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The swimming behavior of bacteria and other microorganisms is sensitive to the physical properties of
the fluid in which they swim. Mucus, biofilms, and artificial liquid-crystalline solutions are all examples of
fluids with some degree of anisotropy that are also commonly encountered by bacteria. In this article, we
study how liquid-crystalline order affects the swimming behavior of a model swimmer. The swimmer is a
one-dimensional version of G. I. Taylor’s swimming sheet: an infinite line undulating with small-amplitude
transverse or longitudinal traveling waves. The fluid is a two-dimensional hexatic liquid-crystalline film. We
calculate the power dissipated, swimming speed, and flux of fluid entrained as a function of the swimmer’s wave
form as well as properties of the hexatic film, such as the rotational and shear viscosity, the Frank elastic constant,
and the anchoring strength. The departure from isotropic behavior is greatest for large rotational viscosity and
weak anchoring boundary conditions on the orientational order at the swimmer surface. We even find that if the
rotational viscosity is large enough, the transverse-wave swimmer moves in the opposite direction relative to a
swimmer in an isotropic fluid.
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I. INTRODUCTION

Bacteria and other swimming microorganisms often en-
counter complex fluids which are full of polymers. Mucus is
a prime example. Since the polymers are typically rod shaped
and aligned, these fluids can be anisotropic [1–4]. Furthermore,
several experimental groups have recently studied swimmers
in synthetic nontoxic liquid-crystalline solutions [5–8]. These
liquid-crystalline solutions are fluids consisting of rodlike
molecules that spontaneously align in the absence of external
fields [9]. Liquid crystals are simpler models for the complex
anisotropic biological environments encountered by swim-
ming microorganisms, and the anisotropy leads to qualitatively
new swimming phenomena not present in isotropic fluids. For
example, elastic forces in an liquid crystal can cause bacteria to
form multicellular assemblies [7]. Furthermore, orientational
order, both uniform [7] and nonuniform [8], can guide the
trajectories of swimming bacteria.

In this article we explore the effects of elasticity and
orientational order on swimming with a simple theory for an
idealized microorganism in a hexatic liquid crystal. Our model
for the swimmer is a one-dimensional version of Taylor’s
swimming sheet, namely an infinite line with internally gen-
erated transverse [10] or longitudinal [11,12] waves (Fig. 1).
The fluid is a two-dimensional hexatic liquid crystal film. A
hexatic liquid crystal film formed from spherical particles is
intrinsically a two-dimensional phase; we choose to work
with a two-dimensional system since it greatly simplifies
our calculations. Furthermore, bacteria and other swimming
microorganisms are often studied in quasi-two-dimensional
environments, such as thin layers of fluid [13–15] or soap
films [16]. We study the hexatic phase because it is the
simplest liquid-crystalline phase [9], yet it shares many
features with the nematic phase encountered by swimming
microorganisms [7,8], such as orientational elasticity and
anchoring effects.

In Secs. II and III, we begin with an overview of the physics
of hexatic liquid crystals, defining the important dimensionless

numbers and presenting the governing equations. In Sec. IV,
we analytically calculate the swimming speed and power
dissipated for a swimmer with a gait given by either transverse
or longitudinal traveling waves by expanding to second order
in the amplitude of the wave. Section V contains a discussion
of the results at high and low values of the dimensionless
ratio of viscous to elastic constants, as well as a physical
discussion of the swimming direction for limits of large shear
viscosity or large rotational viscosity. The paper concludes
with a summary in Sec. VI.

II. HEXATIC LIQUID CRYSTALS

In a hexatic phase, the spontaneous alignment can be
visualized by considering the six nearest neighbors of each
particle (Fig. 1). On average, these six nearest neighbors define
three axes, which define an imaginary hexagon around each
particle. In a hexatic liquid crystal, the centers of mass of the
hexagons are disordered, but the orientations of the hexagons
share a common alignment. The alignment is described by an
angle field θ (Fig. 1).

The presence of the hexatic order leads to several properties
not present in an isotropic fluid. There are elastic torques that
tend to drive the system to a state of uniform alignment; these
torques are characterized by an elastic constant K . In addition
to the usual shear viscosity μ of the fluid, there is another
viscosity γ that arises when hexatic order is present. This
additional viscosity coefficient characterizes the dissipation
that arises when the local rate of rotation of the hexagons
differs from the local rate of rotation of the fluid. A measure
of the relative importance of viscous and elastic effects in a
hexatic liquid crystal is the Ericksen number [17],

Er = μω

Kq2
, (1)

where ω is the beat frequency of the swimmer and q is
the wave number (Fig. 1). Although the beat frequencies of
undulating cilia and flagella vary widely, typical values are
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FIG. 1. (Color online) Illustration of an idealized one-
dimensional swimmer immersed in a two-dimensional hexatic liquid
crystal (not to scale). The propagating transverse wave has wave
vector q, frequency ω, and amplitude b � 2π/q. The angle field θ

is defined up to rotations by 2π/6 by the angle between the x axis
and any of the lines connecting a particle at (x,y) with its six nearest
neighbors.

