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Active particles in anisotropic, viscoelastic fluids experience competing stresses which guide their
trajectories. An aligned suspension of particles can trigger a hydrodynamic bend instability, but
the elasticity of the fluid can drive particle orientations back towards alignment. To study these
competing effects, we examine a dilute suspension of active particles in an Ericksen-Leslie model
nematic liquid crystal. An anchoring strength linking the active and passive media tunes the system
between active suspension theory in Newtonian fluids in one limit, and active nematic theory in
another. For small active Ericksen number or particle concentration the suspension settles to an
equilibrium state with uniform alignment. Beyond a critical active Ericksen number or particle
concentration, the suspension instead can buckle into a steady flowing state. Rather than entering
the fully developed roiling state observed in isotropic fluids, the development is arrested by fluid
elasticity. Arrested states of higher wavenumber emerge at yet higher values of active Ericksen
number, and a phase transition is identified at finite anchoring strength. If the active particles
are motile, traveling waves emerge, including a traveling, oscillatory ‘thrashing’ mode. Moment
equations are derived, compared to kinetic theory simulations, and analyzed in asymptotic limits
which admit exact expressions for the traveling wave speed and both particle orientation and director

fields in the arrested state.

Active particles in viscous fluids, from motile microor-
ganisms to molecular-motor-driven biofilaments, gener-
ate stresses on the environment which can drive flow and
affect particle orientational order. Biological fluids in-
troduce additional complexity. Mucus, for instance, is
anisotropic when sheared [I], which can rectify and oth-
erwise affect microorganism transport [2H5]. Viscoelas-
ticity and shear-dependent viscosity, generic in biological
settings, also affect motility [6H9]. Liquid crystals (LCs)
[10, [TT] have been used to probe the role of complex fluid
stresses on bacterial transport in a more controlled set-
ting [I2HI4]. At high bacterial concentrations, collective
behavior is observed [I5] which is distinguishable from
such behaviors in isotropic viscous fluids.

In a Newtonian fluid, orientational alignment can
emerge due to hydrodynamic interactions alone [16], but
such uniformly aligned states are unstable to a bend in-
stability [I7], leading to chaotic dynamics [I8-22]. When
swimming through a nematic LC, however, microorgan-
isms can be confined by elastic stresses to swim along the
director axis [12, I3, 23H28], depending on the anchoring
conditions [29], which can affect the nature of the bend
instability and the nonlinear dynamics so induced.

Particle motility and/or the concentration of active
particles in an otherwise passive medium introduce ad-
ditional collective behaviors. Driven actin filaments [30],
Quincke rollers [31], and swimming spermatozoa [32] can
all exhibit wave-like dynamics, even in isotropic fluids.
Density waves in active media have been found in models
ranging from the Viscek and Toner-Tu-type continuum
models [T9] [B3H38], to active polar gels [39] and models in-
corporating hydrodynamic particle interactions [40} 4T].
Solitary waves have also been observed in these models
and in experiments [30, [42], where particle bands form

at large particle concentration and system size.

Experiments using a dilute suspension of microorgan-
isms swimming through LCs have shown a change from
individual rectified motion to the formation of a wave-
like jet of swimming particles [43]. The wave dynamics
in this experiment suggest a balance between active and
elastic stresses. The behavior of a LC hosting a suspen-
sion of active particles (a ‘living liquid crystal’ [12]) thus
depends on the particle concentration.

In related active nematics, the constituents provide
both nematic order and active stresses [44H46]. Active
nematics support steady streaming states and regions of
hysteresis [47H54], traveling waves [55], and interfacial
wave propagation [56], which depend on the nature of
stress generation (extensile or contractile), substrate in-
teractions [57, 58] and curvature [59H63], and flow align-
ing/tumbling properties. These steady streaming states,
in which fluid elasticity arrests further instability devel-
opment, were studied recently by Lavi et al. [64]. High
wavenumber labyrinthine patterns emerged at large ac-
tive stresses. Pseudo-defect formation was also explored,
and defects were found to destabilize arrested states into
active turbulent states. A natural question arises: in
what settings might such states emerge in living liquid
crystals? Along these lines, a first order phase transition
of a nematic LC due to active (kinesin/tubulin) interfa-
cial stresses has recently been observed [65].

In this letter, we present a model for a dilute sus-
pension of active particles in a nematic liquid crystal.
The model ranges from an active suspension theory in
either Newtonian [I8] or transversely isotropic environ-
ments [66], to an active nematic theory, controlled by an
anchoring strength linking the active and passive media.
An active Ericksen number, comparing active stresses to



elastic fluid stresses, is used to explore a wide range of
related systems. We observe bifurcations in the dynam-
ics as either the particle concentration or the active Er-
icksen number is increased for extensile-stress-generating
(‘pusher’) particles, first from uniform alignment and
no flow, to the development of an arrested state with
steady streaming, and then to arrested states of higher
wavenumber. If the particles are motile, arrested states
can translate at a finite wavespeed, or even express a peri-
odic ‘thrashing’ mode. Analytical estimates are provided
throughout.

Model. The particles are modeled as prolate ellipsoids
with major and minor axis lengths 2a and 2b, volume v =
4mab? /3 and surface area S, residing in a cubic domain of
volume V = L. The number of particles, IV, is constant,
and the particle volume fraction is ¢ := Nv/V. The
number density of particles is written as ¢¥*(ax, p, Tt) =
NL=3y(x,p,t), where ax is the spatial position and Tt
is time (7T is defined below), and x € [0, £]® with £ :=
L/a. The particle concentration is given by ¢*(ax, T't) =
NL73¢(x,t), where ¢ = [y, (, p,t) dp.

The active particles are assumed to be much larger
than the LC molecules - a Type VI system in the lan-
guage of Ref. [9]. The LC dynamics are treated us-
ing the Ericksen-Leslie model (in the one-constant ap-
proximation), with elastic energy density (K/2)||Vn|? =
(K/2)0in;0;n;, K the Frank elastic constant, and V =
Oz [10, [67]. Tangential anchoring conditions of strength
W are assumed on the LC/particle boundaries [29]. De-
noting the local LC orientation by n, the bulk energy
density is modeled as (K/a?)F, where (see [68]):

F= %HVnHQ + g /52 U(a.p,t) (1 (n-p)?) dp. (1)

A penalty has been assigned on misaligned particles, and
W = SW/(aK) is the dimensionless anchoring strength
[69-TT]. Variations in the molecular position and orien-
tation produces a stress (K/a?)o,.(x,t):

o,=-Vn -Vn' — %(hn +nh) + %(hn —nh), (2)

with h = (I — nn) - H, where H = —0F/dn =
[V2n + Wn - (cD)] is the molecular field, A is the tum-
bling parameter, cD = fg2 pp Y dp is the second orien-
tational moment of the particle distribution [I0} 67 68],
and hn and similar terms are dyadic products.

