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Abstract The level set method commonly requires a reinitialization of the level set function
due to interface motion and deformation. We extend the traditional technique for reinitial-
izing the level set function to a method that preserves the interface gradient. The gradient
of the level set function represents the stretching of the interface, which is of critical impor-
tance inmany physical applications. The proposed locally gradient-preserving reinitialization
(LGPR) method involves the solution of three PDEs of Hamilton–Jacobi type in succession;
first the signed distance function is found using a traditional reinitialization technique, then
the interface gradient is extended into the domain by a transport equation, and finally the
new level set function is found by solving a generalized reinitialization equation. We prove
the well-posedness of the Hamilton–Jacobi equations, with possibly discontinuous Hamilto-
nians, and propose numerical schemes for their solutions. A subcell resolution technique is
used in the numerical solution of the transport equation to extend data away from the interface
directly with high accuracy. The reinitialization technique is computationally inexpensive if
the PDEs are solved only in a small band surrounding the interface. As an important appli-
cation, we show how the LGPR procedure can be used to make possible the local level set
approach to the Eulerian Immersed boundary method.
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1 Introduction

The level set method [34,35] is a classical framework used to accurately and elegantly evolve
Lagrangian interfaces over a fixedEulerian grid. It has seen verywide application in numerous
fields, from fluid–structure interactions (e.g., lipid vesicles [40], bubbles [5], two-phase flows
[47]) to image processing [29], computational geometry [42], computer vision [42], and
materials science [26,42]. The level set method involves the tracking of a level set function φ,
a continuous function with the property that its zero level set Γ = {x : φ(x) = 0} represents
the Lagrangian interface (e.g., the boundary between two fluid phases or an immersed elastic
structure). However, if the interface is deformed by a velocity field, for instance, then the
gradient of the associated level set function, ∇φ, may become unbounded in the process. To
reduce the associated numerical error the level set function is commonly reinitialized. Even if
the boundary is not highly deformed, when a local level set method [1,38] is applied to reduce
computational costs, reinitialization is required if the interface approaches the boundary of
the thin computational tube.

For many applications, only the position and curvature of the interface are needed, and the
level set function φ after each reinitialization may be chosen to be a signed distance function
[5,29,47]. For example, in the simulation of elastic structures immersed in a fluid, if the
tension is assumed to be constant then the force depends only on the curvature of the interface
and the signed distance function contains sufficient information [5]. However, in the Eulerian
immersed boundary method [9,10], |∇φ|Γ represents the stretching of the elastic structure.
Consequently, the elastic forces depend on |∇φ| at the interface and the signed distance
function cannot be used to compute these forces. One solution to this problem, shown by
Cottet and Maitre [10], is to avoid reinitialization altogether and to instead renormalize with
a particular approximation of the Dirac delta function used in interface capture. However,
this strategy is unhelpful in some settings, for instance in the local level set approach to
the Eulerian immersed boundary method when the interface approaches the edge of the
computational tube and reinitialization is unavoidable.

In this paper we develop a method for reinitializing the level set function that locally
preserves its gradient near theLagrangian interface. The proposed locally gradient-preserving
reinitialization (LGPR) method involves the solution of three Hamilton–Jacobi equations in
succession; first the signed distance function is found using the traditional reinitialization
technique, then the cost function is obtained by extending the interface gradient into the
domain by a transport equation, and finally the new level set function is found by solving
a generalized reinitialization equation with the cost function obtained in the previous step.
The steady reinitialization equation is an eikonal equation with a cost function which is
discontinuous at the cut locus of the interface. We prove that the “proper” viscosity solution
(to be defined) of the eikonal equation with our particular discontinuous cost function exists
and is unique, which is the desired level set function. The viscosity solution that vanishes
at the interface of the reinitialization equation converges to this proper viscosity solution.
Modification and combination of existing numerical schemes are proposed for the fast and
accurate solution of the sequence of PDEs. As an important application, the LGPR technique
makes the local level set approach to the Eulerian immersed boundary method possible,
which may result in simulations comparable in cost with the classical immersed boundary
method of Peskin [39] but with improved stability.

The paper is organized as follows. In Sect. 2 we present the sequence of PDEs involved in
locally gradient-preserving reinitialization. In Sect. 3 we provide the theoretical results and
give explicit formulas for viscosity solutions. Numerical schemes for solving the equations
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are the topic of Sect. 4, and the procedure is used in a local level set approach to the Eulerian
immersed boundary method in Sect. 5. A few illustrative examples are provided in Sect. 6.
We conclude with a brief summary in Sect. 7. Proofs for several claims made throughout
the paper about the cut locus, existence and uniqueness of the proper viscosity solution of
the eikonal equation with a discontinuous cost function, and other issues are included in the
Appendix.

2 Problem Setup and Reinitialization Method

Webegin by describing inmore detail themotivation and setup of the problem, and presenting
the locally gradient-preserving reinitialization method. For the sake of presentation, we will
consider as a model problem a closed one-dimensional elastic interface embedded in R

2,
though the method could be extended into cases with several closed interfaces or higher
dimensions without conceptual difficulty.

Suppose φ is a level set function such that the zero level set Γ agrees with the interface
X (ξ, t), where ξ is a Lagrange coordinate and t is time. Assume that φ > 0 inside Γ

and φ < 0 outside Γ . In [9], it was shown that |∇φ(X (ξ, t), t)|/|Xξ (ξ, t)| = α(ξ) is
independent of t when φ is convected by the velocity field, and thus if φ is constructed
initially such that α = 1, |∇φ|Γ measures the tangential stretching (or compression) of the
interface. Generically, such an elastic structure responds energetically to both bending and
stretching deformations. The elastic force due to interface bending depends on the curvature
κ = −∇ · n̂, where n̂ = ∇φ/|∇φ| is the inward-pointing normal vector at the interface,
which is unchanged under any reinitialization scheme that preserves the location of the level
set. The elastic force due to interface stretching, however, at a point x is given by:

F(x) = ∇ (
E ′(|∇φ|)) |∇φ|δ(φ) − ∇ ·

(
E ′(|∇φ|) ∇φ

|∇φ|
)

∇φ δ(φ)

= κ E ′(|∇φ|)∇φ δ(φ) + E ′′(|∇φ|)n̂ · ∇∇φ · (I − n̂n̂)|∇φ|δ(φ) (1)

(see [9]), where I is the identity operator, n̂n̂ is a dyadic product and E(·) is the elastic energy
due to stretching. The first term in (1) is a force due to a curved interface under a certain
tension, while the second term is due to tension gradients along the interface. We introduce
the stretch function

χ(x) = |∇φ|(x), x ∈ Γ (2)

defined on the interface (time dependence is ignored). Stretching occurs in regions where
χ > 1, and compression occurswhereχ < 1. In the above,we require two quantities thatmay
be tied to the gradient of the level set function:χ(x) and n̂ ·∇∇φ ·(I − n̂n̂)|Γ = Dsχ(Γ (s))ŝ,
where s is the arc length parameter, Ds = d/ds and ŝ = Γ ′(s) is the unit tangent vector
along the surface Γ .

In the process of convecting the interface, ∇φ may become unbounded (usually away
from the interface), or the zero level set may drift towards the boundary of a tube in the
local level set method. In this situation it is necessary to find a new level set function that
is better behaved. In order to leave the elastic forces unchanged during this process, the
stretch function χ must be preserved during reinitialization. In theory preserving χ(Γ (s)) is
sufficient, but in numerical application we must also ensure that its tangential derivative is
accurately preserved. We now formulate the reinitialization problem in a more mathematical
way.
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2.1 Locally Gradient-Preserving Reinitialization

Suppose that φ0 is a uniformly continuous level set function, C1 on Γ = {x : φ0(x) = 0}
with x ∈ R

2, but not necessarily C1 elsewhere. φ0 is assumed to be positive inside the
interface Γ and negative outside Γ . In addition we assume that Γ satisfies:

Assumption 1 Γ is a closed, nonintersectingC1 curvewhich canbedecomposed into several
segments, each ofwhich is locally analytical throughout (including at the segment endpoints).

Consider an arc-length parameterization of the interface on one such segment, Γ (s) :
[a, b] → R

2. Γ is locally analytical if for every s0 ∈ [a, b], there is a number ε > 0,
so that the Taylor series of Γ about s0 converges to Γ in (s0 − ε, s0 + ε) ∩ [a, b]. That the
segment endpoints are also assumed to be analytical (one-sided) removes certain pathological
behaviors [6]. The assumption on Γ makes physical sense for practical interfaces.

We denote by U the open domain enclosed by Γ . The stretch function

χ(x) = |∇φ0|(x), x ∈ Γ (3)

is assumed to satisfy: χ(Γ (s)) is continuous and the derivative Dsχ(Γ (s)) is piecewise
continuous. We assume 0 < c1 ≤ χ(Γ (s)) ≤ c2 for two constants c1, c2, which is a
physically relevant constraint since the stretching deformation is generally bounded when
the material is elastic.We aim to find a new level set function φ which is Lipschitz continuous
(the gradient is bounded), smooth (C1) in a local band around Γ , and in particular, preserves
the interface gradient, |∇φ|(x ∈ Γ ) = χ(x ∈ Γ ).

We are then led to the eikonal equation,

H(x,∇φ) = sgn(φ0)(|∇φ| − f (x)) = 0 x ∈ R
2,

φ(x) = 0, x ∈ Γ, (4)

for some suitable f that has the boundary condition f (x) = χ(x) for x ∈ Γ . Here H(x, p) =
sgn(φ0(x))(|p| − f (x)) is the Hamiltonian. The sign function sgn(φ0) connects the level set
function to the so-called viscosity solution, as will be discussed in the next section. While
f is known on Γ , part of the reinitialization process will be first to extend f away from the
interface and into the larger domain.

