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Sedimentation of spheroidal bodies near walls
in viscous fluids: glancing, reversing,

tumbling and sliding
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The sedimentation of a rigid particle near a wall in a viscous fluid has been studied
numerically by many authors, but analytical solutions have been derived only for
special cases such as the motion of spherical particles. In this paper the method
of images is used to derive simple ordinary differential equations describing the
sedimentation of arbitrarily oriented prolate and oblate spheroids at zero Reynolds
number near a vertical or inclined plane wall. The differential equations may be solved
analytically in many situations, and full trajectories are predicted which compare
favourably with complete numerical simulations. The simulations are performed using
a novel double-layer boundary integral formulation, a method of stresslet images.
The conditions under which the glancing and reversing trajectories, first observed
by Russel et al. (J. Fluid Mech., vol. 83, 1977, pp. 273–287), occur are studied
for bodies of arbitrary aspect ratio. Several additional trajectories are also described:
a periodic tumbling trajectory for nearly spherical bodies, a linearly stable sliding
trajectory which appears when the wall is slightly inclined, and three-dimensional
glancing, reversing and wobbling.

Key words: boundary integral methods, low-Reynolds-number flows, Stokesian dynamics

1. Introduction
The sedimentation of bodies in viscous fluids is important in many natural settings

and industrial processes, from paper manufacturing (Steenberg & Johansson 1958) to
blood circulation (Caro 2012) to the settling of contaminant particles through oil in
internal combustion engines (Guazzelli 2006). The scientific study of these viscous
sedimentation processes encompasses both analytical and numerical treatments dating
back to the work of Stokes (1851) on the flow past a sphere in an unbounded fluid.
A number of exact solutions have since been derived to describe the dynamics of
sedimenting bodies of simple shape and symmetric orientation. A generalization
known as the Faxén law gives formulae for the force and torque on a sphere
placed in an arbitrary background flow (Faxén 1922, 1924). Stimson & Jeffery
(1926) considered two sedimenting spheres of equal density and radius, with one
placed directly above the other, and showed that the settling speed is increased
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Sedimentation of spheroidal bodies near walls in viscous fluids 601

by their interaction through the fluid. Exact series solutions for two arbitrarily
oriented identical spheres were then derived (Goldman, Cox & Brenner 1966). Single
non-spherical bodies were also treated classically by Oberbeck (1876), Edwardes
(1892), Jeffery (1922) and Lamb (1932), who found the force and torque on a triaxial
ellipsoid in a linear flow field in terms of ellipsoidal harmonics. Later, Chwang &
Wu (1975, 1976) gave a simpler solution of the same problem using the singularity
method, in which fundamental solutions of the Stokes equations are placed internal
to the body surface with coefficients selected so as to satisfy the no-slip boundary
condition. For particle–wall interactions, an exact solution for a sphere translating
and rotating near a plane wall was obtained by Brenner (1961), O’Neill (1964)
and Goldman, Cox & Brenner (1967a), and in a shear flow by Goldman, Cox
& Brenner (1967b). The study of other body types generally requires methods of
approximation such as exploiting particle slenderness, as in the various slender-body
theories (Batchelor 1970; Cox 1970; Tillett 1970; Keller & Rubinow 1976; Lighthill
1976; Johnson 1980; Blake, Tuck & Wakeley 2010) or weak particle flexibility (Li
et al. 2013).

A widely employed strategy for incorporating the hydrodynamic effect of a
plane wall is the method of reflections, an iterative solution procedure where
boundary conditions are alternately enforced on the particle and the wall, leading to
asymptotically valid representations of fluid forces and particle velocities. Problems
involving the extreme cases of spheres and rods have been more frequently
investigated than spheroids of intermediate eccentricity; a prominent exception is
work by Wakiya (1959) wherein the mobility of a general ellipsoid near a wall is
approximated using reflections of Lamb’s general solution (Lamb 1932). Various
investigations using slender bodies include that of Russel et al. (1977), who derived
an asymptotic expression for the rotation of a slender cylinder sedimenting near a
plane wall, ignoring end effects; they observed two types of trajectories which they
termed glancing and reversing. A related result using matched asymptotic expansions
is due to Katz, Blake & Paveri-Fontana (1975), who gave an analytical solution of
the mobility problem for a slender rod near a wall. Later, Barta & Liron (1988) used
resistive force theory to find simplified integral equations for the rigid motion of
a (possibly non-straight) slender body near a wall, including the special case of a
slender prolate body. Yang & Leal (1983) studied the more general problem of motion
near an interface between fluids of two different viscosities, giving asymptotically
valid ordinary differential equations describing the trajectories of slender rods.

Many generalizations of the problem of a sphere moving near a wall in a viscous
fluid have been investigated. A series of papers (Bossis, Meunier & Sherwood 1991;
Cichocki et al. 2000; Swan & Brady 2007) addressed the problem of constructing
the (positive-definite) grand mobility tensor for many spherical particles above a plane
wall. The extensive literature on the subject includes treatments of the electrophoresis
of a single charged non-conducting sphere near a wall (Keh & Anderson 1985), a
deformable droplet moving between two parallel plates (Shapira & Haber 1988) and
a colloidal sphere translating perpendicularly between two parallel plane walls (Keh
& Wan 2008). Similar efforts have been extended to the study of the trajectories of
swimming micro-organisms near surfaces (see Spagnolie & Lauga 2012 and references
provided therein).

Particle dynamics in the presence of surfaces have also been studied numerically.
Hsu & Ganatos (1989, 1994) computed the solution to the resistance problem for
a spheroid of arbitrary aspect ratio near a plane wall using a combined single-
and double-layer representation of the flow. In addition to confirming the glancing
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and reversing scenarios found by Russel et al. (1977), these authors studied the
sedimentation problem for inclined walls and observed trajectories in which the
particle escapes from the wall as well as a stable steady solution where the particle
translates parallel to the wall without rotation. Huang, Hu & Joseph (1998) and
Swaminathan, Mukundakrishnan & Hu (2006) considered the sedimentation of a
prolate body in a circular or rectangular cylinder at finite Reynolds number, Pozrikidis
(2007) considered a sphere near the interface of two fluids of varying viscosity and
Kutteh (2010) treated flows containing several non-spherical particles by modelling
irregular particles as rigid ensembles of spheres. Boundary integral methods are
commonly used to solve particle–wall interaction problems numerically (see Pozrikidis
1992), but novel numerical methods have also been developed, including the method
of regularized Stokeslets with images by Ainley et al. (2008).

In this paper we consider the problem of sedimenting prolate and oblate spheroids
of arbitrary aspect ratio in a wall-bounded Stokes flow. We present a unified
description of the particle dynamics, combining and generalizing the trajectories
observed by Russel et al. (1977) and Hsu & Ganatos (1994), along with several
novel trajectory types. Using the method of images, we derive asymptotically valid
ordinary differential equations to describe the body dynamics, accurate up to O(h−4)
in the translational velocity and O(h−5) in the rotational velocity, where h is the
distance from the particle centroid to the wall. The resulting system is further reduced
to yield analytical solutions for the complete particle trajectory in many cases, and
the predictions are found to agree very well with full numerical simulations. These
numerical simulations are carried out using a novel double-layer boundary integral
formulation, a method of stresslet images. We describe various types of trajectories
that can arise during sedimentation near a wall, from glancing and reversing to
periodic tumbling orbits, as well as the sliding trajectory that can arise if the wall
is tilted relative to gravity. We also generalize previously published work by treating
arbitrary particle orientations instead of laterally symmetric configurations. This
leads to fully three-dimensional dynamics, which may result in periodic wobbling,
three-dimensional glancing and three-dimensional reversing trajectories.

The paper is organized as follows. In § 2 we describe the geometry of the problem
and the equations of motion and we present the method of stresslet images. In § 3
we conduct a numerical survey of the particle dynamics and present a qualitative
overview of the zoology of trajectory types. In § 4 we apply the method of images
to reduce the sedimentation problem for arbitrarily oriented spheroids to a two- or
three-dimensional system of ordinary differential equations. In § 5 we analyse this
system of equations and provide closed-form results describing particle trajectories
in many special cases; for example, a simple inequality indicates whether or not a
particle of a given shape and initial data will escape from the wall. We conclude with
a discussion of applications and possible directions for future work in § 6.