Each particle imposes a force dipole of strength o
on the surrounding fluid, resulting in a locally aver-
aged active stress ocD [16, [72]. With a timescale,
T = pua®/K, the fluid velocity is denoted by
u*(ax, Tt) = K (ua) tu(zx,t), where u is the solvent vis-
cosity (anisotropic viscosity coefficients are neglected).
Dimensionless momentum balance is given by

—Vp+V2u+ V- (0, + Er,écD) = 0, (3)

with p the pressure, a Lagrange multiplier which enforces
continuity, V-u = 0, and (V-o); := 0,0;;. Here we have

defined the active Ericksen number, Er, := ca?/(vK),

which scales with the active stress and inversely with

LC elasticity [73]. If Er, < 0, the particles are extensile

‘pushers’, and with Er, > 0, they are contractile ‘pullers’.
The director field dynamics are given by

D 1

oy = I—nn)- (n~(>\E+Q)+7h>, (4)
where v is the dimensionless rotational viscosity [10} [67,
68, E = (Vu + Vu®l)/2, and Q = (Vu — VuT)/2.
Conservation of active particle number is expressed by
a Smoluchowski equation for v [74],

Ve + V- (@) + Vp - (pY) =0, (5)
where V, = (I — pp) - (0/0p), and & and p are particle
translational and rotational velocities, modeled as

a'::quVopr@, (6)

P
p=1-pp)- p-Vqu%(n-p)n —d%-

With Vy, D*, and d* the dimensional swimming
speed, translational diffusivity, and rotational diffusivity,
their dimensionless counterparts used above are Vy =
paVy /K, D = puD*/K, and d = pa®*d*/K. The mo-
ment acting on the LC by misaligned particles is balanced
above by a corresponding torque —SWn-p on each parti-
cle, affecting orientation via a near-alignment rotational
drag with coefficient 7.

The system is governed by the dimensionless groups
(L,Erg, W, Vo, v, D,d,n, A). Characteristic values can be
determined for B. subtilis cells in DSCG [75]. Assuming
a domain with dimensions £ = 50, we find |Er,| = 1—20,
W 0.5-5 Vy=~0.06 v~ 1074 D,d~ 107°, n ~ 4,
and we fix A =1 [68].

Simulations. We consider confinement to motion in
two dimensions (x,y) and invariance in the third dimen-
sion, writing p = (cos 8,sin 6, 0) and n = (cos P, sin P, 0)
(Fig. ) Simulations of Egs. , and are per-
formed using a pseudospectral method with 1282 Fourier
modes and dealiasing; time-stepping is performed using
an integrating factor method, along with a second-order
accurate Adams-Bashforth scheme [20] [70].

We begin by considering immotile particles (Vy = 0)
in the limit of small active Ericksen number, where elas-
tic stresses dominate active stresses. For generic initial
conditions in both particle concentration and orientation,
the system rapidly stabilizes to a uniform LC orientation
with active particle alignment in the LC direction. Dif-
fusive spreading then leads to a constant concentration
field and zero fluid velocity (see Movie 1).

Beyond a critical active Ericksen number or particle
concentration, the classical bend instability of active par-
ticles overcomes the stabilizing LC elasticity. With a
nearly uniform concentration of active particles in near-
alignment with a uniform LC orientation field, a long-
wave instability is triggered in both the particle and LC

(7)
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FIG. 1. (a) Individual elongated particles with orientation p = (cos,sin,0) immersed in a liquid crystal (LC) with director
field n = (cos ®,sin ®,0). (b) The first arrested flowing state (Er, = —8, W = 20) from simulations using the full kinetic
theory. White lines show the LC direction, cyan double arrows show the active particle orientations, and the background
color shows the bulk LC elastic energy, ||[Vn||?/2. A director line (integral curve of the active particle field) is also shown.
The fluid velocity is everywhere in the vertical direction, and largest in magnitude in the regions of large LC bending (i.e.
active flow drives local bending and high elastic energy). See Movie 2. (c¢) The second arrested state (Er, = —16) is fully two
dimensional, following a secondary instability. See Movie 3. (d) Motile particles (here Vo = 0.06 and Er, = —3) relax into
a rightward traveling concentration wave. Cyan arrows show the direction of particle swimming, and the background color
shows the particle concentration. Particles evacuate from highly bent regions and cluster away from them. See Movie 5. (e) A
leftward traveling wave of greater elastic deformation, with (Erg, ¢, Vo) = (—7,0.1,0.06), which moves in the opposite direction
as the mean particle swimming direction (here on average directly to the right). See Movie 6.

orientation fields. However, rather than continuing on
to a fully developed roiling state like those seen in New-
tonian fluids [I8], LC elasticity arrests further growth
and the system relaxes to a steady flowing state (as

in Refs. [12] [47, 48|, 64, [77H80]), evoking the classical
Fréedericksz transition in nematic LCs [10}, [IT].

Figure[Ip shows such a steady flowing state, with back-
ground color indicating the stored bulk LC elastic energy,
[Vn|?/2, computed using (Erq,d,W,v,n,)\,D,d) =
(—8,0.02,20,0.1,1,1,1,0.1) and random initial data.
The velocity field is everywhere vertical and fastest in
the region of high LC bending. A solid curve shows an
integral curve of the director field (a director line).

For larger active Ericksen numbers, this arrested state
succumbs to a secondary instability in the transverse di-
rection, just as in the Newtonian setting [16], 22] [81]. Here
the arrested state takes on a fully two-dimensional config-
uration (Fig. Ik, where Er, = —16). Elastic stress in the
LC becomes more focused into highly bent regions, and
fluid flows with high velocity along these ridges (bending
the LC most strongly there). The particle concentrations
in both examples above equilibrate to uniformity, ¢ = 1.

Further increases in the active Ericksen number intro-
duce higher wavenumber arrested states (Fig. , Movie
4; see Ref. [64] 82 [83]). The role of the periodic do-
main was also considered - simulations suggest that this
horizontal configuration (or a vertical configuration) is
linearly stable to system rotations. Generic initial data
relaxes to one of these fixed points, or to a third stable
fixed point, a diagonal mean orientation, e.g. (®) = 7 /4.

For motile particles, arrested states again form but are
found to translate at a speed which depends on the active
Ericksen number. Figure [Id shows a traveling arrested
state using the same parameters as those used in Fig.
except for (Erg, Vo) = (—3,0.06). The background color

shows the attracting state of particle concentration, with
waves moving to the right (for reasons to be discussed).

Surprisingly, the direction of the traveling wave can
reverse relative to the individual particle swimming di-
rection. Fig. [le shows the traveling arrested state with
instead (Er,,¢) = (—7,0.1). The concentration wave
moves to the left, while the mean swimming direction
is still directly to the right. Such a prograde-retrograde
reversal has also been found in undulatory locomotion
in nematic LCs [84]. At even higher swimming speeds
and activity, a periodic ‘thrashing’ mode appears. This
mode is characterized by dramatic shifting of concentra-
tion and elastic energy back and forth between two sym-
metric states similar to Fig. [Tk and its reflection across
the z-axis (see Movie 7).

