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Microscale locomotion in a nematic liquid crystal

Madison S. Krieger,a Saverio E. Spagnolieb and Thomas Powersac

Microorganisms often encounter anisotropy, for example in mucus and biofilms. We study how anisotropy

and elasticity of the ambient fluid affects the speed of a swimming microorganism with a prescribed

stroke. Motivated by recent experiments on swimming bacteria in anisotropic environments, we extend a

classical model for swimming microorganisms, the Taylor swimming sheet, actuated by small-amplitude

traveling waves in a three-dimensional nematic liquid crystal without twist. We calculate the swimming

speed and entrained volumetric flux as a function of the swimmer’s stroke properties as well as the elastic

and rheological properties of the liquid crystal. These results are then compared to previous results on an

analogous swimmer in a hexatic liquid crystal, indicating large differences in the cases of small Ericksen

number and in a nematic fluid when the tumbling parameter is near the transition to a shear-aligning

nematic. We also propose a novel method of swimming or pumping in a nematic fluid by passing a

traveling wave of director oscillation along a rigid wall.

1 Introduction

The nature of the fluid through which a microorganism swims
has a profound effect on strategies for locomotion. At the small
scale of a bacterial cell, inertia is unimportant and locomotion
is constrained by the physics of low-Reynolds-number† flows.1–3

In a Newtonian liquid such as water, low-Reynolds number
locomotion is characterized by two distinctive properties: a
vanishingly small timescale for the diffusion of velocity, and
drag anisotropy, which is a difference between the viscous drag
per unit length on a thin filament translating along its long axis
and transverse to its long axis.3 In resistive force theory, drag
anisotropy is required for locomotion.4–6

In complex fluids such as polymer solutions and gels,
the elasticity of the polymers introduces a new timescale, the
elastic relaxation timescale, which is much longer than the
timescale for the diffusion of velocity.7 When the fluid has an
elastic response to deformation, swimming speeds can increase
or decrease depending on the body geometry and the elastic
relaxation timescale,8–16 and the so-called scallop theorem does
not apply.17,18 Swimmers can move faster in gels and networks of
obstacles than in a Newtonian liquid.19–21 When the flagellum
size is similar to the size of the polymers, local shear-thinning

may be the primary cause of swimming speed variations in such
fluids.22–25

Like polymer solutions and gels, liquid crystals have an
elastic relaxation time scale, but they also alter the drag
anisotropy required for propulsion since the fluid itself exhibits
anisotropy. For example the nematic liquid crystal phase consists
of rod-like molecules which spontaneously align in the absence
of an external field. The consequences of molecular anisotropy
on the locomotion of microorganisms have recently been
explored experimentally. Proteus mirabilis cells were found to
align with the nematic director field and form multi-cellular
assemblies26,29,30 (Fig. 1a). When swimming near nematic
droplets, surface topological defects were shown to play an
important role in bacterial escape from the liquid crystal
interface.29 Collective dynamic effects and director-guided
motion was also observed in Bacillus subtilis at low bacterial
volume fraction, and a local melting of the liquid crystal caused
by the bacteria was found27 (Fig. 1b and c). Potential applica-
tions include the delivery of small cargo using the direction of
molecular orientation.31 Understanding these results may be
relevant in understanding locomotion in biofilms28 (Fig. 1d),
and is complementary to recent work on active nematics, or soft
active matter, in which dense suspensions of microorganisms
themselves can exhibit nematic-like ordering32–34 (Fig. 1e).

A classical mathematical model of swimming microorganisms
is Taylor’s swimming sheet,1 in which either transverse or long-
itudinal waves of small amplitude propagate along an immersed
sheet of infinite extent. Extensions of this model have been used
to study other important phenomena such as hydrodynamic
synchronization,35–38 interactions with other immersed struc-
tures39,40 and geometric optimization.41 Other variations on

a School of Engineering, Brown University, Providence, RI 02912, USA.

E-mail: madison_krieger@brown.edu
b Department of Mathematics, University of Wisconsin-Madison, Madison,

WI 53706, USA. E-mail: spagnolie@math.wisc.edu
c Department of Physics, Brown University, Providence, RI 02912, USA.

E-mail: thomas_powers@brown.edu

Received 31st August 2015,
Accepted 17th September 2015

DOI: 10.1039/c5sm02194d

www.rsc.org/softmatter

† The Reynolds number Re for the flow of a fluid with viscosity m, density r,
characteristic flow length L, and characteristic flow velocity v is Re = rvL/m.
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this asymptotic model have been used to study locomotion in a
wide variety of complex fluids by numerous authors.42 Locomotion
in liquid crystals, however, has not yet seen much theoretical
treatment. In previous works,43,44 we studied a one-dimensional
version of Taylor’s swimming sheet in a two-dimensional hexatic
LC film. Departure from isotropic behavior in that model is great-
est for large rotational viscosity and strong anchoring boundary
conditions, and the swimming direction depends on fluid proper-
ties. Further unusual properties for Taylor’s swimming sheet were
observed, such as the presence of a net volumetric flux. Because
the nematic phase is more commonly observed than the hexatic,
the present study is intended to explore new features that arise
with nematic order, and also to determine when, if ever, the
hexatic model can be used to accurately describe swimming in a
nematic liquid crystal.

