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Levitation and dynamics of bodies in
supersaturated fluids

Saverio E. Spagnolie 1,2 , Samuel Christianson1 & Carsen Grote1

A body immersed in a supersaturated fluid like carbonated water can
accumulate a dynamic field of bubbles upon its surface. If the body is mobile,
the attached bubbles can lift it upward against gravity, but a fluid-air interface
can clean the surface of these lifting agents and the body may plummet. The
process then begins anew, and continues for as long as the concentration of
gas in the fluid supports it. In this work, experiments using fixed and free
immersed bodies reveal fundamental features of force development and gas
escape. A continuum model which incorporates the dynamics of a surface
buoyancy field is used to predict the ranges of body mass and size, and fluid
properties, for which the system is most dynamic, and those for which body
excursions are suppressed. Simulations are then used to probe systems which
are dominated by a small number of large bubbles. Body rotations at the
surface are critical for driving periodic vertical motions of large bodies, which
in turn can produce body wobbling, rolling, and damped surface ’bouncing’
dynamics.

A fluid containing dissolved gas may become supersaturated upon a
rapid change in temperature or pressure, leading to bubble formation
and eventual gas escape. This phenomenon is most commonly
observed when opening a can of sparkling water, or other carbonated
beverages. When the fluid is under sufficient pressure, gas accumula-
tion is inhibited, preventing bubble formation1. Upon a rapid reduction
of pressure, bubbles form on or near any containing or immersed
surfaces, then detach and depart towards the fluid-air interface, lead-
ing to the eventual escape of the gas to the environment2–4. In everyday
settings, rather than forming directly upon container walls, bubbles
commonly form inside small cellulose fibers left behind during
cleaning5,6. These cavities (’lumen’) are remarkable sites for consistent
and rapid bubble growth and release since a pocket of gas remains
behind after each pinch-off event to seed the next growth. The coa-
lescence of diffusively growing bubbles itself presents a classical
modeling challenge7,8, as is the process by which coalescing bubbles
depart from awall9–12. See in particular the reviews by Liger-Belair13 and
Lohse14.

Supersaturated fluids also appear in geophysical settings. Explo-
sive fragmentationof particulatematter inmagmacan lead to volcanic
eruptions. A Strombolian eruption is caused by bubbles which

coalesce into rising ‘gas slugs’, transporting gas and entrainingmagma
flow towards the surface15–17. Such liquids also appear in industrial
processes like deacidification and fractionation of oils18,19, and in bio-
logical settings (e.g., blood and tissues during decompression)20,21.
Large-scale flows associated with bubble motion depend on the geo-
metry of the container, and can result in peculiar downward bubble
motion and even bubble waves and cascades in fluids from stout beers
to magma22–24.

When a free body is introduced into a supersaturated environ-
ment it presents new sites at which bubbles can nucleate and grow - a
field of such bubbles on a body surface can result in surprising
dynamics. Using nothing more than carbonated water and raisins
(Fig. 1), periodic vertical body motions can be observed for nearly two
hours, though the time between excursions slows considerably after
the first 20min (see Movie S1). This phenomenon has earned numer-
ous playful names by a variety of fizziologists25, fromdancing raisins to
divers26,27 and fizz balls28. Similar body oscillations can also be gener-
ated by reactions in chemical gardens29,30. Recently, this phenomenon
has been investigated using peanuts and beer, based on a common
practice in Argentinian drinking establishments31. Different contact
angles of individual attached bubbles show the importance of surface
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roughness on bubble formation31. Such effects add to a growing list of
fundamental scientific findings which have emerged from the
kitchen32,33.

In this paper, we explore these oscillating dynamics using
experiments and simulations and match numerous features to theo-
retical predictions. Experiments are used to measure the force devel-
opment on a spherical body fixed in carbonated water, and its
oscillatory dynamics when free. Using a discrete bubble model, and a
continuum model which incorporates the dynamics of a surface
buoyancy field, ranges of body and fluid properties are provided for
which the system is most dynamic, and those for which body excur-
sions are suppressed. Simulations are used to explore the dependence
on system parameters in amore controlled setting. Body rotations are
found to be critical for the onset of periodic vertical motions of large
bodies, which in turn can produce body wobbling, rolling, and multi-
period surface return in a damped bouncing dynamics.

Results
Experiments
Mass loss of a supersaturated fluid. We first measured the change in
gas concentration in a supersaturated fluid upon depressurization by
examining the fluid’s mass loss over time. An empty glass vessel with a
square cross-section of side length L = 8.9 cm was filled with a just-
opened can of Klarbrunn-brand carbonated water which was stored at

room temperature (21.6 °C). The fluid was poured into the vessel and
then left alone for two hours at the same room temperature. Time,
denotedby t, ismeasured inminutes, and t = 0corresponds to the time
just after depressurization (the moment when the can was opened).
The mean mass loss across five experiments at each time is shown in
Fig. 2a as a thin red curve. In each experiment the initial volume of
fluid, Vf, was approximately 355 cm3 (12 oz); the total mass loss,Me(t),
over the course of two hours was roughly 0.3% of the initial mass.