In the traditional reinitialization procedure, the new level set function ϕ is the signed dis-
tance function which is recovered by solving numerically a Hamilton–Jacobi (H–J) equation
[47],

∂ϕ

∂τ
+ sgn(φ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = φ0(x), (5)

which is inadequate in our effort to preserve the interface stretch information.
Instead, we propose continuing the process by two extra steps to find a new function φ

that shares its gradient with φ0 locally near Γ . First, we extend f (x ∈ Γ ) = χ(x ∈ Γ ) from
the interface out into the whole domain along the characteristic lines of the signed distance
function by a transport equation,

∂ f

∂τ
+ sgn(ϕ)∇ϕ · ∇ f = 0,

f (x ∈ Γ, τ) = χ(x). (6)
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The desired level set function is then obtained by solving a generalized reinitialization equa-
tion,

∂φ

∂τ
+ sgn(φ0)(|∇φ| − f (x)) = 0,

φ(x, 0) = φ0(x). (7)

For the remainder of the paper, references to the “reinitialization equation” are to (7); the
earlier equation (5), a special case of (7), will be referred to as the traditional reinitialization
equation. For convenience we have abused the notation for f (x, τ ) and the steady cost
function f (x), and similarly φ(x, τ ) and φ. Whether we mean the steady solution or the
pseudo-time dependent solution should be clear by the context. We refer to (5)–(7) as the
locally gradient-preserving reinitialization (LGPR) method.

The LGPR method is straight-forward and there are no immediately apparent complica-
tions, but it is not obvious that the solution of (7) converges to the solution of the eikonal
equation (4), or even if it exists since the cost function f developed with the transport equa-
tion in (6) may be discontinuous. However, as we will show in the following section, the
solutions so obtained are well-defined so that the reinitialization method presented here may
become a basis for fast, accurate local level set methods. We will also numerically determine
how to preserve the interface gradient χ so that Dsχ(Γ (s)) can be recovered accurately.

Remark 1 When f (x) is known in the whole domain, the eikonal equation, Eq. (4) can be
solved using, for instance, the fast marchingmethod (FMM) [41] or the fast sweepingmethod
(FSM) [52]. This is one approach for initializing an original level set function, and could also
be used as an alternative basis for reinitialization.

3 Theoretical Results

In this section we will show that the LGPR equations described in the previous section are
well-posed. Specifically, we will show that the cost function f (x) is continuous outside of a
closed set consisting of arcs and vertices and that the eikonal equation has a unique “proper”
solution (to be clarified later) given the function f (x) produced using the transport equation
(6). A formula for φ(x, τ ) is derived, which is found to converge to the “proper” solution of
the eikonal equation (4) in finite time on any bounded set. Thus, (7) is shown to be equivalent
to (4).

While the eikonal equation and Hamilton–Jacobi equations with discontinuous Hamilto-
nians have been studied by numerous authors [14,16,37,43–45], the results available in the
literature do not apply to our particular equations (For the details, see Appendix B). Namely,
in the references just cited, assumptions are made that do not apply to the cost function
generated by (6). Meanwhile, the equation ut + sgn(u0)H(∇u) = 0 has been studied in
[2] but (7) does not belong to this class. In our theoretical results, the proof of uniqueness
for our particular eikonal equation is new, and the formula for φ(x, τ ) is, to the best of our
knowledge, derived for the first time.

3.1 The Eikonal Equation

The eikonal equation (4), is a Hamilton–Jacobi equation with Hamiltonian H(x, p) =
sgn(φ0(x))(|p|− f (x)), and f is called the cost function. We first introduce the definition of
viscosity solutions (see [12,19]), then we study the continuity (and regions of discontinuity)
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of f from its development by (6), and finally explore the associated solutions of the eikonal
equation.

3.1.1 Viscosity Solutions of the Eikonal Equation

In the general setting of the eikonal equation, solutions need not exist in the classical sense.
Instead, solutions are developed in a weaker sense; specifically, a viscosity solution is defined
as follows.

Definition 1 A viscosity sub-solution (super-solution) of H(x,∇φ) = 0 is an upper semi-
continuous function (a lower semi-continuous function), if for anyC∞ function ζ , whenφ−ζ

has a local maximum (minimum) at x0 which is an interior point, then H∗(x0,∇ζ(x0)) ≤ 0
(H∗(x0,∇ζ(x0)) ≥ 0). A viscosity solution is a continuous function that is both a sub- and
super-solution.

In this definition, H∗(x, p) = limr→0 esssup{H(y, q)| ‖(y, q) − (x, p)‖L2 ≤ r} is the
sup-envelope, and H∗ is similarly defined to be the inf-envelope.

For example, consider |u′| = 1, x ∈ (−1, 1) with Γ = {−1, 1} (see exercises in [15])
whose viscosity solution is u = 1 − |x | for x ∈ [−1, 1]. The viscosity solution of −|u′| =
−1, x ∈ (−1, 1) with Γ = {−1, 1} is u = |x | − 1 for x ∈ [−1, 1]. From this definition, we
see why sgn(φ0) appears in the eikonal equation: the viscosity solution of |∇φ| − f = 0 can
only have kinks pointing up while the viscosity solution of f −|∇φ| = 0 can only have kinks
pointing down. If we write the eikonal equation as |∇φ| = f , for Γ that is not convex, φ that
is negative outside Γ may have kinks pointing down and this φ is not a viscosity solution to
|∇φ| = f . A common error in the numerical literature is that the signed distance function
associated with a non-convex curve is treated as a viscosity solution of |∇φ| = 1.

It is natural to decompose the eikonal equation (4), into interior (x ∈ U ) and exterior
(x ∈ R

2 \ Ū ) problems, and to piece the two solutions together. If f is continuous at Γ ,
which it is as we will show, then the interior and exterior solutions together form a viscosity
solution over the entire domain (since the equation is also then satisfied on the interface Γ ).
We therefore focus on the interior and exterior problems separately.

The interior problem has been solved by other authors for continuous f with inf f > 0,
and existence and uniqueness have been established [12,21,24]. An integral representation
of φ is given by:

φ(x) = inf
γ∈C

{ ∫ L

0
f (γ (s))ds

∣∣∣γ (0) = x, γ (L) ∈ Γ
}
, (8)

(see [28,37]), where C is the class of absolutely continuous self-avoiding curves, s is the
arc-length parameter, and L is the total arc-length (which depends on γ ).

In the exterior problem, however, even if f is continuous and inf f > 0, uniqueness is
not guaranteed. For example, both φ1(x) = ||x | − 1| and φ2(x) = 1 − |x | where x ∈ R are
viscosity solutions for sgn(1−|x |)(|φ′(x)|−1) = 0. This motivates the following definition:

Definition 2 The “proper” viscosity solution of the eikonal equation (4), is defined to be the
pointwise limit of φn as n → ∞, where φn is the viscosity solution satisfying (4) in the sense
of Definition 1 in {|x | < n} with φn(|x | = n) = 0 for n ∈ Z and n > maxy∈Γ d(0, y).

123



280 J Sci Comput (2017) 71:274–302

Here d(E1, E2) = infx∈E1,y∈E2 ‖x − y‖ is the distance between two sets E1 and E2.
Under this definition, for continuous f > 0, φ is the limit of a sequence of interior problems
and is therefore uniquely determined (see the previous discussion). Such aφ is also a viscosity
solution in the general sense of Definition 1. A limit of the integral representation of φn as
n → ∞ reveals the viscosity solution for all x ∈ R

2 with continuous f > 0, so that a
representation of φ(x) for all x is given by

φ(x) = sgn(φ0) inf
γ∈C

{ ∫ L

0
f (γ (s))ds

∣
∣
∣γ (0) = x, γ (L) ∈ Γ

}
. (9)

Unfortunately, while continuous on Γ , it is not guaranteed that the f obtained by the
transport equation (6), is continuous in the whole domain. Before proceeding any further, we
must therefore understand the nature of f obtained using (6).

3.1.2 The Cost Function

Due to the method for extending f into the whole domain using (6), the behavior of the cost
function f is intimately linked to the behavior of ϕ. Aujol and Aubert [2] have shown that
the viscosity solution of (5) that satisfies ϕ(x ∈ Γ, τ) = 0 converges to the steady solution,
which is the proper viscosity solution (see Definition 2) of sgn(φ0)(|∇ϕ| − 1) = 0. By (9),
since the cost function in this case is 1, ϕ is the signed distance function:

ϕ(x) =
{
d(x, Γ ) x ∈ Ū ,

−d(x, Γ ) x ∈ R
2 \ Ū .

(10)

ϕ is therefore 1-Lipschitz continuous, and hence differentiable almost everywhere (a.e.).
Of particular importance is the singular set of ϕ, which is most conveniently uncovered by
studying a projection to the interface:

Definition 3 Px = {y ∈ Γ |d(x, Γ ) = d(x, y)} is the nonempty projection of x onto Γ .
Let A = {x |#Px ≥ 2} be the set of points for which the distance is achieved at multiple
boundary points. The part of A inside ofΓ is called themedial axis, and its closure Ā is called
the cut locus. The skeleton S is the set of centers of maximal circles (with order defined by
inclusion) inside Γ .

First note that by the C1 assumption on Γ we have that the distance between the cut locus
and the interface is always positive, d( Ā, Γ ) > 0. For x /∈ Ā ∪ Γ , we have that

∇d(x, Px) = x − Px

|x − Px | , (11)

since Px and d(x, Px) are both differentiable at such a point, and since P(t x+(1− t)Px) =
Px for 0 < t < 1. Therefore, ∇ϕ = sgn(φ0)∇d(x, Px) is continuously extended to Γ , and
thus ϕ is C1 at Γ . Moreover, the line x − Px is a characteristic line of ϕ due to its alignment
with ∇d . Therefore, f is constant along the line x − Px by (6); in addition, f (x, τ ) is steady
when τ > d(x, Γ ) and f (x) = χ(Px). f is continuous at x since Px is. f is thus continuous
for all x /∈ Ā and is given by f (x) = χ(Px).

Having shown f to be continuous everywhere outside of the cut locus, we are left now
to explore x ∈ Ā. It is well known that ϕ(x) = sgn(φ0)d(x, Px) is not differentiable at any
point in A, but due to the importance of the result for studying our method, we provide an
alternative proof in Appendix A for reference. Also note that A ∩U ⊂ S ⊂ Ā ∩U [27]. By
the assumptions onΓ , the curvature κ ofΓ exists except at possibly a finite number of points,
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and even at these points the left and right limits of the curvature exist; thus sup |κ| < ∞.
When U is convex, this provides an estimate for the distance between the cut locus and the
interface: d( Ā, Γ ) ≥ inf{1/κ} (see Appendix A; the chosen convention is that the curvature
of a circle is positive). In general, however, there is no estimate for d( Ā, Γ ). To proceed,
we must further investigate the structure of the cut locus Ā. To this end, we observe the
following:

Lemma 1 Let x ∈ R
2. For any y ∈ Px, let z(t) = t y + (1 − t)x, 0 < t ≤ 1. Then,

Pz(t) = {y} and z(t) /∈ Ā.