In this article we extend the Taylor swimming sheet model
to the study of force- and torque-free undulatory locomotion
in a three-dimensional nematic liquid crystal, with tangential
anchoring of arbitrary strength on the surface of the swimmer.
We assume the director lies in the xy-plane and does not twist
(Fig. 1f). Alternatively the problem could be considered as filament
motion in a two-dimensional nematic fluid. By performing an
asymptotic calculation to second-order in the wave amplitude,
assumed small compared to the wavelength, we examine how fluid
anisotropy and relaxation affects swimming speed. We show
how the swimming velocity depends on numerous physical
parameters, such as the rotational viscosity g, anisotropic visco-
sities mi, the Frank elastic constants Ki, the tumbling parameter
l, and the Ericksen number Er, which measures the relative

viscous and elastic forces in the fluid. The rate of fluid transport
induced by swimming is also investigated; unlike in a Newtonian
fluid, the induced fluid flux can be either along or against the
motion of the swimmer.

The paper is organized as follows: in Section 2.1 we describe
the stresses that arise in a continuum treatment of a nematic
liquid crystal near equilibrium. In Section 2.2 we use these
stresses to derive a set of coupled equations for the flow field
and local nematic orientation. Following Taylor,1 we non-
dimensionalize and expand these equations perturbatively to first-
and second-order in wave amplitude and derive an integral
relation for the swimming speed and volume flux in Sections
2.3 and 2.4. The dependence of the swimming speed and flux on
Ericksen number, rotational viscosity, and tumbling parameter is
described in Section 3. In Section 3.4, we show that a propagating
wave of director oscillation can result in fluid pumping and
locomotion of a passive flat surface. To determine the regimes
in which the results for swimming speed and flux are comparable
in nematic and hexatic fluids, and where they differ, we plot these
quantities side-by-side and discuss the results in Section 4.

2 Theory
2.1 Viscous and elastic stresses

In a continuum treatment of a nematic liquid crystal, a local
average of molecular orientations is described by the director
field n. The fluid’s viscous stress response to deformation is
approximated by incorporating terms linear in the strain rate

Fig. 1 (a) Dynamic assembly of bacteria in disodium cromoglycate.26 (b) Melting of the liquid crystal medium behind a flagellated swimmer.27

(c) Disclinated texture observed as a collection of bacteria locomote in a nematic liquid crystal.27 (d) Aligned Pseudomonas aeruginosa cells in the liquid
crystal matrix of concentrated DNA.28 (e) Aligned swimmers in a bacterial flock. Figure from Gregory Velicer (Indiana University Bloomington) and
Juergen Bergen (Max-Planck Institute for Developmental Biology). (f) Sketch of a swimming sheet (not to scale) immersed in a nematic liquid crystal with
director field n(x, y, t). The propagating wave has wavelength 2p/q, small amplitude b { 2p/q, and wave speed c = o/q. The director field n makes an
angle y with the x axis.
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that preserve n -�n symmetry. In an incompressible nematic,
the deviatoric viscous stress45,46 is

rd = 2mE + 2m1*nn(n�E�n) + m2*(nE�n + n�En), (1)

with E = [rv + (rv)T]/2 the symmetric rate-of-strain tensor, and
v the velocity field. The shear viscosity of an isotropic phase is
m, and m1* and m2* are viscosities arising from the anisotropy.
The coefficients m1* and m2* can be negative, but the physical
requirement that the power dissipation be positive yields bounds
of m 4 0, m2* 4 �2m, and m1* + m2* 4 �3m/2. While both the
nematic phase and the hexatic phase we studied previously43 are
anisotropic, the hexatic phase has m1* = m2* = 0 and thus has an
isotropic viscous stress tensor, in contrast with the nematic.

Meanwhile, the elastic free energy for a nematic liquid
crystal is

F ¼ K1

2
r � nð Þ2þK2

2
n � r � nð Þ2þK3

2
n� r� nð Þ½ �2; (2)

where K1 is the splay elastic constant, K2 is the twist elastic
constant, and K3 is the bend elastic constant.45,46 The total free
energy in the fluid (per unit length) is Fel ¼

Ð
Fdxdy. As

mentioned earlier, for simplicity we do not consider twist,
and thus we disregard K2. Thus, the angle field y(x, y, t)
completely determines the nematic configuration (Fig. 1f).
Comparing again with our previous study,43 there is only one
Frank constant when the two-fold symmetry of the nematic is
enlarged to the six-fold symmetry of a hexatic.