2. Equations of motion and numerical method
Consider a spheroid of uniform density sedimenting through a viscous fluid near an

infinite plane wall located along the xy-plane. Its surface, denoted by S∗, is described
by

S∗ = {a(x, y, h)T + aRφ · Rθ · (X, Y, Z)T : X2 + (a/b)2 Y2 + (a/c)2 Z2 = 1
}
, (2.1)

where a is a length, ax0 = a(x, y, h) is the position of the centroid and

Rθ =
cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

 , Rφ =
cos φ −sin φ 0

sin φ cos φ 0
0 0 1

 , (2.2a,b)
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h

F

FIGURE 1. (Colour online) Schematic of a prolate spheroid near an infinite plane wall
located along the xy-plane. The body, with centroid a distance h from the wall, is rotated
through an angle φ about the ẑ axis and is pitched at an angle θ about its lateral axis. The
dimensionless force due to gravity acts at an angle β relative to the wall, F= cos β x̂ −
sin β ẑ, with β set to zero in the illustration above.

are rotation operators (see figure 1), with θ ∈ (−π/2, π/2] and φ = [0, 2π). The
semi-axis lengths satisfy a > b = c for prolate spheroids and a = b > c for oblate
spheroids. The body eccentricity is given by e =√1− c2/a2 ∈ [0, 1] in both cases,
and the vectors x = (x, y, h)T and X = (X, Y, Z)T in (2.1) are dimensionless; contact
with the wall occurs if h = (sin2 θ + (1 − e2) cos2 θ)1/2. The body is subject to a
gravitational force F∗=1ρgV x̂, where 1ρ is the density difference between the body
and the fluid, g is gravitational acceleration and V is the body volume; the study of
particle sedimentation near an inclined wall is achieved by considering a gravitational
force at an angle β relative to x̂. In response, the body moves with translational
velocity U∗ and rotational velocity Ω∗ which depend on the particle position and
orientation. The system is made dimensionless by scaling lengths upon a and defining
the dimensionless translational and rotational velocities U = (6πµa)(1ρgV)−1U∗ and
Ω = (6πµa2)(1ρgV)−1Ω∗. In the case of a spherical particle in an unbounded fluid
this results in a dimensionless body of radius and sedimentation speed both equal
to unity, the well-known Stokes drag law (Stokes 1851). The surface S denotes the
dimensionless body surface (the surface S∗ scaled by the length a).

In the theoretical limit of zero-Reynolds-number flow, appropriate for modelling the
flow generated by small or slow moving particles, or larger particles in highly viscous
fluids, the equations of fluid motion are the Stokes equations,

−∇p∗ +µ∇2u∗ = 0, ∇ · u∗ = 0, (2.3a,b)

where p∗ is the pressure, u∗ is the fluid velocity and µ is the viscosity (see
Batchelor 2000). The dimensionless fluid velocity is also scaled as above, u =
(6πµa)(1ρgV)−1u∗, and is assumed to satisfy no-slip boundary conditions on the
particle surface, u(x ∈ S)=U +Ω × (x− x0), and on the wall, u(z= 0)= 0. The fluid
velocity is assumed to decay to zero as the distance from the body tends towards
infinity. In the inertialess limit, the integrated fluid stress on the particle surface must
balance the external force due to gravity, and there must be zero net fluid torque
on the body. These six conditions, along with (2.3), close the system of equations
for the fluid velocity and pressure and the particle’s instantaneous translational and
rotational velocities, U and Ω . The position and orientation of the body at any time
are described by the state variable Φ = (x, y, h, θ, φ). Since time does not appear
explicitly in the Stokes equations, any solution of the mobility problem for general
Φ yields an autonomous system of ordinary differential equations, Φ̇ = F(h, θ, φ),
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604 W. H. Mitchell and S. E. Spagnolie

describing the trajectory of the particle sedimenting under the influence of a constant
gravitational force.

2.1. Fundamental singularities and image systems
The linearity of the Stokes equations opens the door to numerous analytical
and numerical approaches to solving fluid–body interaction problems that rely
on fundamental singularities or Green’s functions. In one particularly useful and
clean approach to solving such problems, the singularities are placed internal to an
immersed body and their strengths are chosen so as to match the boundary conditions
on the surface (Chwang & Wu 1975). For instance, the Stokes flow around a no-slip
spherical boundary in an unbounded flow may be represented as a linear combination
of a Stokeslet singularity,

G(x, x0)= I

|x− x0| +
(x− x0)(x− x0)

T

|x− x0|3 , (2.4)

with I the identity operator, and a potential source dipole (see Kim & Karrila 1991).
The effect of a wall on the trajectory of a moving body can be studied using

image singularity systems (Blake 1971; Blake & Chwang 1974). Image systems for
Stokeslets of varying orientation relative to a no-slip wall were presented by Blake
(1971). As an example, consider an x-directed Stokeslet Gx(x, x0) = G(x, x0) · x̂
located in the fluid at a point x0 = (0, 0, h). The image system cancels the fluid
velocity on the surface z= 0 when placed at the image point x∗ = (0, 0,−h), and is
given by

G∗x(x, x∗)=−Gx(x, x∗)− 2h
∂

∂x
Gz(x, x∗)+ 2h2 ∂

∂x
UP(x, x∗), (2.5)

where Gz =G · ẑ is a z-directed Stokeslet and

UP(x, x0)= x− x0

|x− x0|3 (2.6)

is a potential flow point source. Similarly,

G∗z (x, x∗)=−Gz(x, x∗)+ 2h
∂

∂z
Gz(x, x∗)− 2h2 ∂

∂z
UP(x, x∗). (2.7)

Image systems for derivatives of the Stokeslet may be determined by careful
manipulation of the image systems of Blake (1971), though some care must be taken
as the image system of the derivative is not in general the derivative of the image
system (see Kim & Karrila 1991 and Spagnolie & Lauga 2012). Note for instance
that the coefficients in (2.5) are h-dependent. Since ∇xG(x, x0)=−∇x0 G(x, x0), we
may use Blake’s result to construct the image system for a difference quotient. As
an example, the image system of ∂2 Gx/∂x∂z is given by[

∂2

∂x∂z
Gx

]∗
(x, x∗) = − ∂2

∂x∂z
Gx(x, x∗)− 2h

∂3

∂x2∂z
Gz(x, x∗)+ 2

∂2

∂x2
Gz(x, x∗)

+ 2h2 ∂3

∂x2∂z
UP(x, x∗)− 4h

∂2

∂x2
UP(x, x∗). (2.8)
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2.2. Numerical method: the method of stresslet images
The fundamental singularities of Stokes flow may be used to derive a representation
formula for the fluid flow in terms of singular boundary integrals (see Power &
Miranda 1987 and Pozrikidis 1992). The presence of a nearby wall has been
incorporated into various forms of the boundary integral formulation, for instance
using regularized Stokeslets with their images (Ainley et al. 2008). A well-posed
double-layer form of the boundary integral formulation may be adapted for use near
an infinite wall using image singularities of the stresslet, as suggested by Spagnolie
& Lauga (2012). In this double-layer formulation with stresslet images, the fluid
velocity is given by (see Pozrikidis 1992)

u(x)=−
∫

S
q(y) · (T (x, y)+ T ∗(x, y∗)) · n̂(y) dS+ 1

8π
(G(x, x0)+G∗(x, x∗)) · F,

(2.9)
where n̂ is the unit normal vector pointing into the fluid, y is an integration variable
over the body surface, q(y) is an unknown density,

T (x, y)=−6
(x− y)(x− y)(x− y)

|x− y|5 (2.10)

is the stresslet singularity, a third-order tensor, and T ∗(x, y∗) is the associated image
system, which is singular at the image point y∗ inside the wall and is given by the
formula

T ∗ijk(x, y∗)= 6X̂iXjXk

|X|5 + 12x3
βiky3Xj + βijy3Xk − δjkx3βi`X`

|X|5 − 60x3y3βi`
XjXkX`
|X|7 , (2.11)

where βij= δij−2δ3iδ3j is the reflection operator, y∗=β y (and y=β y∗), X=β(x− y∗)
and X̂ = x− y. The expression (2.11) is the result of applying the Lorentz reflection
(see Kim & Karrila 1991 or Kuiken 1996) to the original stresslet, with some
manipulation. The dimensionless force due to gravity acts at an angle β relative
to the wall, F = cos β x̂ − sin β ẑ (the wall is parallel to gravity when β = 0), and
G∗(x, x∗) · F= cos β G∗x(x, x∗)− sin β G∗z (x, x∗).

In the limit as the point x tends towards a point on the boundary, x ∈ S, the no-slip
boundary condition on the body surface provides an integral equation to be solved
for q,

U +Ω × (x− x0) = −
∫

S
(q(y)− q(x)) · (T (x, y)+ T ∗(x, y∗)) · n̂(y) dS

+ 1
8π

(G(x, x0)+G∗(x, x∗)) · F. (2.12)

The integrand is finite with a jump at the singular point, x= y. Further investigation
of the integral operator leads to relations between the velocities and the density q,
closing the system:

U =−4π

SA

∫
S

q(x) dS, Ω =−
3∑

m=1

4π

Am
em

(
em ·

∫
S
(x− x0)× q(x) dS

)
, (2.13a,b)

where SA is the surface area of the particle, em is the mth Cartesian unit vector and
Am =

∫
S |(em × (x− x0))|2 dS (see Pozrikidis 1992).
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To solve the integral equations above we use a collocation scheme, enforcing the
equations at the nodes of the quadrature rule used to approximate the surface integrals.
The body surface is parameterized using a spherical coordinate system. Integration
is performed with respect to the zenith angle using Gaussian quadrature with Nφ

points and with respect to the azimuthal direction using the trapezoidal rule with Nθ

points, with Nθ varying with the dimensionless ring circumference R ∈ (0, 1) so as
to achieve a roughly uniform distribution over the surface; namely, Nθ is taken to be
the greatest integer not exceeding NφR in the prolate case or 2.5NφR2 in the oblate
case. The integrand in (2.12) is set to zero at the jump discontinuity, a convenient
method pioneered by Power & Miranda (1987), resulting in a quadrature scheme
that is second-order accurate in the grid spacing. Where time stepping is required
we employ a second-order Runge–Kutta method. The grid spacing and time-step size
are chosen based on the stiffness of the problem under investigation, and changes
to the numerical results presented in the paper are negligible when compared with
simulations with much finer resolution. A convergence study, comparisons with
previously published numerical results, and other methods of validation are included
as appendix B.

