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Boundaries can have a significant impact on the physics of microorganism locomotion. Here we examine the effects of confinement by a rigid boundary or symmetric 
channel on undulatory locomotion in an anisotropic fluid, treated as a nematic liquid crystal. The competition between hydrodynamics, fluid elasticity, and anchoring 
conditions results in a complex locomotion problem with unique transport properties. We examine this problem analytically using a well-known mathematical model, 
an infinite swimming sheet with small wave amplitude, and numerically for large amplitude waves using a modification of the immersed boundary method. For a 
prescribed stroke and strong planar anchoring in the narrow channel, we demonstrate that the swimming speed approaches its Newtonian value, though the power 
required to maintain the swimmer’s speed depends on the properties of the liquid crystal. We also show that an unusual prograde swimming (in the direction of 
transverse wave propagation) theorized to exist at small wave amplitude persists at large amplitude, and that the presence of a sufficiently close boundary returns 
the swimming behavior to the more standard retrograde motion (opposite the direction of the traveling wave). 
1. Introduction 

The theory of swimming microorganisms is of importance to inter- 
disciplinary topics spanning microbiology, medicine, and applied math- 
ematics [1] . With the exception of marine microorganisms, locomotion 
largely occurs in confinement, and hydrodynamic forces induce long- 
range interactions between a shape-changing body and flexible or in- 
flexible solid boundaries. The original works on an infinite waving sheet 
(the Taylor swimmer [2] ) locomoting near an inflexible solid bound- 
ary in a Newtonian fluid showed that the presence of the wall tends to 
increase the swimming speed for a prescribed swimming stroke [3,4] . 
These works studied two complementary limits: the small-amplitude ap- 
proximation in which the swimmer amplitude is small compared to the 
swimmer wavelength [3] , and the lubrication approximation in which 
the swimmer wavelength is long relative to the distance to the wall [4] . 
Extensions of these studies have included the effects of confinement in 
isotropic complex fluids [5–7] , on flagellar shapes [8] , in large ampli- 
tude simulations [9,10] , on helical waves [11,12] , and with wall elas- 
ticity [7,13,14] . More generally, the behavior of finite-sized active par- 
ticles near flat surfaces has seen considerable attention in both Newto- 
nian [15–19] and non-Newtonian fluids [20,21] . Dynamics in confine- 
ment with more complex geometries (including funnels and gears) have 
resulted in particularly interesting trajectories [22–35] . For recent re- 
views of the field see Refs. [36–38] . In all of the works above the fluid 
has been assumed to be isotropic. In this article we study a Taylor swim- 
mer near a surface in an anisotropic complex fluid. 
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A typical model for anisotropic fluids is a liquid crystal, which has 
orientational order but not positional order [39] . Recent experimental 
investigations have shown that self-propelled bacteria in a nematic liq- 
uid crystal swim along the molecular director field [40–42] . This princi- 
pal behavior has been exploited to extract mechanical work in the trans- 
port of passive colloids [43,44] , and shown to result in anomalous super- 
diffusion [45] and bacterial entrapment in topological defects [46] . In 
addition, this choice of medium is prompted by the commonalities be- 
tween liquid crystals and several environments populated by bacteria, 
such as extracellular DNA suspensions [47] and flocks confined to very 
thin films, where recent experiments have revealed the existence of ne- 
matic order for dense populations [48] . Other biological environments 
which contain long biopolymers also show signs of liquid crystalline 
order, including various types of mucus [49–52] . 

Our previous work on locomotion in hexatic [53,54] and ne- 
matic [55] liquid crystals revealed novel properties which suggest that 
the extension to confined spaces may be of interest in both biological 
and technological applications. In the absence of confinement, tuning 
the material parameters of the liquid crystal was found to either en- 
hance or reduce the swimming speed, even changing the direction of 
swimming for a given swimmer waveform. In particular, for certain sets 
of fluid properties the swimmer’s waveform can remain stationary in the 
lab frame even though it is continuously passing a traveling wave along 
its body. In addition, this work suggests that an unconfined swimmer al- 
ways induces a global volumetric flux in the fluid, which is so far unique 
to anisotropic fluids and suggests novel mechanisms for pumping which 
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Fig. 1. Geometry of the confined locomotion problem in two-dimensions. An 
infinite sheet passes a traveling transverse wave of amplitude a , wavenumber 
q , and wavespeed ! = " ∕ # along its body. The sheet is centered in a channel of 
width 2 d , so that when $ = 0 the distance between the swimmer and the wall 
is d . The director field is locally represented as ! = ( cos %, sin %) , and the tangent 
angle on the surface of the sheet is &. 
may find application in microfluidics [56–58] . This led to the design of 
a theoretical swimmer which instead of deforming its body via a travel- 
ing wave interacts with the liquid crystal instead via a traveling wave of 
preferred anchoring angle [55] . We therefore seek to understand how 
these effects may change when the system is placed under confinement. 

The organization of the paper is as follows. In Section 2 , we de- 
fine our model for the Taylor swimmer and reprise the basic scaling 
for the small-amplitude and lubrication limits for swimming in a con- 
fined Newtonian liquid. We then introduce the equations of nematohy- 
drodynamics to be solved in Section 3 . The small-amplitude expansion 
is described and analyzed in Section 4 , followed by analysis of the lu- 
brication approximation in Section 5 . In both the small-amplitude and 
long-wavelength limits, we find that the swimming speed approaches 
the isotropic Newtonian speed as the swimmer approaches the wall. We 
present a numerical method in Section 6 , and compute solutions to the 
full nonlinear equations in Section 7 in order to examine large wave am- 
plitudes and large director deformations arising from competing bound- 
ary conditions on both the swimmer body and the channel wall. Some 
closing remarks are given in Section 8 . 
2. Swimming in a confined Newtonian fluid 

We begin by reviewing how a swimming microorganism in a Newto- 
nian fluid at zero Reynolds number behaves in an unconfined fluid, and 
also how it behaves in a narrow channel. We consider a Taylor swim- 
mer [2] , or an infinite filament in two dimensions with a traveling wave 
of deformation, confined between two walls which are each at a distance 
d from the mid-line of the swimmer ( Fig. 1 ). Initially, we consider the 
limit d →∞, so that the walls have no impact on the swimmer. Taylor 
solved this problem by expanding the Stokes equations and the no-slip 
boundary condition on the body of the swimmer in the small amplitude 
of the traveling wave. Given a traveling wave amplitude a , frequency 
" , and wavenumber q , the governing approximation is ' = $# ≪ 1 . Per- 
turbation theory then is used to derive the leading-order contribution to 
the swimming speed, 
) Taylor = 1 2 ' 2 !, (1) 
where c is the wave speed ( ! = " ∕ #). Here, the swimmer travels opposite 
the direction of the traveling wave (retrograde motion), as is typical for 
undulatory swimmers such as mammalian spermatozoa. 

When d is finite, there are three length scales in the problem: d, a , 
and q . As long as a < d , we may still usefully consider the case of small ' . 
Employing similar methods as Taylor, Reynolds [3] found the swimming 
speed at leading order in the confined case to be 
) Reynolds = 1 2 ' 2 ! 

( 
sinh 2 ( #*) + # 2 * 2 
sinh 2 ( #*) − # 2 * 2 

) 
. (2) 

Note that for fixed a the swimming speed diverges for small qd as 
) Reynolds ∼ 3 !$ 2 

* 2 . (3) 
However, the divergence is cut off when d ≈ a , since the calculation be- 
comes invalid at * = $ as the swimmer in this case is in physical contact 
with the wall. 

An alternative scheme for perturbative expansion was employed 
by Katz [4] (see also [59] ), who used lubrication theory with the as- 
sumption of a long wavelength relative to the distance to the wall, or 
+ = #* ≪ 1 , and found the swimming speed to be 
) Katz = 3 ! 