Equilibrium configurations of the director field are found by
minimizing F subject to |n| = 1. This procedure leads to h = 0,
where h is the transverse part of the molecular field H = �dFel/dn;
h = H� nn�H. Near equilibrium, the fluid stress corresponding to
the elastic free energy F is then46,47

srik ¼ �Pkl@inl �
l
2
nihk þ nkhið Þ þ 1

2
nihk � nkhið Þ; (3)

where Pki = qFel/@(@kni). In equilibrium, the condition for the
balance of director torques h = 0 implies the balance of elastic
forces, �@ipeq + @js

r
ij = 0, provided the pressure is given by peq =

�F.47 The ‘‘tumbling parameter’’ l is not a dissipative coefficient,
but is related to the degree of order and the type of nematic, with
calamitic phases (composed of rod-like molecules) tending to have
l 4 0, and discotic phases (composed of disk-like molecules)
tending to have lo 0. The value of this parameter further classifies
nematic fluids as either ‘‘tumbling’’ (l o 1) or ‘‘shear-aligning’’
(l Z 1). In a simple shear flow, tumbling nematics continuously
rotate whereas shear-aligning nematics tend to align themselves
at a certain fixed angle relative to the principal direction of
shear. In DSCG, a lyotropic chromonic liquid crystal commonly
used in experiments on swimming microorganisms in liquid
crystals, the tumbling parameter l is a function of temperature
and has a range l = 0.6–0.9.48 For comparison, the hexatic
phase has l = 0 and therefore lacks any of these distinctions.

Alternatively, we could have formulated the stresses using
the Ericksen–Leslie approach; the connection between the
Ericksen–Leslie approach and that used here is discussed in
ref. 47 and 49.

2.2 Governing equations

The swimming body is modeled as an infinite sheet undergoing
a prescribed transverse sinusoidal undulation of the form Y* =
(e/q)sin(qx � ot), measured in the frame moving with the
swimmer. Here e is the dimensionless amplitude of the swim-
mer. We focus on transverse waves in the body of this article,
but we briefly treat longitudinal waves in the Appendix.

At zero Reynolds number, conservation of mass of an
incompressible fluid results in a divergence-free velocity field,
r�v = 0, and conservation of momentum is expressed as force
balance,

�@ip + @j (s
d
ij + sr

ij) = 0. (4)

Torque balance is expressed by (see ref. 45 and 46):

@tni + (v�r)ni � 1
2 [(r � v) � n]i = l(dij � ninj)Ejknk + hi/g*,

(5)

where g* is a rotational or twist viscosity.‡ In DSCG, g*/m ranges
from E5 to E50.50 The viscous torque arising from the rotation
of the director relative to the local fluid rotation balances with
viscous torque arising through E and elastic torque through �h.
We work in the rest frame of the swimmer.

The no-slip velocity boundary condition is applied on the
swimmer surface, and as y - N the flow has uniform velocity
v = U*x̂ where �U* is the swimming speed. Meanwhile, the
director field has a preferential angle at the boundary due to
anchoring conditions. We will study the case of tangential
anchoring at the swimmer surface, with anchoring strength
W.47 Since we expand in powers of the amplitude, we may write
this condition to second order in the angle field:

�K1@yy + W(y � @xY*) = 0, (6)

where y = Y*(x, t) describes the swimmer shape, and (6) is
evaluated at y = Y*. It is convenient to define the dimensionless
anchoring strength w = W/(qK1).

Henceforth we treat x, y, and t as dimensionless variables by
measuring length in units of q�1 and time in units of o�1. The
dimensionless viscosities are defined by m1 = m1*/m, m2 = m2*/m
and g = g*/m. It is also convenient to introduce the wave speed
c = o/q, which is one in the natural units. The ratio of Frank
constants is denoted by Kr = K1/K3, and we define U = U*/c, and
Q = Q*/(oe2/q2) for the volumetric flux. The undulating shape of
the swimmer takes the nondimensional form

(X, Y) = (0, e)sin(x � t). (7)

The elastic response of the fluid to deformation introduces a
length-scale-dependent relaxation time, t = m/(K3q2). For small-
molecule liquid crystals, typical values are m E 10�2 Pa s and
K3 E 10�11 N. On the length scale of bacterial flagellar
undulations for which q E 1 mm�1, the relaxation time is
t E 1 ms. Comparing the typical viscous stress (1) with the
typical elastic stress (3), we find the Ericksen number,45 written
Er = to. Note that unlike the Reynolds number, which is always

‡ For comparison with the much simpler hexatic phase, Appendix A includes the
governing equations for a hexatic liquid crystal.43
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small for swimming microorganisms, the Ericksen number for
a swimming microorganism may be small or large. The beat
frequencies and wavenumbers of undulating cilia and flagella
vary widely,8,51 and for experiments on bacteria in liquid
crystals the Ericksen number can be small,29,30 Er E 10�1, or
large,27 Er E 101.

2.3 Leading order fluid flow

Following Taylor,1 we pursue a regular perturbation expansion
in the wave amplitude e. The stream function c is defined by
v = r � (cẑ); this form ensures r�v = 0. The stream function c
and the angle field y are expanded in powers of e as c = ec(1) +
e2c(2) + O(e3) and y = ey(1) + e2y(2) + O(e3). Force and torque
balance from (4) and (5) at O(e) are given by

r4cð1Þ þ 4m1
2þ m2

@x
2@y

2cð1Þ þ 1

2þ m2ð ÞEr

� ð1þ lÞ@x4yð1Þ þ Krð1þ lÞ þ 1� l½ �@x2@y2yð1Þ
n

þ Krð1� lÞ@y4yð1Þ
o
¼ 0;

(8)