ω ≈ 100 s−1 and q ≈ 1 μm−1. The disodium cromoglycate
(DSCG) liquid crystalline solution used in experiments with
swimming bacteria has a viscosity μ ≈ 1 Pa s [7] and elasticity
K ≈ 10 pN [7]. These values lead to Er ≈ 10. Note the
sensitive dependence of Er on the length scale q−1: increasing
or decreasing q by a factor of 10 can easily put the swimmer
in the regimes where elastic or viscous effects dominate,
respectively.

The boundary conditions on the angle θ near the surface
of the swimmer are also important and are governed by an
anchoring potential of strength W [18]. For a two-dimensional
liquid crystal film, the anchoring strength leads to a natural
length scale, K/W [19]. For a static undulation of wave
number q, the angle field θ is uniform throughout the liquid
crystal when the anchoring is weak, w ≡ W/(Kq) � 1. The
angle field has modulation with wave number q when the
anchoring is strong, w � 1 [9].

III. EQUATIONS FOR HEXATIC DYNAMICS

A hexatic liquid crystal has sixfold bond-orientational
order [9]. Symmetry of the director field n̂ = (cos θ, sin θ )
under the rotations θ �→ θ + 2π/6 (Fig. 1) rules out the splay
[(∇ · n)2] and bend [(∇ × n)2] terms of the two-dimensional
nematic free energy, leaving a single bulk term with elastic
constant K . The full hexatic free energy is

F = K

2

∫
(∇θ · ∇θ )dxdy − W6

∫
cos[6(θ − φ)]d�, (2)

where the first integral is over the domain of the fluid, the
second integral is over the boundary of the swimmer, and
W6 is the strength of an anchoring potential [18] that gives a
preference for (cos θ, sin θ ) to align with the tangent vector
�̂ = (cos φ, sin φ) of the boundary (Fig. 1). Since we consider
small-amplitude waves only, we may expand the anchoring
term for small angle and absorb the factors of 6 into a new
coefficient W = 36W6:

−W6

∫
cos[6(θ − φ)]d� ≈ W

2

∫ ∞

−∞
(θ − φ)2dx. (3)

The stress takes the form

σik = −pδik + μ(∂ivk + ∂kvi) − K∂iθ∂kθ + K

2
εik∇2θ, (4)

where p is the pressure. The elastic part of the stress may
be derived from the free energy using the principle of virtual
work, along with the condition that the angle field rotates with

the local rotation of the fluid under a virtual displacement [9].
Since inertia is irrelevant at the scale of microorganisms,
we work in the limit of zero Reynolds number, Re = 0,
where Re = ρω/(μq2) is zero and ρ is the density of the
fluid [20]. Thus, conservation of momentum becomes force
balance ∂kσik = 0, which leads to

−∇p + μ∇2v − K∇ · (∇θ∇θ ) + K

2
∇ × (ẑ∇2θ ) = 0, (5)

where ẑ is the unit vector perpendicular to the film, and
the pressure p is chosen to enforce ∇ · v = 0. Varying the
free energy (2) with respect to θ yields the equilibrium
condition ∇2θ = 0 which together with Eq. (5) implies that
the pressure at equilibrium is peq = −(K/2)∂kθ∂kθ . We can
simplify Eq. (5) somewhat by writing p as the sum of the
dynamic and equilibrium pressure, p = pdyn + peq:

−∇pdyn + μ∇2v − K(∇θ )∇2θ + K

2
∇ × (ẑ∇2θ ) = 0. (6)

Henceforth we use p to denote the dynamic pressure. Note that
the pressure p need not be a harmonic function, as it must for
Stokes flow of an incompressible isotropic Newtonian liquid.
The dynamical equation for θ takes the form

∂tθ + v · ∇θ − 1

2
ẑ · ∇ × v = K

γ
∇2θ, (7)

where γ is the rotational viscosity and K/γ has units of length
squared per unit time and acts as a diffusivity for orientational
order. Equation (7) can be derived from the dynamical equation
for a nematic director [21] in the “isotropic” limit, in which the
bend and splay elastic constants are equal and the “tumbling
parameter” λ [17] vanishes. It is convenient to choose units
that make the governing equations dimensionless. Measuring
time in units of ω−1, length in units of q−1, and pressure in
units of μω yields

− ∇p + ∇2v = − 1

Er

[
1

2
∇ × (ẑ∇2θ ) − (∇θ )∇2θ

]
, (8)

1

Er
∇2θ = γ

μ

[
∂tθ + v · ∇θ − 1

2
ẑ · ∇ × v

]
. (9)

For boundary conditions, we assume that the fluid does not
slip relative to the swimmer on its surface and that the fluid
has uniform velocity v = U x̂ in the frame of the swimmer
in the region far from the boundary, y → ∞. The boundary
condition on θ at the immersed body is deduced by varying the
free energy (2) with respect to θ , which for small deflections
of the swimmer yields