2 + ( *∕ $ ) 2 (4) 
to leading order in +. The small wavenumber limit of U Reynolds agrees 
with the small amplitude limit of U Katz . 
3. Governing equations for a nematic liquid crystal 

We here present the governing equations for a nematic liquid crystal, 
along with reduced expressions for the two-dimensional system, rele- 
vant boundary conditions, and nondimensionalization. Our conventions 
for the field equations follow those of Landau and Lifshitz [60] , spe- 
cialized to two dimensions [55] , where the velocity field is written as 
" = ( ,, - ) and director field as ! = ( cos %, sin %) . The elastic energy density 
for deformations of the director is the Frank energy, 
 = . 1 

2 ( # ⋅ ! ) 2 + . 2 
2 ( ! ⋅ # × ! ) 2 + . 3 

2 [ ! × ( # × ! ) ] 2 , (5) 
where K 1 is the splay elastic constant, K 2 is the twist elastic constant, 
and K 3 is the bend elastic constant [60,61] , and the two-dimensional 
nematic is assumed to be twist-free. The total free energy in the fluid 
(per unit length) is / 0 = ∫ d 1 d 2 . 

Equilibrium configurations of the director field are found by mini- 
mizing E f subject to |! | = 1 . The stress corresponding to the elastic free 
energy  is 
3r 45 = −Π56 7 4 8 6 − 92 (8 4 ℎ 5 + 8 5 ℎ 4 )+ 1 2 (8 4 ℎ 5 − 8 5 ℎ 4 ), (6) 
where Π54 = 7 ∕ 7 ( 7 5 8 4 ) , $ = % − ! ( ! ⋅% ) is the transverse part of the 
molecular field, % = − +/ 0 ∕ +! , and repeated indices imply summa- 
tion [39,60] . At equilibrium, $ = & . Balancing torques on the directors 
implies the balance of elastic forces, − 7 4 ; eq + 7 < 3r 4< = 0 , as long as the 
pressure is equal to ; eq = −  [39] . The parameter 9 is not a dissipa- 
tive coefficient, but is related to the degree of order and the tempera- 
ture of the sample. Rod-like molecules tend to have 9> 0, and disc-like 
molecules tend to have 9< 0. The parameter 9 is sometimes known as the 
“tumbling parameter ” since in simple shear flow the director tends to ro- 
tate if 9< 1, and align with the principal direction of shear if 9≥ 1 [61] . 
The tumbling parameter varies between 9 = 0 . 6 –0.9 [62] in disodium 
cromoglycate (DSCG), a lyotropic chromonic liquid crystal used in ex- 
periments on swimming microorganisms in liquid crystals [40,42,63] . 

Meanwhile, the director field has a preferential angle on the bound- 
aries of the swimmer and the channel wall due to anchoring conditions. 
We will study the case of tangential anchoring, which is the case ob- 
served for the boundaries of microorganisms in DSCG [63] , by including 
an additional energy density 
 $ = − = ∫ 2 >

0 cos [ 2( % − &) ] d ł − =̄ ∫ 2 >
0 cos ( 2 %) d ł@ , (7) 

where & is the (time-dependent) tangent angle of the boundaries (the 
tangent angle is zero for a flat wall), W and =̄ are anchoring strengths, 
and d ł and d ł w are infinitesimal line elements along the swimmer and 
the wall, respectively. 

The fluid’s viscous stress response to deformation is approximated 
by incorporating terms linear in the strain rate that preserve ! →
− ! symmetry. In an incompressible nematic, the deviatoric viscous 
stress [60,61] is 
!d = 2 A" + 2 A1 !! ( ! ⋅ " ⋅ ! ) + A2 ( ! " ⋅ ! + ! ⋅ " ! ) , (8) 
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with " = [# " + ( # " ) T ]∕2 the symmetric rate-of-strain tensor. The shear 
viscosity of an isotropic phase is A, and A1 and A2 are viscosities arising 
from the anisotropy. The coefficients A1 and A2 can be negative, but 
the physical requirement that the power dissipation be positive yields 
bounds of A> 0, A2 > −2 A, and A1 + A2 > −3 A∕2 . A particular case of 
interest is the parameter set . 1 = . 3 , A1 = A2 = 0 , and 9 = 0 , which is 
the limit of a hexatic liquid crystal [53] . 

The Cauchy momentum equation in the limit of small Reynolds num- 
ber (the limit relevant to microorganism locomotion [64] ) results in in- 
stantaneous force balance, 
−∇ ; + ∇ ⋅ (!d + !r ) = & , (9) 
and mass conservation is satisfied by demanding that the velocity field 
is divergence free, ∇ ⋅ " = 0 . Torque balance is expressed by 
7 B ! + " ⋅ # ! − 1 2 ( # × " ) × ! = 9( ' − !! ) ⋅ " ⋅ ! + 1 

C
$ , (10) 

where C is a rotational or twist viscosity and nn is a dyadic prod- 
uct [60,61] . In DSCG, C/ A ranges from roughly 5 to 50 [65] . The viscous 
torque arising from the rotation of the director relative to the local fluid 
rotation balances with that from the viscous torque through " and elas- 
tic torque through − $ . The equations of motion in the two-dimensional 
system of interest are presented in Appendix A . For the duration we will 
work in the rest frame of the swimmer. 

The no-slip velocity boundary condition is applied on the swimmer 
surface and the solid boundary. The swimming body is modeled as an 
infinite sheet undergoing a prescribed transverse sinusoidal undulation 
of the form 
D ( 1, B ) = $ sin ( #1 − "B ) , (11) 
measured in the frame moving with the swimmer. We will focus only on 
transverse waves. The boundary conditions on the fluid flow are then 
" ( 1, D ( 1, B )) = (0 , 7D 

7B ( 1, B ) ), (12) 
" ( 1, ± *) = ( ) , 0) , (13) 
where − ) is the (signed) swimming speed which must be determined. 
The system is closed by demanding that the swimming body remains 
force-free at all times. 
4. Small-amplitude expansion 

We begin by exploiting the assumption of small wave amplitude, ' = 
$# ≪ 1 to perform a semi-analytical calculation of the swimming speed. 
For now we also assume that the swimmer is sufficiently well separated 
from the wall, a ≪ d . The passage of transverse waves in a Newtonian 
fluid results in retrograde swimming, where the swimming body moves 
in the direction opposite that of the traveling wave (here, then, with 
U > 0) [2] . Among the unusual behaviors theorized for motion in a liquid 
crystal, we showed in Ref. [55] that if the rotational viscosity C is large 
compared to the shear viscosity A, then a swimmer in an unbounded 
liquid crystal instead performs prograde swimming, self-propulsion in 
the same direction as the direction of wave propagation ( U < 0). 

In this section we show that as the distance to a nearby wall de- 
creases, there is an increasing contribution to the swimming velocity in 
the direction opposite to the direction of the prescribed swimmer wave- 
form. Thus, in a fluid with a large rotational viscosity, a swimmer will 
swim in the same direction as the waveform far from the wall, but slow 
down, reverse direction, and then swim faster and faster as the distance 
to the wall decreases. 

For completeness we provide a brief outline of the calculation of the 
swimming speed to second-order in amplitude; the derivation of these 
steps and the fine details can be found in Ref. [55] . 

4.1. Nondimensionalization 
We treat x, y , and t as dimensionless variables by measuring length 

in units of # −1 and time in units of " −1 . Dimensionless viscosities are 
defined by A∗ 

1 = A1 ∕ A, A∗ 
2 = A2 ∕ A and C∗ = C∕ A. The swimmer shape in 

dimensionless form is given by 
D = ' sin ( 1 − B ) , (14) 
where ' = $#, and in this section we assume ' ≪ 1. 