Proof The only nontrivial part of this claim is that z(t) /∈ Ā \ A. Suppose z(t) ∈ Ā \ A for
some t . Then z(t) is the center of the osculating circle of Γ at y, and the circle centered at x
with radius d(x, y) contains strictly a part of Γ inside, contradicting the fact that y ∈ Px . ��
Remark 2 Based on this lemma and the assumptions on the boundary curve, we are able to
see another interesting geometric property of the set Ā: there are no cusps in Ā with zero
angles (proved in Appendix A).

From Lemma 1, we have that the points in Ā are the terminal points of propagation along
the characteristic lines of ϕ. Since the characteristics of ϕ meet at the cut locus, f may not
be well defined there, so we define

f (x) = inf
y∈Px

χ(y), x ∈ Ā. (12)

Here notice f is extended to both the interior and exterior of the interface, which means
we need to discuss the points both inside and outside of Γ . We first concentrate on points
inside of Γ . From Theorem 6.2 and Corollary 7.1 of [6], we have that S̄ = Ā ∩U is simply
connected and the union of finitely many points and finitely many locally analytical open
curves. Moreover, for every point on these locally analytical curves, it has a projection of
size exactly two.

Now consider Ā outside of Γ . Suppose U is convex, then Ā ∩ Uc = ∅. Otherwise,
Ā ∩ Uc may contain curves extending to infinity in general. Defining Un = Bn ∩ Ū c with
Bn = {|x | < n}, by the definition of the skeleton, the closure of the skeleton Sn ofUn agrees
with the skeleton of Ā∩Uc inside, for instance, Bn/3. This means for the points outside of Γ
but inside of any bounded domain, by the result in [6] we also have a similar characterization
as for the points inside of Γ (except the simple connectivity). To summarize, we have

Lemma 2 The set Ā ∩ U is simply connected, consisting of finitely many points and open
curveswhere the curves are locally analytical and every point on those curves has a projection
of size two. Meanwhile, in any bounded domain the set Ā ∩ Uc consists of finitely many
points and open curves that are locally analytical, and every point on those curves also has
a projection of size two.

For a point in Ā with a projection of size two, the function f defined in (12) has limiting
values from both sides of the curve (proved in Appendix B). We now have the following
theorem, which will be important in investigating existence and uniqueness of the viscosity
solutions to the eikonal equation and the reinitialization equation:

Theorem 1 The function f in (12) is bounded by c1 and c2 (Recall c1 ≤ χ(x ∈ Γ ) ≤ c2)
and is continuous outside the cut locus (in R

2 \ Ā), and the cut locus is well-separated from
the interface, d( Ā, Γ ) > 0. Except at finitely many points, f has a limit when x approaches
Ā from one side of Ā.
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3.1.3 Viscosity Solutions with a Discontinuous Cost Function

We may now investigate the solution of the eikonal equation when the cost function f is
discontinuous with properties described in Theorem 1. The solution is the steady solution
of the reinitialization equation and is hence the desired level set function. Existence has
been proven in fact for a much broader class of cost functions [14]. Uniqueness, however, is
more challenging. Uniqueness of the eikonal equation has been shown for cost functions f
satisfying certain conditions not applicable to the present case [14,16,37,43–45], so we must
develop uniqueness of the solution particular to the cost function f of the form in Theorem
1.

To begin, since f is continuous on Γ , we can split (4) into interior and exterior problems,
as discussed in Sect. 3.1.1. We first consider the interior problem,

|∇φ| − f (x) = 0, if x ∈ U,

φ(x ∈ Γ ) = 0. (13)

We have here that H∗(x, p) = (|p| − f )∗ = |p| − f ∗ and H∗(x, p) = (|p| − f )∗ =
|p| − f∗, where the sup- and inf- envelopes were defined in Sect. 3.1.1. By Theorem 1,
0 < c1 ≤ f ∗, f∗ ≤ c2. f ∗ is upper semi-continuous (USC) and f∗ is lower semi-continuous
(LSC). If f is continuous at x , f ∗(x) = f∗(x) and both f ∗, f∗ are continuous at x . By
the way we define f in (12), we have f = f∗. It is simple to show if φ is differentiable at
x0, that f∗(x0) ≤ |∇φ|(x0) ≤ f ∗(x0) (see [15]). This implies that if φ is Lipschitz (thus
differentiable a.e.), then |∇φ| = f outside a set of measure zero.

By approximating f by its sup- and inf-convolutions (see [14]):

f ε(x) = esssupy{ f (y) − |y − x |2/ε}, fε(x) = essinfy{ f (y) + |y − x |2/ε}, (14)

two viscosity solutions of the eikonal equation (4) are found:

φM (x) = inf
γ∈C

{ ∫ L

0
f ∗(γ (s))ds

∣∣∣γ (0) = x, γ (L) ∈ Γ
}
, (15)

φm(x) = inf
γ∈C

{ ∫ L

0
f∗(γ (s))ds

∣∣∣γ (0) = x, γ (L) ∈ Γ
}
. (16)

The detail of this proof of existence is routine [14], but for convenience it is provided in
Appendix B. Note that f ∗ and f∗ are integrable on every curve γ ∈ C . Also in the Appendix,
it is shown that φM and φm are Lipschitz continuouswith the Lipschitz constant c2. These two
solutions are the maximal and minimal viscosity solutions of the eikonal equation [43–45].
The viscosity solution is unique if φM = φm . It is clear that φM = φm if and only if for every
point x ∈ U , there is a sequence of curves γn ∈ C with total length Ln (where γn(0) = x
and γn(Ln) ∈ Γ ) such that

φm(x) = lim
n→∞

∫ Ln

0
f∗(γn(s))ds and lim

n→∞

∫ Ln

0
( f ∗ − f∗)(γn(s))ds = 0. (17)

The condition implies that φM (x) ≤ φm(x); hence the two are equal. Conversely, if φM (x) =
φm(x), the condition is a straightforward corollary of the definition.

Uniqueness proofs in the literature do not apply to the discontinuous cost function f of
Theorem 1. However, the uniqueness conditions (17) can be checked directly (see Appendix
B for details). The proof of uniqueness in Appendix B is new and it can be modified to prove
uniqueness of the eikonal equation for a broader class of discontinuous cost functions.
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In the exterior problem, uniqueness of the proper viscosity solution may be proved by first
considering the finite domain Ū c ∩ Bn with Bn = {|x | < n}, where φn satisfies φn(x) = 0 at
|x | = n, using a similar proof as in the interior problem and then taking n → ∞. Recalling
that f = f∗, we finally have the desired result:

Theorem 2 The proper viscosity solution to (4) with the cost function obtained from (6) is
unique and is given by (9). It is hence c2-Lipschitz continuous and C1 in R

2 \ Ā.

3.2 The Reinitialization Equation

Finally, we show that the reinitialization equation has viscosity solutions, and that the solution
which is zero on Γ is unique and converges to the proper viscosity solution of the eikonal
equation (4). Recall the reinitialization equation, written more generally as

∂u

∂τ
+ sgn(u0)(|∇u| − g(x)) = 0,

u(x, 0) = u0(x), (18)

where u0 ∈ UC(R2), withUC the class of uniformly continuous functions. Here u could be
ϕ or φ and g could be 1 or f , and the Hamiltonian is written as H(x, p) = sgn(u0(x))(|p|−
g(x)). We assume that 0 < c1 ≤ g ≤ c2 and that Γ is the zero level set of u0.

For time-dependent Hamilton–Jacobi equations, the classical solutions are not well-
defined beyond the intersection of characteristics. For some applications, the multi-valued
solutions are important [22]; for our purpose, we need the viscosity solution, whose definition
is similar to the one for the eikonal equation in (1), with the only difference being the addition
of a time derivative.

Generally, if g is not continuous, we can again approximate g by gε and gε and take the
limit ε → 0 as we did for the eikonal equation. Therefore, we first consider the case where g
is continuous. Motivated by the solutions of the eikonal equation and the solution provided
in [2] for g = 1, we construct the formula of the solution,

u(x, τ ) =
{
sgn(u0) infγ∈C {|u0(γ (τ ))| + ∫ τ

0 g(s)ds | γ (0) = x} τ ≤ τx ,

sgn(u0) infγ∈C {∫ L
0 g(s)ds | γ (0) = x, γ (L) ∈ Γ } τ > τx ,

(19)

where τx is given by

τx = inf

{
τ̄ ≥ d(x, Γ )

∣∣∣ ∀τ > τ̄ : inf
γ∈C

{
|u0(γ (τ ))| +

∫ τ

0
g(s)ds

∣∣∣ γ (0) = x
}

> inf
γ∈C

{ ∫ L

0
g(s)ds

∣∣∣ γ (0) = x, γ (L) ∈ Γ
}}

. (20)

It is evident that τx is continuous on x and τx ≤ c2 d(x, Γ )/c1. At τx the two expressions
in (19) are equal. Otherwise, the first is always strictly larger than the second for all τ ≥
d(x, Γ ), but this cannot be true at τ = Lopt ≥ d(x, Γ ), where Lopt = lim infn→∞ Ln

and Ln is a sequence such that ∃γn, γn(0) = x, γn(Ln) ∈ Γ , limn→∞
∫ Ln
0 g(γn(s))ds =

infγ∈C
∫ L
0 g(γ (s))ds. In addition, we find that d(x, Γ ) ≤ Lopt ≤ τx ≤ c2d(x, Γ )/c1.
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Remark 3 If one were to define a simpler time,

τx = inf

{
τ

∣
∣
∣ inf
γ∈C

{
|u0(γ (τ ))| +

∫ τ

0
g(s)ds

∣
∣
∣ γ (0) = x

}

> inf
γ∈C

{ ∫ L

0
g(s)ds

∣
∣
∣ γ (0) = x, γ (L) ∈ Γ

}}
, (21)

then τx might be smaller than Lopt . When u(x, τ ) is given by the second formula, there could
be no paths with lengths less than τ + εn, εn → 0 to approximate the infimum. For τ bigger
than so-defined τx , the first expression might be smaller than the second one. The dynamic
programming principle in Appendix C then cannot be shown.