The anchoring strength selects the extent to which the
system acts as an active suspension in a transversely
isotropic medium [66] (W — 0), or as an active nematic
(W — ). Figure [2|shows two states using the same pa-
rameters as in Fig. [Lb, but with (Er,, D) = (—70,0.01).
In the first panel, the anchoring strength is small, W =
0.1, and the system undergoes chaotic dynamics as in a
Newtonian fluid [I8], while at large anchoring strength,
W = 20, a steady (flowing) labyrinthine arrested state
emerges like that appearing in active nematics [64].

Figure [3h shows the steady bulk elastic energy as a
function of W, revealing a phase transition at roughly
W = 0.3 for the parameters used in Fig. [Ip. For these
parameters the system relaxes to perfect alignment (equi-
librium) below this value of W, and saturates for large
W. Much richer behavior, including bulk elastic snap-
through into lower energy states were also observed (see
[68], Movies 4, 8).

Moment equations. Moment equations can provide in-
sight into stability criteria and the fully nonlinear ar-
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FIG. 2. (a) At large particle activity, Er, = —70, and small
anchoring strength, YW = 0.1, a chaotic flowing state emerges
as in Newtonian fluids. (b) At large anchoring strength, W =
20, the system settles into an arrested (flowing) state, with
high wavenumber distortions and pseudo-defects as in active
nematics. See Movies 4, 8.

rested state. We consider a locally aligned particle dis-
tribution ¥ (x, p, t) = c(x,t)0(p — m), with first and sec-
ond orientational moments m := (p)/c := ¢~ [, pypdp
and D = (pp) /¢ ® mm. Using Eq. we find (with
Dt = Bt +u - V)

Dic+ VoV - (em) = DVZc, (8)

Di(em) + VoV - (cmm)

=c(Im —mmm): (Vu+Wn 'nn)

+ DV?(em) — 2dem, (9)
along with Eq. @ with A = 1. Motivated by Figs.|lb and
[Id, we seek solutions which only vary in z. Writing m =
(cos ©,sin ©,0) yields unwieldy equations for ¢, ©, and
® (see [68]), but for large anchoring strength, W > 1,
we can pursue a regular perturbation expansion (®,0) =
(®0,00) + WH(®1,01) + ---. At leading order we find

Oy = Py, and at first order, with vanishing rotational
viscosity (y — 0) we find

O0ic+Vp (ccosOg), = Dcyy, (10)

0O + Vo (sinOg), = —FErq¢ ccos® O sin O
2D
+ 22 ©0)e + ()™ + D)) (1)

To study the first arrested state (Fig. ), we consider
immotile particles, Vy = 0. By 7 the concentration
relaxes to uniformity, ¢ = 1, and the dynamics are gov-
erned by alone. At equilibrium, denoted by ©, and
defining ¢ = 2rL 2, we find

Dee© + Acos® Osin© = 0, (12)
where we have introduced an activity parameter

—Er,¢L?
(2m)2(D +n~1)’

and A > 0 for extensile particle stress. A similar equation
describes an active nematic steady state [64], [82].

A= (13)
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FIG. 3. (a) The elastic energy, £(t) = (1/2) [ |V®|* dz dy, at
steady state (£(t) = £ ), vs. the anchoring strength for the
parameters used in Fig. [Ip, showing a critical transition at
W = 0.3. Inset: E(t) for a few anchoring strengths W. (b)
The maximum orientation angle at equilibrium, ¥ = ||0|«, as
a function of A, at infinite anchoring strength. Solid, dashed,
and dotted lines are from numerical solution of , and ap-
proximations for A > 1, and for A = 1, respectively. Symbols
are from numerical simulation of the moment equations —
@D. The filled symbol is a second critical A beyond which the
1D arrested state is unstable to transverse perturbations.

Integration of Eq. yields a closed-form represen-
tation of © in terms of ¥ := ||O||s0:

cos()
V1 =202 (B1&; Ba)’

where B; = (A/8)'/2sin(209) and By = 2csc? ). Here sn
is a Jacobi elliptic function, which is sinusoidal if By = 0
and a square wave if B, = 1. From , the maximum
particle orientation angle, 1, can be shown to depend on
A via the implicit relation,

2
gK <sz 19) —VAcost = 0. (15)

s

cos® =

(14)

Here K (+) is the complete elliptic integral of the first kind
[68]. The only solution for A < 1 is ¢ = 0. The value
of ¥ obtained from is plotted in Fig. as a solid
line for different values of A, along with symbols showing
values computed using full 2D simulations of the moment
closure equations, which are in close agreement.

Two asymptotic approximations are included in
Fig. Bp, for A ~ 1 and A > 1, revealing the initial
bifurcation to the first arrested state at A = 1. Only
for A > 1 can a balance be reached between active and
elastic stresses in a bent configuration. Although ar-
rested solutions exist for arbitrary A, they become unsta-
ble to transverse perturbations beyond a critical activity
strength. Simulations of the moment equations —@D
suggest that this transverse instability is triggered, using
the same parameters as used in Fig. [Ip, at A ~ 9.5.

Traveling waves. We now take up the question of
the periodic traveling waves observed for motile parti-
cles (Vo > 0), as in Fig. [[d. The physical mechanism
is geometric in nature: due to motility, particles with a
larger horizontal velocity component encroach upon par-
ticles with a smaller such component, thus evacuating
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FIG. 4. (a) Horizontal velocities vary along the arrested LC
due to motility, leading to evacuation from regions with large
LC bending and clustering in regions of small LC bending,
and thus traveling bands. (b) The dimensionless wave speed
w vs. log(Vo/D) for A € {2,5,16}. The curves are from
with © found numerically from . Symbols in (b) are from
simulations of (§)-(9). (c,d) Filled contours of wave speeds
from numerical simulations of and for fixed Vo =
0.06, compared with the theoretical expression (black
curves) for a range of diffusivity D (c) and activity Er, (d).

from regions with large L.C bending and clustering in re-
gions of small LC bending, as illustrated in Fig. dh.

The wavespeed may be estimated by studying -
in a comoving frame, ¢ := 2rL~(z — wt), where
w is the (unknown) wave speed. Using that (¢,©¢) =
(1, (:)) is a periodic solution with trivial wave speed w = 0
when V, = 0, we seek periodic solutions with Vy # 0
as perturbations of the Vy = 0 solution. At O(Vy), we
obtain a system of equations in terms of O, which are
reported and solved analytically in the supplementary
material [68]. The wave speed to leading order in Vj is
ultimately found to be:

w~Vy [(6I1 — 312/15)/2 + (nD) " (I — I,/I3)], (16)

where I; = (27r)71 fo% cos(©)de, I = fo% cos(0) ég dg,

and I = [ O de.