The Frank elasticity of the liquid crystal leads to a relaxation time, 
defined as E = A∕( . 3 # 2 ) . For small-molecule liquid crystals, typical val- 
ues are A ≈ 10 −2 Pa s and . 3 ≈ 10 −11 N; hence, on the length scale of 
typical flagellar wavelengths, for which q ≈1 µm −1 , the relaxation time 
is E ≈1 ms. Comparing the typical viscous stress in Eq. (8) with the typi- 
cal elastic stress in Eq. (6) , we define the Ericksen number [61] , Er = "E, 
or 
Er = A" 

. 3 # 2 . (15) 
The beat frequencies and wavenumbers of cilia and flagella vary 
widely [66,67] , and for experiments on bacteria in liquid crystals the 
Ericksen number can range from Er ≈ 10 −1 [40,63] to Er ≈10 1 [42] . Fi- 
nally, the ratio of Frank constants is denoted by . F = . 1 ∕ . 3 , and we 
define ) ∗ = )∕ ! (with ! = " ∕ # the wavespeed), and G ∗ = G ∕( "' 2 ∕ # 2 ) , 
the dimensionless volumetric flux. 
4.2. First order in amplitude 

It is convenient to enforce fluid incompressibility by introducing the 
stream function H( x, y ), which is related to the velocity via " = ∇ ⟂H = 
( H 2 , − H 1 ) . Expanding the stream-function as H = 'H (1) + ' 2 H (2) + … and 
the director angle as % = '%(1) + ' 2 %(2) + … , the governing equations to 
first order in ' are 
∇ 4 H (1) + 4 A∗ 

1 
2 + A∗ 

2 7 2 1 7 2 2 H (1) + 1 
(2 + A∗ 

2 ) Er 
×
{ 
(1 + 9) 7 4 1 %(1) + [. F (1 + 9) + 1 − 9]7 2 1 7 2 2 %(1) +. F (1 − 9) 7 4 2 %(1) } 

= 0 , (16) 
7 B %(1) + 1 + 9

2 7 2 1 H (1) + 1 − 9
2 7 2 2 H (1) − 1 

Er C∗ (7 2 1 %(1) + . F 7 2 2 %(1) ) = 0 . (17) 
These equations are solved by sums of complex exponentials H (1) = 
ℜ [ ̃H (1) ] and %(1) = ℜ [ ̃%(1) ] , where 
H̃ (1) = 6 ∑

<=1 ! < J F < 2 +i( 1 − B ) , %̃(1) = 6 ∑
<=1 * < J F < 2 +i( 1 − B ) . (18) 

The characteristic decay rates r j are found by inserting (18) into (16) and 
(17) , leading to a cubic equation for K = F 2 < , L 3 K 2 + L 2 K 2 + L 1 K + L 0 = 
0 , where 1 
L 3 = . F [C∗ ( −1 + 9) 2 + 4 + 2 A∗ 

2 ], 
L 2 = L 0 + 4 C∗ 9 + 2 . F [C∗ (−1 + 92 ) − 4 − 4 A∗ 

1 − 2 A∗ 
2 ], 

L 1 = . F [C∗ (1 + 9) 2 + 2(2 + A∗ 
2 ) ]+ 2 (4 + 4 A∗ 

1 + 2 A∗ 
2 )

+ C∗ [1 − 92 − 2i Er (2 + 2 A∗ 
1 + A∗ 

2 ) ], 
L 0 = −2 (2 + A∗ 

2 ) + C∗ [−(1 + 9) 2 + 2i Er (2 + A∗ 
2 ) ]. (19) 

The relationship between the coefficients c j and d j is determined by the 
governing equations for the stream function and the angle field, result- 
ing in 
* < = ! < Er C∗ 

[
1 + 9 − (1 − 9) F 2 < ]

2 (1 − . F F 2 < − i Er C∗ ) . (20) 
1 Correcting here a typographical error in Ref. [55] in which a spurious factor 

of m appeared in front of the equation defining A 1 . 
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Fig. 2. Swimming speed for a swimmer near a wall (relative to the Newtonian 
swimming speed far from the wall), in the limit of small amplitude aq ≪ 1. For 
the nematic plot, . F = . 1 ∕ . 3 = 1 . 2 , 9 = 0 . 6 , and A1 ∕ A = A2 ∕ A = 1 . Both liquid 
crystalline phases have C∕ A = 50 , Er = 0 . 1 , and strong parallel anchoring is en- 
forced both on the body of the swimmer and on the solid boundary. Horizontal 
black lines indicate the unconfined swimming speeds from [55] . 
The rest of the coefficients are determined by the boundary conditions, 
which to second order in the angle field are written as 
− 7 2 % + @ ( % − 7 1 D ) |||2 = D ( 1,B ) = 0 , (21) 
− 7 2 % + @̄ %|||2 =± #* = 0 , (22) 
where @ = = ∕( #. 1 ) and @̄ = =̄ ∕( #. 1 ) are dimensionless anchoring 
strengths on the swimmer and wall, respectively. The swimming speed 
has no contribution at first order: with ) = ') (1) + ' 2 ) (2) + … , taking 
' → − ' amounts to a simple phase shift of the waveform, thus demand- 
ing that ) (1) = 0 . We must therefore proceed to second order in the am- 
plitude ' in order to find the leading order contribution to the swimming 
speed. 
4.3. Second order in amplitude 

Although the small-amplitude swimming speed U sa is a second-order 
quantity in ' , it is possible to write it as an integral over quadratic com- 
binations of first-order quantities: 
) sa = − ⟨D 7 2 - (1) 1 ⟩|2 =0 − M ∫ #* 

0 [
C∗ (1 − 9) N + (2 + A∗ 

2 ) 20 ]d 2, (23) 
where M = 2[ C∗ (1 − 9) 2 + 2(2 + A∗ 

2 )] −1 , and the operation ⟨ · ⟩ indicates 
that an average of the bracketed quantity is to be performed over one 
swimmer wavelength in x . Note that while here we have obtained this 
expression by simply solving the equations, in general this can also be 
accomplished via the reciprocal theorem [68] . The first-order quantities 
f and g are given by 
0 = 5 1 Er ⟨ 7 1 %(1) 7 2 2 %(1) ⟩ + 4 A∗ 

1 
2 + A∗ 

2 ⟨# %(1) ⋅ 7 2 " (1) ⟩, (24) 
N = ⟨" (1) ⋅ # %(1) ⟩ − 2 9⟨7 1 %(1) - (1) 1 ⟩ − 5 2 

C∗ Er ⟨7 2 %(1) 7 1 %(1) ⟩, (25) 
with 5 1 = [ . F (1 + 9) + 1 − 9]∕ (2 + A∗ 

2 ) and 5 2 = . F − 1 . The results are 
plotted in Fig. 2 . When qd is large, we recover the results of 
Refs. [53,55] for swimming in an infinite fluid. As qd →0, the depen- 
dence on liquid crystalline parameters is overwhelmed by the diverging 
Newtonian component; in the Newtonian limit, we recover the speed 
found by Reynolds [3] , given in Eq. (2) . 

Notably, for rheological parameters that lead to negative U in an un- 
bounded fluid (in particular, large C/ A), the swimming speed does not 
diverge to negative infinity, but instead reverses and passes through pos- 
itive swimming speeds on its way to positive infinity. The nature of the 

blow-up as qd →0 is described exactly by Eq. (2) – terms depending on 
liquid crystalline properties remain  (1) for all qd , whereas Newtonian 
terms blow up proportional to ( #*) −2 . The volumetric flux Q ∗ of fluid 
pumped by the swimmer also decays to zero as qd →0. 
5. Small-wavenumber (lubrication) expansion 

Since the expressions for the swimming speed near a wall for a low- 
amplitude swimmer are too unwieldy to display, we turn to the lubri- 
cation approximation to try to get more insight into the problem in the 
limit when + = #* is small but a / d can take any value less than one. We 
work in the limit in which the anchoring strength is so strong that the 
director is always parallel to the swimmer surface, which is achieved in 
practice for @ =  (10) or above. This problem has been treated for swim- 
ming in a Newtonian fluid [4,59,69] , and in an isotropic viscoelastic 
fluid [6] . The lubrication approach has also been applied to the spread- 
ing of liquid crystal droplets; see e.g. [70] and references therein. 

Because we use a different choice for nondimensionalization than 
in Section 4 , we define new dimensionless variables, measuring length 
along x by the wavelength, and length along y by the gap between the 
swimmer and the wall: 1̃ = #1, 2̃ = 2 ∕ *, , = ! ̃, , - = +! ̃- , and ̃B = "B . The 
choices for the relative scaling of the velocity components u and v are the 
usual ones in lubrication theory, dictated by incompressibility. Balance 
of viscous forces with pressure gradients suggests ;̃ = #* 2 ; ∕( A!) . Also, 
the strong anchoring condition forces the director angle % to equal the 
slope of the swimmer at the swimmer surface. Since this slope is small 
in the lubrication limit, we define % = +%̃, where %̃ is expected to be of 
order unity. 

Next, we write the governing equations in the dimensionless vari- 
ables. Many of the terms drop out to leading order in +. For example, 
the Frank free energy density is dominated by the splay contribution 
when +≪ 1, 
 ≈ . 1 

2 +2 * 2 
( 
7 ̃%
7 ̃2 

) 2 
, (26) 

leading to a greatly simplified molecular field h . Similarly, the stresses 
have only a few terms at leading order in +: 
!r = +

* 2 . 1 
2 7 2 ̃%7 ̃2 2 

(  ( +) 1 − 9
−1 − 9  ( +) 

) 
, !d = A! 