@tyð1Þ þ
1þ l
2

@x
2cð1Þ þ 1� l

2
@y

2cð1Þ

� 1

Erg
@x

2yð1Þ þ Kr@y
2yð1Þ

� �
¼ 0:

(9)

Eqn (8) and (9) are solved by c(1) = Re[ ~c(1)] and y(1) =
Re[~y(1)], where

~cð1Þ ¼
X3
j¼1

cje
rjyþiðx�tÞ; (10)

~yð1Þ ¼
X3
j¼1

dje
rjyþiðx�tÞ: (11)

Insertion of (10) and (11) into (8) and (9) results in a cubic
equation for m = rj

2,

0 ¼ A0 þmA1 þm2A2 þm3A3;

A0 ¼ � 2 2þ m2ð Þ þ g � 1þ lð Þ2þ2iEr 2þ m2ð Þ
h i

;

A1 ¼ m Kr g 1þ lð Þ2 þ 2 2þ m2ð Þ
h i

þ 2 4þ 4m1 þ 2m2ð Þ
n
þ g 1� l2 � 2iEr 2þ 2m1 þ m2ð Þ
� ��

;

A2 ¼ A0 þ 4glþ 2Kr g �1þ l2
� �

� 4� 4m1 � 2m2
� �

;

A3 ¼ Kr g �1þ lð Þ2þ4þ 2m2
h i

:

(12)

The velocity field remains finite as y -N if the roots rj are taken
with negative real part. The relation between the coefficients cj

and dj follows from (8) and (9):

dj ¼ cj
Erg 1þ l� ð1� lÞrj2
� �

2 1� Krrj2 � iErg
� � ; (13)

and the coefficients ci are determined by the boundary condi-
tions at first order in amplitude

@y
~c(1)|y=0 = 0, (14)

�@x
~c(1)|y=0 = �eei(x�t), (15)

�@y
~y(1) + w~y(1)|y=0 = weei(x�t). (16)

2.4 Second-order problem

The equations at second order in e have many terms and are
unwieldy. However, they are simplified by averaging over the
spatial period. Since the forcing is a traveling sinusoidal wave
depending on space and time through the combination x � t,
averaging over x causes derivatives with respect to x and with
respect to t to vanish. Denoting the spatial average by h�i,
we find

ð1� lÞKr

2þ m2ð ÞEr @y
3yð2Þ

D E
þ @y

2vð2Þx

D E
¼ f ; (17)

Kr

gEr
@y

2yð2Þ
D E

� 1

2
ð1� lÞ @yvð2Þx

D E
¼ g; (18)

where f and g are given by

f ¼ k1

Er
@xyð1Þ@y2yð1Þ
D E

þ 4m1
2þ m2

ryð1Þ � @yvð1Þ
D E

(19)

g ¼ vð1Þ � ryð1Þ
D E

� 2l @xyð1Þvð1Þx

D E
� k2

gEr
@yyð1Þ@xyð1Þ
D E

; (20)

with k1 = [Kr(1 + l) + 1 � l]/(2 + m2) and k2 = Kr � 1. Expanding
the no-slip boundary condition to second order, we find

hv(2)
x i|y=0 = �hY@yv(1)

x i|y=0, (21)

where Y is given by eqn (7). The second-order part of the
anchoring condition takes the form

[�h@yy
(2)i + why(2)i]y=0 = X, (22)

where

X = h�qxYqxy
(1) + Y@y

2y(1) � wY@yy
(1)i|y=0. (23)

The swimming speed and velocity field at second order are
given by solving (17) and (18) subject to the no-slip boundary
condition and no flow at infinity. The result is

vð2Þx

D E
¼ vð2Þx

D E			
y¼0
�a
ðy
0

gð1� lÞgþ ð2þ m2ÞF½ �dy0; (24)

where FðyÞ ¼
Ð1
y f ðy0Þdy0 and a = 2[g(1 � l)2 + 2(2 + m2)]�1. The

boundary conditions on hy(2)i do not enter the expression for
hvx

(2)i. The swimming speed U is given by the flow speed (24)
at y = N:

U ¼ vð2Þx

D E			
y¼0
�a
ð1
0

gð1� lÞgþ ð2þ m2Þyf½ �dy; (25)

where to obtain (25) we have integrated by parts. Appendix B
discusses some of the details of calculating this integral.

We will also be interested in another observable. Unlike in
the case of an unconfined Taylor swimmer in a Newtonian1 or
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Oldroyd-B fluid at zero Reynolds number,8 there is a net flux of
fluid pumped by a swimmer in a liquid crystal. In the lab frame,
the average flux is given by

Q ¼
ð1
ys

vx �Uh idy �
ð1
0

vð2Þx �U
D E

dy� ysv
ð1Þ
x

D E			
y¼0
: (26)

Note that the second term of eqn (26) vanishes for a transverse
wave since vx

(1)|y=0 = 0. (The second term also vanishes for a
longitudinal wave, since ys = 0—see Appendix C.) Therefore, the
flux is also given to second-order accuracy by

Qð2Þ ¼
ð1
0

vð2Þx

D E
�U

� �
dy: (27)

Note our sign convention: a positive U corresponds to swimming
towards the left, opposite the direction of wave propagation (see
Fig. 1f), while a positive Q corresponds to fluid swept to the right,
along the direction of wave propagation.