Figure shows a comparison between the analyti-
cal and computed wavespeeds across a range of ratios of
(dimensionless) swimming speed to diffusion constants,
for three different activity coefficients, A. The predic-
tions are in good agreement for small Vy/D as expected,
and, for small A, remain fairly accurate even for larger
Vo/D. In addition to increasing wavespeed at larger
swimming speeds, the physical concentration bands be-
come sharper, since the differential horizontal swimming
component is more pronounced and the smoothing na-

ture of diffusion is overcome (see [68]). Figure [ik,d
show the computed wave speed w as filled contours (with
Vo = 0.06 fixed), along with dashed lines from the the-
ory above, showing close agreement. Increasing D or
decreasing |Er,| both reduce the maximum orientation
angle, 9, in the arrested state, increasing the wavespeed.
Increasing the particle fraction has the opposite effect; it
increases ¢ and thus impedes lateral motion. For A~ 1,
taking © =~ ¥ cos ¢ (see Fig. ), we find

e o
8V A

This estimate is comparable to the values reported in
Fig. [dd. The wavespeed is naturally enhanced by faster
swimming, but is reduced by larger activity or particle
volume fraction, since these contribute to larger LC de-
formations (larger ), again hindering particle transport.

Direction reversal to retrograde wave propagation is
also captured, as shown with solid curves in Figs. [,d.
The concentration wave passes opposite the direction of
swimmer motion for sufficiently large ¢, though this is
counteracted by large diffusivity, D, or small activity.
For large A, Fig.[db (A = 16) indicates that the traveling
wave undergoes yet another direction reversal as Vy/D is
increased, so that the wave once again travels in the same
direction as the active particle motion.

Conclusion. We have shown that the bend instability
of a suspension of active extensile particles may be tamed
by elastic stresses in a surrounding anisotropic, viscoelas-
tic fluid, leading to arrested, flowing states. The degree
of LC deformation in the arrested state depends on the
active Ericksen number and the active particle concen-
tration. When the particles are motile, traveling con-
centration waves ensue, including a dramatic, periodic
thrashing mode.

Future work is certainly needed; we did not explore
the role of a number of parameters (e.g. A). Nor did
we include anisotropic viscous response [66], particle de-
formability [85], or elastic interactions between active
particles through the LC, which has been considered in
Refs. [86, 7], all of which may be important in some
manifestations of this system. Nevertheless, the analyti-
cal descriptions of the arrested states and traveling wave
speeds can provide a benchmark for examining more com-
plex states which emerge at yet higher particle concen-
trations, which should be useful given the large number
of parameters needed to characterize the system.
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I. EQUATIONS OF MOTION
A. Swimmer distribution function

The active particles are modeled as prolate ellipsoids with major and minor axis lengths 2a and 2b, and each particle
thus has volume v = 4mab®/3. Particles are assumed to reside inside a cubic domain with linear dimension L, and
volume V := L3. The number of particles, N, is assumed constant, and we define the particle volume fraction as
¢ := Nv/V. The particle position in space is denoted by az, and its orientation by p € S?, the unit sphere in R3.
We define the number density of active particles, ¥*(azx, p, Tt) = NL~3¢(x, p,t), where T is a dimensional time (to
be defined), and « € [0, £]> and t > 0 are dimensionless, with £ := L/a. The total number of particles in the system
is given by

N = / * (am, p, Tt) dp d(az), (18)
D J§2
or

1
1= E /D o2 d](mapa t) dpdCC, (19)

where D is the dimensionless fluid domain with |D| = £3. For example, a uniformly concentrated, isotropic suspension
has ¢* = N/L3, or 1 = 1/£3. The concentration of particles is denoted by c¢*(ax,Tt) = NL™3c(x,t), where

c(x,t) = /SZ Y(x,p,t)dp, (20)
and we have
1
73 /Dc(a:,t) de =1, (21)

so that a uniform concentration has c(x,t) = 1. Higher moments will also be used, in particular the first and second
orientational moments, defined on the dimensionless particle distribution as

) = [ po@ptd. wp)= [ ppip.0dp (22)

respectively, with pp a dyadic product.
We will also use normalized moments,

(p) D(,t) = (pp) (23)

m(@ )= = @)

Here m is the active polar order parameter, and D relates to the nematic order parameter, Q, via Q = (D — I/3).
Finally, we define a Dirac delta function on the dimensional spatial variables, §*(ax), defined so that

6" (ax — axy) d(ax) = 1, (24)
D

for any point axy € D*, and a dimensionless delta function 6(x — o) := a36* (ax — axy), so that

/ O(x —xp)de = 1. (25)
D



B. Liquid crystal dynamics

We will use an Ericksen-Leslie description of the liquid crystal (LC) [10, [67], which is assumed to be deep in the
nematic phase. The local molecular orientation is denoted by m. Director fields confined to two dimensions will
be written in terms of a single angle field ®, or n = (cos ®,sin ®,0). In the one-constant approximation, the elastic
energy density is (K/2)||V'n|? = (K/2a> )||Vn||2 with K the Frank elastic constant, V' and V the del operators with
respect to the dimensional and dimensionless positions ax and x, respectively, and the norm above is the Frobenius
norm.

We now consider the effect of introducing N identically shaped active particles into the LC. The j* active particle
position is written as amé] ) and its orientations as pY). The boundary conditions are assumed to be finite-strength

(‘weak’) tangential anchoring conditions with anchoring strength W. K and W have units of force and force per length,
respectively. We assume that the bodies are large compared to the molecular constituents of the liquid crystal, but
small compared to the length over which n is varying (a Type-VI system in the language of Ref. [9]). We can then
incorporate the associated moment into the volumetric energy density consistent with the Rapini-Papoular [88] [89]
surface anchoring approximation. Denoting the energy density as (K/a?)F, we write

= %vau? - < > Za z—zf (1 - (n~p(j))2) : (26)

Here S is the surface area of an individual particle; S ~ 72ab(1 + O((b/a)?)) for slender, rod-like particles. If the LC
and active particle directions are confined to 2D, writing pt) = (cos 6;,sin6;,0), Eq. is equivalent to

1 W&
= 5IVeP+ > sin?(0; - @)d(x — x§), (27)
j=1
where we have introduced the dimensionless anchoring strength

SwW
= 2
W= K (28)

Defining h := (I — nn) - H, where H = —0F /on is the (dimensionless) LC molecular field [10], we have
h=I-nn) | Vn+ WZ pNpWs(x —xi) | . (29)
7j=1

In two dimensions, we write h = hn*, with nt = (—sin ®, cos ®,0), so that

h=vie 4+ ZN: sin(2(0; — ®))8(x — =) (30)
- 2 J 0 .

Jj=1

Note that h = 0 at equilibrium. For a continuum of active particles, in terms of ¥*,
h=(I-nn)- (VQn +W [ Y (x*, p, t*)(n- p)pdp) ={I-mnn)  (V’n+Wn- (pp)). (31)
S2

In 2D, with h = hn', we have
h=V?®+Wn'n: (pp) = V’® + Wn'n: (pp), (32)

where A : B = A;;B;;, and we recall that (pp) has units of inverse volume. We write the stress corresponding to the
elastic free energy as o (az,Tt) := (K/a?)o,.(x,t), where

1
o.(x,t)=—-Vn. -Vnl - %(hn +nh) + i(hn —nh). (33)

Here ) is called the tumbling parameter (see Landau & Lifschitz [67, Ch. 6]).