Rapid mass loss over the first 20min was due to the growth and
detachment of bubbles on the container surface, and diffusive trans-
port of gas from the free surface, as discussed below. The remaining
100min revealed linear behavior due to water evaporation34. At long
times we observed that dMe/dt ≈ ke for relatively large t, where
ke = 4 × 10−3 g/min (the samevaluewas foundusingonly tapwater). The
solid blue curve in Fig. 2a showsMe(t)–ket, expected to be themass loss
of CO2, and the standard deviation at each time across experiments is
shown using error bars.

Denoting the volume-averaged gas concentration at time t by �cðtÞ,
with units of g/cm3, the mass of CO2 in the vessel is given by �cðtÞVf (an
adjustment due to evaporative volume change is negligible). Themass
loss from the empty vessel is written as MeðtÞ=Vf ð�cð0Þ � �cðtÞÞ+ ket,
where �cð0Þ is the initial concentration of CO2. The supersaturation
ratio, SðtÞ= ð�cðtÞ=cs � 1Þ, measures the gas concentration level com-
pared to a critical value cs, an equilibrium concentration correspond-
ing to a partial pressure of gaseous CO2 at 1 atm13,35. At room
temperature in water this value is cs = 1.48g/L36,37. The gas concentra-
tion decreases until S(t) reaches a value belowwhich bubbles no longer
form on or near the container walls; in this case, most likely in the
lumen of adhered fibrous matter5,6. We denote this minimum value
associated with the container as Smc and discuss its genesis more fully
in §II B. The difference S(t) − Smc may then be inferred from the mass
loss data, and is plotted in Fig. 2b. The dynamics of S aremodeled by a
Riccati equation, _S= � ðS� SmcÞ=Tr � qðS� SmcÞ2 with the dot denot-
ing a time derivative, for reasons to be discussed, which results in a
predicted evolution of the form

SðtÞ= Smc +
ðS0 � SmcÞ expð�t=Tr Þ
1 + χð1� expð�t=TrÞÞ

, ð1Þ

where S0 = S(0) is the supersaturation ratio at t =0, and
χ = qTr(S0 − Smc). This function is plotted atop the experimental mea-
surements in Fig. 2b as a dashed curve using fitted parameters
S0 − Smc = 1.66, χ = 2.5, and Tr = 36.2min. With S0 − Smc ≈ S0, the obser-
vations here are in line with carbonation levels reported in other
sparkling beverages4,38, particularly given the substantial gas loss while
pouring4,39.

Fig. 1 | Dancing raisins. Raisins in carbonated water present numerous folds
conducive to bubble nucleation and growth; these bubbles may then lift the body
upward against gravity, only to release it upon arrival at the free surface (see
Movie S1).

Fig. 2 | Gas loss fromanempty containerof carbonatedwater. aThemass loss in
grams of one canof carbonatedwater during the first 80minafter depressurization
(thin red line) at time t averaged over four independent experiments, and themass
loss after subtracting a constant linear loss due to evaporation (dark blue line).

Error bars show the standard deviation across experiments at each time. b TheCO2

gas supersaturation ratio, minus a stationary minimum value below which bubbles
do not form on the container, S(t) − Smc, inferred from the data in (a) (dark blue
line). The dashed line is a best-fit curve using (1).
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Surface buoyancy growth with a fixed body. Next, a body was held
fixed in the fluid, and we measured the force development due to
bubble growth on its surface. A sphere of radius 1 cm composed of
Polylactic acid (PLA) was printedwith anUltimaker 3+ 3D printer using
a 0.15mm nozzle. A schematic of the experimental setup is shown in
Fig. 3a. The fluid was depressurized and poured gently into the con-
tainer, and placed upon the digital scale. The test sphere was then
lowered into the carbonated water at different insertion times, deno-
ted by t0, and affixed to the table below. As bubbles grew on the
surface (see Fig. 3e) they imposed an upward vertical force on the
stationary sphere, and theopposing downward forcewas registeredby
the scale. The sphere was briefly removed from the fluid every 4min,
then reinserted while still wet. Videos of bubble growth, coalescence,
and arrival at a fluctuating steady state at insertion times t0 = 1min and
t0 = 10min are included as Movies S2–S3.

The scale-registered weight of the system, denoted by F(t), was
decomposed as F(t) = F(0) +Me(t)g +B(t; t0). F(0) includes a constant
buoyancy force due to the volume of the displaced fluid; Me(t) is the
mass change of a body-free fluid previously described; and B(t; t0) is
the surface buoyancy force, the contribution to the buoyancy by the
bubbles since the insertion time, t0. The weight loss due to gas escape
from an empty vessel is small, but it is of comparablemagnitude to the

force on the body for roughly the first 10min, and must be accounted
for here. F(t) − F(0) was measured directly, which then provided an
indirect measurement of the added buoyancy force, B(t; t0).