Remark 4 Equation (19) is reminiscent of the Lax–Hopf formula (see [15]). For Hamilton–
Jacobi equations of the form ut + H(∇u) = 0 and u(x, 0) = u0(x) where H(p) is convex
and H(p)/|p| → ∞ as |p| → ∞, the Lax–Hopf formula reads:

u(x, t) = inf

{∫ t

0
L(γ̇ (s))ds + u0(y)

∣
∣
∣ γ (0) = y, γ (t) = x

}

= min
y

{
t L

(
x − y

t

)
+ u0(y)

}
, (22)

where L is the Legendre transform of H . In the special case g = 1, for x inside Γ , H(p) =
|p| − 1, with L(z) = 1 if |z| ≤ 1 and L(z) = ∞ if |z| > 1. If t < τx , one can check that
(19) is the same as the Lax–Hopf formula, though (|p| − 1)/|p| → ∞ is not satisfied. In
the present problem there is a boundary Γ , and for general g = g(x) the Hamiltonian also
depends on x , resulting in an expression which differs from the Lax–Hopf formula.

The two expressions given in (19) are continuous in both x and τ and they give the same
value at τ = τx . u is then continuous in both x and τ . We can also see that it satisfies the
initial and boundary conditions of the reinitialization equation. In Appendix C, we verify
that u is a viscosity solution. From the formula, since τx is bounded by c2d(x, Γ )/c1, we see
that the solution on any compact set converges to the proper viscosity solution of the eikonal
equation (9) in finite time.

Uniqueness of the solution may be shown under the assumption that u(x ∈ Γ, τ) = 0,
which can be ensured numerically. Following [2], consider

∂u

∂τ
+ (|∇u| − g) = 0 x ∈ U, (23)

u(x, 0) = u0(x) x ∈ Ū

u(x ∈ Γ, τ) = 0,

and

∂u

∂τ
− (|∇u| − g) = 0 x ∈ R

2 \ Ū , (24)

u(x, 0) = u0(x) x ∈ R
2 \U

u(x ∈ Γ, τ) = 0.

The uniqueness of the solutions for these two problems have been established if g is continu-
ous and bounded below by a positive number [20]. This is enough to say that there is at most
one viscosity solution satisfying u(x ∈ Γ, τ) = 0. One common mistake in the literature is
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to assume that, since sgn(u0(x ∈ Γ )) = 0, that uτ (x ∈ Γ ) = 0 by (18). However, this argu-
ment is inadequate in the viscosity sense, since the set of viscosity solutions are unchanged
by a redefinition of the sign function to a value sgn(0) ∈ [−1, 1]. It is sensible, however, that
all viscosity solutions should have u(x ∈ Γ, τ) = 0 as the characteristics flow out of Γ , and
fortunately we can develop numerical schemes to ensure u(x ∈ Γ, τ) = 0.

Finally, for g equal to the cost function f obtained from (6), it may be discontinuous as
previously discussed. As was done for the eikonal equation, approximating f with f ε and
fε, and taking ε → 0, we have the maximal and minimal solutions with g replaced by f ∗
and f∗. And as for the eikonal equation, these two are equal and the solution that is zero on
the interface Γ is unique:

Theorem 3 Assume in (18) that either g = 1 or g = f [the cost function obtained using
(6)]. The viscosity solution that satisfies u(x ∈ Γ ) = 0 is unique and is provided in (19).
This solution converges to the proper viscosity solution of (4).

4 Numerical Schemes

We have shown in theory that the LGPR method yields the desired level set function. We
proceed to describe numerical schemes for solving the PDEs introduced in Sect. 2 using
classical methods with some modifications [30,38]. We also show how subcell resolution
may be used to extend the interface gradient away from the surface with high accuracy. First
we present a numerical scheme for solving the transport equation which involves a second-
order accurate upwind Essentially Non-Oscillatory (ENO) scheme with subcell resolution
in space and Gauss–Seidel iteration in time, and then we describe a method for solving the
reinitialization equation which involves a Godunov numerical Hamiltonian scheme in space
and again Gauss–Seidel iteration in time.

4.1 Numerical Setup

Consider a rectangular Eulerian grid with uniform grid spacing h upon which the interface
Γ is overlaid. Gridpoints (xi , y j ) are defined by xi = ih and x j = jh, with i and j taking
integer values. (Unlike in the theoretical part of the paper above, in which x and y correspond
to two points in R

2, in the remainder of the paper x and y are coordinates, (x, y) ∈ R
2).

In order to approximate derivatives of possibly non-smooth functions wewill rely on ENO
finite differences (see [36]). In addition, in the solution of Hamilton–Jacobi equations, one-
sided (upwind) derivatives are commonly used to retain causality (i.e. information follows the
characteristics). In this paper, the following one-sided second order ENO finite differences
will be used to approximate first derivatives,

D−
x φi, j = φi, j − φi−1, j

h
+ h

2
minmod(Dxxφi, j , Dxxφi−1, j ),

D+
x φi, j = φi+1, j − φi, j

h
− h

2
minmod(Dxxφi, j , Dxxφi+1, j ),

minmod{a, b} =
{
0 if ab < 0,
sgn(a)min{|a|, |b|} else,

(25)

where the second derivative is given by the centered difference formula

Dxxφi, j = 1

h2
(
φi+1, j − 2φi, j + φi−1, j

)
. (26)
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4.2 The Transport Equation

Recall the definitions of the stretch function χ(x) = |∇φ|(x) on x ∈ Γ and the inward
pointing unit normal vector n̂ = ∇φ/|∇φ|. In solving the transport equation, we aim to
accurately preserve the stretch function as well as its tangential derivative along the interface,

n̂ · ∇∇φ · (I − n̂n̂)|Γ = Dsχ(Γ (s))ŝ, (27)

where s is the arc-length and ŝ(s) = Γ ′(s) is the unit vector tangent to the surface Γ . Our
strategy will be to preserve the zero level set of φ (the location of the surface Γ ) and the
stretch function χ with at least second order accuracy, and thus Dsχ(Γ (s))ŝ is formally
preserved with first order accuracy.

In the solution of the transport equation we will use a subcell resolution (SR) technique
to obtain the cost function f [see Eq. (4)]. In SR, the interface is determined by interpolating
the obtained signed distance function ϕ, computing the the gradient there, and modifying
the one-sided ENO derivatives according to the interface [18,30]. To illustrate the subcell
resolution technique, consider as an example the case ϕi jϕi−1, j ≤ 0. Letting

ai j = h2minmod(Dxxϕi j , Dxxϕi−1, j ), (28)

and assuming (xΓ , y j ) ∈ Γ , xΓ is found by quadratic interpolation at ϕi−1, j , ϕi j using the
second order derivative ai j/h2. The approximations of the first derivatives are then given by

∂xφ0(xΓ , y j ) ≈ δx−i j
h

D0
xφ0,i−1, j + h − δx−i j

h
D0
xφ0,i j ,

∂yφ0(xΓ , y j ) ≈ δx−i j
h

D0
yφ0,i−1, j + h − δx−i j

h
D0

yφ0,i j , (29)

where D0
x , D

0
y are the centered differences and

δx−i j = xi − xΓ = h

(
1

2
+ (ϕi j + ϕi−1, j ) − ai j/4

(ϕi j − ϕi−1, j ) + sgn(ϕi j − ϕi−1, j )
√
Di j

)

, (30)

where

Di j = (ai j/2 − ϕi j − ϕi−1, j )
2 − 4ϕi jϕi−1, j . (31)

Having now obtained the cost function on the interface, f (xΓ , y j ) =
√

∂xφ
2
0 + ∂yφ

2
0 , the

left ENO derivative of f at (i, j) is modified as

D−
x fi j = fi j − f (xΓ , y j )

δx−i j
+ δx−i j

2
minmod(Dxx fi−1, j , Dxx fi j ),

while D+
x at (i − 1, j) is similarly modified. To extend the quantities away from Γ , one

approach is to compute the values at the grid points in a thin tube near the interface directly
and then extend them out to other grid points using an upwind scheme.We instead use subcell
resolution and completely avoid the tube, resulting in a simpler computation.

Next, the cost function f is extended into space by solving the transport equation,

∂ f

∂τ
+ ∇d · ∇ f = 0, (32)
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where ∇d = sgn(ϕ)∇ϕ. We will denote sgn(ϕi j )D±
x ϕi j by D±

x di j (where D±
x are acting on

ϕ not |ϕ| and D±
x are modified with subcell resolution near the interface) and we define

Dxdi j = maxabs{max{D−
x di j , 0}, min{0, D+

x di j }}, (33)

where maxabs{a, b} = (a − b)1{|a|≥|b|} + b. For the numerical gradient we then take

ηx
i j = Dxdi j√

(Dxdi j )2 + (Dydi j )2 + ε2
, η

y
i j = Dydi j√

(Dxdi j )2 + (Dydi j )2 + ε2
, (34)

where ε is a small parameter (chosen here to be 10−7) to avoid the case that both Dx and
Dy are close to zero at potentially irregular points. Dxdi j is so chosen to ensure that the
information propagating to (i, j) is coming from points closer to the interface, which follows
the correct characteristic directions, and also that any oscillation in f on the the cut locus Ā
(seeDefinition 3), is suppressed. Using the definitions above, a complete spatial discretization
for the transport equation is given by

LT ( fi j ) = −
(
(ηx

i j )
+D−

x fi j − (ηx
i j )

−D+
x fi j + (η

y
i j )

+D−
y fi j − (η

y
i j )

−D+
y fi j

)
, (35)

where a+ = max{a, 0} and a− = −min{a, 0}.
We now turn to the discretization of time, τ , which is not real time but merely a parameter

used to relax the system to its steady state. Different timesteps ki j are chosen for different
points to ensure stability. Since δx±i j or δ

y±
i j can be small, a Courant–Friedrichs–Lewy (CFL)

condition for convergence requires that the time step be small near the interface. We use the
same convention as in [30],

ki j = C min{h, δx±i j , δ
y±
i j }, (36)

whereC is a constant taken small enough to ensure convergence. We chooseC = 1/2 for the
numerical examples to come,which is sufficient for the cases studied. Further, aGauss–Seidel
iteration is employed (values are updated using the newest data along the chosen sweeping
directions) to allow information to propagate long distances in some directions with one
iteration (see [52]). The Gauss–Seidel iteration is given by

fi j ← fi j + ki j LT ( fi j ) (37)

along the four sweeping directions (i, j) = (1 : N , 1 : N ), (i, j) = (1 : N , N : −1 : 1),
(i, j) = (N : −1 : 1, 1 : N ), and (i, j) = (N : −1 : 1, N : −1 : 1), repeatedly.