We now move on to dynamics. At this point we are motivated select the timescale, T' = pa?/K, and we define the
fluid velocity field u*(az,Tt) := K(ua) 'u(x,t), where p is the solvent viscosity. The deviatoric viscous stress is
written as o (ax, Tt) := (K/a?)o,(x,t), where

o,(z,t) =2E+ pinn(n-E-n)+ uh(nE-n+n-En). (34)

Here E = (Vu + VuT)/2 is the (dimensionless) symmetric rate of strain tensor, and u} and ) are dimensionless
viscosity coefficients (which we take to be zero in the main text). Note that the p)} term absorbs an additional
component associated with n - H , which appears in the active nematic models in, e.g., Ref.[64].

The particles are assumed to generate a force dipole on the surrounding fluid. In three dimensions, each particle is
assumed to generate a force —f in each direction £p, and since the particle has length 2a, we will model the dipole
strength as o9 = 2af. The total stress generated by the active particles in a given volume of fluid is written as
o(azx,Tt) = (K/a*)o.(x,t), where (integrating by parts),

V' o (az, Tt) = / / copp - V'6" (az — aze)* (azo, p, Tt) dp d(azo) (35)
D* JS?
=V / ooppy” (azx,p, Tt) dp, (36)
S?

so that the dimensionless active stress is given by

o.(x,t) = Er,¢(pp) = ErgécD. (37)
Here we have defined the active Ericksen number, which depends on the particle concentration:

a200_2fa3
Kv Kuv’

Er, = (38)

recalling that v is the particle volume and ¢ is the particle volume fraction. With Er, < 0, the active particle is a
‘pusher’ particle, and with Er, > 0, the particle is a ‘puller’ particle.
Combining the stresses above, momentum balance and continuity are then expressed as

-Vp+V-(o,+ 0, + Er,¢cD) =0, (39)
V-u=0. (40)

Importantly, we use the convention that (V-o); = 0;0,; (which is relevant since o, is anti-symmetric). The Ericksen-
Leslie equations are closed with a description of the director field dynamics:

2 (1) (n-()\EJrﬂ)—kih) ~ (- nn)- {n-(AE+ﬂ)+i(V2n+W0n'D) ) (1)

where py is the rotational viscosity (and 7 is dimensionless) [10], @ = (Vu — VuT)/2 is the dimensionless vorticity
tensor.

C. Dynamics of the active suspension

Conservation of the total number of swimmers results in a Smoluchowski equation for v,
Vi + V- () + Vp - (PY) =0, (42)

where V,, = (I — pp) - (0/0p) and & and p are the (dimensionless) active particle translational and rotational
velocities [74]. Let us first motivate a model for the reorientation rate of an individual active particle or swimmer in
the presence of the nematic LC field. Absent a velocity field, and assuming that n remains frozen, the moment on
the LC as described above is SW(n - p), and the corresponding torque on the active particle is thus —SW(n - p).
This torque is balanced by a viscous response. As a first approximation, we thus model the response in dimensionless
variables (and p = dp/dt) as

np=I-pp)- W(n-p)n). (43)
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In a Newtonian fluid, n ~ 167 (6log(2a/b) —3) " as b/a — 0 (e.g. for rod-like particles). In general this drag
coefficient depends on the particle orientation relative to the director field, but at large anchoring strengths it represents
only rotational drag on a nearly aligned body.

We consider a model for the (dimensionless) velocities, then, in which

a'c:quVopr@, (44)

(0
p={I-pp): p-Vu+%(n-p)n —dvf- (45)

With V', D*, and d* the dimensional swimming speed, translational diffusion constant, and rotational diffusion
constant, respectively, we have defined their dimensionless analogs via V' = KVy/ua, D* = KD/u, and d* =
Kd/(ua?). These particle velocities are simple modeling choices. A force on a body in a nematic LC can also result in
a transverse lift [90], which we neglect. We also neglect long-range elastic forces between the active particles, and the
associated aggregation [91], under the assumption that hydrodynamic effects are dominant. Sokolov et al., studied
the interactions of multiple swimming bodies [86].

D. Dimensionless groups and characteristic values

The dimensionless groups governing the system presented above are as follows:

L= % (relative system size)

o= % (particle volume fraction)

Er, = %%3 (active Ericksen number),
= % (LC anchoring strength),

Vo = MC;(‘,/O* (relative swimming speed),

n (rotational drag coefficient),

D= Mllz* (translational diffusivity),

d= ua;(d* (rotational diffusivity),

v = %* (LC rotational viscosity),

A (LC tumbling parameter).

Characteristic values for the dimensional parameters above may be estimated using B. subtilis cells in DSCG, a
lyotropic chromonic phase [75]. We have approximately: a = 3um, b = 0.5um, S = 15um? 1 ~ 4, Vg = 20um/s
(in water), from which we estimate f ~ 6rpaly = 67(10~2dyn s/cm”)(3um)(20um/s) = 10~ 7dyn, v = 4rab?/3 =
3.1pum3, K =107"—=10"%dyn, W ~ 1078 —-10""dyn/um, and v* = 1075 —10"*dyn s/cm?. For the diffusion constants,
by the Stokes-Einstein relation, using k7' = 4.11 - 10721J = 4.11 - 10~ dyncm, we have D* ~ k/7T/(6mpa) =
107%m? /s and d* ~ kyT/(87pa®) = 0.01s7L.

Assuming a domain with dimensions £ = L/a = 50, the above values produce the following estimates of the
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dimensionless parameters:

|Er,| ~ 1 — 20,

W ~05—5,

Vo = 0.006 — 0.06,

n~4, (46)

D~107°5—-10"*
d~1075—-1074,
v~ 1074,

)

and we set A\ = 1. These parameter values motivate the values used in the main text. Volume fractions in experiments
range from dilute to non-dilute; in the paper we commonly take ¢ = 0.02 unless otherwise stated.