* 7 ̃, 7 ̃2 
(  ( +) 2 + A∗ 

2 ∕2 
2 + A∗ 

2 ∕2  ( +) 
) 
. 

(27) 
Balancing moments and forces leads to the lubrication equations for a 
nematic, 
1 − 9
2 7 ̃, 

7 ̃2 − 1 
C∗ . 1 

. 3 1 Er 7 2 ̃%7 ̃2 2 = 0 , (28) 
− 7 ̃; 
7 ̃1 + ( 

1 + A∗ 
2 
2 
) 
7 2 ̃, 
7 ̃2 2 + 1 − 9

2 Er . 1 
. 3 7 3 ̃%7 ̃2 3 = 0 , (29) 

− 7 ̃; 
7 ̃2 = 0 , (30) 

7 ̃, 
7 ̃1 + 7 ̃- 

7 ̃2 = 0 . (31) 
The no-slip boundary conditions on the fluid are 

( ̃, , ̃- ) |||2̃ =±1 = ( ̃) , 0) , (32) 
( ̃, , ̃- ) |||2̃ =( $ ∕ *) sin ( ̃1 − ̃B ) = (0 , − $ 

* cos ( ̃1 − ̃B ) ), (33) 
where )̃ is the unknown dimensionless swimming speed. The strong- 
anchoring boundary conditions on the director field are 
%̃( ̃1 , 1) = 0 , (34) 
%̃
(
1̃ , $ 

* sin ( ̃1 − ̃B ) ) = $ 
* cos ( ̃1 − ̃B ) . (35) 
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Fig. 3. Dimensionless power consumption in the lubrication limit versus swim- 
ming speed, for . 1 = . 3 , A = A2 , 9 = 0 . 75 , strong parallel anchoring on all sur- 
faces and C = 1 (gold), C = 25 (green), and C = 100 (red). The blue line corre- 
sponds to the Newtonian case. Note that the value of the Ericksen number is not 
given, as the Ericksen number disappears from the dynamics in Eqs. (36) –(37) . 
(For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
Eliminating the angle field via the torque-balance Eq. (28) leads to 
− 7 ̃; 
7 ̃1 + O 7 2 ̃, 

7 ̃2 2 = 0 , (36) 
where 
O = 1 + A∗ 

2 
2 + C∗ (1 − 9) 2 

4 . (37) 
Note that the Ericksen number disappears completely from the dynam- 
ics in the lubrication limit. Furthermore, since the Eqs. (36) and (30) are 
identical to the lubrication equations for isotropic Stokes flow with di- 
mensionless pressure ;̃ replaced by ;̃ ∕ O, the flow field and swimming 
velocity are the same as in the isotropic case. For completeness, we in- 
clude the derivation of the flow field and swimming velocity in Appendix 
B . 

Solving the equations yields the dimensional swimming speed which 
was found by Katz [4] , given in Eq. (4) . The time-averaged volumetric 
flux, a hallmark of unconfined swimming in a liquid crystal, also van- 
ishes in the lab frame. Therefore, we find that for a nematic liquid crystal 
with strong planar anchoring conditions, the swimming speed and flux 
are the same as in the isotropic Newtonian case. 

However, the power consumed by the swimmer is not the same as 
in a Newtonian fluid. The power dissipated in the fluid can be written 
as 
 = !* ∶ " + 1 

C
|$ |2 , (38) 

with the convention ( ∶ ) = L 4< P 4< . Expanding in powers of + and using 
the equations of motion to simplify gives the leading-order contribution, 
 = ( 

1 + A2 2 A
) [ 

1 + C(1 − 9) 2 
4 A

] 
 0 , (39) 

where  0 = ( 7 , ∕ 7 2 ) 2 is the isotropic Newtonian power density. Writing 
Q = ∫ 2 >

0 d ̃1 ∫ 1 
D̃ d ̃2  , and noting that 

Q 0 = ∫ 2 >
0 d ̃1 ∫ 1 

D̃ d ̃2  0 = 12 >$̃ 2 √
1 − $̃ 2 (1 + 2 ̃$ 2 ) , (40) 

where $̃ = $ ∕ *, we plot the ratio of nondimensionalized speed and 
nondimensionalized power for several liquid crystal parameters in 
Fig. 3 . In the presence of the liquid crystal, the swimmer must inject 
more power per unit wavelength into the fluid to swim at the same 
speed, consistent with earlier results for a swimmer in an unbounded 
liquid crystal [53] . 

6. An immersed boundary method for flowing nematic liquid 
crystals 

To compute the dynamics of the flowing liquid crystal and its cou- 
pling to the swimmer and boundaries we develop an adaptation of the 
classical immersed boundary method [71] , which has been applied to 
similar swimming problems in viscoelastic fluids [7,72–76] . In order to 
include anchoring conditions of arbitrary strength we include an extra 
volumetric torque in the molecular field, writing 
ℎ = ∇ 2 % + ℎ $ ( %) , (41) 
ℎ $ ( %) = ∫7Ω @ ( * ( R )) sin ( &( * ( R ) ) − %) +( + − * ( R )) *R, (42) 
where the boundary surface (both swimmer and wall), denoted by 7Ω, is 
parameterized by * ( R ) = ( S( R ) , D ( R )) with s the arc-length, w ( X ) the di- 
mensionless anchoring strength, and & = tan −1 ( D R ∕ S R ) the tangent angle 
(the preferred director angle for the assumed planar anchoring condi- 
tions). The elastic force density on the fluid is modified to include the 
anchoring contributions, resulting in 
, J ( %) = ∇ ⋅ ( !F + !$ ) = −∇ 2 %∇ % − 1 2 ∇( |∇ %|2 ) + (∇ 2 % + ℎ $ )∇ ⋅ - ( %) 

+ - ( %) ⋅ ∇(∇ 2 % + ℎ $ ) + ∇ ⟂ℎ $ ( %) , (43) 
with R defined in Eq. (A.2) , and ∇ ⟂ = +̂ 7 2 − ̂/ 7 1 . Finally, the director 
field evolution equation is modified to 
%B + " ⋅ ∇ % + 1 2 ( , 2 − - 1 ) = 9( cos 2 %2 ( , 2 + - 1 ) − sin 2 % , 1 )

+ 1 
C∗ Er (∇ 2 % + ℎ $ ( %) ). (44) 

In the immersed boundary method the delta function is replaced by a 
discrete delta function with finite but compact support, and is chosen to 
ensure moment balance conditions that attempt to remove the depen- 
dence on grid location. Here we use the original discrete delta function 
from Ref. [77] with a four-point footprint in each dimension: 
+ℎ ( +) = 1 

Δ1 Δ2 * ℎ ( 1 
Δ1 )* ℎ 

( 
2 
Δ2 

) 
, (45) 

where 
* ℎ ( F ) = ⎧ ⎪ ⎨ 

⎪ ⎩ 
1 
8 (3 − 2 F + √1 + 4 F − 4 F 2 ) 0 ≤ |F | < 1 , 
1 
8 (5 − 2 F − √−7 + 12 F − 4 F 2 ) 1 ≤ |F | < 2 , 
0 |F | ≥ 2 . (46) 

Spreading operators which carry information from the body onto the 
fluid, and vice versa, are then defined as 
T ℎ 8 [ 0 ( * )] = ∫7Ω 0 ( * ) +ℎ ( + − * 8 ( R )) *R, (47) 
( T 8 ℎ ) ∗ [ , ( +)] = ∫Ω , ( +) +ℎ ( + − * 8 ) *U , (48) 
where the subscript ‘n’ indicates that the surface X n over which the in- 
tegral is performed may differ from the surface X on which the func- 
tion F is defined. For a given geometry (in practice, at the beginning 
of each timestep), we create sparse matrices representing the spreading 
operation, and we also form the sparse operator T 8 ℎ ( T 8 ℎ ) ∗ . Spreading is 
achieved using sparse matrix-vector multiplication for the duration of 
the timestep. Precomputing in this way makes the computational cost 
of spreading information to and from the surface negligible relative to 
other aspects of the time-stepping algorithm, which we presently de- 
scribe. 