A major benefit of the double-layer boundary integral method with stresslet images
is that the equation for the density q is a Fredholm integral equation of the second
kind and is therefore well-posed, unlike approaches built upon a single-layer or
combined formulation (Pozrikidis 1992; Stakgold & Holst 2011). Moreover, the flow
can be computed using adaptive quadrature for near-wall interactions without suffering
from poor conditioning problems, and other subtle issues like the careful selection
of a regularization parameter may be avoided. The method of stresslet images used
in this paper is more accurate than the popular method of regularized Stokeslets
with images by Ainley et al. (2008) in the tests performed in appendix B, and does
not rely on an extra regularization parameter. A more complete discussion on the
numerical method will be presented elsewhere.

3. A zoology of particle trajectories
We begin by conducting a numerical survey of the trajectories exhibited by

sedimenting prolate and oblate bodies near a vertical or tilted wall. Figures 2 and 3
show a selection of representative body dynamics, which depend on the body shape,
initial data and wall inclination angle. We will discuss each trajectory type in turn.

3.1. Glancing, reversing and tumbling near a vertical wall
Our investigation begins in the simplest setting, where the wall is parallel to gravity,
β = 0, and the geometry has symmetry through the xz-plane, φ = 0. In this case, all
trajectories can be described by tracking the distance h from the particle centre to
the wall together with the angle θ measuring rotation in the xz-plane. Figure 2(a)
shows the glancing dynamics of a slender prolate spheroid of eccentricity e = 0.98,
placed initially at a distance h= 3 from the wall and at an orientation angle θ =−20◦.
Due to the drag anisotropy of slender bodies in viscous flows, the body initially drifts
towards the wall. Hydrodynamic interactions with the surface then cause the particle
to rotate until θ = 0, at which point, in accordance with the time-reversal symmetry of
the Stokes equations, the body continues to rotate and migrates away from the surface
along a trajectory symmetric with its initial approach. As the particle escapes from the
wall, its rotation rate diminishes so that θ tends towards a constant value. The same
body follows a markedly different trajectory if the initial orientation angle is larger,
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h

h
(a) (b) (c) (d)

FIGURE 2. (Colour online) Trajectories of prolate spheroidal bodies sedimenting near
walls, as determined by full numerical simulation: (a) symmetric glancing; (b) symmetric
reversing; (c) periodic tumbling (the distance travelled along the wall has been scaled
by a factor of 100); (d) stable sliding near an inclined wall. The white markers on the
tumbling body illustrate the rotation. Initial data and body shapes in each case are given
in appendix C.

as shown in figure 2(b), a reversing trajectory. In this example the initial orientation
is θ ≈−70◦, the body rotates in the opposite direction, and the leading edge becomes
the trailing edge after the closest approach to the wall.

These glancing and reversing dynamics were explored numerically, analytically and
experimentally by Russel et al. (1977) for very slender particles. In the trajectories
described in that work, a particle released far from the wall with θ ∈ (−π/2, 0)
always approaches the wall, rotates, and then escapes from the wall, just as shown in
figure 2(a,b). Russel et al. (1977) distinguished glancing from reversing trajectories
according to the orientation of the particle at closest approach to the wall; in the
former the particle is oriented parallel to the wall at closest approach while in the
latter the particle is oriented normal to the wall at closest approach. The distinction
between glancing and reversing can also be described in terms of a vector d aligned
with the axis of body symmetry: x̂ · d does not change sign in prolate glancing
and oblate reversing orbits, while it does change sign in oblate glancing and prolate
reversing orbits.

A third trajectory type prevails for a nearly spherical body released near the wall,
as shown in figure 2(c), where we take e= 0.15. On releasing the body at h= 3 with
θ = 0, we observe a new type of dynamics, a slow periodic tumbling motion (the
distance travelled along the wall is scaled by a factor of 100 in figure 2c). This
behaviour can be understood as a perturbation of the well-known trajectory of a
sphere near a vertical wall, i.e. translation in the direction of gravity together with a
rolling-type rotation due to the torque induced by the presence of the wall. The slight
eccentricity of the body causes a drag anisotropy which in turn leads to a migration
velocity of the particle either towards or away from the surface, depending on the
orientation angle. This slight migration, in concert with the rolling-type rotation, leads
to a periodic tumbling trajectory. The dynamics is similar to the periodic tumbling
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FIGURE 3. (Colour online) Three-dimensional glancing (a,b) and reversing (c,d) of prolate
(a,c) and oblate (b,d) bodies near a vertical wall. The black rectangle in the background of
each frame represents a strip of the wall, {(x, y, 0) : −26 y6 2}. Gravity is parallel to the
wall, i.e. vertical on the page; the horizontal axis is the y direction. The lateral movements
are plotted to scale, while the movements in the x direction have been greatly reduced for
visualization purposes. Animations of these four trajectories are included as supplementary
data available at http://dx.doi.org/10.1017/jfm.2015.222. The initial data used to generate
these trajectories are given in appendix C. The movies, along with movies of periodic
tumbling and wobbling of nearly spherical prolate and oblate bodies, are included as
supplementary data.

of two identical non-spherical bodies placed side by side, as studied by Kim (1985,
1986) and Jung et al. (2006), with an important difference: here the rotation of the
body is in the opposite direction, θ̇ < 0 (relating to the opposing orientation of the
Stokeslet in the image system in (2.5)).

3.2. Sliding along an inclined wall
Another type of particle trajectory arises when the bounding wall is not parallel to
gravity. Figure 2(d) shows the dynamics of a prolate spheroid with e = 0.98 near
a wall that is tilted at an angle β = 9.17◦ (the initial data for the cases shown
are included as appendix C). Here, a behaviour appears that does not exist for
sedimentation near a vertical wall, which we term sliding. The body settles into
a steady motion with a fixed orientation angle and distance from the wall. In this
quasi-steady equilibrium the horizontal velocity induced by the particle orientation
exactly balances the approach of the wall as the particle falls, and the rotation of
the body due to the interaction with the wall has vanished; this type of trajectory
was observed numerically by Hsu & Ganatos (1994). This quasi-steady state owes
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Sedimentation of spheroidal bodies near walls in viscous fluids 609

its existence to the breaking of gravity–wall symmetry in connection with the choice
β > 0, which weakens the consequences of time reversibility on the dynamics.

Assuming φ = 0, the dynamics remains two-dimensional and it is natural to ask
whether the glancing, reversing and periodic tumbling trajectories found near a vertical
wall still may be found near an inclined wall, and if so how they share the phase
space with the sliding trajectory. Although not shown in figure 2, the combination
of small wall inclination angle β and large eccentricity e allows both glancing- and
reversing-like trajectories to occur in the full numerical simulations. However, these
trajectories are less symmetric in that the limiting orientation angle after the wall
encounter is no longer the opposite of the value before the wall encounter for the
same distance to the wall; instead, the wall interaction tends to focus the orientations
of escaping particles into a narrow band of escape angles. As β increases or e
decreases, it becomes increasingly difficult for the particle to escape from the wall,
and the concentration of escape angles increases until it yields an attracting fixed
point, namely the sliding trajectory discussed above. For still larger β the equilibrium
particle–wall gap size becomes extremely small, resulting in excessive computational
costs and possible wall impact, and we do not study this regime. On the other hand,
a careful tuning of β against particle eccentricity can produce geometries where the
fixed point is arbitrarily far from the wall, yet finite. In § 5 we derive analytical
results quantifying this phenomenon, illustrated in figure 8.

The periodic tumbling orbits mentioned earlier no longer exist with β > 0. Instead,
a nearly spherical body is found to rotate in nearly periodic orbits, but with a slow
drift towards the wall (for β > 0) until eventually the orbit approaches the wall very
closely. These initially near-periodic trajectories may be of more mathematical interest
than practical application, since the region in parameter space where they arise is so
limited.

3.3. Three-dimensional glancing, reversing and wobbling
In general, a particle near a surface will undergo lateral translations and out-of-plane
rotations, leading to a fully three-dimensional trajectory. Consider a particle falling
near a vertical wall, β= 0, but with no lateral symmetry, φ 6= 0. Four such trajectories
are shown in figure 3, where prolate and oblate spheroids with aspect ratio a/c= 2
have been released with non-zero values of both θ and φ. A movie depicting these
trajectories is included as supplementary data. Depending on the initial data, we again
observe glancing- and reversing-like trajectories wherein the particle approaches and
then escapes from the wall; in three dimensions, glancing and reversing trajectories
can be classified just as in the two-dimensional case, in terms of a vector d aligned
with the axis of body symmetry. Once again, x̂ · d does not change sign in prolate
glancing and oblate reversing orbits, while it does change sign in oblate glancing
and prolate reversing orbits. Unlike in the two-dimensional case, the particle can drift
laterally, subject to the constraint of symmetry about the moment of closest approach
of the centroid to the wall. Importantly, the lateral behaviour depends on whether the
particle is prolate or oblate. A glancing prolate body and a reversing oblate body
continue to drift laterally without a change in the direction of drift (figure 3a,d), while
a glancing oblate body and a reversing prolate body return in the direction from which
they came at the point of closest approach (a sign change in ẏ, figure 3b,c).