KN̂ · ∇θ + W (θ − φ) = 0, (10)

where N̂ is the outward-pointing normal (Fig. 1) and, again,
φ is the angle between the tangent vector of the swimmer and
the x axis. In dimensionless variables, Eq. (10) becomes

N̂ · ∇θ + w(θ − φ) = 0. (11)

IV. SMALL-AMPLITUDE EXPANSION

For the swimmer, we consider two kinds of waves:
transverse traveling waves in which the material points of the
swimmer are (xs,ys) = (x,y1(x,t)), with y1 = b sin(qx − ωt),
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and longitudinal traveling waves, in which the material points
of the swimmer are (xs,ys) = (x + u1(x,t),0), with u1 =
a sin(qx − ωt). We only consider the cases of a pure transverse
or pure longitudinal wave. In both cases the wave propagates
rightward, and a positive swimming speed U > 0 indicates
swimming opposite to the direction of wave propagation.
Following Taylor [10], we expand the fields in powers of
the dimensionless amplitude, using a superscript to denote
the power of εb = bq (εa = aq) for transverse (longitudinal)
waves. For example, v = v(1) + v(2)+. . . .

A. First-order equations

It is convenient to express the governing equations in terms
of a stream function ψ , which is related to the velocity field
by v = (vx,vy) = ∇ × (ψ ẑ). To first order in amplitude,

∇4ψ (1) + 1

2Er
∇4θ (1) = 0, (12)

∂tθ
(1) + 1

2
∇2ψ (1) = 1

Er

μ

γ
∇2θ (1). (13)

The solutions are given by the real parts of

ψ̂ (1) = (c0 + c1y)e−y+i(x−t) − 1

2Er
θ̂ (1), (14)

θ̂ (1) = [ic1e
−y + c2e

ky]ei(x−t), (15)

where

k = −
√

1 − 4iγ Er

γ + 4μ
, (16)

and the constants c0, c1, and c2 are determined by the no-
slip and anchoring boundary conditions at the surface of the
swimmer. For the purely transverse wave, the no-slip boundary
condition v(xs,ys) = (xs,∂tys) is

(∂yψ
(1),−∂xψ

(1))|y=0 = (0,−εb cos(x − t)) (17)

to first order in dimensionless form. Likewise, to first order,
the anchoring boundary condition (11) is

−∂yθ
(1)|y=0 + w[θ (1)|y=0 − εb cos(x − t)] = 0. (18)

For the purely longitudinal wave, the first-order conditions at
the swimmer are

(∂yψ
(1),−∂xψ

(1))|y=0 = [−εa cos(x − t),0], (19)

(−∂yθ
(1) + wθ (1))|y=0 = 0. (20)

Analytic expressions for the constants c0, c1, and c2 and the
first-order quantities ψ (1) and θ (1) may be found for both the
transverse and longitudinal wave; however, these expressions
are too unwieldy to display here. We consider the limiting
values of large and small Er below. It should be noted that
since the solutions (14) and (15) have a zero average in x̂,
and since the solution ψ (1) = v

(1)
0 y is ruled out by the no-slip

boundary condition at y = 0, there is no swimming speed to
first order.

We can calculate the power dissipated to second order in
amplitude using only the first-order solutions. In addition to
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FIG. 2. (Color online) Log-log plot of dimensionless power
PT /(μqω2b2) vs Ericksen number Er for γ = μ and various dimen-
sionless anchoring strengths w = W/(Kq) for a transverse wave.

the shear component familiar from isotropic fluids, the total
power dissipated has a component arising from rotation of the
directors relative to the local rotation of the fluid:

P =
∫

(2μvij vij + h2/γ )dxdy, (21)

where vij = (∂ivj + ∂jvi)/2 is the symmetric rate-of-strain
tensor and h = K∇2θ is the molecular field [21]. In dimen-
sionless form, the power dissipated is

P
μω2

=
∫ [

2vij vij + 1

Er2

μ

γ
(∇2θ )2

]
dxdy. (22)

The total power dissipated is infinite, since the swimmer is
infinite, but we can calculate the power P dissipated per
wavelength. Figures 2 and 3 show the power dissipated for
μ = γ and various anchoring strengths for transverse and
longitudinal waves, respectively.

Note that when γ = 0, Eq. (7) shows that there is no
coupling between the angle field θ and the flow field v.
The angle field takes the equilibrium configuration given by
∇2θ (1) = 0, and the first-order flow field is the same as that
found by Taylor in the isotropic case [10]. Thus, independent
of the form of the wave, the power goes to the isotropic
result: P ≈ μqω2b2 when γ � μ. Note also that the power
approaches the isotropic value when Er is large. This result
may be expected since in the limit of Er → ∞, the governing
equations (8) and (9) reduce to Stokes equations for an
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FIG. 3. (Color online) Log-log plot of dimensionless power
PL/(μqω2b2) vs Ericksen number Er for γ = μ and various dimen-
sionless anchoring strengths w = W/(Kq) for a longitudinal wave.