Remark 5 For the application of a local level set method, it may be preferable to use a direct
time-stepping method. One possibility is the second-order TVD Runge–Kutta method,

f̃ n+1
i j = f ni j + ki j LT ( f ni j ),

f n+1
i j = 1

2

(
f ni j + f̃ n+1

i j

)
+ ki j

2
LT

(
f̃ n+1
i j

)
. (38)

Remark 6 For the transport equation (6), in many references ∇ϕ is discretized using a cen-
tered difference approximation. Near the interface, the signed distance function is C1 so
that this simple treatment is convenient and sufficient. However, once f is extended into
the domain where the signed distance function is not smooth, the scheme developed in this
section is expected to be more accurate.
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The transport equation is solved using the standard upwind scheme, with improvements
using ENO derivatives, subcell resolution and Gauss–Seidel sweeping (see [36,51]). While
a rigorous proof which includes these improvements would be challenging, our numerical
experiments suggest a natural convergence, and the limit outside the cut locus is indeed the
cost function f .

4.3 The Reinitialization Equation

We now introduce the Godunov Hamiltonian scheme used to solve the reinitialization
equation. By a similar consideration of causality, we use the Godunov Hamiltonian
Ĥi j (D−

x ui j , D
+
x ui j , D

−
y ui j , D

+
y ui j ), where si j = sgn(u0(xi , y j )), and

Ĥi j (a, b, c, d) =
⎧
⎨

⎩

si j
(√

max{a+, b−}2 + max{c+, d−}2 − gi j
)

if si j ≥ 0,

si j
(√

max{a−, b+}2 + max{c−, d+}2 − gi j
)

if si j < 0,
(39)

for spatial discretization [30,38]. (Recall u may be ϕ or φ while u0 = φ0.)
It would seem to be the case that the subcell resolution (SR) technique is not required

in order to achieve second-order accuracy with the Godunov Hamiltonian scheme. Without
SR, the absolute error ||∇u| − g| does indeed scale as O(h2) (recall that g can be either 1 or
f , see Sect. 3.2), but the interface location is generally not determined at the same level of
accuracy, especially when the interface gradients of u and u0 are different. This is particularly
important for (5) because the information comes from the zero set of ϕ in (6). The interface
gradient would be determined only with first order accuracy and the variation in the stretch
function Dsχ(Γ (s))ŝ is then poorly captured. Thus, subcell resolution is still required to
achieve second order accuracy for the Godunov Hamiltonian scheme. For example, when
u0,i j u0,i−1, j ≤ 0, we modify D−

x for (xi , y j ) to

D−
x ui j = ui j

δx−i j
+ δx−i j

2
minmod(Dxxui−1, j , Dxxui j ),

and D+
x for (xi−1, y j ) is similarly modified. For time discretization we again use Gauss–

Seidel iteration using the same spatially varying timestep as in (36).
The numerical Hamiltonian is monotone ([13]) and ensures the correct direction of infor-

mation propagation. u(x ∈ Γ, τ) = 0 is ensured by the numerical scheme. Recall that the
proper viscosity solution given by (9) is introduced to ensure uniqueness on the unbounded
domain, which is the desired level set function for our reinitialization. If the problem domain
is a large ball Bn with Dirichlet boundary conditions, the proper viscosity solution in the
unbounded domain is identical to the viscosity solution in Bn/3. The numerical solution
obtained will not change in Bn/3 whether we solve it in the unbounded domain or in Bn

since the equation is hyperbolic and we follow the characteristics. The convergence to the
proper viscosity solution is equivalent to the convergence to the usual viscosity solution in
the bounded domain. While not identical to the case of present interest, in [13] monotone
schemes of ut + H(∇u) = 0, where H is continuous, have been shown to converge to the
viscosity solution. For our scheme, with the subcell resolution and Gauss–Seidel iteration,
the proof is difficult but in practice we do observe the expected convergence.
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5 Application to the Eulerian Immersed Boundary Method

As was previously mentioned, the LGPR procedure for reinitialization makes the local level
set approach in the Eulerian immersed boundary method possible. The immersed boundary
method was developed to study blood flow around heart valves in the 1970s [39] and has
since been made more accurate [25,31,33]. At each timestep the immersed body is advected
with the fluid velocity, and structural forces are spread back to the fluid through smoothed
delta functions with compact support. Meanwhile, the Eulerian immersed boundary method
[9–11] avoids the use of Lagrangianmarkers, which removes an instability when evolving the
location of a stiff interface in explicit time-stepping schemes. It is also an effective method
for avoiding “volume leakage” [10]. The tradeoff is that the computational cost is generally
higher than Peskin’s original method.

In a local level set approach (see [38]), the level set function is only retained in a small
computational tube around the interface Γ , resulting in considerable computational savings
when applied to the Eulerian immersed boundary method [10]. For relatively thin tubes and
large interface deformations, however, the interface may approach the tube boundary and
reinitialization may become necessary (such an example is included in Sect. 6). Previously,
generic problemswith spatially-varying tension around the interface could not be reinitialized
without losing important stretching information, but by using the LGPR procedure, the local
level set approach can be freely employed.

The algorithm is as follows. First, given the initial location of the immersed interface,
Γ (ξ), construct the signed distance function ϕ(x). Then at each time step the following steps
are performed:

1. Let T = {x : |ϕ(x)| < γ } be the thin computational tube surrounding Γ , where γ is
some positive constant. Store a cutoff function (see [38]), ψT (x) = c(ϕ(x)), where

c(y) =
⎧
⎨

⎩

1 |y| ≤ β,

(γ − β)−3(|y| − γ )2(2|y| + γ − 3β) β < |y| ≤ γ,

0 |y| > γ,

for some constant β < γ . If the desired level set function φ has not yet been initialized,
set χ(x ∈ Γ ) = |Xξ | and use the LGPR method to obtain φ in T (details are included
below). Otherwise, reinitialize φ using LGPR as discussed in the previous sections.

2. Solve the equations of motion for the fluid–structure interaction problem, where the fluid
force at the interface is given by (1). Evolve φ inside T with ψT (x)u used to convect the
level set function, where u is the velocity field.

3. If the interface remains far enough from the boundary of the computational tube and if
|∇φ|Γ ∈ [1−c, 1+c] for a chosen c, skip to Step 2 in the following timestep. Otherwise,
let T0 be the (β − α) neighborhood of T , for some constant α < β, reinitialize the level
set function to the signed distance function in T0, and continue to Step 1 in the following
timestep.

In Step 1, the LGPR method can be used to initialize the level set function φ. In a thin
tube containing the interface, for every grid point (xi , y j ), writing z = P(xi , y j ) = X (ξz)

as the projection onto Γ , we determine the distance by computing d = |(xi , y j ) − z| and
the sign of of the signed distance function ϕ by checking ((xi , y j ) − z) × Xξ (ξz). We record
|Xξ (ξz)| at the point (xi , y j ), which is the value of |∇φ0,i j |. The distance function d(x) is
obtained by the fast sweeping method [52] and the sign is extended in a similar manner. ϕ
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is then determined, and (5) is evolved to improve ϕ. The values of the cost function f at the
interface are interpolated from |∇φ0,i j |. LGPR is then applied to recover φ.

The LGPR method is independent of the fluid model and makes possible the local level
set approach to solving a broad range of interesting fluid–structure interaction problems
beyond classical Newtonian flows; immersed boundary techniques have been used to study
the interaction of deformable bodies with viscoelastic fluids related to peristaltic pumping
[48], vesicles in nematic liquid crystals [32], and cell deformation [4], blebbing [46] and
locomotion [7,8,17,49,50].

6 Numerical Experiments

In this section we implement and test the LGPR method using a few illustrative examples.
In the first example we show how the LGPR method can be used to initialize level set
functions from a given parametric curve. In Example 2, we show that the method achieves the
expected accuracy in a setting inwhich the initial level set function and interface stretching are
specified, and we show that the elastic force is preserved through the reinitialization process.
Finally, in Example 3 we simulate the behavior of a relaxing, initially stretched membrane in
a fluid using a local level set approach to the Eulerian immersed boundary method, and show
that reinitialization is necessary and effective when the membrane approaches the boundary
of the computational tube.

6.1 Example 1: Initializing a Level Set Function

The LGPR method may be used to initialize the level set function from a given parametric
curve. Consider the ellipse given by X (ξ) = (2 cos(ξ), sin(ξ)), where 0 ≤ ξ < 2π and ξ is
the arc-length. Using the method as described in Sect. 5 results in a level set function which
satisfies the desired property that |∇φ|(X (ξ)) = |Xξ (ξ)|. Figure 1 shows the numerical
results on the domain [−2.5, 2.5]2 with spatial grid size h = 5/128. The characteristic lines
intersect on the medial axis of the ellipse and our extension scheme gives good results at the
medial axis. The interface is well captured by our constructed level set function (Fig. 1c). To
test the accuracy of the location and the interface gradient, we plot in Fig. 2 the location error

EL = maxp{|x2p/4+ y2p−1|} and the gradient error EG = maxp{||∇φ|(p)−
√
4y2p + x2p/4|},

where p is a point on the interface, p = (xi , yΓ ) or p = (xΓ , y j ). The interface location
is retained with roughly third order accuracy while the interface gradient is retained with
second order accuracy, as desired.

Fig. 1 Initialization of a level set function. a The cost function constructed from the parameterized interface
X (ξ) = (2 cos(ξ), sin(ξ)), where 0 ≤ ξ < 2π . b The constructed level set function. c Contours of the level
set function; the bold line is the specified interface
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Fig. 2 a The results of numerical simulations are shown as symbols. The interface location error for the
constructed level set function in Example 1 decays as O(h3). b The interface gradient error for the constructed
level set function decays as O(h2)

6.2 Example 2: Accuracy of Numerical LGPR

Wenow present a typical example inwhich the cost function is discontinuous in order to show
that the transport equation is successfully solved and that the interface gradient is preserved
with the desired accuracy. Let the surface Γ be parameterized in polar coordinates by r(θ) =
1 + 0.25 cos(3θ). We take as the initial level set function φ0(x, y) = ϕ(x, y) exp(0.5y)
where ϕ is the signed distance function relative to Γ . Since the interface is non-convex,
characteristics of ϕ from the interface intersect both inside and outside of Γ .