Figure 3b shows the surface buoyancy force as a function of time
since insertion, t − t0, for insertion times up to 60min. Upon insertion
the force increased, at a rate which diminished as the insertion time
became larger and the fluid became calmer. As discussed in §II B, the
radius a(t) of an individual bubble is expected to grow roughly as
aðtÞ≈ ð2DSðt0Þðt � t0ÞÞ1=2, where D is the diffusion constant for CO2 at
room temperature. The associated volumetric growth suggests a total
force on the body proportional to ðt � t0Þ3=2; however, once hetero-
geneous bubble coalescence begins the growth appears closer to lin-
ear in time (seen for insertion times less than 30min in Fig. 3b). This
growth rate, denoted by λ(t0), is shown in Fig. 3c. The solid curve
corresponds to a prediction λðt0Þ= kSðt0Þ3=2, where k is a proportion-
ality constant, revealing an excellent match to the experimentally
measured growth rates. Equivalently, defining λ0 to be the linear
growth rate at t = 0, we may write

λðt0Þ= λ0
Sðt0Þ
S0

� �3=2

= λ0
ðSðt0Þ � SmcÞ+ Smc

ðS0 � SmcÞ+ Smc

� �3=2

: ð2Þ

Fig. 3 | Measuring the surface buoyancy on a fixed body. a Experimental setup
for measuring the surface buoyancy. A spherical 3D-printed body is held fixed in
place in carbonated water for 4min, then removed from and reinserted into the
fluid. Bubbles form, grow, merge and detach, and the force is registered by the
scale. b The surface buoyancy force, B(t; t0) during a single experiment. The force
increases at a rate λ(t0) which depends on the insertion time t0, tapering off to a
value Bs(t0) (measured later, at t0 + 4min). The rate λ(t0) is computed using the

lines shown. c The growth rate, λ(t0). The mean and standard deviation across five
experiments are shown as symbols and error bars. The solid curve is based on a
modelwhich assumes λ∝ S3/2 and using (1).dThe stabilized surface buoyancy force,
Bs, measured at t0 + 4min, along with a linear fit. e Bubble configuration on the
spherical surface at three different moments after an early insertion time of
t0 = 1min.
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Using S(t) − Smc from the previous experiment with no immersed body
(see Fig. 2b), the model best fits the data on a logarithmic scale using
λ0 = 58.4 dyn/s and Smc =0.020. By comparing with the previous
experiment, we find S0 ≈ 1.68.

The surface buoyancy force eventually stabilized to a value Bs(t0)
measured fourminutes after reinsertion time t0. This value is shown in
Fig. 3d along with a linear fit, Bs(t0) ≈ 712 dyn-(6.9 dyn/min)t. The
saturated value Bs(t0) diminished far more slowly than did the growth
rate λ(t0) - roughly, at later insertion times, bubblesmerely take longer
to accumulate andgrowuntil reaching a critical size, atwhich time they
pinch off and depart alone.Whether the slow decay was due to surface
wetting or other phenomena remains unclear. A simple method for
estimating Bs is included in the Supplementary Information.

After the buoyancy force stabilized, large fluctuations were
observed. They were most apparent at smaller insertion times due to
large bubble surface sliding and detachment events, which carry
numerous other bubbles away at the same time. This surface cleaning
effect has recently seen more specific attention12. Detachment is
expected beyond a critical ’Fritz radius’ where buoyancy overwhelms
capillary forces31,40,41. Bubbles have other opportunities to depart
during merging events via self-propelled detachment9.

The same force development measurement was performed using
a skewer of 8 Sunmaid raisins, as reported in the Supplementary
Information. The initial maximum force per raisin due to bubbles was
Bs ≈ 100 dyn, and the initial growth rate per raisin was λ0 ≈ 20 dyn/s.

Levitation and dynamics of a freely moving sphere. In a final set of
experiments, the printed spherewasplaced into the fluid, free tomove
(Fig. 4a). The body, with radius A = 1 cm and mass m = 4.25 g, was
inserted into the fluid just after depressurization and pouring, and its
motion was recorded with a Nikon D7000 DSLR camera with a 24 fps
framerate for two hours (see Movies S4–S6). The body’s vertical
position at each time, denoted by z =A Z(t) (with the fluid surface at
z =0), was recovered using an image tracking code written in Matlab.
The experiment was performed five times.

A slow decay of the highly oscillatory dynamics is observed
upon locally averaging the vertical position. Figure 4b shows the
mean vertical position at time t over a window [t − 5min, t + 5 min]
during one experimental run. The free surface is located at z = 0,
and the body is just touching the free surface when Z = −1. For the
first 5min the body spends most of its time near the free surface-
bubbles cleaned from the body are rapidly replaced. Eventually, the
body begins to spend more time in the bulk fluid, and then on the
container floor, where the body resides for longer and longer
’charging’ times before rising again.

The instantaneous vertical position starting at t = 24.7min is
shown in Fig. 4c, revealing a type of damped ‘bouncing’dynamics from
the free surface. Multiple visits to the fluid-air interface in succession
are commonly observed; each visit clears different portions of the
body surface, resulting eventually in a longer excursion into the bulk.
Figure 4d shows common late-stage behavior: long periods on the
container floor, punctuated by increasingly rare rising events. Rising
often ends prematurely due to the detachment and departure of single
large bubbles. The late-stage surface forces tend to be dominated by
such individuals, and the body’s fate can be dictated by their singular
activity.

An excursion is defined as having occurred if the body’s center of
mass drops below one diameter beneath the free surface before
returning upward and crossing the same vertical threshold. The times
at which the jth excursion begins and ends are denoted respectively by
tj (Z(tj) = −2 and Z 0ðtjÞ<0), and pj (Z(pj) = −2 and Z 0ðpjÞ>0). The jth
excursion time is given by Δj ≔ pj − tj, for j ≥ 1. The body undergoes
roughly 300–700 excursions during the two-hour experiment. A
smoothed excursion time, Δ(t), is defined as another moving average
using ± 5min on either side of time t. The dancing frequency, f≔ 1/Δ, is
shown in Fig. 4e, and on a log-linear scale in the inset, including error
bars representing one standard deviation at that time across three
independent experiments. A clear monotonic decrease in the fre-
quency is observed with nearly exponential decay over time. The
dashed curve corresponds to a theoretical prediction discussed below.