The periodic tumbling trajectory also has fully three-dimensional analogues.
Included in the supplementary data is a movie showing the nearly spherical prolate
tumbling and oblate tumbling trajectories which have a periodic lateral wobble with
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610 W. H. Mitchell and S. E. Spagnolie

zero net lateral drift. These tumbling orbits, rotated away from the two-dimensional
dynamics previously described, are now found to undergo periodic lateral motions in
the y direction. As in the two-dimensional case, the trajectory can be understood as
a combination of spherical rolling and reversing. The difference in prolate and oblate
lateral drift in figure 3(c,d) also emerges in the three-dimensional tumbling orbits, so
that the body changes lateral direction at the point of closest approach in the prolate
case and at the point farthest from the wall in the oblate case.

In the more general setting with φ 6= 0 and β > 0 we have observed in numerical
simulations that for small β (small wall tilt angle) the wall interactions induce
a concentration of the three-dimensional dynamics (escape angles tend towards a
narrower band). For larger values of β we see the emergence of an attracting fixed
point. The wall inclination damps φ towards 0, and the fixed point is the same as
in the case of lateral symmetry, as illustrated in figure 2(d). We will return to all of
these trajectory types once we have developed analytical expressions with which to
study them.

4. The method of images for wall-bounded Stokes flow

The numerical investigations described above are somewhat computationally
intensive; for each time step in a trajectory a large linear system representing the
discrete version of the surface integral equation must be inverted. At the same time,
the dynamics can be fully described by tracking two or three scalar parameters, and
the derivation of ordinary differential equations describing their dynamics would be
of considerable value. To obtain an explicit system of differential equations which
can be rapidly integrated or further studied analytically, we will apply the method
of images and the method of reflections to an arbitrarily oriented prolate or oblate
spheroid near a vertical or inclined wall.

The method of reflections takes an especially convenient form when the flows
are constructed from systems of fundamental singularity solutions of the Stokes
equations. The flow due to the motion of a spheroidal body in an infinite fluid may
be represented by a collection of singularities placed at points interior to the body
surface; image systems are then placed at the reflections of these points inside the wall
to enforce the no-slip boundary condition on the wall. A generalization of Faxén’s
law then gives the effect of this auxiliary velocity field on the body as a first-order
correction of the trajectory due to the wall. The process may be continued to develop
higher-order approximations of the effect of the wall on the body trajectory (see
Kim & Karrila 1991). Wakiya (1959) carried out a similar procedure using Lamb’s
solutions in ellipsoidal coordinates, producing expressions for the force and torque
on a body moving with lateral symmetry near a wall.

The flow field associated with a spheroidal body in an unbounded fluid may be
represented by an integrated distribution of image singularities on the centreline
(prolate case) or a circular disk (oblate case). However, far from the particle,
r = |x − x0| � 1, this velocity field may be written as a multipole expansion of
singularities placed at the body centroid. As shown in Kim & Karrila (1991), the
dimensionless fluid velocity far from the body is given by

u(0)(x)= 3
4

(
sinh(D)

D

)
G(x, x0) · F, (4.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.222
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where F = cos β x̂ − sin β ẑ is the external gravitational force on the body, G is the
Stokeslet singularity given in (2.4) and

sinh(D)
D

=
∑
n>0

1
(2n+ 1)!D

2n = 1+ 1
6

D2 + · · · , (4.2)

with D2 = ∂XX + (b/a)2∂YY + (c/a)2∂ZZ . Truncation of the series after the two terms
shown above results in errors in the flow (from (4.1)) that scale as r−5 as r→∞. It
will prove useful to transform the differential operator D2, which is diagonalized in
the coordinate system of the spheroidal body axes, into the usual coordinate system
oriented with the wall at {z = 0}. Given the definitions of θ and φ from (2.1), the
second derivatives can be written as linear combinations of derivatives along the
standard axes,

∂XX = cos2 θ cos2 φ ∂xx + cos2 θ sin2 φ ∂yy + sin2 θ ∂zz

+ sin(2θ)
(
cos φ ∂xz + sin φ ∂yz

)+ cos2 θ sin(2φ) ∂xy, (4.3)

∂YY = sin2 φ ∂xx + cos2 φ ∂yy − sin(2φ) ∂xy, (4.4)

∂ZZ = sin2 θ cos2 φ ∂xx + sin2 θ sin2 φ ∂yy + cos2 θ ∂zz

− sin(2θ)
(
cos(φ) ∂xz + sin φ ∂yz

)+ sin2(θ) sin(2φ) ∂xy. (4.5)

Equation (4.1) may now be expressed in terms of the x- and z-directed Stokeslets
and selected second derivatives. To obtain an image system, we employ Blake’s
image system for the Stokeslet and expressions such as (2.8) for the required second
derivatives. This leads to an analytical expression for the reflection flow, u(1)(x).
Since we have truncated the series in (4.2), neglecting terms of size D4(r−1), the
error in this reflected flow scales as (r∗)−5 for r∗ →∞, where r∗ = |x − x∗| and
x∗ = (0, 0,−h).

Finally, the effect of the reflected flow on the original spheroidal particle is given
by the mobility relations between the particle motion (U,Ω) and the external force
and torque (F, T) through a generalized Faxén law (see Kim & Karrila 1991),

−F = (XAddT + YA(I − ddT))

(
sinh(D)

D
u(1)(x0)−U

)
, (4.6)

−T = 2
3
(XCddT + YC(I − ddT))

(
3
D
∂

∂D

(
sinh(D)

D

)
∇× u(1)

∣∣∣∣
x0

− 2Ω

)

− 4
3

YH

{
3
D
∂

∂D

(
sinh(D)

D

)
· E(1)(x0) · d

}
× d, (4.7)

where E(1)= (∇u(1)+[∇u(1)]T)/2 is the symmetric rate-of-strain tensor and d is a unit
vector oriented along the particle’s axis of symmetry, with

d =
{
(cos θ cos φ, cos θ sin φ, sin θ) for prolate bodies,
(−sin θ cos φ,−sin θ sin φ, cos θ) for oblate bodies.

(4.8)

The constants XA, YA, XC, YC and YH depend only on the eccentricity e and whether
the particle is prolate or oblate, and are included in table 1. The dimensionless torque
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612 W. H. Mitchell and S. E. Spagnolie

Prolate Oblate

XA 8e3/[−6e+ 3(1+ e2)K] 4e3/[(6e2 − 3)K + 3e
√

1− e2]
YA 16e3/[6e+ (9e2 − 3)K] 8e3/[(6e2 + 3)K − 3e

√
1− e2]

XC 4e3(1− e2)/[6e− (3− 3e2)K] 2e3/[3K − 3e
√

1− e2]
YC 4e3(2− e2)/[−6e+ (3+ 3e2)K] 2e3(2− e2)/[(6e2 − 3)K + 3e

√
1− e2]

YH 4e5/[−6e+ (3+ 3e2)K] −2e5/[(6e2 − 3)K + 3e
√

1− e2]
K log([1+ e]/[1− e]) arccot(

√
1− e2/e)

± + −
TABLE 1. Parameter definitions for the prolate and oblate cases in the Faxén laws (4.6)
and (4.7) and the general system (A 1)–(A 10), from Kim & Karrila (1991). Of these, only
XA and YA appear directly in (A 1)–(A 10) because we have exploited the relation YH/YC=
±e2/(2− e2). The quantity ±(XA − YA) is negative for both body types.

T is the result of scaling upon a|F∗|. The prolate and oblate problems are solved
together in a single calculation through the introduction of a parameter that is equal
to 1 for prolate bodies and −1 for oblate bodies. Each component of ddT can then
be rewritten using appropriate trigonometric identities; for example, d1d1 reduces to
cos2 φ(1± cos(2θ))/2.