3 Results
3.1 Dependence on Ericksen number

For general Ericksen number the solutions of the governing equa-
tions to second order do not result in elegant expressions, but the
swimming speed and flux are readily found and plotted. The
method of solution is described in Appendix B. In the following,
we use material parameters that closely mirror the properties of
disodium cromolyn glycate (DSCG), in which experiments on
swimmers in liquid crystals have been performed.26,29,30,50 We
choose m1 = m2 = 1, Kr = 1.2, and study the swimming speed
as a function of Ericksen number Er, anchoring strength w,
rotational viscosity g, and tumbling parameter l.

Fig. 2 shows the swimming speed as a function of Er = to
[recall t = m/(K3q2)] and g*/m = 5, 25, and 50. The range of g*/m is
between E5 and E50 for DSCG.50 Observe that when the
anchoring strength is weak, the swimming speed decreases
with Er. This behavior was also seen in the case of a swimmer in
a hexatic liquid crystal.43 When the anchoring strength is strong,
w]5, the swimming speed is weakly dependent on Ericksen
number, becoming independent of Ericksen number for large
rotational viscosity (Fig. 2, right panel). This weak dependence
on Er is suggested by the fact that the rotational viscosity enters
the governing equations in the combination (gEr)�1 (eqn (9), (18)
and (20)). However, when the rotation viscosity is in the low

range for DSCG, g*/m = 5, the swimming speed increases with
Ericksen number when the anchoring strength is moderately
strong, w = 5 (Fig. 2, left panel): when anchoring is important,
the swimming speed increases when viscous effects dominate as
long as the rotational viscosity is sufficiently low. The increase in
swimming speed with Er at strong anchoring and modest g* is
not seen in the hexatic liquid crystal.43

All three panels of Fig. 2 indicate that the swimming speed
becomes independent of anchoring strength when the Ericksen
number is sufficiently large. Once again, because the rotational
viscosity enters always in the combination (gEr)�1, the value of
Er for which the anchoring strength becomes irrelevant is
inversely proportional to the rotational viscosity. In contrast
with the case of a transverse-wave swimmer in a hexatic liquid
crystal, the swimming speed has a weak but noticeable depen-
dence on Ericksen number when the anchoring strength is
strong and the rotational viscosity is not too large (Fig. 2, left
panel). But because this dependence is weak we can say that the
large Er limit is the same as the strong anchoring strength
limit. Note that the large Ericksen number limit is reached at
relatively small values of the Ericksen number; in all the panels
of Fig. 2, the large Er asymptotic value is reached or nearly
reached when Er = 1.

As in the case of a hexatic liquid crystal,43 the large Er limit
is singular, since terms with the highest derivatives in the
governing equations vanish in this limit [see eqn (8), (9), (17)
and (18)]. When elastic stresses are small compared with the
viscous stresses, it is natural to set the Ericksen number to
infinity, or equivalently, drop all terms involving the Frank
elastic constants. The resulting limiting model is known as
Ericksen’s transversely isotropic fluid.45 However, this limit is
singular, and therefore Ericksen’s transversely isotropic fluid does
not give physical results for the swimming speed. In particular,
Ericksen’s transversely isotropic fluid would incorrectly predict
that the swimming speed is independent of rotational viscosity at
large Ericksen number. Examining the right end of each of the
panels in Fig. 2 shows that speed depends on g at large Er; we now
turn our attention to this dependence.

3.2 Dependence on rotational viscosity c*

Fig. 3 shows the swimming speed as a function of dimension-
less rotational viscosity g = g*/m for various Ericksen numbers
and anchoring strengths for a nematic liquid crystal. First note

Fig. 2 Dimensionless swimming speed U*/(ce2) vs. Er = to for a swimmer in a nematic liquid crystal with m1* = m, m2* = m, Kr = 1.2, and l = 0.6, with
anchoring strengths w = 0 (blue), w = 0.1 (red), w = 1 (green), and w = 5 (brown). The rotational viscosity g*/m is 5 (left), 25 (center), and 50 (right).
The horizontal axis is rescaled in each plot for enhanced resolution.
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that in accord with discussion of Fig. 2, the swimming speed
becomes independent of anchoring strength for large Er. The
middle panel of Fig. 3 shows that the dependence on anchoring
strength is very weak even for Er = 1 (which of course can also
be observed from Fig. 2). Secondly, the swimmer can reverse
direction. When g*/m is large enough, U* becomes negative,
meaning the swimmer swims in the same direction as its
propagating wave. These qualitative features were also observed
in the model for a swimmer in a hexatic liquid crystal.43 However,
Fig. 3 also reveals important differences between swimming in a
hexatic and a nematic liquid crystal. First, the hexatic swimming
speed is always bounded by the isotropic Newtonian swimming
speed,43 |U*| o ce2/2, whereas the nematic swimming speed can
be greater than the Newtonian speed. Second, there is a maximum
in the swimming speed as a function of rotational viscosity, as
long as the anchoring strength is low enough. The maximum is
most apparent at small Er, and is in the region of measured
rotational viscosities for DSCG (Fig. 3, left panel). The maximum
is less apparent at higher Ericksen numbers since in that regime,
the g- 0 limit of the speed is only slightly smaller than the value
of the maximum speed.