Fig. 4 | Long-timedynamics of a freebody. aA freelymoving 3D-printed sphereof
radius 1 cm and mass 4.25 g in carbonated water, rotates and returns to the free
surface. b The locally averaged position over a window of ± 5min for a single
experiment is shown as a dark curve; the standard deviation is shown with error
bars. c The instantaneous vertical position from (b). The body tends to visit the
surface numerous times in succession, clearing off more and more of the surface,

before plummeting. d At later times, body rising events are often cut short by
premature detachment of large individual bubbles. e The dancing frequency, f≔ 1/
Δ(t), where Δ(t) measures the averaged excursion time (over a ± 5 min window)
from surface-departure to surface return. The solid curve shows the mean over
three experiments, error bars show the standarddeviation across experiments, and
the dashed lines are from (11). Inset: the same, on a log-linear scale.
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For bodieswith a dense surface bubble coverage, body rotation at
the surface plays a critical role. Early experiments, not shown here,
constrained the motion to translation along and rotation about the
vertical axis only. This dramatically inhibited surface bubble removal
and associated dancing. Only a rare event of a large bubble leaving the
surface could result in an excursion. Rather, if the body is free to
rotate, then upon reaching the surface and losing a portion of the
surface-bound bubbles, the body becomes unstable to rotation due to
the remaining bubbles on the underbelly of the sphere. Once the body
starts to rotate, the body is cleared of a larger number of buoyancy-
conferring bubbles, and an excursion becomes far more likely (see
Movie S4). The previously noted bouncing at the free surface is an
additional consequence. Fluctuations from the active fluid, or other
immersed bodies (Movie S5), which nudge the rotational instability to
develop appear to be important as well. For bodies like raisins, whose
trajectories are influenced more by individual bubble growth, lift, and
removal, vertical dancing may be observed without need for such
rotations.

Mathematical model
Gas escape. There are a number of mechanisms by which gas may
escape from the system: formation of bubbles on the container
walls and on the immersed body, which eventually exits into the
surrounding environment, and by diffusive transport through the
fluid-air interface13. For the first mechanism, assuming simply that
the frequency of surface bubble growth and bubble volume upon
exit each to be linear in the supersaturation ratio, the gas loss from
this process follows _S= � qðS� SmcÞ2, where q is a constant which
encapsulates the number of bubble growth sites and their geome-
trical features, and Smc is the minimum value below which bubbles
no longer form on or near the container walls (discussed below).
This quadratic law is supported by the data in Fig. 2, and it suggests
that this mechanism of gas loss is dominant for the first one or two
minutes of the experiment. Gas loss due to growth on the immersed
body and direct delivery to the surface may be neglected (see
Supplementary Information).

The steady stream of bubbles rising from (near) the container
walls drives a large-scale circulation flow on the scale of the con-
tainer’s lateral measure akin to intrinsic convection in particle
sedimentation39,42,43. Such a flow is expected to continually replen-
ish the region near the fluid-air interface with the well-mixed con-
centration from the bulk fluid. Balancing advection and diffusion
near the free surface, the concentration is predicted to decay from
its volume-averaged value inside the fluid to approximately zero
outside the fluid across a small boundary layer of size
δ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DH=ð2UbÞ

p
, where H is the fluid depth and Ub is the velocity of

bubble rise (see Supplementary Information). This motivates a
model for the supersaturation ratio, _S= � ðS� SmcÞ=Tr , where
Tr = Vfδ/(DSf) is a relaxation timescale, with Sf the free surface area
and Vf the fluid volume. Using the dimensions of the experiment,
L = 8.9 cm and H = 4.5 cm, the diffusion constant for CO2 in water
D = 1.85 × 10−5 cm2/s44, and an observed bubble rise velocity of Ub ≈
1 cm/s, this gives δ = 65 μm. Then with Sf = 79 cm2, and fluid volume
Vf = 355 cm3, the predicted relaxation time Tr is 26min, within
range of the best-fit value used in Fig. 2. Combining themechanisms
above, _S= � ðS� SmcÞ=Tr � qðS� SmcÞ2, produces the expression
in (1).

Discrete and continuumbuoyancy growthmodels. We consider two
models of bubble/buoyancy growth, adiscretemodel and a continuum
model, as each can be more appropriate depending on the body size
and surface properties. In the discrete model, each of N bubbles are
assumed to grow independently according to the bubble growth law
attributed to Scriven,which builds upon the Rayleigh-Plesset equation:

for an isolated bubble of radius a(t), we have

_a=
D
a

S� 2σ
pa

� �
, ð3Þ

where D is a diffusion constant (D = 1.85 × 10−5 cm2/s for CO2 in
water44), S(t) is the supersaturation ratio, σ is the surface tension of
water (σ ≈ 70mN/m = 70 dyn/cm at room temperature), and p is the
pressure near the bubble (p ≈ 1 atm = 106 dyn/cm2)1,45–47. The force
conferred to the body is the buoyancy experienced by the bubble.
In the discrete model, a bubble is removed from the surface when
its position on the body exits the fluid, or when it reaches a critical
size for pinch-off, ap, at which time it is immediately rebirthed
(once in the fluid) with size a0, a characteristic scale of surface
roughness.