Using the computational domain [−1.5, 1.5]2 and grid size h = 3/256,we show in Fig. 3a,
b two views of the cost function f produced by solving the transport equation. The set where
f is discontinuous (the cut locus, where characteristics intersect) is well captured. The cost
function does not oscillate near the cut locus using our scheme for solving the transport
equation. Figure 3c, d show the numerical solution of the reinitialized level set function φ

and its contours, which converges rapidly even though f is discontinuous.
To test the accuracy of the numericalmethod,wefind all the interface points p0 = (x0Γ , y j )

or p0 = (xi , y0Γ ) by the interpolation formula (30) using the data φ0 and correspondingly
points p = (xΓ , y j ) or p = (xi , yΓ ) using φ. The gradients ∇φ0 and ∇φ are computed
using (29) except that δx±i j and δ

y±
i j are computed using the level set functions themselves

instead of ϕ. We define the interface location error by EL = max{|x0Γ − xΓ |, |y0Γ − yΓ |},
error in the interface gradient by EG = max{|∇φ0(p0) − ∇φ(p)|} and the stretching error
by ES = max{||∇φ(p)| − exp(0.5yp)|}. Fig. 4a–c show the decay rate of these errors with
the spatial step size h. The error in the computed interface position decays roughly as O(h3),
while ∇φ (both the direction and norm) is accurate to O(h2) as expected. Elastic forces
computed using the reinitialized level set function are therefore expected to carry over with
first order accuracy, which we now probe.

Figure 5a, b show the x-component of the force associated with the prescribed stretching
in the first example, before reinitialization using φ0 (a) and after reinitialization using φ

(b). For y > 0, |∇φ| > 1 (the interface is in tension) while for y < 0, |∇φ| < 1 (the
interface is in compression). The force is computed on [−1.5, 1.5]2 with h = 3/128, using
a Hookean elastic energy E(χ) = (K/2)(χ − 1)2 (with K = 5). Following Peskin [39], in
the description of the force (1) that might be used in an immersed boundary context we use a
smoothed δ function, δh = 1{|φ|≤3h}(1+cos(πφ/(3h)))/(6h). The traditional reinitialization
method would naturally lose information about interface stretching, but here we see that the
elastic force is preserved through the reinitialization process.
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Fig. 3 Example 2. a The discontinuous cost function f constructed from the specified stretch χ = exp(0.5y)
on the interface r(θ) = 1+0.25 cos(3θ). bThe same as a from above. The cut locus (where f is discontinuous)
ismore readily apparent. cThe level set functionφ after reinitialization.dContour plots of the level set function
after reinitialization. The bold line is the zero set corresponding to Γ while symbols are sample positions on
the interface computed analytically
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Fig. 4 Convergence results for Example 2, with computed values shown as symbols. a The error in the
interface location decreases roughly as O(h3). b The error in the interface gradient decays as O(h2). c The
error in the interface stretching computed using the reinitialized level set function decays as O(h2)

We now test the accuracy in computing both the tangent gradient of the cost function and
the stretchingderivative (the tensiongradient in the case ofHookean elastic energy).Wedefine
T f (p0) = ∇ f · (I − n̂n̂)(p0) where n̂(p0) = ∇φ0/|∇φ0| and correspondingly Tχ(p0) =
∇ exp(0.5y) ·(I − n̂n̂)(p0). The cost function gradient error E f = max{|T f (p0)−Tχ(p0)|}
and the stretching derivative errorES′ = max{|n̂·∇∇φ·(I−n̂n̂)(p)−n̂·∇∇φ0·(I−n̂n̂)(p0)|},
where n̂(p) = ∇φ/|∇φ| are then defined. The gradients (∇ f , ∇φ etc) are computed using
(29), and∇∇φ(p) is computed by interpolating the correspondingHessians at the two nearby
points. As shown in Fig. 6, the quantities are computed with first order accuracy as expected.
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Fig. 5 The x-component of the elastic force Fx in Example 2 due to the complex initial stretching, using
grid size h = 3/128, before reinitialization (a) and after reinitialization (b). The force computed has different
relations with the curvature for y > 0 and y < 0. The traditional reinitialization method would naturally
lose information about interface stretching, but here we see that the elastic force is preserved through the
reinitialization process
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Fig. 6 a The error in the computed cost function gradient. b The error in the stretching derivative (the tension
gradient in the case of Hookean elastic energy). Both are first order accurate as expected

6.3 Example 3: Eulerian Immersed Boundary Method with Local Level Sets

As a final example, we apply LGPR in the local level set approach to the Eulerian immersed
boundary method. We simulate the dynamics of a relaxing membrane in a fluid in two-
dimensions, where reinitialization becomes necessary as the interface approaches the tube
boundary. The fluid is described by the Navier–Stokes equations,

ρ (ut + u · ∇u) = −∇ p + μ∇2u + F, (40)

∇ · u = 0, (41)

where ρ is the fluid density, μ is the viscosity, u is the fluid velocity, and p is the pressure
and F is the body force [3]. The equations represent conservation of momentum and mass,
respectively. When scaled upon a characteristic length scale L , times scale T , velocity scale
L/T and body force scale ρL/T 2, the dimensionless equations read

ut + u · ∇u + ∇ p = 1

Re
∇2u + F, (42)

∇ · u = 0, (43)

where Re = ρL2/(μT ) is the dimensionless Reynolds number, a measure of the relative
importance of inertial to viscous effects. Fixing Re = 1, we solve the fluid equations above
using the projection method of Kim and Moin [23] on a two-dimensional rectangular grid
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Fig. 7 Example 3. An initially stretched elasticmembrane relaxes in aNavier–Stokes flow. The fluid–structure
interaction is computed in a small region surrounding the membrane (a local level set method). a, d The
initial level set function, and its contours, with the interface shows as a dark black line. b, e The level set
function and contours after the membrane has partially relaxed; the membrane approaches the boundary of the
computational tube containing the interface, leading to the development of errors. c, f The level set function
after reinitialization; the interface is again well separated from the computational boundary, and the stretching
information has been preserved

with no-slip boundary condition. The level set function is only constructed and updated in
a tube that contains the interface. In its undeformed state the membrane has an arc length
parameter ξ , where 0 ≤ ξ < 2π . To begin the simulation the membrane is initially stretched
to an ellipse given by X (ξ) = (2 cos(ξ), sin(ξ)), and the initialization of the level set function
is exactly that performed as Example 1. The system evolves under the tension generated by
the curve. The stretching energy is given again by linear elasticity, E(χ) = (K/2)(χ − 1)2

with K = 5 and F is given by Eq. (1) with the same smeared delta functions as in Example
2.

We solve the equations above on the domain [−4, 4]2 with uniform grid spacing h =
8/100. The tube and approachment warning parameters in the algorithm in Sect. 5 are chosen
as (α, β, γ ) = (4h, 8h, 10h). The system is evolved using a timestep of size �t = 0.3h (see
[23]). In solving the sequence of reinitialization Eqs. (5)–(7), the CFL condition is satisfied by
choosingC = 0.5 in (36).We set the number of iterations in pseudo-time a priori: specifically,
we find the upper bounds for the pseudo-times needed [for (5) and (6) the bounds are γ , and
for (7) the bound is c2γ /c1], and then set the number of iterations in each case to the bound
divided by 0.5h.

Figure 7a, d shows the initial level set function and its contours, with the interface shown
as a dark black line. As the membrane relaxes over time, the level set function evolves to the
one shown in Fig. 7b, e. The level set function is no longer adequate: the interface is close to
the boundary of the tube where the local level set method is applied, and the level set function
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Fig. 8 The x-component of the force from Example 3. a The initial force distribution. b The force after partial
relaxation but before level set reinitialization. c The force after reinitialization is preserved through the LGPR
process

has a large gradient in the computational domain (though not yet at the interface). At this
point we perform the LGPR algorithm in another tube that contains the new interface. The
resulting level set is shown in Fig. 7c, f. The new level set function is better behaved and the
sources of possible numerical error associated with the membrane approaching the boundary
have vanished. The x-component of the force before and after reinitialization is shown in
Fig. 8. The force is preserved with the expected error.

7 Conclusion

We have extended the traditional reinitialization process of a level set function to a locally
gradient-preserving reinitialization method, which preserves not only the interface location,
but also information about tangential interface stretching. We have shown that the proposed
method can correctly yield a desired level set function. In particular, we have shown that the
viscosity solution of the reinitialization equation converges to the unique “proper” viscosity
solution of the eikonal equation, which is the desired level set function. Numerical schemes
are proposed to solve these PDEs. The subcell resolution method for the transport equation
is easy to implement and can extend the interface gradient to the whole domain with high
accuracy. Numerical examples show that our method is successful, even for discontinuous
cost functions. In applications, a local level set method is desirable for computational cost
reductions, and the LGPR method can be applied in a small region containing the interface
Γ . We showed that this reinitialization process makes the local level set approach to the
Eulerian immersed boundary method possible in the general setting where fluid and elastic
forces depend on interface stretching.

Acknowledgements X. Xu acknowledges support by NSF-DMS Grant 1159133.

Appendix A: Cut Locus of the Interface

We first show that the signed distance function ϕ is not differentiable at any point in A.

Lemma 3 Under the assumptions stated in Sect. 3, ϕ is not differentiable at any point in A.

Proof Since Ā ∩ Γ = ∅, to show that ϕ is not differentiable we show that d(x, Γ ) is not
differentiable at x ∈ A ∩ U (the treatment of A ∩ Uc is similar). By the definition of A,
we can find y1, y2 ∈ Γ , y1 �= y2 so that d(x, y1) = d(x, y2) = ϕ(x). Suppose that ϕ is
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differentiable at x . We must have |∇ϕ(x)| = 1. Let n̂ = ∇ϕ(x). We have x + εn̂ ∈ U for
small enough ε > 0. The inequality d(x + εn̂, y1) ≥ ϕ(x + εn̂) > ϕ(x) then gives

d(x + εn̂, y1) − d(x, y1) ≥ ε + o(ε), (44)

and the law of cosines tells us that � (n̂, x − y1) = 0. But the same argument indicates that
� (n̂, x − y2) = 0, leading to a contradiction.

We now show that if U is convex, d( Ā, Γ ) = d(A, Γ ) ≥ inf{1/κ} > 0. This follows
from the following lemma about the local structure of the curve satisfying Assumption 1.