Note also that the swimming speed depends on the anchor-
ing strength in the limit of low rotational viscosity. When
g - 0, there is a decoupling between the flow field and the
director field because the molecular field h vanishes in this
limit. In the problem of swimming in a hexatic liquid crystal,43

this decoupling is complete, and the swimming speed is the
isotropic Newtonian swimming speed1 U* = oe2/(2q) when
g - 0. However, the decoupling is only partial in the case of
a nematic liquid crystal, since in that case the anisotropic terms
in the viscous stress depend on the director configuration even
when h = 0. When h = 0, the director field at each instant is in
equilibrium, and since this equilibrium configuration depends
on the anchoring strength, the stress and ultimately the swimming
speed depend on the anchoring strength. In particular, the
swimming speed does not go to the isotropic swimming speed
when g = 0 in a nematic liquid crystal.

It is interesting to plot the swimming speed in physical units
to make the dependence on beat frequency o more apparent
(Fig. 4). When the anchoring strength vanishes and g*/m is in
the experimental range of 10 and 100 for DSCG,48 the swimming
speed depends only weakly on the beat frequency o: all four
curves in Fig. 4 cross in this region.

3.3 Dependence on tumbling parameter k

Fig. 5 shows how the swimming speed depends on the tumbling
parameter l for various Ericksen numbers. For all Ericksen
numbers we find a peak near l = 1, which marks the transition
between tumbling and shear-aligning nematic liquid crystals.45

The maximum is at l = 1 for moderate to high Er, and shifts to
slightly higher l when the Ericksen number becomes small.

Fig. 3 Dimensionless swimming speed U*/(ce2) vs. g*/m for a swimmer in a nematic fluid with m1* = m, m2* = m, Kr = 1.2, and l = 0.75. The three panels
correspond to Er = 0.01 (left), Er = 1.00 (middle), and Er = 100. (right). The colors denote anchoring strengths: w = 0 (blue), w = 0.1 (red), w = 1.0 (green),
and w = 5.0 (brown). Note that the scale for velocity in the left panel is expanded relative to the scales in the middle and right panels.

Fig. 5 Dimensionless swimming speed vs. tumbling parameter l for
various Ericksen numbers, m1* = m, m2* = m, g* = 20m, and zero anchoring
strength.

Fig. 4 Swimming speed in mm s�1 vs. g*/m for a swimmer in a nematic
liquid crystal with m1 = m2 = 1, Kr = 1.2, l = 0.75, q = 1 rad mm�1, t = 1 ms, and
w = 0. The colored curves correspond to different beat frequencies: o =
10 rad s�1 (blue), o = 50 rad s�1 (red), o = 100 rad s�1 (green), o = 200 rad s�1

(brown). The corresponding values of Er = to are all {1.
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As mentioned earlier, the general expressions for speed and
flux are too complicated to display. However, there is a rela-
tively compact expression of the swimming speed in the limit of
large Ericksen number, which we find by expanding the first-
order solutions of (10)–(16) in a Taylor series in Er�1, and then
inserting these values into (17)–(25) to find

U ¼ e2
2 2þ m1ð1þ lÞ þ m2½ � � gð1þ lÞ l� 1ð Þ2

8þ 4m2 þ 2g l� 1ð Þ2

þ O
1

Er


 �
: (28)

This expression confirms our general observation that the
large-Ericksen number behavior is independent of the anchor-
ing strength w. It also shows that when the Ericksen number is
large, the swimming speed becomes independent of the rota-
tional viscosity when l = 1. The speed and flux as a function of
tumbling parameter for various rotational viscosities are
plotted in Fig. 6. Note again that although (28) and Fig. 6 are
appropriate for large Er, they are applicable even to the modest
Ericksen numbers describing experimental systems, of size
1–10, since the swimming speed reaches its high Er limit at a
low value of Er. We do not have an explanation for why the
swimming speed becomes independent of rotational viscosity
when l = 1, but we offer the following remarks. First, as
mentioned previously, the transition from tumbling to shear-
aligning nematic liquid crystals occurs when l = 1.45 Second, the

governing equations lose some of the highest derivative terms
when l = 1, indicating singular behavior and the existence of
boundary layers near the swimmer that are thin in the y
direction. And finally, examination of the first order solutions
for the angle field in this limit reveal that the angle field
simultaneously obeys the strong anchoring and no-anchoring
boundary conditions; in other words, the directors align exactly
tangential to the swimmer surface, but experience no torque.