The Leslie–Ericksen equations are advanced using semi-implicit 
time-stepping with a similar technique to that discussed in Ref. [78] , 
discretizing in time as follows, where superscripts indicate the timestep, 
e.g. " 8 = " ( B = B 8 ) : 
−∇ ; 8 +1 + ∇ ⋅ !- (" 8 +1 ; ̃%8 +1 ) + , J (%8 +1 ; ̃%8 +1 ) = − T 8 ℎ [0 ( * 8 +1 ) ], (49) 
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∇ ⋅ " 8 +1 = 0 , (50) 
%8 +1 + ΔB 2 (, 8 +1 2 − - 8 +1 1 )

− ΔB 
C ′ Er ℎ (%8 +1 ) = %8 + ΔB V ("̃ 8 +1 , ̃%8 +1 ), (51) 

* 8 +1 = * 8 + ΔB ( T 8 ℎ ) ∗ [" 8 +1 ], (52) 
where we have defined 
V( " , %) = 9( cos 2 %2 ( , 2 + - 1 ) − sin 2 % , 1 )− " ⋅ ∇ %, (53) 
, J (%8 +1 ; ̃%8 +1 ) = − ∇ ̃%8 +1 ∇ 2 %8 +1 + ∇ ⋅ - ( ̃%8 +1 ) ℎ ( %8 +1 ) 

+ - (%̃8 +1 ) ⋅ ∇ ℎ (%8 +1 ) + ∇ ⟂ℎ $ (%8 +1 ), (54) 
ℎ ( %8 +1 ) = ∇ 2 %8 +1 + @ ( * 8 +1 ) T 8 ℎ [&( * 8 +1 ) − ( T 8 ℎ ) ∗ %8 +1 ]. (55) 
The quantities "̃ 8 +1 = 2 " 8 − " 8 −1 and %̃8 +1 = 2 %8 − %8 −1 are extrapola- 
tions to time B 8 +1 from information at previous time-steps. We have 
included in Eq. (49) a surface force density F ( X ) associated with the 
boundary material properties, to be described below. This force is com- 
puted at the advance time B 8 +1 , but is spread onto the surrounding fluid 
at the previous surface location (the semi-implicit approximation). The 
inclusion of a second surface is straight-forward in this approach. 

It is convenient to define an auxiliary pressure p ∗ and velocity field 
v ∗ with the properties that ; = − Er ∇ 2 ; ∗ and " = " ∗ − ∇ ; ∗ , for then 
−∇ ; + Er ∇ 2 " = Er ∇ 2 " ∗ , which removes the pressure from the momen- 
tum balance equation [79,80] . Using ∇ ⋅ " = 0 we find that ∇ 2 ; ∗ = ∇ ⋅ " ∗ , 
and " = ( ' − ∇(∇ 2 ) −1 ∇ ⋅) " ∗ . Eq. (49) –(52) may then be written as a large 
linear system, 
(  - ∗ - ∗  - ∗ % %- ∗  %%

) ( 
" 8 +1 ∗ 
%8 +1 

) 
= ( ( * 8 +1 ) + ) , (56) 

where (with care in distinguishing the auxiliary velocity field v ∗ from 
the true velocity field v ), 
 - ∗ - ∗ " 8 +1 ∗ =  -- (' − ∇(∇ 2 ) −1 ∇ ⋅)" 8 +1 ∗ = ∇ ⋅ !- (" 8 +1 ; ̃%8 +1 ), (57) 
 - ∗ %%8 +1 = −∇ ̃%8 +1 (∇ 2 %8 +1 ) + ∇ ⋅ - (%̃8 +1 )(∇ 2 %8 +1 − @T 8 ℎ ( T 8 ℎ ) ∗ %8 +1 )

+ - ( ̃%8 +1 ) ⋅ ∇ (∇ 2 %8 +1 − @T 8 ℎ ( T 8 ℎ ) ∗ %8 +1 ), (58) 
 %- ∗ " 8 +1 ∗ =  %- (' − ∇(∇ 2 ) −1 ∇ ⋅)" 8 +1 ∗ = ΔB 2 ( , 8 +1 2 − - 8 +1 1 ) , (59) 
 %%%8 +1 = %8 +1 − ΔB 

C ′ Er (∇ 2 %8 +1 − @T 8 ℎ ( T 8 ℎ ) ∗ %8 +1 ), (60) 
and 
( ( * 8 +1 ) = ( − T 8 ℎ [0 ( * 8 +1 ) ]− @ ∇ ⋅- (%̃8 +1 )T 8 ℎ [&(* 8 +1 )]− @ - (%̃8 +1 )⋅∇ T 8 ℎ [&( * 8 +1 ) ]@ ΔB 

C ′ Er T 8 ℎ [&( * 8 +1 ) ]
) 
, 

(61) 
) = ( 

& 
%8 + ΔBV ("̃ 8 +1 , ̃%8 +1 )

) 
. (62) 

The fluid domain is taken to be periodic with dimensions L x × L y , 
and we define the grid ( 1 < , 2 5 ) = ( <ℎ 1 , 5ℎ 2 ) with < = 0 , 1 , 2 , … , V 1 − 1 , 
5 = 0 , 1 , 2 , … , V 2 − 1 , and ( ℎ 1 , ℎ 2 ) = ( W 1 ∕ V 1 , W 2 ∕ V 2 ) . Time is discretized 
uniformly with step-size Δt , and we define B 8 = 8 ΔB . The immersed body 
is discretized by specifying its location at equally-spaced parameter- 
ization coordinates s m ∈ [0, 2 >), with K = 0 , 1 , … , X − 1 . Typical val- 
ues for the simulations to come are ( W 1 , W 2 ) = (2 >, 4 >) , ( V 1 , V 2 , X) = 
(32 , 64 , 64) , and ΔB = 10 −4 . Resolution studies show slow convergence of 
averaged quantities and the swimming speed; the immersed boundary 

method is known to be delicate in the context of complex fluids, and we 
direct the reader to recent work on new modifications for improvement 
in Refs. [81,82] . 

We confine our attention to periodic boundary conditions, and a 
pseudo-spectral method [83] is used to solve the Leslie–Ericksen sys- 
tem, Eq. (56) . With periodic boundary conditions imposed the velocity 
field is defined only up to a constant mean velocity which we denote by 
v c . Writing the velocity field instead as " + " 1 , where v is the mean-free 
part of the velocity which satisfies the equations of motion above, we 
close the system by demanding that the net force in a periodic domain 
is zero. A marker-and-cell (MAC) method implementation showed no 
significant differences in either performance or in the results of the sim- 
ulations. The system recast in a vorticity-stream function formulation 
also showed no appreciable differences in the results, but the approach 
taken here can be more easily extended to three-dimensions. 

Instead of forming the matrix on the left-hand side of (56) , the lin- 
ear system is solved (for a given * 8 +1 ) using the generalized minimum 
residual (GMRES) method. For a preconditioner we solve the same sys- 
tem as above but replacing %̃8 +1 with 0, and constructing a sparse linear 
operator which is rapidly inverted at each iteration of GMRES. This pre- 
conditioner is only formed one time only and then used for all future 
simulations on the same domain. Using preconditioning, depending on 
the situation, the number of iterations required in a standard compu- 
tation may be reduced from hundreds of iterations to fewer than 10. 
Preconditioning is critically important since the flow field must be deter- 
mined for each step of a Newton iteration for determining the immersed 
body location. 