II. MOMENT EQUATIONS AND LIMITS
A. One direction dependence, strong anchoring strength, small rotational viscosity

For a locally aligned particle distribution ¢ (x, p,t) = c¢(x,t)d(p — m), where m is the active polar order parameter
, instead of evolving the full system —, we seek to approximate the active particle dynamics using a system
of moment equations, as given in the main text. For convenience, we rewrite the system here alongside the fluid
equations:

Dc

o; tV Molem)] = DV, (47)

D(lgzn) + V- Vo(emm)] = [cIm — cmmm)] : {VU + :Vnn] + DV?(cm) — 2dem, (48)
%T; = [In —nnn]|: [Vu + );V(cmm)} + %(I —nn)-Vn, (49)

~Vp+ V2u+V - (6, 4+ Eryé(cmm)) = 0, (50)

V.-u=0. (51)

We now seek solutions to — which depend only on the horizontal variable, . Writing ¢ = ¢(x,t), m =
(cos O(z,t),sinO(z,t),0), n = (cos ®(x,t),sin ®(z,t),0) and u = (0,v(z,t),0), Egs. [47), and reduce to:

¢t + Vo (cos(O)e, — sin(©)0,.¢) = Degy, (52)
2
O + Vo cos(0)0,, = cos?(0)v, — % sin[2(6 — ®)]+ D <@m + Zl@m) ) (53)
®; = cos?(®)v, + ¥ sin[2(© — @)] + lq)m. (54)
gl Y

Solving for v, using Eq. , we have

e [_(%)2 + g (cpm + % sin[2(0 — cp)}) §in(28) + Fraoc cos® @] 0, (55)
1 E
Vg + Oy [(—1 — Acos(2D)) (2<I>m + % sin[2(© — (I))]) + Erage sin 2@] =0. (56)
Therefore, using periodicity in z, the fluid velocity and pressure satisfy
5 A We | . 2

p(z) = —(D,)° + 5 D, + -5 sin[2(0© — ®)] | sin(2®) + Er,¢ccos” O, (57)

1 Er,¢c .
Vs = (Acos(2®) + 1) <2¢>m n % sin[2(© — cp)]) _ Brade 0. (58)
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For large anchoring strength, WW > 1, we pursue a regular perturbation expansion,
P = Bo(x,t) + WDy (2,t) + W2y (,t) + - -, (59)
@:Qo(l',t)+W71@1(l’,t)+W72@2(£E,t)+"' . (60)

At leading order, unsurprisingly, from Eq. we find &g = ©. Inserting this relation into the velocity gradient and
expanding, we find that to leading order,

vy = —% sin(20y) + %()\ €08(200) + 1) (9,200 + (01 — &1)) + O <V1V> . (61)

Eq. then provides an equation for the dynamics of ©¢ (or equivalently for ®y) which, through the velocity field,
depends on the difference of the active and passive fields at the next order:

2Dc,

1
0:99 + Vo COS(@())ax@O = —Era¢CC083 O sin Oy + (Cg(@o) — 77) (@1 — ‘1)1) + (g(@o) + D)axx@() + . 0:60,
(62)
where
1
9(0g) = 3 cos?(0y) (A cos(20g) +1). (63)
However, from Eq. (replacing P with ©g), we also have that
1
9,0 = —Er,¢ccos® Ogsin Oy + <g(@o) + 7> [c(©1 — @1) + 020O0] - (64)
Combining Egs. and , we find
1
P - = — - 2D 1—~D .
1(#) = ©1(2) = s (1(Vhecos(O) — 2De;)0,00 + (1 = 1D)e . 00) (65)
In particular, we may obtain an equation for 9;0y depending only on ¢ and c:
(e} -1
010y = —Er,¢ccos® Ogsin Oy + W (=n(Voccos(©g) — 2Dcy) 0,00 + (1 + nDe)0,00) - (66)
We consider in the limit of small dimensionless rotational viscosity, v — 0, which yields
- 1
9,09 = —Er,¢ccos® Oy sin Oy — (Vg cos(©g) — 2D%) 0,090 + <77C + D) 0:290. (67)

Coupling with Eq. (52), we obtain the expressions in the main text.

B. No swimming: steady state analysis

We first define a scaled length & = 2mz/L, with £ € [0, 27], so that, e.g., 8,00 = 2nL719¢Oy. In the absence of
particle motility, the particle concentration ¢ and angle © satisfy Eqgs. and @ with Vo = 0. At equilibrium,
the particle concentration is ¢ = 1, while the equilibrium angle © satisfies

Dec© + Acos® O sin© = 0. (68)
Here we have defined an activity parameter

—Er L2

A= @ord 1)

(69)
which incorporates not only the competition between active and passive elastic stresses (and particle volume fraction)
represented by Er,, but also reduces the effective activity due to diffusivity - an active Péclet number. Note that
A > 0 for extensile stresses.
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Multiplying by ég and integrating yields

1. -
5@2 — %cos‘l(@) =C (70)
for some constant C'. Choosing ©(0) = ||©]|s := ¥ and O¢(0) = 0 (which we may do without loss of generality, by
phase invariance), C' may be written in terms of ¥, yielding

A .
2 _ A 46 _ eocd
O = 5 (cos © — cos 19). (71)

We will focus on extensile particles, A > 0. On the quarter domain & € [0,7/2] we have 0 < ©(£) < ¥, and we may
choose without loss of generality that ©¢ < 0 and ©(7/2) = 0 at the boundary. This selects the appropriate branch
of the square root:

O = \/g\/ cost © — cost 4. (72)

The equation is separable. The trivial solution, ® = 0 and ¢ = 0, is always one solution. To find other solutions,
we can integrate as follows:

é ~
do A
/ ~ = -\/%¢ (73)
9\ cost© — cost
The above integral yields a closed-form representation of © in terms of the initial angle ¢ = (:)(0):
O =cos! cos(v) ) (74)

\/1 — 2sn? (\ /4 sin(29)&; 2 csc? (19))
where sn is a Jacobi elliptic sine function.

The boundary condition ©(7/2) = 0 then reveals an equation for ¥:

—-F) 7 [A
cos2v _2\/;’ (75)

9 .2

de cos sin” 9
F) = = K . 76
2 /0 cos1O _ q V2 ( 2 ) (76)

cos* Y

where

Here K (-) is the complete elliptic integral of the first kind:

/2 dt
K(z) = / _—.
0 V1 —zcos?t
The initial angle 1 is thus selected by the solution to
2 I (sin2 )

s

) — VAcost = 0. (78)

This is a monotonically increasing function of ¥, so the potential for a root is determined by checking the function
value as ¥ — 0. Since K(z) — /2 as z — 0, the critical value of A for which a non-trivial solution appears is
A = 1. Solutions begin to emerge when A > 1, increasing continuously from ¢ = 0. For values of A just larger than
1, expanding around small ¥ = 0 to second order, we find

2(V/A-1)

VA+1/4 (79)



13

— A=101 R
2| e A=15 SN
- A=5 7 Y
o~ | A:95 ,.,'VO—Q-% .\‘
Q| A= ik ,__-\‘\-\‘
?ﬂ- Q&T‘ - f’ =
@/ \‘,\‘K ~___ﬂ ﬁl
3 1
‘.\Q\O-U—o F
N\, . ’
0 \\~.¢‘,,
0 ™ 27
2n/L)x

FIG. 5. Nearly-sinusoidal particle director line (as in Fig. 1b in the main text, which is rescaled and plotted with symbols for
comparison) for a range of activity parameters, A.