We close this section by describing the dependence of speed
on tumbling parameter and rotational viscosity for small Ericksen
number and weak anchoring strength, which is also an experi-
mentally relevant regime. For the hexatic liquid crystal,43 it has
been calculated that the first-order velocity field v(1) is identical to
that generated by a swimmer in a Newtonian fluid, so that for
Er { 1 and w = 0 the speed is identical to the speed in a
Newtonian fluid for any rotational viscosity. In an anisotropic
fluid, however, the flow field can differ markedly from the
Newtonian counterpart even at first order in e, which implies
that the speed can differ dramatically from the Taylor speed1

U = ce2/2, as shown in Fig. 7. In the limit l - 0, the swimming
speed is the same as for a swimmer in an isotropic Newtonian
fluid. Note however that there is a small but nonzero flux when
l = 0, indicating that the flow field differs from the isotropic
flow field.

3.4 Swimming and pumping using backflow

To highlight the role of the nematic degree of freedom in our
problem, we study swimming and pumping via a mechanism in

Fig. 6 Dimensionless swimming speed (top) and flux (bottom) vs. l at Er =
1000 for a swimmer in a nematic liquid crystal with m1* = m, m2* = m and
rotational viscosities given by g*/m = 5 (blue), g*/m = 25 (red), and g*/m = 50
(green).

Fig. 7 Dimensionless swimming speed vs. l for a swimmer in a nematic
liquid crystal with m1 = m2 = 1, Kr = 1.2, w = 0, and Er = to = 0.01, with
rotational viscosities g*/m = 5 (blue), g*/m = 25 (red), and g*/m = 50 (green).
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which all flow is generated by a prescribed motion of the
directors at a flat non-deformable wall. The coupling of the
motion of the directors to the flow, and vice-versa, is known as
backflow. We suppose that some external mechanism oscillates
the directors along the wall with the form of a traveling wave
with wavenumber q and frequency o, such that the (dimension-
less) boundary conditions at the wall are

v|y=0 = 0 (29)

h|y=0 = eei(x�t). (30)

Thus, the director configuration rather than the shape is
prescribed. For brevity, we call the swimmer with prescribed
director configuration a ‘non-deformable’ swimmer, and the
swimmer with prescribed shape a ‘deformable’ swimmer.

The swimming speed as a function of Ericksen number is
shown in Fig. 8. A qualitative difference with a deformable
swimmer is that the direction does not reverse when the
rotational viscosity is large; in fact, increasing the rotational
viscosity makes the swimmer go faster, as long as the Ericksen
number is not too large. Given that the large Ericksen number
limit is singular, we expect a boundary layer in the velocity field
and angle field when Er is large. In the problem of a deformable
swimmer, we found that the swimming speed in that limit is
governed by the strong anchoring condition. Since the strong
anchoring condition in this case would correspond to no
motion of the directors at the swimmer surface, we expect the
speed to vanish as Er increases, as our calculations show (Fig. 8).
Note also that when g = 0, there is a complete decoupling
between the flow field and director field problems, and the
swimming speed vanishes.

Fig. 9 shows the l-dependence of locomotion and pumping
for the non-deformable swimmer. The swimmer can swim
faster than the Taylor swimmer when l E 1 and the rotational
viscosity is sufficiently large. Note that the behavior of the
swimming speed is qualitatively similar to that induced by a
swimmer with a deformable body (Fig. 7). The flux induced by
the motion of the directors in the non-deformable swimmer
(Fig. 9) is comparable to the flux induced by a deformable

swimmer, indicating that at low Ericksen number much of the
flux is driven by the backflow effect.

4 Discussion and conclusion

Because the nematic phase is more anisotropic than the hexatic
phase, more parameters are required in its constitutive rela-
tion. In particular, there are anisotropic viscosities as well as
different elastic moduli for bend and splay (and twist) director
configurations. The tumbling parameter l also leads to further
distinctions, such as tumbling and shear-aligning, which do
not exist in the hexatic. Therefore, the hexatic model is good
quantitative approximation for swimming in a nematic when
the magnitudes of m1, m2, l, and K1/K3 � 1 are small. Except for
K1/K3 � 1, these parameters are usually not small for the
nematic phase.

To further highlight the quantitative difference in this
regime, Fig. 10 shows the difference in speeds between a highly
calamitic nematic fluid near the aligning transition, and a
hexatic for small values of the Ericksen number and a range
of rotational viscosities. For these parameters, the swimmer in
the nematic fluid can travel at much greater speeds than its
companion in a hexatic fluid.

In this work we extended Taylor’s model of an undulating
sheet locomoting by means of small-amplitude traveling waves
in a Newtonian fluid to the case where the ambient fluid is a

Fig. 8 Dimensionless swimming speed vs. Ericksen number to for a non-
deformable swimmer with prescribed director oscillation and m1 = m2 = 1,
Kr = 1.2, and with g*/m = 5 (blue), g*/m = 20 (red), and g*/m = 50 (green).

Fig. 9 Dimensionless swimming speed (top) and flux (bottom) in dimen-
sionless units vs. l for non-deformable swimmer with prescribed director
oscillation and m1 = m2 = 1, Kr = 1.2, Er = 0.2 and with g*/m = 5 (blue), g*/m =
20 (red), and g*/m = 50 (green).
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twist-free nematic liquid crystal. By considering coupled equa-
tions for the local nematic director and velocity fields and
expanding perturbatively in the amplitude we were able to
derive general formulas for swimming speed and volumetric
flux induced by the Taylor sheet.