052503-3



KRIEGER, SPAGNOLIE, AND POWERS PHYSICAL REVIEW E 90, 052503 (2014)

isotropic fluid, with the angle field rotating with the local rate of
rotation of the fluid and thus incurring no rotational dissipation.
However, we will see below that the Er → ∞ limit is singular
and will explore in more detail which quantities approach the
isotropic values for large Er.

B. Second-order equations

Now consider the second-order equations for v(2)
x , averaged

over a period. Total derivatives in x or t vanish upon averaging,
e.g., 〈∂xp〉 = 0, leading to

〈
∂2
y v(2)

x

〉 + 1

2Er

〈
∂3
y θ (2)〉 = f, (23)

1

Er

μ

γ

〈
∂2
y θ (2)

〉 − 1

2

〈
∂yv

(2)
x

〉 = g, (24)

where f = 〈∂xθ
(1)∇2θ (1)〉/Er and g = 〈v(1) · ∇θ (1)〉. The no-

slip boundary condition for a transverse wave is〈
v(2)

x

〉∣∣
y=0 = −〈

y1∂yv
(1)
x

〉∣∣
y=0, (25)

whereas for a longitudinal wave we have〈
v(2)

x

〉∣∣
y=0 = −〈

u1∂xv
(1)
x

〉∣∣
y=0. (26)

Note that the right-hand sides of both Eqs. (25) and (26) depend
on anchoring strength through the first-order velocity. The flow
field and thus the swimming speed UT is found by solving
Eqs. (23) and (24) for 〈v(2)

x 〉 subject to the no-slip boundary
condition (25) or (26), as well as demanding that 〈v(2)

x 〉 and
〈θ (2)〉 be finite at y → ∞. Independent of whether the wave is
transverse or longitudinal, the result is

〈
v(2)

x

〉 = 〈
v(2)

x

〉∣∣
y=0 − 4μ

4μ + γ

∫ y

0

(
F + γ

2μ
g

)
dy ′, (27)

where F (y) = ∫ ∞
y

f (y ′)dy ′. Note that the boundary condi-

tions on 〈θ (2)〉 do not enter the expression for 〈v(2)
x 〉. The

swimming speed U is given by the flow speed at y = ∞:

U = 〈
v(2)

x

〉∣∣
y=0 − 4μ

4μ + γ

∫ ∞

0

(
F + γ

2μ
g

)
dy. (28)

Similarly, the general expression for 〈θ (2)〉 is

〈θ (2)〉 = � + γ Er

2μ

∫ y

0

[〈
v(2)

x (y ′)
〉 − U − 2G(y ′)

]
dy ′, (29)

where G(y) = ∫ ∞
y

g(y ′)dy ′, and the constant � is determined
by the anchoring boundary condition (11). For the transverse
wave, the second-order part of the anchoring condition (11)
takes the form

[−〈∂yθ
(2)〉 + w〈θ (2)〉]y=0 = ϒ, (30)

where ϒ = ϒT for the transverse wave and ϒ = ϒL for the
longitudinal wave, with

ϒT = 〈 − ∂xy1∂xθ
(1) + y1∂

2
y θ (1) − wy1∂yθ

(1)
〉∣∣

y=0
(31)

ϒL = 〈u1∂x∂yθ
(1) − wu1∂xθ

(1)〉|y=0.

Thus,

� = ϒ

w
− 2

w

γ Er

4μ + γ

∫ ∞

0
(F − 2g)dy ′. (32)

We will be interested in a third observable in addition to
the swimming speed of the filament and the angle field. It
turns out that unlike the case of the Taylor swimmer in a
Newtonian or Oldroyd-B fluid at zero Reynolds number, there
is fluid pumped by a swimmer in a hexatic liquid crystal. In
the laboratory frame, the average flux is given by

Q =
∫ ∞

ys

〈vx − U 〉dy

≈
∫ ∞

0

〈
v(2)

x − U
〉
dy − 〈

ysv
(1)
x

〉∣∣
y=0. (33)

Note that the second term of Eq. (33) vanishes for a transverse
wave since v(1)

x |y=0 = 0 and for a longitudinal wave since ys =
0. Therefore, the flux is given to second-order accuracy by

Q(2) =
∫ ∞

0

(〈
v(2)

x

〉 − U
)
dy. (34)

Note that our sign convention for flux is opposite that for
swimming speed: a positive U means swimming to the left,
whereas a positive Q means fluid is swept to the right.