By setting T = 0 in (4.7) to solve the sedimentation problem of interest and
truncating the differential operators in (4.6) and (4.7) at second order using (4.2) and

3
D
∂

∂D

(
sinh(D)

D

)
= 1+ D2

10
+ · · ·, (4.9)

we obtain linear equations for U and Ω . Solution of those equations and extraction
of θ̇ and φ̇ from Ω results in a set of ordinary differential equations governing the
dynamics of the body. The full system, for an inclined wall, is given in appendix A
together with the formula for Ω . When the wall is vertical, the system reduces to an
especially tidy form:

ẋ = (2− cos2 φ(1± cos(2 θ)))(XA − YA)+ 2YA

2 XAYA
− 9

16 h

+ 2 e2(cos(2 θ)± 1) cos2 φ + 18 e2 cos2 θ − e2(17± 7)+ 16
128 h3

, (4.10)

ẏ = −sin(2φ)(1± cos(2 θ))(XA − YA)

4XAYA
+ e2 sin(2φ)(cos(2 θ)± 1)

128 h3
, (4.11)

ḣ = ± cos φ sin(2θ)(YA − XA)

2XAYA
− e2 cos φ sin(2θ)

32h3
, (4.12)

θ̇ = 9e2 cos φ cos(2θ)
32(2− e2)h2

− 3 cos φ
64(2− e2)h4

×[4− 10e2 + (7± 1)e4 + e2 cos2 θ(9e2 cos2 θ − (15± 2)e2 + 12)], (4.13)
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φ̇ =


3 sin φ tan θ
64(2− e2)

(−6e2

h2
+ 3e4 cos2 θ − 8e4 + 10e2 − 4

h4

)
(prolate),

3 sin φ cot θ
64(2− e2)

(−6e2

h2
− 3e4 sin2 θ − 2e4 − 2e2 − 4

h4

)
(oblate),

(4.14)

where the ± signs should be replaced with + in the prolate case and − in the oblate
case, and the constants XA and YA have different definitions in the two cases, as
indicated in table 1. Importantly, the derivatives of the particle–wall distance h and
of the angles θ and φ are independent of the positions x and y, so that the system is
fundamentally three-dimensional; the positions {x(t), y(t)} may be determined directly
once {h(t), θ(t), φ(t)} have been found. The errors in the expressions above and in the
general setting (in appendix A) are O(h−4) in the translational velocity and O(h−5) in
the rotational velocity for h� 1.

The full expression of the rotational velocity Ω could be used to deduce the
rotation of the body about its axis of symmetry, a third angle that in addition to
θ and φ prescribes the precise history of the body as it evolves in time. However,
the translational and rotational velocities computed at any moment are invariant to
rotations about the axis of symmetry, so that this third angle may be determined after
solving for {h(t), θ(t), φ(t)} just as may be done for the drift positions x(t) and y(t).

5. Analysis of particle trajectories
The ordinary differential equations describing the body dynamics can be integrated

numerically, and in some cases analytically, to produce approximate trajectories for
the sedimentation problem in the general setting. In this section we will derive
analytical formulae for the particle trajectory in various special cases, beginning with
the assumption of two-dimensional dynamics and then proceeding to the general case.

5.1. Analysis of glancing, reversing and tumbling dynamics
Consider first the case of two-dimensional motion, φ = 0, near a vertical wall, β = 0.
The evolution of the particle position and orientation is governed by the reduced
system (from (4.12) and (4.13))

θ̇ = cos(2θ)
h2

[
A− B

h2
−C

cos(2θ)
h2

]
− D

h4
, (5.1)

ḣ= sin(2θ)
[

E− F
h3

]
, (5.2)

where

A= 9e2

32(2− e2)
, B= 3e2(6− (3± 1)e2)

64(2− e2)
, C= 27e4

256(2− e2)
,

D= 48− 48e2 + 21e4

256(2− e2)
, E=±YA − XA

2XAYA
, F= e2

32
.

 (5.3)

The limiting case of a spherical body is dramatically simpler, with A= B= C= E=
F= 0 and D= 3/32. For a general particle eccentricity e the system has a fixed point
at θ = 0 and a particle–wall distance that satisfies

h2 = B+C+D
A

= 4+ 2e2 − (−1± 1)e4

6e2
. (5.4)
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FIGURE 4. (Colour online) The gap size for which a body with θ = 0 does not rotate
as a function of particle eccentricity, which distinguishes the transition from glancing to
periodic tumbling. The results of full numerical simulations are shown as symbols and
those according to (5.4) as lines. The results for prolate and oblate bodies are remarkably
similar, with the accuracy of the analytical estimates for both deteriorating for large
particle eccentricity where the equilibrium distance is very close to the wall.

This unstable fixed point corresponds to a particle aligned with the wall and falling
vertically without rotating, and can occur only at a specific particle–wall distance
where the competing dynamics that give rise to glancing and reversing precisely
balance each other. The corresponding particle–wall gap size h−√1− e2 from (5.4)
is plotted against particle eccentricity in figure 4, along with the values computed
using the full numerical simulation, shown as symbols. The equilibrium distance is
unbounded as e → 0 (a sphere always rotates in the same direction at any finite
distance from the wall). As particle eccentricity increases, the numerically determined
gap size decreases and then vanishes, and the accuracy of the estimate from (5.4)
is poor for large particle eccentricity where the particle equilibrium distance is very
close to the wall.

A reduced but analytically tractable approximation of the system above is found
in the limit of large particle distances from the wall and upon inspection of the
coefficients. It is appealing to keep only the terms of size O(h−2) in (5.1) and
of size O(1) in (5.2), but higher-order terms become dominant when cos(2θ) = 0.
Moreover, for nearly spherical particles, e ≈ 0, a more appropriate comparison of
terms involves the ratio e/h2; for instance, B/h4∼ e2/h4�D/h4 for e� 1 and h� 1.
Neglecting the terms with coefficients B,C and F results in the reduced system

θ̇ = A cos(2θ)
h2

− D
h4
, ḣ= E sin(2θ). (5.5a,b)

This system is autonomous, and the two derivatives can be divided to obtain a single
first-order equation for dθ/dh. The transformations γ = 1/h and η=−cos(2θ)/2 then
yield a linear differential equation,

dη
dγ
= 2A

E
η+ D

E
γ 2. (5.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

22
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.222


Sedimentation of spheroidal bodies near walls in viscous fluids 615

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

h

(a) (b) (c) (d)

FIGURE 5. (Colour online) Two-dimensional trajectories of prolate spheroids sedimenting
near a vertical wall are depicted by plotting the particle–wall distance h against the
orientation angle θ , for (a) e=0.02, (b) e=0.15, (c) e=0.30 and (d) e=0.80. Unphysical
regions with h6

√
sin2 θ + (1− e2) cos2 θ , corresponding to body penetration through the

wall, are shaded. The results of the full numerical simulations are shown as red symbols.
For small e we observe periodic orbits near the wall (circles). As e increases, the periodic
trajectories are replaced by reversing (squares) and glancing (triangles) trajectories. Arrows
indicate the direction of time. The contours of the scalar function Ψ from (5.9), shown
as black lines, give accurate predictions of the full numerical results.

Multiplying by exp(−2Aγ /E) and integrating leads to

η exp
(
−2A

E
γ

)
= D

E
exp

(
−2A

E
γ

) [−E
2A
γ 2 − E2

2A2
γ − E3

4A3

]
+ c0, (5.7)

where c0 is a constant of integration. For each trajectory the relation

2c0 = exp
(
−2A

E
γ

)(
2η+ D

A

(
γ 2 + E

A
γ + E2

2A2

))
(5.8)

holds, and therefore each trajectory must follow a level set of the function

Ψ (h, θ)= exp
(
−2A

Eh

)(
−cos(2θ)+ D

A

(
h−2 + E

Ah
+ E2

2A2

))
(5.9)

in the θh-plane.
Figure 5 shows the level sets of (5.9) as black lines, together with the results of

the full numerical simulations (see § 2.2) as red symbols, for prolate spheroids of four
different eccentricities: e∈ {0.02, 0.15, 0.3, 0.8}. Periodic tumbling orbits are indicated
by circles, reversing trajectories by squares and glancing trajectories by triangles.
Arrows indicate the direction of time. For e = 0.02 the particle is nearly spherical
and we see the periodic orbits described earlier. In these orbits the particle is farthest
from the wall when θ = 0, i.e. when the major axis is parallel to the wall. As noted
in § 3, the period of the tumbling orbit is extremely long; using (5.1) for the limiting
case of a sphere, e→ 0, we find the period of full rotation T = 64πh4

0/3, where h0
is the constant distance from the wall. The sedimentation distance X travelled during
one period of a tumbling orbit, using (4.10), is

X = 64πh3
0

3

(
1− 9

16h0
+O(h−3

0 )

)
. (5.10)
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For eccentricities e= 0.15 and 0.3 in figure 5, the periodic orbits are restricted to a
narrower region near the wall, while glancing and reversing trajectories approach ever
nearer to the wall before turning back. Finally, with e = 0.8, we see only glancing-
and reversing-type trajectories, in concurrence with the slender-body work in Russel
et al. (1977); figure 5(a) can be compared directly with figure 4 in that work, bearing
in mind that the θ defined therein is the same as our −θ .

These contours concur with the numerical survey in classifying the trajectories in
this symmetric version of the problem into glancing, reversing and tumbling types.
The quantitative agreement with the numerical solutions is generally very good,
though imperfect in some cases where the body comes very close to the wall. Our
experience suggests that the results of the reduced equations should be used with
some caution for h < 2, though the dynamics generally remains qualitatively sound
for much smaller values of h. Replacement of the contours of Ψ with trajectories
determined by numerical integration of the fourth-order system (5.1) and (5.2) results
in only minor changes.