At B = 0 we select the initial director field %0 as its equilibrium state 
absent fluid flow, as found by relaxing the system to a static configura- 
tion with the velocity field set to zero. With this initial director field we 
solve for the instantaneous initial velocity vield, v 0 . For the first time 
step we simply take as first extrapolations "̃ 1 = " 0 and %̃1 = %0 . 
6.1. Newton iteration for * 8 +1 

Following Ref. [78] , the body position is updated by interpolation of 
the velocity field (assuming a no-slip boundary condition) via a back- 
ward Euler approximation, 
* 8 +1 = * 8 + ΔB ( T 8 ℎ ) ∗ [" 8 +1 (( ( * 8 +1 ) )], (63) 
where A ( X ) is on the right hand side of Eq. (56) , and which depends on 
a surface force density F(X) and the anchoring angle &( X ). Equivalently, 
we wish to find the roots of the following nonlinear system: 
2 ( * ) = * − * 8 − ΔB ( T 8 ℎ ) ∗ [" 8 +1 ( ( ( * ) ) ] = & , (64) 
which we find using Newton–Raphson iteration. Given an initial guess 
X 0 , subsequent iterates X k are updated as 
* 5 +1 = * 5 + +* , (65) 
where 3 +* = − 2 ( * 5 ) , (66) 
and 3 = [ 7 2 ∕ 7 * ]( * 5 ) . Fortunately, " 8 +1 is linear in ( ( * 8 +1 ) , so we have 
neatly that 
3 +* = +* − ΔB ( T 8 ℎ ) ∗ [" 8 +1 (3 L +* )], (67) 
where 3 L = [ 7 ( ∕ 7 * ]( * 5 ) . With the inclusion of complex surface forces 
(e.g. elastic forces) and anchoring conditions, however, the analytical 
description of the Jacobian J A is not a simple task, and numerical dif- 
ferentiation is slow. Instead we use the following approximation: 
3 L +* ≈ 1 

' (( ( * 5 + '+* ) − ( ( * 5 ) ), (68) 
where we set ' = 10 −6 [84] . Now Eq. (66) is solved by GMRES iteration, 
usually taking only a few iterative steps to converge even without a 
preconditioner. 



M.S. Krieger, S.E. Spagnolie and T.R. Powers Journal of Non-Newtonian Fluid Mechanics 273 (2019) 104185 

Fig. 4. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, with zero anchoring strength, for both small (top 
panels) and large (bottom panels) rotational viscosity. Only part of the periodic computational domain (with dimensions ( W 1 , W 2 ) = (2 >, 4 >) ) is shown. The swimming 
speed (right panels) is considerably increased at large rotational viscosity and the flow is bound to a region local to the swimmer. Arrows there indicate the direction 
of swimming; the direction of wave propagation is to the right. The results are consistent with the analytical results derived in Ref. [55] . 
6.2. Tethering to ghost points for bodies with specified shape or gait 

A standard approach in the immersed boundary framework is to con- 
nect surface material points to target ghost points Z ( t ) using “springs ”
with stiffness k . In the event that the surface position is prescribed, we 
define the force density 
0 ( * 8 +1 ) = − 5 ( * 8 +1 − 4 8 +1 ) , (69) 
where 4 8 +1 = 4 ( B 8 +1 ) is specified. The preferred molecular direction on 
the surface is computed on the target surface &( * 8 +1 ) = &( 4 ( B 8 +1 )) , and 
the right hand side of Eq. (56) simplifies with ( ( * 8 +1 ) = & and 
) = ( − T 8 ℎ [0 ( 4 8 +1 ) ] − @ ∇ ⋅ - ( ̃%8 +1 ) T 8 ℎ [&( 4 8 +1 ) ] − @ - ( ̃%8 +1 ) ⋅ ∇ T 8 ℎ [&( 4 8 +1 ) ]

%8 + ΔBV ("̃ 8 +1 , ̃%8 +1 ) + @ ΔB 
C ′ Er T 8 ℎ [&( 4 8 +1 ) ]

) 
. (70) 

At each timestep, a constant velocity is added to the target shape Z which 
is selected to ensure zero net force in the periodic domain. 

In the present work we will be interested in a surface deformation 
associated with a swimming body of infinite length, which combines a 
prescribed undulatory gait and the resulting rigid body motion from the 
constraint of zero net force (a neutrally buoyant swimmer; see [64] ). 
Writing the prescribed gait as Z ( t ), the surface moves with speed * B = 
4 B + 5 , where U is the unknown swimming speed, and the tethering 
forces at time B 8 +1 are approximated as 
0 ( * 8 +1 ) = − 5 ( * 8 +1 − 4 8 +1 − ΔB 5 8 +1 ) . (71) 
In the nonlinear system of equations 2 ( * ) = & shown in Section 6.1 we 
now include the unknown swimming velocity 5 8 +1 and the constraint 
of zero net force, ∫ W 

0 0 ( * 8 +1 ) *R = & . We require the tethering force to 
overcome the viscous drag on the surface, and based on inspection of 
Eq. (A.5) we set 5 = 10 4 Er in the simulations to come. 
7. Large-amplitude swimming 

We are now in a position to investigate swimming in a liquid crystal 
for large amplitude undulations, and in the presence of boundaries. We 

begin by returning to a setting with no confining boundaries to probe 
the following question. Does the unexpected transition from retrograde 
to prograde locomotion in an infinite fluid with large rotational viscosity 
and strong anchoring described in Ref. [55] , which is based the small- 
amplitude asymptotic theory discussed in Section 4 , persist at large am- 
plitude? Or is it merely a mathematical oddity which appears at vanish- 
ingly small wave amplitude? 

We consider the director and velocity fields generated by the motion 
of a swimmer of amplitude $ = 1 at small Ericksen number ( Er = 0 . 01 ), 
and we set . 1 = . 3 and A1 = A2 = A and 9 = 0 . 75 for the duration of the 
paper. Fig. 4 shows the director and velocity fields for zero anchoring 
strength and for both small and large rotational viscosity C. The veloc- 
ity field shown is that seen in the lab frame. The periodic computational 
domain has dimensions ( W 1 , W 2 ) = (2 >, 4 >) , and only part of the physical 
domain is shown. In both cases the swimmer moves to the left ( U > 0), 
opposite the direction of the traveling wave, and the swimming speed is 
significantly increased at large rotational viscosity, in agreement with 
theory developed in Ref. [55] where a local maximum in swimming 
speed was found for roughly this parameter set. Contributing to the in- 
creased swimming speed at large rotational viscosity, we see that the 
director field is significantly disturbed by the body motion, even with 
no anchoring strength, and the associated forcing results in a recircu- 
lating zone between wavecrests. The flow field in this case is tightly 
confined to the region local to the swimmer. 

Fig. 5 addresses the same situation but with strong anchoring, @ = 
10 . The strong anchoring condition causes a significant disturbance in 
the director field in both cases, and an increase in the swimming speed 
in the case of small rotational viscosity. It is at large rotational viscos- 
ity that we find the answer to the question posed at the beginning of 
this section: indeed, the transition to prograde motion, swimming in the 
same direction as wave passage ( U < 0) is observed at large wave am- 
plitude. The associated fluid flow is also striking, appearing as a plug 
flow, nearly uniform across the entire swimming body, and as in the 
case of zero anchoring strength, is primarily bound to a region near 
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Fig. 5. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, now with strong anchoring strength, for both small 
and large rotational viscosity. We verify at large swimming amplitude the reversal of swimming direction at large rotational viscosity predicted for small amplitude 
waves in Ref. [55] , and find a plug-like flow in the direction of wave propagation in that regime. 

Fig. 6. Swimming in a wide channel but much nearer to one of the walls, at small Ericksen number, Er = 0 . 01 , large rotational viscosity, C∕ A = 100 , and strong 
tangential anchoring conditions on both surfaces, @ = @̄ = 10 . The periodic computational domain has vertical length 4 >. The panels on the left show the director 
and velocity fields for * = > (top) and * = 2 >∕3 (bottom). Prograde swimming (to the right) when the wall is distant diminishes in speed as the wall is drawn closer 
to the swimmer, and eventually gives way to retrograde swimming (swimming to the left) when the wall is closer than a critical distance, consistent with the theory 
developed in the previous sections. 



M.S. Krieger, S.E. Spagnolie and T.R. Powers Journal of Non-Newtonian Fluid Mechanics 273 (2019) 104185 
Fig. 7. Swimming in a channel at small Ericksen number, Er = 
0 . 01 , and strong anchoring, @ = @̄ = 10 , at small and large rota- 
tional viscosities. The director and velocity fields are overlaid 
(left panels), showing that the velocity is everywhere nearly 
aligned with the local director field, in stark contrast to the 
flow seen on the bottom of Fig. 5 , where in the prograde mo- 
tion the flow is roughly orthogonal to the director field. The 
right panels show the swimming speed as a function of time. 
With sufficient proximity to the channel walls the details of the 
liquid crystal become unimportant, and transport is similar to 
swimming in a confined Newtonian fluid. 