Of particular importance at longer times, there is a super-
saturation ratio below which bubbles are overwhelmed by pressure
and surface tension and cease to form on the body, S = 2σ/pa0. The
initial bubble size, a0, depends upon the surface and the nature of
bubble nucleation there. The length scale of surface roughness on the
body may be associated with such initial bubble sizes; the lumen dia-
meter of the fibers left behind during cleaning on the container walls is
another. This value for the bubble formation near the surface was
denoted Smc, and inferred from the experiments in §II to be Smc ≈
0.020. This suggests that the surface roughness (or remnant material)
scale on the container wall is 2σ/(pSmc) ≈ 30μm, which matches the
diameter of cellulose fibers5.

On the body, meanwhile, using the resolution of the 3D printer of
0.15mm to estimate a0≈0.015 cm, a minimal supersaturation ratio for
bubble growth on the body, denoted by Smb, may be roughly 0.010.
That Smb < Smc indicates that bubbles should continue to form on the
body after they cease to formon/near the containerwalls. Indeed, after
a carbonated fluid was left alone for hours until it appeared ’flat’
(bubble-free), inserting at that time a 3D-printed body or a raisin
resulted in bubble growth on the body and the onset of body rising
events. A detailed determination of Smb generally involves not only the
surface roughness but also its chemistry, as the contact angle has been
shown to be important for bubble nucleation31.

The second model considered is a continuum model, more
appropriate when the body is covered in a large number of bubbles
which are continually growing, merging, and detaching. With the local
maximum of the added traction given by Bs=ð4πA2Þẑ, the instanta-
neous portion of this local contribution is defined as bBs=ð4πA2Þẑ,
whereb(x, t)∈ [0, 1] andx is a point on the body surface. The evolution
of this buoyancy fraction is then modeled as

d
dt

bðx,tÞ= λðtÞ
Bs

1� bðx,tÞð Þ, ð4Þ

which holds pointwise at every position x on the body surface.
Spatial variations in b(x, t) are possible, and generically produce a
body torque. Holding the supersaturation ratio fixed and neglecting
surface tension and pressure, the bubble growth law suggests a
bubble radius growth aðtÞ∼ ða2

0 + 2DSðt0Þðt � t0ÞÞ
1=2

. Since the con-
tributed buoyancy is proportional to a(t)3, this suggests a growth
rate λ(t) which scales as S3/2 for appreciable times, consistent with
themeasured data. This leads to themodel for the growth rate given
in (2).

In both models, the instantaneous lifting force and torque in
the lab frame are written as BsFB½b�ẑ and ABsLB[b], respectively. In the
continuummodel, FB½b�= hbi : = ð4πÞ�1R

S0
bðX,tÞdS0, where dS0 is the

surface area element in the body frame, and LB½b�= QhbXið Þ× ẑ. Or,
defining the center of surface buoyancy in the body frame as
M= hbXi = ð4πÞ�1R

S0
XbðX,tÞdS0 and m =QM the same in the lab
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frame, we may write LB½b�= ðQMÞ× ẑ. Additional details are given in
the Supplementary Information.

Equations of motion and dimensionless groups. Taking T : =
ffiffiffiffiffiffiffiffiffi
A=g

p
to be a characteristic time and A=T =

ffiffiffiffiffiffi
Ag

p
to be a characteristic speed,

wewrite theposition of thebody centroid as rðtÞ=A � Z ðtÞẑ, the vertical
velocity as (A/T)W, and thebody rotation rate asT−1Ω. Force and torque
balance, with the dimensionless time s≔ t/T, are expressed as

dW
ds

= � 1 +
αðsÞ
M +βFB½b� �

9CT

2MRe
W , ð5Þ

d
ds

IRΩ
� �

=βLB½b� �
6CR

MRe
Ω, ð6Þ

where we have introduced the following dimensionless numbers,

M=
m
ρV

, β =
Bs

mg
, Λ=

ðA=gÞ1=2λ0
Bs

, τ =
Tr

ðA=gÞ1=2
: ð7Þ

Here, V is the body volume, VS(s) is the submerged volume at time s,
α(s)≔VS(s)/V∈ [0, 1], andmA2IR is the moment of inertia, where IR=2/5
for a rigid sphere. Hydrodynamic drag and torque coefficients, respec-
tively, are given by CT = 1 + :0183Re jW j, and CR = 1 +0:0044

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Re jΩj

p
,

with Re=ρA3=2g1=2=μ the Reynolds number (The Reynolds number is
defined as Re= ρUA=μ, with ρ the fluid density,U a characteristic speed,
A a characteristic length scale, and μ the fluid viscosity, and gives a
measure of the importance of inertia relative to viscous dissipation.).
Bubbles generally affect the drag on the body but we neglect this
detail here. The surface buoyancy fraction b evolves at each point on
the body as

d
ds

bðx,sÞ=ΛgðsÞ 1� bðx,sÞð Þ, ð8Þ

where gðsÞ= SðTsÞ=S0
� �3=2, and using Eqn. (1),

gðsÞ= Smc

S0
+
ð1� Smc=S0Þ expð�s=τÞ
1 + χð1� expð�s=τÞÞ

� �3=2

: ð9Þ

Anypointsxon the body surfacewhich are outside of thefluid are given
the value b =0; only once those points reenter the fluid does the growth
there begin again according to (8). The system is closed by tracking the
body’s position and orientation: _Z =W and _Q =Q Ω̂ where dots denote
derivatives upon the dimensionless time s, and Ω̂q : =Ω×q for any
vector q. Initial conditions are generally taken to be Z(0) = − 1,W(0) =0,
Ω(0) =0, Q(0) = I, and b(x, 0) =0.