From the analytical picture above we are in a position to predict solely from
initial conditions whether or not a particle will escape, and if so to predict the final
orientation it will assume far from the wall. The initial data h = h0 and θ = θ0
determine a level set of Ψ , and if the particle escapes this contour must have an
asymptote with h→∞. In this limit we obtain from (5.9) the relation

cos(2θ)= DE2

2A3
−Ψ (h0, θ0). (5.11)

If the right-hand side of (5.11) has magnitude greater than one, there is no solution
and a periodic orbit is predicted. Otherwise, (5.11) predicts the limiting orientation
angle that the particle takes once it has escaped from the wall. Among escaping
particles we can distinguish the glancing from the reversing trajectories by examining
this asymptotic orientation angle more closely. That is, we consider the problem of
determining the angle θ∗ that divides glancing from reversing trajectories at a given
eccentricity far from the wall. This can be done analytically by solving the equation
Ψ (
√

D/A, 0) = limh→∞ Ψ (h, θ∗), since (h = √D/A, θ = 0) is the fixed point in the
reduced model used to derive Ψ and the glancing–reversing separatrix passes through
this fixed point. This gives an expression for θ∗ in terms of the constants A, D, E
defined in (5.3):

θ∗ = 1
2

arccos
(

2κ−2

(
1− κ + 1

exp(κ)

))
, where κ = 2A3/2

E
√

D
. (5.12)

Making the substitutions in (5.3) and in table 1, we can write κ explicitly in terms
of the eccentricity e:

κprolate = 12
√

6e6

(2− e2)
√

16− 16e2 + 7e4
(
(3− e2) log((1+ e)(1− e)−1)− 6e

) , (5.13)

κoblate = 6
√

6e6

(2− e2)
√

16− 16e2 + 7e4
(
(3− 2e2)arccot(

√
1− e2/e)− 3e

√
1− e2

) . (5.14)

To assess the accuracy of this analytical result we consider prolate spheroids and
determine θ∗ numerically for several values of e by computing trajectories that start
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0 0.1 0.3 0.5 0.7
e

Reversing to glancing

0.9 1.0

FIGURE 6. (Colour online) The transition angle between glancing and reversing
trajectories for prolate bodies as a function of eccentricity. The solid curve is from the
explicit formula (5.12). Numerical results are shown as red circles; at low eccentricity
the transition angle is well resolved but at greater eccentricities we report only a range
of possible values. The two stars on the right indicate the maximum glancing angle and
the minimum reversing angle reported by Russel et al. (1977), who in addition to a
numerical study used aluminium wires of aspect ratio a/c≈ 60 or e= 0.999861. Between
these angles they reported wall impacts. For oblate bodies, the theory predicts a slightly
larger value of θ∗ than in the prolate case, but the difference is less than one degree for
e< 0.866.

from a fixed large h and various initial angles θ ∈ (−π/2, 0) and continue until
θ reaches either 0 (glancing) or −π/2 (reversing). These numerical results are not
obtained by integrating (4.12) and (4.13) but by solving the full Stokes equations using
the numerical method described in § 2.2. The two values of the initial angle where
the outcome changes from glancing to reversing determine an interval containing θ∗.
These results are shown in figure 6. For e� 1 the interval of uncertainty is quite
small, and we report θ∗ to an accuracy of 0.1◦. For e≈ 1 the trajectories of interest
pass extremely close to the wall, resulting in excessive computational costs, so that
the intervals to which we are able to constrain θ∗ are large enough to be visible in
figure 6. In an experimental setting, trajectories with initial angles within these ranges
of uncertainty may result in wall collisions due to imperfections in the particle or
wall geometry. The stars in figure 6, corresponding to an eccentricity e = 0.99986,
are the values reported by Russel et al. (1977) as the result of numerical work and
experiments with aluminium wires of aspect ratio 60. The results compare well; for
e ∈ {0.1, 0.3, 0.5, 0.7, 0.9} the formula (5.12) gives a result within one degree of the
numerical range, and for e = 0.999861 the result is within one degree of the range
reported by Russel et al. (1977). The theory predicts for oblate bodies a transition
angle θ∗ slightly greater than in the prolate case, but the difference is within one
degree for e 6 0.866.

5.2. Analysis of three-dimensional dynamics near a vertical wall
The fully three-dimensional equations, while more complicated, can still be investigated
analytically. With φ 6= 0 (and β = 0 as before), the discussion in the preceding
subsection remains relevant because θ̇ and ḣ depend on φ only through the common
factor cos φ in (4.12) and (4.13), and may be divided as before to make h the
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independent variable. This division now implicitly assumes that cosφ does not vanish
on any open time interval, so we must note separately the steady solutions at θ = 0,
φ = π/2 (prolate) and θ = π/2, φ = π/2 (oblate). The argument then proceeds
in the same way and results in an incomplete but still valuable description of the
three-dimensional orbit: the projection of the trajectory in (h, θ, φ)-space onto the
hθ -plane must lie on a single level set of Ψ in (5.9) as determined by the initial
condition.

A difference between two- and three-dimensional trajectories that is visible in the
hθ -plane is that the projection of a three-dimensional trajectory may traverse only part
of a contour of Ψ instead of all of it. In particular, an orbit may be periodic even
though the contour of Ψ has an asymptote for some finite value of θ . This is possible
because the periodic orbit repeatedly traverses a subset of the contour, doubling back
on itself at regular intervals. To explain this behaviour, we note that cosφ > 0 implies
that a particle with θ < 0 is moving towards the wall, whereas for cos φ < 0 the
opposite holds. The result is that initial conditions with φ=0 for which (5.11) predicts
periodicity also lead to periodic trajectories when the initial φ is modified.

For a trajectory where φ 6= 0, (4.11) implies that ẏ 6= 0, i.e. the particle will move
laterally. In the case of a periodic trajectory, the body wobbles periodically as it falls,
drifting laterally back and forth along the wall as described in § 3.3. Plots of h(t),
θ(t) and φ(t) for such trajectories are shown in figure 7(a), where we have set e=
0.05 (prolate), β = 0◦, and initially (h, θ, φ)= (5,−50◦, 20◦). An animation of such
a trajectory is also provided as supplementary material. The dynamics is akin to a
three-dimensional reversing trajectory that fails to escape from the wall. When the
body is closest to the wall, θ is nearly ±π/2, so that a small body rotation leads to
a rapid change in φ from nearly zero to nearly π, or vice versa, and the body begins
to drift laterally back in the direction from which it came. However, since the body is
nearly spherical, the rotation induced by the wall is sufficient to rotate the major axis
fast enough to redirect the body towards the wall yet again, and another reversing-type
interaction ensues.

Figure 7(b) shows the trajectory for a more eccentric particle, with e= 0.7, with the
same initial condition, (h, θ, φ) = (5, −50◦, 20◦), which results in a complete three-
dimensional reversing trajectory (also depicted in figure 3c). Just as in the previous
case, when the body reaches the point nearest to the wall there is a rapid rotation in
φ, but in this case the body then ceases to rotate and escapes, settling to a constant
orientation. This limiting orientation has an interesting relationship to the dynamics
near an inclined wall, to which we now turn.

5.3. Analysis of the fully general problem and the sliding trajectory
We now consider the most general version of the problem, with an inclined wall
(β > 0) and fully three-dimensional sedimentation dynamics (φ 6= 0). A non-zero wall
inclination angle reduces the symmetry in the problem and weakens the constraints
of time reversibility on the dynamics. One consequence is that there are no longer
periodic orbits of the form discussed in the previous section. Another is that the
three-dimensional dynamics can be driven towards the two-dimensional state, with
φ reducing in magnitude to zero as t→∞. While the complete system presented
in appendix A resists analytical treatment, the existence and stability of a sliding
trajectory may still be investigated as follows.

Neglecting terms of O(h−3) in (A 3), (A 9) and (A 10) in appendix A, a fixed
point (the sliding trajectory as depicted in figure 2d) may be found explicitly. Taking
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FIGURE 7. (Colour online) Three-dimensional trajectories of sedimenting prolate
spheroids, from full numerical simulations (symbols) and integration of the fourth-order
accurate ordinary differential equations (ODEs) from § 4 (lines). (a) Three-dimensional
periodic tumbling orbit of a nearly spherical particle near a vertical wall: e = 0.05,
β = 0◦. The dynamics is akin to a three-dimensional reversing trajectory that fails to
escape from the wall. The analytical prediction captures the shapes and amplitudes of
the particle–wall distance h and the orientation angles θ and φ, but with an error in the
frequency of oscillation. (b) A reversing trajectory of a more eccentric particle near a
vertical wall: e= 0.7, β = 0◦. The body visits the wall and departs, settling to a constant
final orientation in both θ and φ as h→ ∞. (c) The same particle as in (b) near a
slightly tilted wall converges to the stable sliding trajectory: e= 0.7, β = 0◦. The particle
initially rotates while approaching the wall and then recedes towards a limiting separation
distance and orientation, with φ→ π (the dynamics tends towards the two-dimensional
sliding trajectory).