Lemma 4 For any a ∈ A and any two points y, z ∈ P(a), if the portion of Γ between
y and z is the graph of a function over the segment yz, then ∃ w on the portion such that
κ(w)μ(a) ≥ 1/d(a, Γ ) where μ(a) = 1 if a is inside Γ and μ(a) = −1 otherwise.

Proof We take the straight line yz to be the x1-axis, and assume at point z that the tangent line
of Γ has a positive slope with angle θ . The projections of y and z to the x1-axis are denoted
by y1 and z1. As the portion of Γ between y and z is the graph of a function of x1, then so is
κ: κ = κ(x1). By integrating κ between y1 and z1 (κ is integrable by the assumption on the
interface), we have

μ(a)

∫ z1

y1
κ(x1)dx1 = 2 sin(θ). (45)

By basic trigonometry, z1 − y1 = 2d(a, Γ ) sin(θ). Hence, we can find w1 ∈ [y1, z1] so that
μ(a)κ(w1) ≥ 2 sin(θ)

2d(a, Γ ) sin(θ)
= 1

d(a, Γ )
. (46)

Returning to the previous claim, if U is convex, then A ⊂ U , μ(a) = 1 and κ(w) ≥ 0,
and the claim then follows from Lemma 4.

Although we will not use the following “no cusp” property in this paper, this is still an
interesting property of the cut locus geometry. This property is crucial in the literature when
the uniqueness of the viscosity solution to the eikonal equation is discussed.

Theorem 4 For a locally analytical boundary Γ , there are no cusps with zero angles in Ā.

Proof We will sketch the proof without details. Consider Ā ∩ U as the example. Suppose
that there are two edges making a zero angle at x ∈ Ā ∩ U . Parametrize them with arc
lengths: γ1(s) and γ2(s), such that γ1(0) = γ2(0) = x ,γ ′

1(0) = γ ′
2(0) =: n̂ and that ∀ε > 0,

∃sε ∈ (0, ε), γ1(sε) �= γ2(sε). By Lemma 1, there is an opening region between γ1 and γ2.
Choose a sequence xk approaching x inside the region such that the projection of Pxk (which
is one point) approaches y. Then y ∈ P(x). By Lemma 1, xk-Pxk doesn’t intersect with
Ā. As a limit line segment, x-y doesn’t cross γ1, γ2 and thus is tangent to the two curves,
namely n̂ = (y − x)/|y − x |. γ1 and γ2 must be on the two sides of the line xy. Consider
γ1 and the portion of Γ on that side, parametrized as Γ0(u) with Γ0(0) = y. Then there
exists a δ > 0 such that the curvature is a smooth function on [0, δ] (if necessary, redefine
κ(0) = limu→0+ κ(u)). Choose sk → 0+ such that #Pγ1(sk) ≥ 2. From the fact that x − y
is the tangent line of γ1 at x , x − γ1(sk) and γ1(sk) − y are almost parallel for sufficiently
large k. Then, for k large enough, wk ∈ Pγ1(sk), d(x, wk) ≥ d(x, y) implies that wk must
fall onto Γ0(s) for 0 ≤ s ≤ δ. Using γ1(sk) = x + sk n̂ + O(s2k ) and P(x + sk n̂) = y, we
know ∀wk ∈ Pγ1(sk) that |wk − y| = O(s2k ). By Lemma 4 and since δ is small, there is
a uk such that Γ0(uk) is between two points in Pγ1(sk) and κ(uk) ≥ 1/d(γ1(sk), Γ ). It is
clear that uk = O(s2k ). The contradiction is obtained by noticing that κ(0) ≤ 1/d(x, y) and
O(s2k ) = |κ(uk) − κ(0)| ≥ |1/d(γ1(sk), Γ ) − 1/d(x, y)| ≥ Csk for some C > 0. ��
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AppendixB:Existence andUniqueness of Solutions of theEikonal Equation
with a Discontinuous Cost Function

Here we prove the existence and uniqueness of the viscosity solution to (4) (Theorem 2).
The proof of existence is standard, but the proof of uniqueness is not. There is one essential
difference to the cases under consideration in [14,16,37,44,45]: here, the cut locus may have
bifurcation points. This means that there can exist a point x in the singular set of the cost
function such that for any disc B centered at x , B will be divided by the singular set into
more than two parts. The arguments in references [14,16,37,44,45] then do not apply. Note
that there is another subtle difference in our proof. Although from Theorem 4 we have that
there are no cusps with zero angles in the singular set of the cost function, our proof does not
rely on this fact.

Existence

We take x ∈ U as an example case. We show that φM is a viscosity solution; a similar
argument applies to φm . Recall that 0 < c1 ≤ f ≤ c2 and that f ε, fε are given in (14). We
have the following relationships:

c1 ≤ essinf{ f (y)|y ∈ B(x,
√

(c2 − c1)ε)} ≤ fε(x) ≤ f∗(x)
≤ f ∗(x) ≤ f ε(x) ≤ esssup{ f (y)|y ∈ B(x,

√
(c2 − c1)ε)} ≤ c2. (47)

fε increases to f∗ while f ε decreases to f ∗, and f ε( fε) is continuous. The corresponding
solution φε is given as in (9). One then could verify the following dynamic programming
principle: for x ∈ U and 0 ≤ s1 ≤ d(x, Γ ),

φε(x) = inf
γ∈C

{∫ s1

0
f ε(γ (s))ds + φε(γ (s1))|γ (0) = x

}
. (48)

The proof of this principle is omitted here. For similar arguments, one could refer to Chapter
10 of [15]. A direct conclusion from this principle is that

0 ≤ φε ≤ c2d(x, Γ ),

|φε(x) − φε(y)| ≤ c2|x − y|. (49)

By the Arzela–Ascoli theorem, since Ū is compact, there is a subsequence φεk that converges
uniformly to φ̄.

Now suppose that φ̄−ζ has a localmaximumat x0 ∈ U . For small δ > 0, φ̄−ζ −δ|x−x0|2
has a strict localmaximumat x0. There is a sequence of localmaxima xk forφεk−ζ−δ|x−x0|2
that converges to x0 by the uniform convergence of the function sequence. Fixing K > 0,
for k > K , we have

|∇ζ(xk) + 2δ(xk − x0)| ≤ f εk (xk) ≤ f εK (xk). (50)

Letting k → ∞, since f εK is continuous, |∇ζ(x0)| ≤ f εK (x0). Sending K → ∞, we obtain
|∇ζ(x0)| ≤ f ∗(x0). For a local minimum at x0, the argument is similar. Here, we just use
the modified function φ̄ − ζ + δ|x − x0|2 and the inequalities

|∇ζ(xk) − 2δ(xk − x0)| ≥ f εk (xk) ≥ fεk (xk) ≥ fεK (xk) (51)

for k > K . Thus, |∇ζ(x0)| ≥ f∗(x0) and φ̄ is a viscosity solution.
Now, fixing any δ > 0, we can find K > 0 so that φ̄(x)+δ > φεk (x)when k > K for any

x ∈ U . However, ∃ γ with γ (0) = x such that φεk + δ >
∫ L
0 f ε(γ (s))ds ≥ ∫ L

0 f ∗(γ (s))ds.
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Note that f ∗(γ (·)) is the infimum of continuous functions and thus Lebesgue measurable on
[0, T ]. Meanwhile, φ̄(x)−δ ≤ φεk (x) ≤ ∫ L

0 f εk (γ (s))ds for k large enough and any γ ∈ C
with γ (0) = x and γ (L) ∈ Γ . Now fixing γ and taking k → ∞, the dominant convergence
theorem tells us that φ̄(x) − δ ≤ ∫ L

0 f ∗(γ (s))ds. Hence:

φ̄(x) = inf
γ∈C

{∫ L

0
f ∗(γ (s))ds,

∣
∣
∣ γ (0) = x, γ (L) ∈ Γ

}
= φM (x). (52)

The dynamic programming principle for φM still holds and φM is also bounded and
Lipschitz continuous with the same constants.

Uniqueness

We again fix x ∈ U , and show that φm(x) = φM (x). For any ε > 0, we can find γ ∈ C with
γ (0) = x and γ (L) ∈ Γ so that

∫ L
0 f∗(γ (s))ds < φm(x) + ε. γ has no self-intersection by

the definition of C .
By Lemma 2, except at finitely many points, all the points in Ā belong to some open

locally analytical curves and have a projection with size 2. Noticing that γ is an injection,
we pick a set E that covers the finite irregular points such that the total length of γ falling
into E is less than ε/c2, where c2 is the upper bound of f ∗. Then the remaining part Ā \ E
has the following properties: it is the disjoint union of N curve portions en, 1 ≤ n ≤ N ; for
any x ∈ en , we can find a ball B(x, rx ) (rx > 0) so that every point in Ā ∩ B(x, rx ) has a
projection of size 2 and Ā ∩ B(x, rx ) is real analytic.

Step 1. We first show that the cost function f has limits on both sides of the edge en .
For any x ∈ en , B(x, rx ) is divided into two subdomains B1 and B2 by Ā. Let xk ∈ B1∩U ,

xk → x . The sequence wk = Pxk has a limit point z ∈ Px . Further inspection reveals that
z is the only limit point of wk since #Px = 2 and the sequences in B2 give another. This
means that for every sequence in B1 converging to x , the projections converge to z. Hence,
limy→x,y∈B1 f (y) = χ(z). If the limit function is f1, by the continuity of projection on one
side, f1 is continuous on en . f2 may be similarly defined.

Step 2. We now decompose Ā into several parts so that on each part
∫
( f ∗ − f∗)(γ (s))ds

can be dealt with appropriately.
Let en be equipped with the 1D Lebesgue measure m induced by the arc length, and

let Fn = {x ∈ en : f1(x) = f2(x)}. Clearly, f ∗ = f∗ on Fn and Fn is closed. The set
en\Fn = {x ∈ en : f1− f2 > 0, or f1− f2 < 0} is open, thus is the disjoint unionof countable
subintervals in en . Since the sum of lengths of these subintervals is finite, we can find finitely
many of them, say Mn of them, such that the measure of the remaining is small. For these Mn

intervals, we can cover the endpoints and getMn new subintervals denoted as Ii , 1 ≤ i ≤ Mn .
Hence, we can decompose en into Gn with m(Gn) < ε/Nc2, Fn and ∪Mn

i=1 Ii . Let’s consider
all the M = ∑

n Mn subintervals. ∃δ1, δ > 0 that depend on E , Fn,Gn, 1 ≤ n ≤ N , such
that each subinterval Ii satisfies: Ui = {x : d(x, Ii ) ≤ δ1} is divided into two domains
Vi1, Vi2, f ∗ ∈ C(V̄i2), f∗ ∈ C(V̄i1), and infx∈Vi2,y∈Vi1 f ∗(x) − f∗(y) ≥ δ. We have thus
decomposed Ā into the union of following sets: M = ∑

n Mn subintervals; a closed set on
which f∗ = f ∗; and a set (union of Gn and E) with measure less than 2ε/c2.