The system is thus characterized by a mass ratio, M, the relative
lifting force β, which we term the fizzy lifting number ("Fizzy lifting
drinks! They fill you with bubbles, and the bubbles are full of a special
kind of gas, and this gas is so terrifically lifting that it lifts you right off
the ground just like a balloon, and up you go until you’re bumping
against the ceiling!” -Charlie and the Chocolate Factory, by Roald
Dahl.), initial bubble growth rate, Λ, and relaxation time, τ, theminimal
supersaturation ratio for bubble growth along the container, Smc, the
initial supersaturation ratio, S0, and the Reynolds number. For the 3D-
printed body used above, using A = 1 cm, m = 4.25 g, Bs = 700dyn,
λ0 = 58.4 dyn/s, and Tr = 36.2min, and for water ρ = 1 g/cm3 and
μ =0.01 g/(cms), we find ðM,β,Λ, τ, ReÞ= ð1:015, 0:17, 2:6 � 10�3,
6:8 � 104, 3:1 � 103Þ. For a raisin, using a prolate spheroidal body with
semi-major axis length A = 0.6 cm and semi-minor axis lengths 0.4 cm,
mass m =0.45 g, Bs = 100dyn, and λ0 = 20dyn/s, we find ðM,β,
Λ, ReÞ= ð1:12, 0:23, 4:9 � 10�3, 1:5 � 103Þ. These values of β and Λ make
raisins particularly strong dancers.

The body is positively buoyant and floats without bubbles ifM<1.
If M>1, the body can only be lifted upward against gravity if the fizzy
lifting number β is sufficiently large; namely β+M�1 � 1 must be
positive. This gives a range of masses for which oscillatory dynamics
are expected to reside:M 2 1,1=ð1� βÞ� �

ifβ < 1, andM 2 ð1,1Þ if β ≥ 1.
The 3D-printed bodies are predicted to dance with density ratios ρs/
ρ∈ (1, 1.20); raisins are expected to dance in a similar range, ρs/ρ∈ (1,
1.29). With Bs generally scaling with the surface area andm scaling with
the body volume, β is generically larger for very small bodies, and
bubble-induced lifting is expected for such bodies to be more
immediate.

Dancing frequency. We approximate the solution to (8) by neglecting
the early period of rapid gas escape and assuming Smc≪ S0. Taking
gðsÞ≈ expð�s=τÞ=ð1 + χÞ� �3=2, with b(x, s0) = b0, we find

bðx,sÞ= 1� ð1� b0Þ exp
2Λτ

3ð1 + χÞ3=2
e�3s=2τ � e�3s0=2τ
h i !

: ð10Þ

The dimensionless ’charging time’ before the total buoyancy over-
comes gravity is given by scharge≔ sc − s0 such that
βhbiðscÞ+ 1=M� 1 =0, which from (10) is given by

scharge =
2τ
3
log

1

e�3s0=2τ � 3ð1 + χÞ3=2
2Λτ Lβ

0
@

1
A� s0, ð11Þ

where Lβ = log βMð1�b0Þ
1�ð1�βÞM
� �

. For a sufficiently small container the char-
ging time serves as a proxy for the excursion time, with transit from
one surface to another playing only a small role. Two curves corre-
sponding to f = 1/Δ ≈ 1/tcharge (with tcharge≔ Tscharge) are included in
Fig. 3e, onewith b0 = 0 andonewhichbest fits the datawith b0 = 0.073.
The frequency is sensitive to b0, which points yet again to the impor-
tance of rotations, and how many bubbles are removed upon each
surface visit.

For insertion times s0 > sfun, where sf un = ð2τ=3Þ logð2Λτ=
ð3ð1 + χÞLβÞÞ, the charging time in (11) is infinite. Using the values from
the experiments the associated dimensionless time is tfun ≔
Tsfun= 170min. A separate approximation starting from (8) is more
appropriate at long times, assuming Smc> Smb (i.e., bubbles continue to
form on the body after they cease to form along the container walls). In
this case, as s0/τ→∞, we have gðs0Þ∼ ðSmc=S0Þ3=2 = : g1, leading to a
constant charging time of scharge = ðΛg1Þ�1Lβ. Using the experimental
parameters this gives a final dimensional charging time of between
14min and 2.5min, for initial coverages b0 =0 and b0 =0.073, respec-
tively. Once S≤ Smc, bubbles no longer form along the container and the
primary mechanism driving gas escape is removed. The body can con-
tinue to form bubbles and perform its low-frequency dance, even in an
otherwise quiescent fluid. Since we neglect the days-long timescale of
pure diffusive transport, and convective diffusion affected by the body
motion, this low-frequency dancing is predicted to carry on indefinitely.
Dancing with a mean frequency of 1.5min−1 was indeed observed in one
experimental run for the last 4 h of a 5 h run.