C. Results for general values of the parameters

As mentioned above, the analytic expressions for the power,
swimming speed, and fluid transported for general values of
the parameters are too complicated to display. However, it
is straightforward to plot these quantities as function of the
ratio of rotational and shear viscosity γ /μ as well as Ericksen
number. Figure 4 shows how the speed UT of a swimmer
with a transverse wave depends on γ /μ for various anchoring
strengths at small, intermediate, and large Ericksen numbers.
When γ � μ, the swimming speed is the same as the isotropic
speed ωqb2/2 for all Er and all anchoring strengths, since
there is no coupling between the hexatic degrees of freedom
and flow when γ = 0. The speed depends on the anchoring
strength only when γ > μ and the Ericksen number is small.
When Er � 1, the speed is only weakly dependent on w,
becoming independent of w when Er � 1. The swimming
speed at Er � 1 differs from the isotropic value ωqb2/2 [10].
Thus, the large-Er limit is singular, since when Er = ∞, the
governing equation for flow (8) reduces to a Stokes equation,
which leads UT = ωqb2/2.

Figures 5 and 6 show how the speed and flux depend on
Ericksen number, respectively, for a swimmer with a transverse
wave and γ = μ. Just as for the power dissipated, the speed and
flux depend on anchoring conditions only for small Ericksen
number, where elastic stresses are larger than viscous stresses.
When the anchoring strength is weak, the swimming speed
and the flux go to the isotropic results at small Er, with the flux
QT ∝ Er2 when w = 0. At large Ericksen number, the speed
and flux are independent of the anchoring strength and differ
from the isotropic values, again consistent with the singular
limit Er → ∞.

The flux versus γ /μ for a transverse wave is shown for
small and intermediate Er for various anchoring strengths in
the left and middle panels of Fig. 7, respectively, and again the
dependence on anchoring strength is evident, with QT ∝ γ

for small rotational viscosity, γ � μ. For large rotational vis-
cosity, the flux approaches an Ericksen-number-independent
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FIG. 4. (Color online) Semilog plot of dimensionless swimming speed U/(ωqb2) vs γ /μ for Er � 1 (left panel), Er = 1 (middle panel),
and Er � 1 (right panel), for a transverse wave. Note that the strong anchoring case W/(Kq) = ∞ is independent of Er and that anchoring
effects are small once Er is of order unity.

value. Once again, at large Er (Fig. 7, right panel), we see that
anchoring strength does not affect the flux.

We do not plot the speed of a swimmer with a longitudinal
wave, since it is always within a few percentages of the
isotropic longitudinal speed UL = −ωqb2/2. However, there
is a nonvanishing flux for the longitudinal case at large
Ericksen number (Fig. 8). The dependence of UL on the
anchoring strength is also very weak, just as for the power. For
small Er, the flux generated by a longitudinal wave vanishes
like Er2 (Fig. 8). There is a weak dependence on the anchoring
strength. At large Er, the flux is independent of w and Er.

With the swimming speeds and power dissipated in hand,
we can calculate measures of efficiency. However, we cannot
define the efficiency as e = U 2/P , as is commonly done for
swimmers in an isotropic fluid [22]. This definition rests
on the assumption that that the power required to drag
an object through a fluid is proportional to U 2, with the
proportionality constant equal to viscosity times a function
of geometrical factors. In the presence of hexatic order, the
proportionality constant also depends on the Ericksen number.
Thus, U 2/P does not accurately reflect the ratio of the power
required to drag the swimmer to the power expended by the
swimmer. However, the swimming economy U/P versus Er
is a meaningful quantity. The dimensionless power is close
to unity over the entire range of Er for both transverse and
longitudinal waves. Thus, the swimming economy has roughly
the same form as U versus Er, decreasing monotonically with
Er and approaching a w-independent limit at high Er.

0.01 0.1 1 10 100

0.50

0.30

Er

FIG. 5. (Color online) Log-log plot of dimensionless swimming
speed U/(ωqb2) for a transverse wave with γ = μ and various
dimensionless anchoring strengths W/(Kq).

To elucidate these results, we turn to a discussion of the
asymptotic regimes of the parameter values, for which the
calculations and expressions simplify greatly.

V. DISCUSSION OF ASYMPTOTIC RESULTS

We consider the limits of strong anchoring for the transverse
wave as well as small and large Ericksen numbers for both the
transverse wave and the longitudinal wave.

A. Strong anchoring

1. Transverse wave

The boundary conditions (17) and (18) that determine the
coefficients in (15) greatly simplify in the case of a transverse
wave with strong anchoring, W/(Kq) → ∞, leading to
(dimensionless) solutions,

θ (1) = εb exp(−y) cos(x − t), (35)

v(1)
x = −εby exp(−y) sin(x − t), (36)

v(1)
y = −εb(1 + y) exp(−y) cos(x − t), (37)

p(1) = −2εb exp(−y) cos(x − t). (38)

Note that since the angle field is harmonic to first order, there
are no elastic torques or forces acting on the hexatic, and the

0.01 0.1 1 10 100
10 5

10 4

Er

10

10

10

3

2

1

FIG. 6. (Color online) Log-log plot of dimensionless flux
Q/(ωb2) for a transverse wave with γ = μ and various dimensionless
anchoring strengths W/(Kq).
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FIG. 7. (Color online) Log-log plot of dimensionless flux Q/(ωb2) vs γ /μ for a transverse wave for Er � 1 (left panel), Er = 1 (middle
panel), and Er � 1 (right panel). Note that the strong anchoring case W/(Kq) = ∞ is independent of Er, and the flux is very small for all
cases when γ /μ < 0.1.