Let Ci = {s : γ (s) ∈ Ii } be a subset of [0, L] and C = ∪M
i=1Ci . It is clear that∫

[0,L]\C ( f ∗ − f∗)(γ (s))ds < 2ε. Hence, we only need to study the integral on Ci .

Step 3. We now obtain a local property of the portion of γ on Ci .
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By the local smoothness of the edges, ∃α > 0, δ3 < δ1/2, such that if s1, s2 ∈ Ci , with
s2 − s1 ≤ δ3, then the length of Ii between γ (s1) and γ (s2) is at most (s2 − s1)+α(s2 − s1)2.
If ∃s ∈ (s1, s2) so that γ (s) /∈ V̄i1, then there is an subinterval [s3, s4] ⊂ [s1, s2] such that
s ∈ [s3, s4] and γ ((s3, s4))∩ V̄i1 = ∅. Since δ3 < δ1/2, γ ([s3, s4]) cannot leave V̄i2. Noticing
that f ∗ = f = f∗ on γ ((s3, s4)),

∫

γ [s3,s4]
f∗ds =

∫

γ [s3,s4]
f ∗ds >

∫

J
f∗ds + (s4 − s3)δ − α(s4 − s3)

2c2,

where J is the part of Ii between γ (s3) and γ (s4). If we pick δ3 small enough, we could have
(s4 − s3)δ −α(s4 − s3)2c2 > 0. We replace γ ([s3, s4]) with J and get a new curve γ̃ , and we
see that

∫
γ̃
f∗ds <

∫
γ
f∗ds. γ̃ may be self-intersecting. We can modify it as following: If J

intersects with γ (0, s3). we find the infimum of smin on [0, s3] so that γ (smin) ∈ J . Then we
piece γ [0, smin] and the part of J starting from γ (smin) together. Then, by the same method
we can deal with the case when J intersects with γ ((s4, L)). Such s3, s4 pairs correspond to
disjoint open intervals, so we can do this modification at most countable many times and get
another curve γ1 ∈ C , so that

∫
γ1

f∗ds <
∫
γ
f∗ds. Hence, without loss of generality we can

assume γ satisfies this property: if s1, s2 ∈ Ci , |s2 − s1| < δ3, then γ ([s1, s2]) ⊂ V̄i1.

Step 4. With the property obtained, we perturb the curve defined on Ci so that the integral
on Ci can be treated.

Ci is closed and consists of countable closed intervals (they are subintervals of [0, L],
different from the intervals on the edge portion) and a nowhere dense set G ′

i (G
′
i may have

positive measure). Moreover Gi = Ḡ ′
i is still nowhere dense since the extra possible points

are the endpoints of the intervals. By the assumption above, we may write Gi = ∪N1
j=1Gi j

for some N1 ∈ N. [inf Gi j , supGi j ] \ Gi j does not contain any interval of length ≥ δ3 for
any j , so that γ ([inf Gi j , supGi j ]) ⊂ V̄i1, and

inf
v1∈Gi j1 ,v2∈Gi j2

|v1 − v2| ≥ δ3

Now, assume K isGi j or one of the intervals inCi , and let sl = inf K , sr = sup K and ε1 > 0
be fixed.We can find finitely many points sk in K and the difference between two consecutive
points is less than δ3. We shift γ ([sk, sk+1]) along the normal of Ii at γ (sk) toward Vi1 with
distance δ4. Now, we add line segments to connect the endpoints. The shifted curve portions
and line segments are all in Vi1 if δ4 is small enough. Denote the curve so obtained by γ ′.
By the uniform continuity of f∗ in V̄i1, we have

∫
γ ′ f∗ds <

∫
γ
f∗ds + ε1. However, γ ′ may

be self-intersecting. We now modify it following an essentially similar procedure as before:
γ ′ consists of γ [0, sl ], γ [sr , L] and the shifted curves together with line segments, denoted
as P̃ . Consider the first shifted curve portion with the line segment P̃1. Suppose k ≥ 2 is the
largest number such that P̃k intersects with P̃1. We find the first point on P̃1 that is on P̃k , then
discard the part on P̃1 after this point and all curve portions P̃l with 1 < l < k and the part
on P̃k that is before this point. Since the portions are finite, this process can be terminated,
resulting in P ⊂ P̃, P ∈ C that connects γ (sl) and γ (sr ). The remaining work is the same
as how J was modified before. Then, we find a new curve γ2.

∫
γ2

f∗ds ≤ ∫
γ ′ f∗ds. By the

construction, we have removed K \ {sl , sr } from Ci without adding new points. Such sets
are countable, we can finish this process and obtain a curve γ3, so that Ci (γ3) consists of
countably many points and

∫
γ3

f∗ds − ∫
γ
f∗ds < ε/M since ε1 is arbitrary.
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Hence, we are able to construct a curve γ4 with γ4(0) = x and γ4(L) ∈ Γ (since it has the
same endpoints as γ ) such that

∫
γ4

f ∗ds ≤ ∫
γ4

f∗ds + 2ε <
∫
γ
f∗ds + 3ε < φm(x) + 4ε,

which verifies the condition so that φm(x) = φM (x).

Appendix C: The Solution of the Reinitialization Equation

In this section we show that the formula given in (19) is a viscosity sub-solution of the
level-set reinitialization equation. An argument showing that it is also a super-solution is
similar.

Consider that u − ζ , where ζ is C∞, has a local maximum at (x0, τ0) for τ0 > 0.
We show that the sub-solution condition is satisfied. If τ0 > τx0 , then in a neighborhood
of (x0, τ0), we have τ > τx since τx is continuous on x . The solution does not depend
on τ , and we also must have ζτ (x0, τ0) = 0. The sub-solution condition is satisfied for
x0 /∈ Γ as the condition has already been verified for the eikonal equation. If x0 ∈ Γ ,
[sgn(u0)(|p| − g)]∗|p=∇ζ(x0),x=x0 ≤ 0 is assured.

Consider 0 < τ0 ≤ τx0 . Then u0(x0) �= 0 since for any x ∈ Γ , we have τx = 0 < τ0.
Take u0(x0) > 0 (the result for u0(x0) < 0 is similar). Let h1 = min{τ0, d(x0, Γ )} > 0.
There exists 0 < h2 ≤ h1, such that the dynamical programming principle holds for h < h2:

u(x0, τ0) = inf
γ

{
u(γ (h), τ0 − h) +

∫ h

0
g(γ (s))ds

∣∣∣ γ (0) = x0

}
. (53)

We now show this principle. Since τ0 ≤ τx0 , for any ε > 0, we can find γ with γ (0) = x0
such that u(x0, τ0) + ε > u0(γ (τ0)) + ∫ τ0

0 g(γ (s))ds. By the definition,
∫ τ0
h g(γ (s))ds +

u0(γ (τ0)) ≥ u(γ (h), τ0 − h) whether or not τ0 − h > τγ (h). ‘≥’ is thus shown.

We now show the other direction. Let B = infγ {∫ L
0 g(γ (s))ds|γ (0) = x0, γ (L) ∈ Γ },

and fix an arbitrary γ ∈ C , γ (0) = x0. We will discuss both cases where either τ0 < τx0 or
not.

Consider τ0 < τx0 . Take h2 ≤ h1 small enough so that |x − x0| < h2, |τ − τ0| < h2
implies τ < τx due to the continuity of τx . Let h < h2. We can find γ1, γ1(0) = γ (h) such
that u(γ (h), τ0 − h) + ε >

∫ τ0−h
0 g(γ1(s))ds + |u0|(γ1(τ0 − h)) since τγ (h) > τ0 − h.

Connecting γ (s) : 0 ≤ s ≤ h and γ1, we find γ2. γ2(τ0) = γ1(τ0 − h). Then, u(x0, τ0) ≤∫ τ0
0 g(γ2(s))ds + |u0(γ2(τ0))| <

∫ h
0 g(γ (h)) + u(γ (h), τ0 − h) + ε.

We now assume that τ0 = τx0 (recall that we are discussing the case where τ0 ≤ τx0 ).
We must have that u(x0, τ0) = B. Let h < h1. If τ0 − h ≥ τγ (h), then ∃γ1, γ1(0) = γ (h),

γ1(L) ∈ Γ where L ≤ τ0 − h such that u(γ (h), τ0 − h) + ε >
∫ L
0 g(γ1(s))ds. Then,

connecting γ (s) : 0 ≤ s ≤ h and γ1, we get a new curve γ3 with total length h + L ≤ τ0.
We then have u(x0, τ0) = B ≤ ∫ L+h

0 g(γ3(s))ds <
∫ h
0 g(γ (s))ds + u(γ (h), τ0 − h) +

ε. If τ0 − h < τγ (h), we can find γ1, γ1(0) = γ (h) such that u(γ (h), τ0 − h) + ε >
∫ τ0−h
0 g(γ1(s))ds + |u0|(γ1(τ0 − h)). Connecting γ (s) : 0 ≤ s ≤ h and γ1, we get γ2.
Since τ0 = τx0 , B ≤ ∫ τ0

0 g(γ2(s))ds + |u0(γ2(τ0))| by the definition of u(x0, τ0). The same
argument as in the previous paragraph follows.

Combiningwhatwe have, the dynamic programming principle follows.With this principle
the sub-solution condition is easily verified: since u(x0, τ0)− ζ(x0, τ0) ≥ u(γ (h), τ0 −h)−
ζ(γ (h), τ0 − h), we see that

ζ(x0, τ0) ≤ inf
γ

{
ζ(γ (h), τ0 − h) +

∫ h

0
g(γ (s))ds

∣∣∣ γ (0) = x0

}
, (54)
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which implies that

ζτ (x0, τ0) + |∇ζ |(x0, τ0) ≤ g(x0). (55)
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