φ = 0 (the two-dimensional laterally symmetric case) gives φ̇ = 0, and then the
reduced expression for θ̇ vanishes when θ = θ0, where

θ0 = 1
2 tan−1

(
2
3 cot(β)

)
, (5.15)

an equation previously derived by Hsu & Ganatos (1994) using expressions from
Wakiya (1959). Finally, with θ = θ0 and φ = 0 the reduced expression for ḣ = Uz

vanishes when h= h0, where

h0 = 9 XAYA

8YA ± 4(XA − YA)
(
(3+ 2 cot2 β)(9+ 4 cot2 β)−1/2 ± 1

) , (5.16)

where the ± signs should be replaced by + for the prolate case and by − for the
oblate case, and where XA and YA also have different definitions, as indicated in
table 1. On linearizing the reduced system about (h = h0, θ = θ0, φ = 0), this fixed
point is found to be stable to arbitrary small perturbations for β > 0 (the eigenvalues
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FIGURE 8. (Colour online) A prolate body near a sufficiently inclined wall cannot escape;
it either approaches the wall so closely that particle or wall imperfections or other physics
become important, or it assumes a stable orientation at a constant separation distance. In
the latter case, the asymptotic separation h0 is a function of the wall inclination angle and
the particle eccentricity, with contours plotted above. Near the boundary of the escaping
trajectories in the eβ-plane one can find arbitrarily large values of h0.

associated with the linear system may be shown to always be negative). As an
example of a body that is attracted to this stable sliding trajectory, we consider again
a particle of eccentricity e= 0.7, but near a wall tilted at an angle β = 2.5◦. Details
for the body trajectory are shown in figure 7(c), using once again the initial condition
(h, θ, φ) = (5, −50◦, 20◦). Unlike in the vertical-wall case, the body approaches the
wall and rotates in a reversing-type manner, but then settles to a finite wall separation
distance as t→∞. Meanwhile, the rotations in θ and φ (and the distance h) are
no longer symmetric about the time at which the centroid is closest to the wall.
Since h remains bounded, the interaction with the wall continues to influence the
rotational velocity of the body, and the body continues to rotate into the plane of the
two-dimensional dynamics (φ→π).

More generally, the equilibrium particle–wall separation h0 is a function of the
particle eccentricity and the wall inclination angle. The positive contours of h0 for
prolate bodies are plotted in the eβ-plane in figure 8. Numerical simulations indicate
that the contours with h< 2 may overestimate the height of the fixed point, but the
higher contours, near the boundary of the escaping trajectories, are reliable.

A sliding trajectory exists if the equilibrium particle–wall separation h0 in (5.16) is
positive and finite. To ascertain whether an eccentricity e and wall inclination angle β
result in a sliding trajectory, we set the denominator on the right-hand side of (5.16) to
zero. Solving for β in terms of e gives a critical wall inclination β∗(e) beyond which
the sliding trajectory arises. For 0 < β < β∗(e), the wall is sufficiently vertical that
the particle may escape if the initial condition is suitable. In this case h0 is negative
and the fixed point does not describe physical behaviour. The glancing and reversing
trajectories are similar to their vertical-wall counterparts shown in figure 3, except in
that the orientation of the particle after the wall encounter need not be symmetric
with its orientation beforehand. The rare cases of tumbling-type particles with positive
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β exhibit perhaps the richest and most complex dynamics due to the low symmetry
constraints. These trajectories are not perfectly periodic; there is a gradual approach to
the wall together with increased rotation rate until, possibly after many full revolutions,
the particle collides with the wall.

Meanwhile, if β > β∗(e), escape is impossible and a particle beginning from any
initial condition instead approaches the sliding fixed point whose coordinates are
given (according to the O(h−2) theory) above. In a numerical study, Kutteh (2010)
reported a second critical value of β beyond which the sliding trajectory disappears
and ‘the particle monotonically approaches the wall until it makes contact’. The
analytical results presented here simply indicate a small particle–wall equilibrium
distance (the small contour heights in figure 8), but the underlying assumptions are
not suitable for modelling close particle–wall interactions.

The long formula for β∗(e) (not shown here) reproduces the four values given in
table 9 of Hsu & Ganatos (1994) for prolate and oblate bodies of aspect ratios c/a∈
{0.1, 0.5}, providing a useful check on the method in a situation where the particle is
far from the wall. In the limit of very slender prolate particles, as e→ 1, we find

β∗(e→ 1)= cos−1
√

3
11(5−

√
3)≈ 19.25◦. (5.17)

For walls inclined more steeply than this angle, a prolate body of any eccentricity
cannot escape. The drag anisotropy in the limit e→ 1 is not nearly as significant
in the oblate case as it is in the prolate case (see Happel & Brenner 1983), which
implies that escape from the wall is more difficult; in fact a wall inclination greater
than 11.48◦ is sufficient to prevent escape for all oblate bodies.

6. Discussion
In this paper we studied the sedimentation of rigid prolate and oblate spheroids in

a highly viscous fluid near a vertical or tilted wall. A system of ordinary differential
equations governing the fully three-dimensional trajectories was derived. In numerous
special cases, the system of equations yielded approximate analytical results for
particle trajectories. The analytical predictions were compared with the results of full
numerical simulations of the Stokes equations using a novel double-layer boundary
integral scheme, the method of stresslet images. These two approaches were used
to investigate a wide array of trajectory types for bodies of arbitrary eccentricity,
and near a vertical or inclined wall. When the wall is vertical, a nearly spherical
body may undergo a periodic tumbling motion. In three-dimensional versions of
the tumbling trajectory, a periodic lateral wobbling arises. For more eccentric
particles, three-dimensional glancing and reversing trajectories appear, with the body
approaching the wall only once before receding back into the bulk fluid. When
the wall is tilted, the symmetry in the system is weakened. As a consequence,
new trajectory types appear, while the periodic tumbling orbit vanishes. Glancing-
and reversing-type behaviour is still possible, but a sliding trajectory emerges for
many combinations of particle eccentricity and wall inclination angle. The sliding
trajectory was found to be asymptotically stable to small translational and rotational
perturbations in the far-field hydrodynamic theory. Critical wall inclination angles
distinguishing sliding from either escaping or colliding with the wall were also
presented.

Improvement of the analytical predictions given in this paper might be challenging.
For instance, the inclusion of lubrication effects would be beneficial for understanding
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the near-wall interactions but would require other techniques similar to those employed
for sphere–sphere interactions by Durlofsky, Brady & Bossis (1987) (see also Brady
& Bossis 1988). At the same time, the techniques we used here could be extended
with no conceptual (but perhaps some algebraic) difficulty to deal with general triaxial
ellipsoids. The mobility problem for imposed torques can also be solved in a similar
manner, which could be used to obtain the solution of the general resistance problem
to the same level of accuracy. Body deformability, multiple-body interactions and the
inclusion of a background shear flow may be considered in future work.
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Appendix A. Approximate sedimentation dynamics of spheroids in the general
setting

The solution of the mobility problem for a sedimenting prolate or oblate body near
a wall with inclination angle β is discussed in § 4. The components of the translational
velocity, U =Uxx̂+Uy ŷ+Uz ẑ, are given by

Ux = (2 cos β − (1± cos(2θ)) cos β cos2 φ ± cos φ sin β sin(2θ))(XA − YA)+ 2YA cos β
2XAYA

− 9 cos β
16h

+ 1
128h3

[
4e2 cos φ sin β sin(2θ)

+
(

2e2(cos(2 θ)± 1) cos2 φ + 18 e2 cos2 θ − (17± 7)e2 + 16
)

cos β
]
, (A 1)

Uy= sin φ
(±sin β sin(2 θ)− (1± cos(2 θ)) cos β cos φ

)
(XA − YA)

2XAYA

+ e2 sin φ
(
2 sin β sin(2 θ)+ (cos(2θ)± 1) cos β cos φ

)
64h3

, (A 2)

Uz= 9 sin β
8h
− 2YA sin β ± (cos β cos φ sin(2θ)+ (cos(2θ)± 1) sin β)(XA − YA)

2XAYA

− e2 cos β cos φ sin(2θ)− (14e2 sin2 θ + (1± 5)e2 − 16) sin β
32h3

. (A 3)

The three components of the rotational velocity, Ω =Ωxx̂ +Ωy ŷ+Ωz ẑ, are given
by

Ωx = 9e2 sin φ
(
(1± 1− 2 sin2 θ) cos β cos φ − 3 sin β sin(2θ)

)
64(2− e2)h2

+ 6 cos β cos φ
(
6e2 sin4 θ − 8 sin2 θ + (1± 1)(4− e2 − 2e2 sin2 θ)

)
128(e2 − 2)h4
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FIGURE 9. (Colour online) The boundary integral method and the differential equations
agree with the expected rate of convergence in the distance from the wall, with errors
scaling as O(h−4) in the translational velocity and as O(h−5) in the rotational velocity.
Using θ =π/5, φ=π/7, β =π/100 and e=√3/2, the differences between the computed
and analytical translational and rotational velocity vectors in the ‖ · ‖∞ norm are shown.
Both prolate and oblate bodies are considered, using 1972 quadrature nodes for the prolate
body and 2281 for the oblate body. This may be viewed either as a validation of the full
numerical scheme or as a check of the differential equations.

