∂ν] at each iteration without recomputing
each matrix entry [5]. For the first iteration, the Jacobian is computed using a centered finite difference
approximation. J is sparse and fast algorithms for matrix inversion and multiplication are employed. Since
each column of J can be determined independent of all other columns, this step is performed in blocks on a
parallel architecture without complication. Close initial guesses ν0 for a given Deborah number are provided
by extrapolation from previous computations for smaller De, starting with the simplest computation, that of
Stokes flow (De = 0).

To validate the code we have tested against an exact solution of cylindrical helical flow in an annulus,
compared to other computations of Newtonian flows, and performed convergence studies in the general
setting, all of which indicate the expected numerical accuracy. Extensive details will be provided in a
separate manuscript.

II. RHEOLOGICAL AND BIOLOGICAL DATA

We include as Table I a selection of recent experimental investigations of fluid rheological measurements
and microorganism geometries. Detailed fluid rheology and microorganism geometries are not generally
reported simultaneously in the literature, making a full comparison to the swimming speeds observed in
vivo quite challenging. The data shown, however, is generally consistent with our results, in that swimming
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in viscoelastic fluids appears to be enhanced for slender filaments of large amplitude (e.g., pitch angle
ψ � 30◦ for helical bodies). The organism geometry is reported in Table I as the dimensionless filament
radius A. Whether the organism swims faster or slower in a viscoelastic medium than in a Newtonian fluid
is indicated as ‘relative motility’.

TABLE I. Biological data (∗denotes peritrichous cells)

Organism Kinematics Filament radius, A Medium Relative motility

B. burgdorferi flat wave, ψ = 35◦ 0.5 [6] gelatin faster (no slip) [7]
Mouse sperm (fresh) small amplitude 0.03 [8, 9] viscoelastic slower [10]

Mouse sperm
(hyperactivated)

large amplitude 0.03 [8, 9] viscoelastic faster [10]

E. coli
∗ helical, ψ = 30◦ 0.03 [11] Methocel (gel) faster [12]

P. aeruginosa ψ = 40◦ [13] 0.03 mucin faster [14]
H. pylori

∗ / 0.03 PGM† gel (De ∼ 103) immotile [15]
H. pylori

∗ helical, ψ = 57◦ 0.03 PGM† solution (De ∼ 1) motile [15]
C. elegans planar undulation 0.3 CMC†† gel (De ∼ 1) slower [16]

† Porcine gastric mucin †† Carboxy-methyl cellulose solution

We acknowledge Lei Li for helpful comments on this document.

APPENDIX A. DIFFERENTIAL OPERATIONS IN THE HELICAL COORDINATE SYSTEM

From the definition of the helical coordinate system in (3), we now derive a number of differential
operators acting on scalars, vectors, and tensors that appear in the equations of motion. Beginning with the
relations in (6) and (19) we have that

∂

∂r
r̂ = 0,

∂

∂r
θ̂ = 0, (31)

∂

∂θ
r̂ = θ̂,

∂

∂θ
θ̂ = −r̂, (32)

∂

∂z
r̂ = −β cos(θ)

α r
θ̂,

∂

∂z
θ̂ =
β cos(θ)
α r

r̂. (33)

As was stated previously, the gradient of any scalar variable such as the pressure (with ∂p/∂ζ = 0 assumed)
is given using (21), and the divergence of a vector is given as in (23). Similarly, using the del operator
shown in (20), the curl of a vector u = ur̂ + vθ̂ + wẑ is seen to be

∇ × u = r̂

�
1
r

∂w

∂θ
− ∂v
∂z
+
β cos(θ)
αr

u

�
+ θ̂

�
−∂w
∂r
+
∂u

∂z
+
β cos(θ)
αr

v

�
+ ẑ

�
∂v

∂r
+

v

r
− ∂u
∂θ

�
, (34)

and the gradient acting on the velocity vector u is given by

∇u = r̂r̂
∂u

∂r
+ r̂θ̂

∂v

∂r
+ r̂ẑ

∂w

∂r
+

1
r

�
θ̂r̂

�
∂u

∂θ
− v

�
+ θ̂θ̂

�
∂v

∂θ
+ u

�
+ θ̂ẑ

∂w

∂θ

�
(35)