Fig. 8. The dimensionless swimming speed U / c versus the dimensionless channel width qd for small amplitude ( $# = 0 . 15 , left panel), medium amplitude ( $# = 0 . 50 , 
center panel), and large amplitude ( $# = 0 . 8 , right panel) undulations. Material parameters are . 1 = . 3 , A1 ∕ A = A2 ∕ A = 1 , C∕ A = 5 , Er = 1 , and 9 = 0 . 75 . Dashed lines 
indicate: (black) the Katz result, Eq. (B.13) and (green) the Reynolds result, Eq. (2) ; solid lines indicate the unconfined swimming speed in a Newtonian fluid for the 
appropriate amplitude [85] . While three values of the anchoring strength ( @ = @̄ = 0 , @ = @̄ = 1 , and @ = @̄ = 10 ) were used, the differences in results were smaller 
than the size of the plot markers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
to the body only. Dynamics at Er = 1 , not included here, also confirm 
the small amplitude theoretical results in Ref. [55] . Namely, the im- 
portance of anchoring strength is greatly diminished in determining the 
swimming speed, particularly at large rotational viscosity. 

We now explore the effects of swimming in a wide channel but 
much nearer to a single wall. Numerically this is achieved by intro- 
ducing a line of immovable target ghost springs. Fig. 6 shows the di- 
rector and velocity fields, and swimming speeds at amplitude $ = 1 and 
small Ericksen number, large rotational viscosity, and strong anchoring, 
( Er , C∕ A, @ ) = (0 . 01 , 100 , 10) . The wall has the same strong tangential an- 
choring condition as the body, @̄ = 10 . The fields are shown for the cases 
* = > (top) and * = 2 >∕3 (bottom). The prograde motion for free-space 
swimming remains when a distant wall is introduced, but when the wall 
is brought sufficiently close the motion reverts to retrograde motion, or 
swimming to the left, with a recirculating flow inside each wavecrest. 
The swimming speed appears to go through zero smoothly as a function 
of the distance to the wall, as theoretically predicted. 

The symmetrized version of the geometry, closer to the theory devel- 
oped in early sections, has walls above and below the swimmer, equally 
distant from its centerline. Fig. 7 shows the flow fields and director fields 

overlaid, for small and large rotational viscosity, and strong anchoring 
( @ = @̄ = 10) . Overlaying the two fields shows that the fluid velocity 
is almost perfectly aligned with the local director orientation, in stark 
contrast to the flow seen on the bottom of Fig. 5 , where in the pro- 
grade motion the flow is nearly orthogonal to the director field close to 
the body. The recirculation zones are again prevalent, as seen near the 
wall in Fig. 6 , and the dominant effect of the nearby walls in this case 
again remove the swimming direction reversal found in the study with- 
out walls: even at large rotational viscosity, in a channel the swimming 
speed is not far from that found for small rotational viscosity. 

To further examine the robustness of our analytical results from 
Section 5 to large amplitude motion, we study swimming in a symmetric 
channel with variable stroke amplitude a and distance to the wall, d . In 
this section, we depart from the value Er = 0 . 01 used elsewhere in our 
numerical results, observing that if the Ericksen number is too small, 
however, the Eqs. (28) –(31) decouple, and it is harder to be sure that 
the numerics are validating our analysis. We therefore settle on Er = 1 , 
which is close to what has been used in experiments. This value addi- 
tionally preserves some effect of the anchoring strength on the swim- 
ming speed, so that we can verify that the role of anchoring strength 
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on swimming speed vanishes as d decreases. The results are shown in 
Fig. 8 . While the Katz result (B.13) holds for a / d ≈1, the speed quickly 
decreases to the unconfined speed, described in the small-amplitude case 
in Ref. [55] . However, the rate of decay for a / d ≈1 is identical to the 
( $ ∕ *) −2 factor observed by Katz, and the range of validity seems to ex- 
tend to roughly ( $ ∕ *) −2 = 0 . 5 . Varying the material parameters confirms 
our analytical result that deep in the lubrication regime the liquid crys- 
talline effects are swamped by mass conservation and the no-slip con- 
dition, which together imply that the swimming speed converges to the 
wave speed as d → a . The numerical results also demonstrate that an- 
choring strength becomes unimportant in this regime (so long as the 
conditions on both swimmer and wall are tangential), which extends 
the results of Section 5 . 

Performing this calculation also gives us a glimpse at the speed of 
a finite-amplitude Taylor swimmer in an unbounded nematic solution, 
which is given by the limit a / d →0 for fixed a . Interestingly, despite 
previous findings that for the parameters used here a small-amplitude 
swimmer in a nematic swims faster than its Newtonian counterpart by a 
factor of roughly two [55] , for larger amplitudes this trend is reversed. 
We can see this by comparing Fig. 8 to results from the literature on 
the Taylor swimmer in a Newtonian fluid beating with large-amplitude 
waves [85] , which is given by horizontal black lines near $ ∕ * = 0 . 
For the amplitudes used in Fig. 8 , the Newtonian swimming speed 
is faster for $ = 0 . 5 and $ = 0 . 8 than the swimming speed in a liquid 
crystal. 
8. Conclusion 

This work extends previous studies of flagellated swimmers in un- 
confined liquid crystals and confined isotropic fluids to include both 
anisotropic and boundary effects. Our analytic results, based on asymp- 
totic analysis in the stroke amplitude and channel width, suggest that 
the liquid-crystalline material properties have a diminishing effect on 
the swimming speed and volumetric flux as the width of the channel 
decreases, so long as the anchoring conditions on both surfaces are tan- 
gential. An extension of the model would include different anchoring 
conditions, such as homeotropic anchoring on one surface, and we sus- 
pect this would lead to very different results. In this setting the Ericksen–
Leslie equations may break down and a Landau-de Gennes Q -tensor 
model would be more appropriate to study [39,86] . However, while 
the swimming speed is not dependent on liquid crystal parameters, the 
pressure, flux, and power consumption are strongly dependent on the 
rotational and anisotropic bulk viscosities. In our work we only consid- 
ered the case of the swimmer moving parallel to the walls, and did not 
consider the torques which may tend to turn a swimmer [87–89] . The 
question of whether swimmers tend to be attracted or repelled to walls 
in a liquid crystal solution is probably best approached using squirm- 
ers [15,90] rather than Taylor’s swimming sheet. 

We also explored large amplitude swimming, made possible by the 
development of an immersed boundary method for nematic liquid crys- 
tals. We confirmed that the unexpected transition from retrograde to 
prograde locomotion at large rotational viscosity persists at large wave 
amplitude and is not an artifact of the small amplitude assumption. We 
also captured the return to retrograde motion in these cases when a 
nearby wall or channel is introduced. Interestingly, whereas in previous 
works swimmers with prescribed stroke at small amplitude have been 
shown to be faster than their Newtonian counterparts, for increasing 
amplitude this situation reverses, such that a swimmer is always loco- 
moting at a slower speed and at greater power consumption than if it 
were locomoting in an isotropic, Newtonian fluid. Narrowing the chan- 
nel also demonstrates an interesting connection between confinement 
and anchoring conditions. 
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Appendix A. Single constant approximation in two dimensions 

In two dimensions the transverse part of the molecular field is given 
by $ = ℎ ! ⟂, with ! ⟂ = (− sin %, cos %) . In the single constant approxima- 
tion . 1 = . 3 , we have ℎ = ∇ 2 %. The elastic stress is given by the bulk 
and anchoring contributions, 
!J + !$ = [− %2 1 ̂+ ̂+ − %2 2 ̂/ ̂/ − %1 %2 ( ̂+ ̂/ + ̂/ ̂+ ) ] + ∇ 2 %- ( %) , (A.1) 
where 
- ( %) = 1 2 { 

9 sin 2 % ( ̂+ ̂+ − ̂/ ̂/ ) + ( 1 − 9 cos 2 %) ̂+ ̂/ − ( 1 + 9 cos 2 %) ̂/ ̂+ } 
. (A.2) 

The total elastic force on the fluid is then 
, J ( %) = ∇ ⋅ ( !J + !R ) = −∇ 2 %∇ % − 1 2 ∇ (|∇ %|2 ) + (∇ 2 %)∇ ⋅ - ( %) 

+ - ( %) ⋅ ∇ (∇ 2 %), (A.3) 
where ∇ ⟂ = ( 7 2 , − 7 1 ) and 
∇ ⋅ - ( %) = 9[cos 2 %( ̂+ ̂+ − ̂/ ̂/ ) + sin 2 %( ̂+ ̂/ + ̂/ ̂+ ) ] ⋅ ∇ %. (A.4) 
The second term in Eq. (A.3) may be absorbed into the pressure. 