+ 3e2 sin β sin(2θ) sin φ
(
12e2 sin2 θ + (3± 5)e2 − 18

)
128(e2 − 2)h4

, (A 4)

Ωy= 27e2 sin β cos φ sin(2θ)+ 9e2 cos β
(
2− 4 cos2 θ + (2 cos2 θ ± 1− 1) sin2 φ

)
64(2− e2)h2

− 3e2 sin β cos φ sin(2θ)
128(2− e2)h4

(12e2 cos2 θ − 5e2(3± 1)+ 18)− 6 cos β
128(2− e2)h4

×
[
e4 cos4 θ(6 sin2 φ − 9)+ 2e2 cos2 θ sin2 φ(4± e2 − 5e2)+ e2 sin2 φ(4− 3e2)

× (±1− 1)− e2 cos2 θ(12− (15± 2)e2)− (7± 1)e4 + 10e2 − 4
]
, (A 5)

Ωz= cos β sin φ sin(2θ)
[ −9e2

64(2− e2)h2
+ 3e2(6e2 cos2 θ − e2(7± 5)+ 8)

256(2− e2)h4

]
. (A 6)

The ± signs should be replaced with + in the prolate case and − in the oblate case.
The constants XA and YA also have different definitions in these two cases, as indicated
in table 1. The errors in the expressions above are of size O(h−4) in the translational
velocity and O(h−5) in the rotational velocity for h� 1 (verified by comparison with
full numerical simulations in figure 9 for a test problem with θ =π/5, φ=π/7, β =
π/100 and e=√3/2).

The time derivatives of φ and θ can be obtained from Ω through the relations

θ̇ =−Ωy cos(φ)+Ωx sin(φ), (A 7)

φ̇ =
{
Ωz − tan(θ)[Ωx cos(φ)+Ωy sin(φ)] (prolate),
Ωz + cot(θ)[Ωx cos(φ)+Ωy sin(φ)] (oblate).

(A 8)
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For degenerate geometries where φ is indeterminate (θ = 0 for oblate bodies and
θ =π/2 for prolate bodies), these formulae require the choice φ = 0; this degeneracy
requires no extra bookkeeping in our problem since particles must already have φ= 0
when passing through these indeterminate positions. Equations (A 7) and (A 8) can
then be simplified to give

θ̇ = 18e2 cos β cos φ cos(2θ)− 27e2 sin β sin(2θ)
64(2− e2)h2

+ 3
256 (2− e2)h4

[
4e2 cos θ sin β sin θ

(
18− (9± 5)e2 + 6 e2 cos(2 θ)

)
− cos β cos φ

(
16− 16e2 + 7e4 + e2 cos(2θ)(24− (12± 4)e2 + 9 e2 cos(2 θ))

)]
,

(A 9)

φ̇ =


3 cos β sin φ tan θ

64(2− e2)

(−6e2

h2
+ 3e4 cos2 θ − 8e4 + 10e2 − 4

h4

)
(prolate),

3 cos β sin φ cot θ
64(2− e2)

(−6e2

h2
− 3e4 sin2 θ − 2e4 − 2e2 − 4

h4

)
(oblate),

(A 10)

completing the system of ODEs governing the evolution of (x, y, h, θ, φ), as discussed
in § 4.

Appendix B. Verification and validation of the numerical method
In this section we give additional details on the accuracy of the method of stresslet

images described in § 2.2. This includes a convergence study and direct comparisons
with previously published results for an inclined oblate body and exact solutions for
the motion of a sphere.

We begin by describing some checks on the time-stepping trajectory computations in
this work. For the trajectories with lateral symmetry of figures 2 and 5, the computed
out-of-plane motion provides a simple quantitative estimate of the accumulated error;
for these trajectories we rejected results for which the ratio of out-of-plane to in-plane
translations or rotations exceeded 10−4 in any time step. For the three-dimensional
trajectories of figures 3 and 7 this simple check is not available, so we reversed the
direction of gravity after each computation and evolved back to the original position.
In all of the results presented here the initial position was recovered with a relative
error of less than 10−3 in the ‖ · ‖∞-norm. Typical trajectory runs used ∼500 nodes
and ∼250 time steps, i.e. required the inversion of 500 dense matrices of size 1500.

B.1. Convergence tests for an oblate body near a wall
We now benchmark our numerical method against the results obtained by Hsu &
Ganatos (1989). For this test we consider an oblate body with unit radius and aspect
ratio 2 or 10 (in our notation e = √3/2 or e = 3

√
11/10), and with position and

orientation described by the parameters h = 1.1 or h = 1.5, θ = 75◦ and φ = 0. We
impose a wall-normal velocity U = (0, 0, 1) and zero rotation and solve the resistance
problem, reporting the z-component of drag normalized by the value that would prevail
in the absence of a wall. These normalizations are known exactly, 15.084358 for
a/c=2 and 11.862466 for a/c=10. The results are indicated for various discretization
levels N in table 2 together with the values computed by Hsu & Ganatos (1989). The
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N h= 1.5 h= 1.1
a/c= 2 a/c= 10 a/c= 2 a/c= 10

36 2.370702 3.195427 5.003334 2.249052
82 2.368974 1.857825 5.069687 2.773342

160 2.369387 1.839714 5.200719 2.774615
331 2.369652 1.838072 5.237369 2.733028
657 2.369711 1.838784 5.240449 2.718526

1286 2.369700 1.840077 5.240046 2.717739
2484 2.369704 1.840311 5.240033 2.717475

Hsu & Ganatos (1989) 2.370 1.840 5.20 2.72

TABLE 2. Convergence tests for a resistance problem with an inclined oblate spheroid of
aspect ratio 2 or 10 and with centroid at height 1.1 or 1.5, with N the number of nodes
used to discretize the body surface.

TABLE 3. Drag on a sphere of radius 0.1 translating parallel to a wall at six distances
using four discretizations, normalized by the value predicted by Stokes’ law for an
unbounded fluid. The shaded values were found using the method of stresslet images, as
described in § 2.2. These are accompanied by results obtained via regularized Stokeslets,
quoted from table 1 in Ainley et al. (2008).

numerical method of that work was optimized to treat the case of an axisymmetric
body and the quoted results were accordingly obtained more cheaply, with N 6 100.
In three of the four cases our results agree, but with h= 1.1 and a/c= 2 there is a
small difference which is probably due to insufficient grid resolution in the previously
published work.

B.2. Comparison with exact solutions and regularized Stokeslets for a sphere near
a wall

The resistance problem for a spherical body translating without rotation in a fluid
bounded by a plane wall was solved exactly using bispherical coordinates by O’Neill
(1964) for motion parallel to the wall and by Brenner (1961) for motion normal
to it; see Goldman et al. (1967a) for a summary of these results. More recently,
Ainley et al. (2008) solved this problem numerically using the method of regularized
Stokeslets. In this section we tabulate the results of the method of stresslet images
against these exact and numerical solutions.

The geometry of the problem is determined by two parameters, the sphere radius
a and the bispherical parameter α, which satisfies cosh(α) = d/a, where d is the
distance from the particle centre to the wall. The gap size d–a is the distance from
the particle surface to the wall. Following Ainley et al., we consider a = 0.1 and
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TABLE 4. Drag on a sphere of radius 0.1 translating perpendicular to a wall at six
distances using four discretizations, normalized by the value predicted by Stokes’ law for
an unbounded fluid. The shaded values were found using the method of stresslet images,
as described in § 2.2. These are accompanied by results obtained via regularized Stokeslets,
quoted from table 2 in Ainley et al. (2008).

Figure and label Shape e β (deg.) h θ (deg.) φ (deg.) Trajectory type

2(a) Prolate 0.980 0 3.0 −20.00 0 Glancing
2(b) Prolate 0.980 0 3.5 −69.97 0 Reversing
2(c) Prolate 0.150 0 3.0 0 0 Periodic tumbling
2(d) Prolate 0.980 9.17 3.815 37.53 0 Sliding
3(a) Prolate 0.866 0 5.0 −34.38 −10.98 3D glancing
3(b) Oblate 0.866 0 9.69 −34.44 36.76 3D glancing
3(c) Prolate 0.866 0 5.0 −60.00 −40.00 3D reversing
3(d) Oblate 0.866 0 5.0 −60.00 10.00 3D reversing
(Sup) Prolate 0.040 0 8.12 0.00 8.789 3D periodic tumbling
(Sup) Oblate 0.040 0 6.10 90.00 8.789 3D periodic tumbling

TABLE 5. Parameters and initial conditions for the model trajectories depicted in
figures 2 and 3 as well as for the prolate and oblate tumbling trajectories shown in the
supplementary movie.

α = 10, 3, 2, 1, 0.5, 0.3. The integrals over the sphere are discretized using N-point
quadrature rules, for N = 468, 812, 1486, 2718. We then calculate the drag F and
torque T when the sphere translates at speed 1 with no rotation; these values are
non-dimensionalized by the drag and torque that would occur in the absence of the
wall.

In table 3 we give the component of drag in the same direction as the translation
when the particle moves parallel to the wall, normalized by the drag predicted by
Stokes’ law for an unbounded fluid. Table 4 gives this drag correction factor when
the direction of translation is normal to the wall. In both cases, the method of
stresslet images gives more accurate results than the method of regularized Stokeslets
at large and moderate gap sizes, and without the need of a regularization parameter;
at the smallest gap size the performance of the two methods is similar. The exact
solutions were recalculated following equation (2.19) in the work of Brenner (1961)
and equation (26) in the work of O’Neill (1964). These values appear in the rightmost
columns of tables 3 and 4.

Appendix C. Initial data for model trajectories
For completeness, table 5 gives the initial data used as input to generate the model

trajectories in figures 2 and 3.
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