angle field rotates with the local rate of rotation of the fluid.
The flow is the same as Stokes flow of an isotropic liquid,
as found by Taylor [10]. There is no swimming speed to first
order in bq. It is curious that the first-order flow field and angle
field are both independent of Ericksen number (as c2 = 0).
In contrast, the angle and flow fields depend on Er for the
longitudinal swimmer for all anchoring strengths and for the
transverse swimmer for finite anchoring strength. The case of
strong anchoring is special because only in that case does the
anchoring boundary condition force the angle field at y = 0 to
rotate with the material points of the swimmer, whose rotation
in turn forces the nearby fluid to rotate at the same rate.

Turning now to the second-order equations (23) and (24),
we saw in Eq. (35) that θ (1) is harmonic, which implies that the
right-hand side of Eq. (23) vanishes; likewise, 〈v(1) · ∇θ (1)〉 =
ε2
b(1 + 2y) exp(−2y). We solve Eqs. (23) and (24) subject

to the no-slip and strong anchoring boundary conditions
at the swimmer. Expanding to second order in q2b2, these
boundary conditions are 〈v(2)

x 〉(y = 0) = ε2
b/2 and 〈θ (2)〉(y =

0) = 0. At y → ∞ we demand that 〈θ (2)〉 and 〈v(2)〉 be finite.
The (dimensionless) solutions to the coupled equations (23)
and (24) are

〈θ (2)〉 = γ ε2
bEr

2(γ + 4μ)
[(3 + 2y)e−2y − 3], (39)

〈
v(2)

x

〉 = γ ε2
b(1 + y)e−2y

γ + 4μ
+ ε2

b(4μ − γ )

2(4μ + γ )
. (40)

0.01 0.1 1 10 100 1000
10 6

10 5

10 4

Er

10 3

10 2

FIG. 8. (Color online) Dimensionless flux for a longitudinal
swimmer vs Ericksen number Er for γ = μ and various dimension-
less anchoring strengths W/(Kq).

The swimming speed is obtained from the limit at y → ∞.
Therefore, in the laboratory frame, the swimmer with a
transverse wave swims to the left with (dimensional) velocity

UTa = ωqb2

2

4μ − γ

4μ + γ
, (41)

where b2ωq/2 is Taylor’s result for swimming in a Newtonian
Stokes flow [10], the subscript “ T ” denotes transverse, and the
subscript “a” denotes strong anchoring. The swimming speed
for a transverse wave does not depend on Er, but the direction
of swimming depends on γ /μ. There is even a point (4μ = γ )
where the swimmer makes no progress. Just as we observed
when discussing the power dissipated, when γ /μ → 0, UTa

approaches the result for a swimmer in an isotropic fluid. When
γ /μ → ∞, the speed is the same as in the isotropic case, but
the direction has reversed. The dependence of the swimming
speed on γ /μ for W/(Kq) = ∞ is shown in Fig. 4 (blue
curves). We discuss the physical intuition for the direction of
swimming in the next subsection.

The flow induced by the swimmer has a flux

QTa = 3

4

γωb2

γ + 4μ
. (42)

The traveling waves on the swimmer move to the right in the
swimmer frame, by definition, and also in the laboratory frame,
since U � ω/q. For transverse waves and strong anchoring,
the fluid is always pumped in the direction of motion of
traveling waves, independent of the direction of swimming.
Since the swimming speed is O(ωb2q), the form of Q implies
that the thickness of the layer of fluid swept along by the
swimmer is one wavelength, ∼1/q.

Our solution Eq. (39) for the angle field θ has some
unexpected features. First, note that when y → ∞, the
swimming-induced disturbance to the director field does not
vanish. There is a nonzero O(b2q2) value for the angle field.
The solution does not allow us to demand 〈θ (2)(y → ∞)〉 → 0;
we can only demand that the director field be finite at y → ∞.
Just as the flow velocity has a constant term at y → ∞,
the angle field has a constant term at y → ∞. The other
unexpected feature of the solution is that 〈θ (2)〉 is proportional
to Er. Thus, our small-amplitude expansion is valid for fixed
Er; it is not uniformly valid for large Er. Inspection of Eqs. (8)
and (9) might suggest that the flow is isotropic Stokes flow
with the angle field rotating at the half the rate of the local
vorticity. However, the divergence of θ with Er makes the
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terms involving Er∇2θ singular perturbations. Therefore, the
limit of the swimming speed at large Er differs from Taylor’s
result for an isotropic fluid at infinite Er. This situation is
similar to the case of a swimmer in an isotropic Newtonian
fluid with inertia, in which the inviscid limit of the swimming
flow differs from the inviscid flow [23].