The viscous stress may be written in the form 
!- ( " ; %) = ( , 2 − - 1 ) (L (2 , 0) ( %) ̂+ ̂+ + P (2 , 0) ( %) ( ̂+ ̂/ + ̂/ ̂+ ) + Y (2 , 0) ( %) ̂/ ̂/ ) (A.5) 
+ , 1 (L (1 , 1) ( %) ̂+ ̂+ + P (1 , 1) ( %) ( ̂+ ̂/ + ̂/ ̂+ ) + Y (1 , 1) ( %) ̂/ ̂/ ), (A.6) 
where we have used ∇ ⋅ " = , 1 + - 2 = 0 . The coefficient functions of %
are viscosity dependent and are given by (with A∗ 

1 = A1 ∕ A, A∗ 
2 = A2 ∕ A, 

and C∗ = C∕ A), 
L (2 , 0) ( %) = 1 2 sin ( 2 %) (A∗ 

1 cos (2 %) + A∗ 
1 + A∗ 

2 ), (A.7) 
L (1 , 1) ( %) = 1 2 (4 + 2 (A∗ 

1 + A∗ 
2 ) cos (2 %) + A∗ 

1 cos (4 %) + A∗ 
1 + 2 A∗ 

2 ), (A.8) 
P (2 , 0) ( %) = − 1 4 (A∗ 

1 cos (4 %) − A∗ 
1 − 2( A∗ 

2 + 2) ), (A.9) 
P (1 , 1) ( %) = 1 2 A∗ 

1 sin (4 %) , (A.10) 
Y (2 , 0) ( %) = − 1 2 sin (2 %) (A∗ 

1 cos (2 %) − A∗ 
1 − A∗ 

2 ), (A.11) 
Y (1 , 1) ( %) = − 1 2 (4 − 2 (A∗ 

1 + A∗ 
2 ) cos (2 %) + A∗ 

1 cos (4 %) + A∗ 
1 + 2 A∗ 

2 ). (A.12) 
The viscous stress is symmetric, as expected. Finally, dotting the direc- 
tor field evolution equation ( Eq. (10) ) with n ⊥ we find an evolution 
equation for the director field orientation angle, 
%B + " ⋅ ∇ % + 1 2 ( , 2 − - 1 ) = 9( cos 2 %2 ( , 2 + - 1 ) − sin 2 % , 1 )+ 1 

C∗ Er ∇ 2 %. 
(A.13) 

Appendix B. Details of the lubrication calculation for swimming 
speed 

Here we calculate the flow field and swimming velocity for a swim- 
mer near a wall in a nematic liquid crystal, using the lubrication ap- 
proximations of Section 5 . The liquid crystalline factors play a limited 
role and the calculation follows the same steps as in the isotropic case; 
we follow the approach of Pak and Lauga [59] . The lubrication approx- 
imation implies that the pressure ;̃ is independent of 2̃ : ;̃ = ;̃ ( ̃1 , ̃B ) . With 
this assumption, the x -component of the velocity may be found in terms 
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Fig. B.1. Incompressibility of the liquid crystal implies there is no net flow into 
or out of the slice. 
of the pressure gradient from Eq. (36) and the no-slip boundary condi- 
tions (32) –(33) : 
,̃ = 7 ̃; ∕ 7 ̃1 

2[1 + C∕(4 A)] (2̃ − D̃ )( ̃2 − 1 ) + )̃ 2̃ − D̃ 
1 − D̃ , (B.1) 

where D̃ = $̃ sin ( 1 − B ) and $̃ = $ ∕ *. The complete 1̃ - and B̃ - dependence 
of ,̃ is still unknown because we don’t yet know how ;̃ depends on 1̃ 
and ̃B . 

We can determine 7 ̃; ∕ 7 ̃1 up to an unknown time-dependent constant 
by appealing to the conservation of volume of fluid. The net flow out of 
a slice of small thickness d ̃1 must vanish, as shown in Fig. B.1 : 
∫

1 
D̃ ( ̃1 +d ̃1 ) ,̃ ( ̃1 + d ̃1 )d ̃2 − ∫ 1 

D̃ ( ̃1 ) ,̃ ( ̃1 )d ̃2 + ̃" ⋅ !̂ d " = 0 , (B.2) 
where !̂ is the outward-pointing normal ( Fig. B.1 ). Since "̃ ⋅ !̂ d " = 
− ̃- ( ̃1 , D̃ )d ̃1 via the no-slip boundary conditions, we can rewrite (B.2) in 
differential form 
d 
d ̃1 ∫ 1 

D̃ ,̃ ( ̃1 )d ̃2 − -̃ ( ̃D ) = 0 , (B.3) 
or, 
∫

1 
D̃ ,̃ ( ̃1 )d ̃2 + $̃ sin ( ̃1 − ̃B ) = G ( ̃B ) , (B.4) 

where G ( ̃B ) is to be determined. Using Eq. (B.1) for ,̃ ( ̃1 ) , performing the 
integral in (B.4) , and solving for 7 ̃; ∕ 7 ̃1 yields 
1 
O
7 ̃; 
7 ̃1 = 12(1 − G ) 

(1 − D̃ ) 3 + 6 )̃ − 2 
(1 − D̃ ) 2 . (B.5) 

The only difference between this expression and the corresponding ex- 
pression in the isotropic problem [59] is the factor of O [ Eq. (37) ], which 
contains all the dependence on the liquid crystalline material parame- 
ters. We can get an equation involving Q and )̃ only by integrating the 
pressure gradient over a period in 1̃ , and noting that the pressure must 
be periodic. Thus, 
12 \ 3 (1 − G ) + 6 \ 2 ( ̃) − 2) = 0 , (B.6) 
where 
\ 2 = ∫ 2 >

0 d ̃1 
[1 − D̃ ] 2 = 2 >

(1 − $̃ 2 ) 3∕2 , (B.7) 
\ 3 = ∫ 2 >

0 d ̃1 
[1 − D̃ ] 3 = 2 >(2 + $̃ 2 ) 

(1 − $̃ 2 ) 5∕2 . (B.8) 
Note that the prefactor involving the liquid crystalline parameters has 
dropped out, and the relation (B.6) is the same as in the isotropic 
case [59] . 

To get another equation involving q and )̃ , we demand that the force 
on the swimmer vanish. It is simpler and equivalent to demand that the 
force on the wall at 2̃ = 1 vanishes, 
∫

2 >
0 312 ( ̃2 = 1)d ̃1 = 0 . (B.9) 

According to the lubrication scaling, the stress to leading order is given 
by 
3̃1̃ ̃2 = (1 + A∗ ∕2 ) 7 ̃, 

7 ̃2 . (B.10) 
Integrating the stress leads to 

(4 ̃) − 6) \ 1 + 6(1 − G ) \ 2 = 0 , (B.11) 
where 
\ 1 = ∫ 2 >

0 d ̃1 
1 − D̃ = 2 >

(1 − $̃ 2 ) 1∕2 . (B.12) 
Since the liquid-crystalline factors in O have again dropped out, solv- 
ing Eqs. (B.6) and (B.11) yields G = )̃ , and the isotropic swimming 
speed [4] : 
)̃ = 3 ̃$ 2 

2 ̃$ 2 + 1 . (B.13) 
Denoting the time average over a period by angle brackets, the average 
flux entrained by the swimmer is given by ⟨∫ 1 

D̃ ,̃ d ̃2 ⟩ = ⟨G ⟩ = )̃ . 
Now that we have solved for Q and )̃ , we can find the flow field. 

The flow field is a quadratic polynomial in 2̃ : 
,̃ = ( 2 − D̃ ) {6(1 − 2 ) ̃D − )̃ [4 + D̃ + D̃ 2 − 3 2 (1 + D̃ ) ]}

( ̃D − 1) 3 . (B.14) 
Likewise we can find the angle field by integrating Eq. (28) : 
%̃ = M 2̃ − 1 

( ̃D − 1) 3 { 7 ̃D 
7 ̃1 ( ̃D − 1) 2 + ( 2 − D̃ ) [D̃ (1 − 2 ̃2 + D̃ ) 
+ ̃) (−1 + 2̃ + 2̃ ̃D − D̃ 2 ]} 

, (B.15) 
where 
M = C∗ . 3 

. 1 Er 1 − 9
2 . (B.16) 
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