Expanding instead around ¥ = 7/2, we find

L €Y

T 1.18
SR vV B 80
2 \/QWAF(%) 2 VA (80)

We may compare the approximations and of ¥(A) to the full numerical solution of Eq. . These two

approximations as well as the numerical solution are plotted across a range of A > 0 in Fig. 3b in the main text. Plots
3 -
of the integral curves, (2ry/L) = / tan ©(s) ds, or director lines, are shown in Fig. |5l Upon domain rescaling and

reflection, the curve in Fig. [5]is in ggod quantitative agreement with the numerically observed director line in Fig. 1b
of the main text (A =~ 5). The secondary instability presented in Fig. 1c in the main text is a fully 2D configuration
which cannot be captured by the 1D system. However, heuristically, this secondary instability may occur when the
vertical extent of end-to-end aligned particles admits an unstable wavelength. For a given A, the smallest unstable
wavelength is determined by a rescaling of space with v/A: since A = 1 is the critical value for z € [0, 27], the critical
smallest amplitude A for instability is 24 = 27/ VA. The amplitude A may be approximated using the integral

5 w/2 5 /2 B
curves plotted in Fig. as A= / tan O(s) ds. Solving / tan O (s) ds = 7/V'A for A, we find a critical value of
0 0
A= 43.

C. Discussion: Finite anchoring strength

We have focused on the limit of strong anchoring strength, where analytical progress can be made. However, the
system is extremely rich when finite anchoring strengths are considered. Adding to the investigations described in
the main text, Fig. [6] shows a different story which emerges at smaller dimensionless diffusivity D, and with activity
A ~ 10, similar to the second arrested state shown in Fig. 1c in the main text. For W € [0.01,0.1), the LC bulk
elastic energy increases nearly linearly with respect to the anchoring strength, and exhibits horizontal and vertical
instabilities. At W = 0.1 and 0.15, the energy bands break, split and then settle down to the first arrested state
as Fig. 1b in the main text, but at a 45 degree angle relative to the square periodic domain. Starting at roughly
W = 0.2, the system settles into the second arrested state (Fig. 1c in the main text). See Movie 8.

III. DYNAMICS OF MOTILE PARTICLES: TRAVELING WAVE SOLUTIONS
We now return to the moment equations, this time with Vy > 0. We have
Orc = =V (cos(©g)c),, + Dcga, (81)

. 1
0,009 = —Er,¢ccos® Oy sin Oy — (VO cos O — 2D%> 000 + (770 + D) O02290. (82)
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FIG. 6. Numerical results from the full kinetic theory for a range of anchoring strengths, W € [0, 1], with fixed (Erq,n, ¢, D,d) =
(—8,1,0.02,0.01,0.01), where A ~ 10 is comparable to that used for Fig. 1c in the main text. (a) The steady state elastic

500
energy, computed as £ = (1/100)/ / (|V<I>|2/2) dx dydt, vs. the anchoring strength WV on a logarithmic scale. The slope
400 Jp

for W € [0.01,0.1] is around 1.2, indicating a nearly linear relationship between the elastic energy and anchoring strength.
Inset: transient evolution of £(¢). (b) Long time evolution of £(t) for W € {0.1,0.15,0.2,1}. For W = 0.1 and 0.15 the system
relaxes to the first arrested state (Fig. 1b in the main text), while for W = 0.2 and 1 the system stabilizes in the second arrested
state (Fig. 1c in the main text). See Movie 8.

We seek a traveling wave solution in terms of the comoving variable £ = 27£~!(z — wt), where the wave speed w is
to be determined. The system — can be rewritten in terms of £ as

—weg = —Vo (cos(Op)c), + 27 L Dege, (83)

Er,
0@ = — TadCk

1
cos® Oy sin Oy — (VO cos(©g) — 47r£*1D%§> 0:0¢ + oLt (770 + D) O ©o. (84)
3 When Vy = 0, we know that Egs. — admit a (trivial) traveling wave solution, namely, the stationary solution
© with wave speed w = 0. We thus look for nearby traveling wave solutions with Vy > 0. For small V,, we pursue a
regular perturbation expansion ¢ = 1 + VocM (&) + V3P (&) +---, Og = OO (&) +V,0W (&) + V2O (&) +---, and
w=Vow® 4+ ng(z) 4+ ---. At leading order, we have

9:¢00 = —Acos® 0V sin 0O, (85)

with the activity parameter A defined in the previous section. In particular, ©©) = O is the steady solution found
for Vo = 0. At O(Vp), we obtain the system

L ~
1 - =
8556 onD af;“ COS @, (86)
355@(1) =-A (cos4 © — 3cos? O sin? é) oW + F(¢), (87)
where
F(¢) = 2+ nD MO + 7 (E(COSC:) —wh) - 47TDC(1)) 9¢0. (88)
1+ nD 21(1 +nD) ¢

Noting that ¢ does not depend on O, we may immediately integrate to obtain

Lo[f
D = 5D /0 cos O(s) ds + k1€ + ko, (89)
L 2 B L 2 _
ky = ~@n D /0 cosO(s)ds, ko =mk1+ @D /0 scos O(s) ds, (90)
where k1 and ko are determined, respectively, by requiring that cg) is periodic and ¢(!) is mean zero. A comparison

of this solution with numerics is shown in Fig. [7} showing close agreement across a range of swimming speeds V.
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2n/L)x

FIG. 7. Theoretical concentration deviations (curves) for fixed A = 2 (same parameters used in Fig. 1d in the main text) and
(dimensionless) swimming speeds Vo € {0.06,0.6,1.2}. Symbols are numerical results from moment equations.

Since ¢ (¢) may be determined explicitly in terms of O, the term F(¢) in Eq. . may be considered as an
inhomogeneous forcing term. We may then solve the ODE (| . explicitly using variation of parameters. We first
note that @5 is a solution to the homogeneous version of (87) (F = 0), which can be seen as follows. Using that

O¢e = —Acos® Osin ©, we have
-A (cos4 © — 3cos? Osin @) = —Adg <C083 Osin (:)) O¢
= —A0 (COS3 Osin (:)) (91)
= 9¢ecO.