+ẑr̂

�
∂u

∂z
+
β cos(θ)
α r

v

�
+ ẑθ̂

�
∂v

∂z
− β cos(θ)
α r

u

�
+ ẑẑ

∂w

∂z
. (36)
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Here we have described a second-order tensor in terms of dyadic products, for instance r̂θ̂ = r̂ ⊗ θ̂ = r̂θ̂T

[1]. To determine tensor derivatives we first note that

∂θ(r̂r̂) = −∂θ(θ̂θ̂) = r̂θ̂ + θ̂r̂, ∂θ(r̂θ̂) = ∂θ(θ̂r̂) = θ̂θ̂ − r̂r̂, (37)

∂θ(r̂ẑ) = θ̂ẑ, ∂θ(ẑr̂) = ẑθ̂, ∂θ(θ̂ẑ) = −r̂ẑ, ∂θ(ẑθ̂) = −ẑr̂, (38)
∂

∂z
(r̂r̂) = − ∂

∂z
(θ̂θ̂) = −β cos(θ)

α r
(r̂θ̂ + θ̂r̂), (39)

∂

∂z
(r̂θ̂) =

∂

∂z
(θ̂r̂) = −β cos(θ)

α r
(θ̂θ̂ − r̂r̂), (40)

∂

∂z
(r̂ẑ) = −β cos(θ)

α r
θ̂ẑ,

∂

∂z
(ẑr̂) = −β cos(θ)

α r
ẑθ̂, (41)

∂

∂z
(θ̂ẑ) =

β cos(θ)
α r

r̂ẑ,
∂

∂z
(ẑθ̂) =

β cos(θ)
α r

ẑr̂. (42)

Writing a two dimensional tensor A (for example, the rate-of-strain tensor A = γ̇) as

A = Arrr̂r̂ + Arθr̂θ̂ + Arzr̂ẑ + Aθrθ̂r̂ + Aθθθ̂θ̂ + Aθzθ̂ẑ + Azrẑr̂ + Az θẑθ̂ + Azzẑẑ, (43)

then the divergence of A may be written as

∇ · A =
�
r̂∂r + θ̂

1
r
∂θ + ẑ

∂

∂z

�
· A, (44)

leading to the following components of the divergence in the locally orthogonal basis (r̂, θ̂, ẑ):

r̂ · [∇ · A] = ∂r(Arr) +
1
r
∂θ(Aθr) +

∂

∂z
(Azr) +

1
r

(Arr − Aθθ) +
β cos(θ)
α r

Azθ, (45)

θ̂ · [∇ · A] = ∂r(Arθ) +
1
r
∂θ(Aθθ) +

∂

∂z
(Azθ) +

1
r

(Arθ + Aθ r) −
β cos(θ)
α r

Az r, (46)

ẑ · [∇ · A] = ∂r(Arz) +
1
r
∂θ(Aθz) +

∂

∂z
(Azz) +

1
r

Arz. (47)

Finally, since

u · ∇ = u
∂

∂r
+

v

r

∂

∂θ
+ w
∂

∂z
, (48)

we have (using dyadic notation),

r̂r̂ · [u · ∇A] = u · ∇Arr + Ψ (Arθ + Aθr), (49)

r̂θ̂ · [u · ∇A] = u · ∇Arθ − Ψ (Arr − Aθθ), (50)
r̂ẑ · [u · ∇A] = u · ∇Arz + ΨAθz, (51)

θ̂r̂ · [u · ∇A] = u · ∇Aθ r − Ψ (Arr − Aθθ), (52)

θ̂θ̂ · [u · ∇A] = u · ∇Aθθ − Ψ (Arθ + Aθr), (53)

θ̂ẑ · [u · ∇A] = u · ∇Aθz − ΨArz, (54)
ẑr̂ · [u · ∇A] = u · ∇Azr + ΨAzθ, (55)

ẑθ̂ · [u · ∇A] = u · ∇Azθ − ΨAzr, (56)
ẑẑ · [u · ∇A] = u · ∇Azz, (57)
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where

Ψ =

�
β cos(θ)
α r

w − v

r

�
. (58)
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