Simulations. To examine the dynamics in a more controlled environ-
ment we solve (5–8) numerically. Figure 5 shows the dynamics of a body
with bubbles at the vertices of a regular icosahedron (N= 12), using the
discrete bubble model, with ðM,β,Λ, ReÞ= ð1:02, 0:17, 0:003, 3100Þ.
The rebirth and pinch-off radii used are a0/A=0.03 and ap/A=0.24,
respectively. The bubbles first grow to sufficient stature to lift the body
to the surface, where the topmost bubbles are released. The body
begins to descend slowly before undergoing a rotation, returning soon
after to the surface. Each visit to the surface includes bubble removal, a
body rotation, additional bubble removal, and then a plummeting to
deeper waters.
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Figure 6a shows the dimensionless vertical dancing frequency, Tf,
using the discrete bubble model as a function of the number of bub-
bles, all placed at the vertices of a regular polyhedron, all with
ðM,β,ΛÞ= ð1:015, 0:17, 0:0016Þ. To isolate the role of bubble position
we adjust the maximum bubble size ap=A= ð3Bs=ð4πρgNÞÞ1=3 so that
each body achieves the same maximal surface buoyancy (β) if all
bubbles are at their maximal (pinch-off) size. The frequency increases
with N, as bodies with a greater number of bubbles can begin their
descent while still maintaining partial surface coverage, and less bub-
ble growth is needed before the body becomes positively buoy-
ant again.

To further explore body rotations, Fig. 6b shows the mean body
rotation rate as a function of the growth rate,Λ, using both the discrete
bubblemodel (shown as symbols) and the continuummodel (as a solid
curve). With increasing Λ the body spends more time at the surface,
and experiences opportunities to rotate more frequently, if not more
rapidly. The growth is approximately logarithmic in Λ, and for small Λ
there is close agreement between the discrete and continuummodels.

The discontinuity in the discrete model is due to the onset of pre-
mature bubble detachment at large bubble growth rates (see
Movie S7). For sufficiently large growth rates (Λ > 0.008) the bubbles
grow from their initial size a0 to the pinch-off size ap on a shorter
timescale than the body’s excursion time. Consequently, most, if not
all, bubbles are removed near the time that the body reaches the
surface, nearly eliminating the torques on the body through pinch-off
alone and thus dampening rotations.

Figure 6c shows the mean rotation rate instead as a function of β
for a selection of growth rates, Λ, using the discrete bubble model,
while Fig. 6d shows the same using the continuum model. Generally,
larger values of β are associated with larger torques, and thus faster
body spinning. The discrete model shows again the importance of
premature bubble pinch-off and departure at large bubble growth
rates. For Λ =0.016, if β is small, it is common for most of the bubbles
to pinch off before the body traverses the full length of the container.
For large β, the body emerges completely out of the fluid in a dramatic
jump, and all bubbles are removed leaving none to generate a torque.

Wobbling and rolling. For bodies which are large relative to the max-
imum bubble size, body rotations are commonly observed, as are a
related dynamics: wobbling. As a coarse approximation we consider
bubbles to have been removed from one half of the spherical surface,
which then regrowwith rateΛ. Writing the center of surface buoyancy in
the body frame as M=Mð0Þ expð�ΛsÞ, withMð0Þ= ð4πÞ�1hbXi= ð1=4Þẑ,
then with q1 = cosðθÞx̂+ sinðθÞẑ and q2 = ŷ, the (dimensionless) torque
in the lab frame is LB = � ð1=4Þ expð�ΛsÞ sinðθÞẑ. Writing Ω= _θŷ, and
neglecting the nonlinear part of the hydrodynamicmoment, we arrive at
€θ= � a1ðsÞ sinðθÞ � a2

_θ, where a1ðsÞ= 5β expð�ΛsÞ=8 and
a2 = 15=ðMReÞ, the equation for a damped nonlinear oscillator with
diminishing torque.

Wobbling diminishes either by viscous damping or by bubble (re)
growth. A characteristic initial (s =0) wobbling frequency from the
above is f wobble≈

ffiffiffiffiffi
a1

p
=ð2πÞ≈ 5β=8

� �1=2
=ð2πÞ. For the 3D-printed body,

Fig. 6 | Numerical simulations using the discrete and continuummodels. a The
(dimensionless) dancing frequency,which increaseswith the numberof bubbles,N,
for fixed maximal surface lifting force (β =0.017). b The mean rotation rate
increases with the growth rate, Λ, in the continuum model (solid line). For the
discretemodel withN = 12 bubbles (circles), themean rotation rate increaseswithΛ

until premature bubble detachment becomes important. c The mean rotation rate
as a function of β, for a selection of growth rates Λ, using the discrete model with
N = 12 bubbles. Rotations are damped at large β and Λ due to the body emerging
from the fluid. d Same as (c) but using the continuum model.