Since we know one solution (:)5 of the homogeneous second order ODE, we can determine the other solution Y using
the Wronskian

W, (€) = O¢Ye — OgeY. (92)
In particular, we see that (W,)¢ =0, so W, is a constant which we may take to be 1. Then Y satisfies the ODE

e 1
Ve — =2 = —, (93)
O¢ O¢
which can be solved exactly to yield
[ .
Y (&) = 95/ (O¢) 2 ds. (94)
0

Note that Y (§) is not 2w-periodic. The general solution to the homogeneous version of Eq. is then given by
S(6) = CaB¢(&) + ChY () (95)

where C, and Cj are constants.
Using variation of parameters, the solution to the inhomogeneous version of Eq. with F' as in is given by

OW (&) = G1(£)O¢(€) + G2(§)Y ( (96)
£
G1(&) = G1(0) — /0 Y (s)F(s)ds, Ga¢ / Oc(s) (97)

where (G1)¢O¢ +(Ga)e Y (€) = 0. Note that @(1) G1(8)Oge (£)+G2(€)Ye(€). To enforce periodic boundary conditions
for @) ie. ©(0) = 0M(27), @(1 (0) = @(1)(27r) we require

{Gl(O)ég(O) + G2(0)Y (0) = G1(27)O¢ (2) + Go(27)Y (27),

C1(0)Bee(0) + G(0)Ye (0) = G (2m)Oe (2m) + Ga(2m) e 2r). (9%)
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Since © is periodic on [0, 27, these conditions simplify to

G2(0)(Y (0) = Y (2m)) = (G1(27) — G1(0))O¢(2m) + (G2(2m) — G2(0))Y (2), (99)
G2(0)(Ye(0) = Ye(2m)) = (G1(2m) — G1(0))O¢e (27) + (G2(2m) — G2(0))Ye (27).
By solving for G(0), we may further simplify the conditions to the single equation
(Ye(0) = Ye(2m)) [(G1(27) — G1(0))¢(27) + (Ga(27) — Ga(0))Y (21)] o0,

= (Y(0) = Y (2m)) [(G1(27) — G1(0))@¢c (27) + (G2 (27) — G2 (0))Ye (27)|

Using the Wronskian identity W,.(§) = (:)ng - (:)ggY = 1 for each &, along with the periodicity of ©, Eq. (100) may
be simplified to the condition

(G2(2m) — G2(0))(Ye (0)Y (27) — Y¢(2m)Y (0)) = 0. (101)
Since Y (€) is not periodic, in order to enforce periodicity for ©1), we need to require

27

Go(21) — Go(0) = O¢F de = 0. (102)
0
Inserting into (102)), we require
2m 2
240D\ g & n = (1) M\ 32
= _ — — 103
0= / @gF d¢ = / (1 n ’I7D> OgeOf + 27(1+ D) (C(COS 0 —w') 47TDC£ ) @5 dg, (103)

or, rearranging,

2 2 ~ 47D m(2+nD o A A
w(l)/o @? dg _ /0 <COS(@) o T (1 ) @2 df 4 (n)\/o 6(1)65565 d€

nL
27 ~ 47D (1)) ~ 7T(2+77D) 27 1) ~
= cos(@) — —=cV ) 624 77/ cHd24 (104)
/ < (6) ~ Tl ) Bas - I [ e ac
27 o 2 D 27 B
- / cos(@)@?dffuﬁn) / V62 de.
0 n 0

Using the expression for c(l), we obtain

m m 245D [*" -~ 2D\ =~
1 2 2 2
w( ) ; @ df / COS 5 g — 2777D o <COS(®) + Ekl) @5 dg (105)
1 1
= 5(51113 —3I) + ) (I1I5 — 1), (106)
where we have defined
27 27 o 27 B
— / cos(©) dé, I = / cos(©)07 d¢, Is = OF de. (107)
0 0

Thus for small Vy, with Vy > 0, the traveling wave speed is given to leading order by Vow®) where

1 I 1 I
W=C(5n-32)+—— (-2 108
“ 2( L) Tap \" T (108)

The expression (108]) is exact for the linearized equations ., so any discrepancy from the behavior of
equations and (84) is due to hnearlzmg about the Vo = 0 steady state. This error is O(|Voc™M |2, [VoOWM)|?).
Immedlately from the expression (89) for ¢ (1) we see that |c! \ ~ LD~

For |0, we ﬁrst note that @5 \F A, by Eq (72), while O¢¢ ~ A, by Eq. (85). Using the scalings ¢ ~ £D~1

and w®) ~ \/.747 , we have that the forcing term F' from Eq. . 88) roughly satisfies F' ~ \Fﬁn(l +nD)™ !
ALD™' < ALD™! for A > 1. From the form (96) of O, we then have |0)| ~ ALD™'. The error of the
linearized traveling wave speed Vow® is thus O(V3L£2/D? V2L£2A?/D?). The dependence of the error on D and
A = —Er,¢L?[(2m)%(D +n~1)]~! can be observed in Figs. @, and
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FIG. 8. Contour plots of the wave speed w, computed using the reduced 1D system and , for (a) D € [0.1,5] and
Vo/D € [0,1]; (b) A € [1.7,7.6] and Vo/D € [0,1]; with fixed v = 0.001, ¢ = 0.02. Dashed lines are the analytical values of

w® given by Eq. (108]).
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FIG. 9. Asymptotic behaviors of the wave speed w vs. log(Vo/D), where Vo /D € [0.05,1.0]. The markers represent simulations

of the reduced 1D system and , and the corresponding colored curves give the analytical value of w®) computed from
Eq. (108]). We note the close agreement between Eq. (108) and the simulation results when Vo /D is small. When A is small,
the agreement is reasonable even for large Vo /D.
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FIG. 10. Simulations of the reduced 1D moment system and and the 2D moment equations — show quantitative
agreement between the behavior of the two systems near the traveling wave solutions. (a) Comparison of the results of Fig.
with the 2D moment equations, denoted with green crosses. (b) Comparison of the contour plot Figs. 4c,d (main text) with
simulations of the 2D moment equations, denoted with green dot-dash lines.

APPENDIX: MOVIES

e Movie 1: Relaxation of random initial data to equilibrium for sufficiently small active Ericksen number (here,
(Ery, A) = (—0.1,0.06)) [kinetic theory].

e Movie 2: The first flowing arrested state for immotile particles, emerging beyond a critical active Ericksen
number (or particle concentration); (Er,, A) = (—8,5) (Fig. 1b in the main text) [kinetic theory].

e Movie 3: A fully two-dimensional flowing arrested state, for immotile particles with (Er,, A) = (—16,10) (Fig. 1c
in the main text) [kinetic theory].

e Movie 4: At large particle activity, Er, = —70, and small anchoring strength, YW = 0.1, a chaotic flowing
state emerges as in Newtonian fluids. At large anchoring strength, W = 20, the system settles into an arrested
(flowing) state, with high wavenumber distortions and pseudo-defects as in active nematics [kinetic theory].

e Movie 5: A traveling wave in a system of motile particles (Vy = 0.06) with (Er,, A) = (—3,2) (Fig. 1d in the
main text) [moment equations.

e Movie 6: A retrograde traveling concentration wave with motile particles (Vy = 0.06) at larger active Ericksen
number, with (Er,, A) = (—7,37) (Fig. le in the main text) [moment equations].

e Movie 7: A traveling periodic ‘thrashing’ mode emerges at larger swimming speeds (Vy = 1), with (Er,, A) =
(—15,10) [moment equations],

e Movie 8: Exploring the role of the anchoring strength, Y. A transition from the first arrested state to the
second is observed for W € {0.02,0.05,0.1,0.1,1.0} with fixed (Er,,n,¢,D,d) = (—8,1,0.02,0.01,0.01) (see
Fig.[6) [kinetic theory].

These movies may be viewed at: https://people.math.wisc.edu/~spagnolie/publications.html
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