2. Swimming direction

To see why the swimmer swims in opposite directions when
γ � μ and γ � μ, we first review the explanation for the
direction of swimming in the case of an isotropic viscous
fluid, which has been discussed in terms of vorticity for the
transverse case [22] and in terms of the trajectory of a test par-
ticle in the the longitudinal case [24]. Our discussion follows
the explanation involving vorticity [22] but makes explicit the
separate roles of the first-order and second-order flows.

Figure 9 shows the dimensionless first-order flow fields
v(1) for a transverse (left panel) and longitudinal (right panel)
wave at the instant t = 0 in the frame of the swimmer. Both
waves are moving to the right. Consider the transverse wave.
The material points of the swimmer have a purely vertical
motion, yet their motion induces a net horizontal flow at second
order. We can think of the first-order flow as a primary flow
that induces a secondary disturbance flow, namely v(2). At the
instant shown, material points on the parts of the swimmer
with negative slope (i.e., between qx = π/2 and qx = 3π/2)
are moving upward, and the material points on the part of
the swimmer with positive slope are moving downward. The
no-slip boundary condition implies that the the total flow next
to the swimmer is purely vertical. But Fig. 9 shows that the
primary flow v(1) violates this boundary condition, since the
flow at both the peaks and the troughs has a negative horizontal
component. We therefore must correct the flow by adding a
disturbance flow with positive x component at y = 0. This

disturbance flow is second order in εb, with one factor of εb

coming from the magnitude of the primary flow, and one factor
of εb coming from the amplitude of the swimmer. Since there
are no body forces or average pressure gradient acting on the
fluid, the disturbance flow is uniform with positive velocity.
Thus, in the laboratory frame, the swimmer swims to the left,
opposite the direction of the propagating transverse wave.

Now consider the longitudinal wave (Fig. 9, right panel),
with (dimensionless) displacement u(x,t) = εa sin(x − t).
Unlike the case of the transverse wave, material points on
a longitudinal wave move purely horizontally, leading to
horizontal flow near the sheet. But to first order in amplitude,
this horizontal component averages to zero, so to find the
steady swimming speed we must consider the disturbance
flow. At the instant shown in the figure, material points on
the swimmer with 0 < qx < π have positive displacement,
and points with π < qx < 2π have a negative displacement.
The no-slip boundary condition for this configuration is
vx[x + u(x,t),y = 0,t] = −εa cos(x − t). The flow shown
does not obey this boundary condition; instead, it obeys
v(1)

x (x,0,t) = −εa cos(x − t). Again, we correct the flow with
a second-order disturbance flow. Consider the material point
x = π/2 + u(π/2); the x component of the total flow at this
material point should be the same as ∂tu at x = π/2, which is
the value of x component of the primary flow v(1)

x (x = π/2)
at the moment shown in the right panel of Fig. 9. But
v(1)

x (x = π/2) = 0 and v(1)
x [π/2 + u(π/2)] > 0. Therefore we

must add a disturbance flow with negative x component at
x = π/2. Examining every other point along y = 0 reveals that
the disturbance flow must always have a negative x component
at y = 0. Just as in the transverse case, the disturbance flow
is uniform for all y. Thus, the swimmer swims in the same
direction as the propagating longitudinal wave.

Now consider a swimmer with a transverse wave in a hexatic
liquid crystal film with strong anchoring. We saw that the

0.30

0.25

0.20

0.15

0.10

0.05

0.00

FIG. 9. (Color) Left panel: Plot of dimensionless first-order velocity field ωv(1)/q for εb = 0.3 for a transverse traveling wave in an isotropic
viscous fluid. The reference frame is the swimmer’s frame, and the wave is moving to the right. The color denotes the magnitude of the velocity
field. Right panel: Plot of dimensionless first-order velocity field ωv(1)/q for εa = 0.3 for a longitudinal traveling wave in an isotropic viscous
fluid. The wave is traveling to the right.
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FIG. 10. (Color) Plots of the dimensionless velocity field ωv/q for εb = 0.3 for a transverse traveling wave in a hexatic film with (left
panel) γ � μ and (right panel) γ � μ. In both panels, the reference frame is the swimmer’s frame, the wave is traveling to the right, and the
color denotes the magnitude of the velocity field. Note the direction of the flow for large values of q|y|. The swimmer swims to the left for
γ � μ and to the right for γ � μ.

first-order flow in the problem is the same as Stokes flow
in the Taylor problem, so the primary flow is the same as
what is pictured in the left panel of Fig. 9. To see how the
rotational viscosity γ affects swimming speed, we work in
the limit of γ � μ for fixed Er. In this limit, the vorticity
of the fluid is locked with the local rate of rotation of the
hexagons [see Eq. (7)]. The average local rate of rotation of
the hexagons is given by the average of dθ/dt , which to leading
order is g = 〈v(1) · ∇θ (1)〉. Since both the velocity and the angle
field fall off exponentially, g is determined by the behavior of
these fields near the sheet. Again, the first-order velocity near
the swimmer is primarily vertical, with a positive component
where the slope of the swimmer is negative and a negative
component where the slope is positive (Fig. 9, left panel). The
y component of the gradient of θ (1) is positive where the slope
of the swimmer is negative, since the angle of the hexagons
there must rotate from a small negative angle at y = 0 to a
zero angle away from the sheet. Similarly, the y component
of the gradient is negative where the slope of the swimmer is
positive, since the hexagons must rotate from a small positive
angle near the sheet to a zero angle away from the sheet. Thus,
the average rate of rotation of the angle field is positive. Since
the vorticity is locked to the rate of rotation of θ in the limit
γ � μ, we conclude that the average vorticity is positive.