Fig. 5 | Simulations using the discrete bubble model. A body with
ðM,β,Λ,ReÞ= ð1:02,0:17,0:003,3100Þ, and bubbles at the vertices of an inscribed
icosahedron (N = 12), undergoes “bouncing” dynamics near the surface. After the
bubbles nearest to the surface are removed, the center of surface buoyancy rests
below the center of mass, resulting in a torque and eventual body rotation. Only
after a few returns to the surface to clear off more bubbles does the body begin a
large excursion back towards the container floor. See Movie S7.
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using β =0.17, the initial frequency is roughly fwobble/T ≈ 1.6 Hz. A raisin,
meanwhile, due to its larger value of β, oscillates with a higher fre-
quency of just over 2.4Hz. These values are consistent with the
experimental observations (see Movies S1, S4, and S5). This effect is
similar to that seen inQuincke rotor dynamics, where surface charging
is driven by electrohydrodynamics48–54.

A transient rolling mode was also observed. Bubbles on the surface
of a rolling body begin to grow upon reentry and are larger just before
they exit, producing a sustained rolling torque. For this we consider a
cylindrical body and a two-dimensional cross-section. If the body is fixed

at a vertical position Z = � cosðθ*Þ, with θ*∈ [−π, π], then the steady

state lifting distribution assuming _b =Λ (and using _b =Ωbθ) is

b(θ) =ΛΩ−1(θ−θ*), whereΩ= _θ= jΩj. The resulting dimensionless torque

is m =2ΛΩ�1ðπ � θ*Þ2ŷ. Balancing with a viscous drag �ηðMReÞ�1Ωŷ

yields a steady rotation rate Ω= ð2ðπ � θ*Þ2ΛMRe=ηÞ
1=2

, where η ≤ 15,
since part of the body sits outside of the water. Amore detailed study of
this rotational drag, like that performed by Hunt et al.55, is needed.

Discussion
Supersaturated fluids present an accessible playground for
exploring the dynamics of bodies and their relationship to a com-
plex fluid environment. In the framework proposed by Spagnolie &
Underhill56 this would appear as either a Type I or Type II system -
the body is much larger than the ‘obstacles’ (be they bubbles or gas
molecules), and the fluid exhibits a natural relaxation time. Among
the unexpected findings in this system, we have observed a critical
dependence of the dynamics on body rotations for large body-to-
bubble size ratios, and multi-period oscillatory dynamics when a
single surface interaction is insufficient to clean the body surface of
its lifting agents. Another intriguing feature is that bubbles can
continue to form on the body long after they cease to form at the
container walls when Smc > Smb (when the surface roughness or
fibrous material scale is smaller on the container walls than on the
body). Raisins inserted into a fluid which was left out for hours and
appeared motionless were indeed observed to dance, albeit at a
leisurely pace. Relatedly, Pereira et al.31 identified that a smaller
contact angle between a bubble and a surface decreases the energy
needed to form bubbles there. Preliminary results also suggest that
the body’s presence can affect fluid degassing, even potentially
slowing it by disturbing the large-scale convective flow responsible
for gas escape, reminiscent of how moving boundaries affect flows
which promote heat transport57–60.

Additional constraints on the dynamics are expected in general.
At greater depths, bubbles are less likely to grow due to the increase in
hydrostatic pressure. Should abodyplummet sufficiently farbelow the
surface, bubble-assisted levitationmay vanish and the plummetingwill
continue unresisted. Surfactants may also adjust the range of bodies
possible to levitate in this manner, since their presence can affect the
nature of bubble pinch-off and coalescence, in competition with the
pressure and surface roughness scale via Smb

61,62. The shape of the
container and temperature can also affect the rate of CO2 loss63.
Another uncharacterized but potentially important feature is wetting.
A return to the surface releases bubbles from the body surface, but
interaction with the air above may also help to nucleate other bubbles
by drawing additional gas into small cavities. Initially, dry bodies
danced for far longer than initially wet bodies. The interactionwith the
free surface appears to damp rotations as well, and as we have seen,
any inhibition of the rotation of large bodies tends to inhibit vertical
dancing.

Anumber of directions lie aheadbasedon additional observations
not described above. Preliminary studies suggest a substantial
encouragement of excursions for more elongated and asymmetric
body shapes. Also, the behavior of multiple bodies in the system can

result in stable rafts of bubble-sharing bodies at the surface. Since
rotation is critical for triggering an excursion from the surface, and
sharing bubbles inhibits rotation, the system transitions from exhi-
biting oscillatory to overdamped behavior with increased particle
volume fraction. Additional bodies, however, also increase the fluc-
tuations in the system, which can encourage the rolling and plum-
meting of others. This instability to rotation and cooperative effects
are reminiscent of iceberg capsize dynamics64–66. Exploration of the
optimal number of dancing partners is under current investigation. A
more detailed study of the fluid flow itself will be highly informative
regarding the nature of degassing and the effect of the
immersed body.

Theoretical advances are also needed. Models of growing arrays
of bubbles date back to classical works by Lifschitz and Slyozov67 and
Wagner68. Transient coarsening kinetics depend on numerous simul-
taneous mass transfer mechanisms, resulting in overlapping scaling
behaviors in time69–72. Collective formation and dissolution of bubbles
on a regular patterned grid have recently provided some insight on
these coupled effects73–75. The additional presence of a flowing envir-
onment presents a substantial new challenge. Future work exploring
body shape, multi-body dynamics, and fluid-structure interactions is
likely to prove... fruitful.

Data availability
Datasets for force growth on fixed bodies, and vertical positions dur-
ing vertical oscillations, are available at https://doi.org/10.6084/m9.
figshare.25302136.
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