Many of the surprising qualitative features, such as reversal of
swimming direction for high rotational viscosity, the presence of
non-zero volumetrix flux, and a convergence to a strongly-
anchored solution for all anchoring strengths at high Ericksen
number, have also been seen in the case of a hexatic liquid crystal
film.43 However, the effects of anisotropy tend for general material
parameters to enhance the swimming speed, as can occur in for
swimming in porous or elastic fluids,19,20 shear thinning fluids,22

or near rigid walls.52 This speed augmentation by anisotropy can
be pronounced, particularly in the low-Ericksen number regime.
Our results show that the distinctive properties nematic liquid
crystals, such as backflow, can be exploited to develop novel
methods of swimming and pumping in anisotropic fluids.

Appendix A: hexatic equations

For comparison purposes, we include here the governing
equations for the hexatic phase:

�rpþ mr2v� Kr � rhrhð Þ þ K

2
r� ẑr2h

� �
¼ 0; (31)

@thþ v � rh� 1

2
ẑ � r � v ¼ K

g
r2h: (32)

Appendix B: details of calculating the
swimming speed

The calculation of the swimming speed, which enters at O(e2),
depends on a cumbersome but straight-forward combination of
the first-order flow and director fields via (2.4). The real part of
the first order stream-function in (10) may be written as

< ~cð1Þ
h i

¼ 1

2
~cð1Þ þ ~cð1Þ
� �

; (33)

where the overbar denotes the complex conjugate. The director
angle field is similarly treated. In (19) and (20) we require such
quantities as hyxyyyi, which we obtain via

yxyyy ¼
X3
j;k¼1

idje
rjyþiðx�tÞ � i �dje

�rjy�iðx�tÞ
� �

� dkrk
2erkyþiðx�tÞ þ �dk�rk

2e�rky�iðx�tÞ
� �

:

(34)

The horizontal mean over one period is then given by

I1 ¼ yxyyy
� 

¼ i

4

X3
j;k¼1

dj �dk�rk
2e rjþ�rkð Þy � �djdkrk

2e �rjþrkð Þy
� �

: (35)

The final integration in (25) is now easily performed; for
example, we have

ð1
0

yI1dy ¼
i

4

X3
j;k¼1

dj �dk�rk
2

rj þ �rk
� �2 � �djdkrk

2

�rj þ rk
� �2

" #
; (36)

and the other contributions are deduced in the same fashion.
The end result is a cumbersome algebraic expression but one
that is easily evaluated for all parameter values.

Appendix C: swimmer with a
longitudinal wave

For completeness, we also present some results for a swimmer
with a longitudinal waveform,

(X, Y) = (e, 0)sin(x � t), (37)

in dimensionless form. Many of the equations needed for
calculating the speed and flux are the same as in the case of
the transverse swimmer. Here we list the equations that must
be modified. The boundary conditions at first order in ampli-
tude e for the longitudinal swimmer are

@y
~c(1)|y=0 = �eei(x�t), (38)

�@x
~c(1)|y=0 = 0, (39)

�@y
~y(1) + w~y(1)|y=0 = i. (40)

Fig. 10 Difference in non-dimensional swimming speeds versus g*/m and
Er between a highly calamitic nematic fluid (l = 0.9) with m1*/m = m2*/m = 1,
Kr = 1.2, and a hexatic fluid. Both fluids are subject to weak anchoring
conditions (w = 0). The discrepancy is small for small g*/m, and the greatest
difference occurs for large g*/m and small Er. The horizontal and vertical
scales are linear, not logarithmic.
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The boundary condition for the flow field at second order is

hv(2)
x i|y=0 = �hX@yv(1)

x i|y=0, (41)

with X given by (37). The anchoring condition remains the same
as eqn (22), with the replacement of X [eqn (23)] with

X = hX@x@yy
(1) � wX@xy

(1)i|y=0. (42)

The swimming speed vs. Ericksen number is shown in Fig. 11.
For most values of Er and rotational viscosity, the swimming
speed is negative, meaning the swimmer moves in the same
direction as the propagating longitudinal wave, just as in the
case of a longitudinal swimmer in an isotropic Newtonian
liquid, where the swimming speed is U* = �ce2/2. As in the
transverse case, the swimming direction can reverse if the
rotational viscosity is sufficiently high. There is no simple
formula for the swimming speed for generic values of the
parameters, but the swimming velocity at high Ericksen number
takes a simple form, with the speed exactly as the transverse case
but with opposite direction:

U ¼ �e22 2þ m1ð1þ lÞ þ m2½ � � gð1þ lÞ l� 1ð Þ2

8þ 4m2 þ 2g l� 1ð Þ2

þ O
1

Er


 �
: (43)

The entrained flux in this limit is likewise of same magnitude
but opposite direction.

The longitudinal swimmer in a nematic is slower than the
transverse swimmer. However, a longitudinal swimmer in a
nematic is very different from a longitudinal swimmer in a hexatic.
In the case of swimming in a hexatic liquid crystal, the longitudinal
swimmer’s speed differs from the isotropic speed by only a few
percent.43 Fig. 11 shows that the difference between the isotropic
and nematic swimming speed can be significant, especially at
higher values of rotational viscosity.
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