To find the flow at y → ∞, we must integrate

−∂y

〈
v(2)

x

〉 = g. (43)

In our units, all length quantities are O(1), and v(1) and θ (1)

are both O(εb), making g = O(ε2
b ). Due to the exponential

decay with y, the flow at infinity is approximately equal
to the flow one unit away from the swimmer: 〈v(2)

x (y =
∞)〉 ≈ 〈v(2)

x (y ≈ 1)〉. But we can estimate 〈v(2)
x (y ≈ 1)〉 using

Eq. (43), noting that g is positive: 〈v(2)
x (y ≈ 1) ≈ 〈v(2)

x (y =
0)〉 − ε2

b . The argument we used for the disturbance flow for

an isotropic fluid still holds, leading to a positive v(2)
x (y = 0),

but the nonzero positive vorticity leads to an additional flow
velocity in the swimmer frame that is negative. Thus, in the
limit of large rotational viscosity γ � μ, the swimmer swims
in the same direction as the traveling wave. The full flow
fields to second order in amplitude for the cases γ � μ and
γ � μ are shown in Fig. 10. Note that to make this plot we
calculated the instantaneous flow field to second order, not just
the average flow field.

B. Small Ericksen number

1. Transverse wave

In this limit the viscous stresses are weak compared to
elastic stresses. At each order in amplitude, we expand in
Ericksen number, denoting the power of Er by a subscript. For
example, ψ (1) = ψ

(1)
0 + Erψ (1)

1 +. . . . To zeroth order in Er, the
equations (12) and (13) become

∇2θ
(1)
0 = 0, (44)

∇4θ
(1)
0 = 0. (45)

With the anchoring boundary condition (18), these imply

θ
(1)
0 = εb

w

1 + w
e−y cos(x − t). (46)

Note that the large w limit of θ
(1)
0 is equal to the angle field we

found in the strong anchoring case, Eq. (35). To first order in
Er, Eqs. (12) and (13) become

∇4

(
ψ

(1)
0 + 1

2
θ

(1)
1

)
= 0, (47)

∂tθ
(1)
0 + 1

2
∇2ψ

(1)
0 = μ

γ
∇2θ

(1)
1 . (48)
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Note that since θ
(1)
0 is harmonic, the Laplacian of Eq. (48)

together with Eq. (47) imply that both ψ
(1)
0 and θ

(1)
1 are

biharmonic. We immediately conclude that ψ
(1)
0 is the same as

Taylor’s Stokes flow solution for an isotropic liquid [10] and
then integrate Eq. (48) using the anchoring condition (18) to
find

ψ
(1)
0 = εb(1 + y)e−y sin(x − t)

θ
(1)
1 = −εb

2

γ

μ

[1 + (1 + w)y]

(1 + w)2
e−y sin(x − t). (49)

Note that θ
(1)
1 vanishes when w � 1, i.e., θ (1) is harmonic to

first order in Er when the anchoring is strong, in accord with
our large-w solution (35). The expressions for the fields (49)
yield the power dissipated to first order in Er:

P
μω2

≈
∫ [

2v
(1)
0ij v

(1)
0ij + μ

γ

(∇2θ
(1)
1

)2
]
dxdy

(50)
PT

μqω2b2
= 1 + γ

4μ

1

(1 + w)2
+ O(Er2).

In the limit of strong anchoring, w � 1, the low-Er power
again goes to the isotropic limit μqω2b2. When Er � 1 and the
anchoring is weak, w � 1, we have PT ≈ (μ + γ /4)qω2b2.
The dependence of the power dissipated on Ericksen number
for various anchoring strengths and γ = μ is shown in Fig. 2.

To find the swimming speed and flux to leading at
low Ericksen number, we must expand the second-order
equations (23) and (24) in powers of Er. To zeroth order in Er
we find that the equations only demand that 〈∂2

y θ
(2)
0 〉 = 0. Since

〈θ (2)
0 〉 cannot diverge when y → ∞, 〈θ (2)

0 〉 must be constant.
The constant is determined by the zeroth-order terms in the
anchoring condition (30), which yields 〈θ (2)

0 〉 = 0.
To first order in Er, Eqs. (23) and (24) are

〈
∂2
y v

(2)
0x

〉 + 1

2

〈
∂3
y θ

(2)
1

〉 = 〈
∂xθ

(1)
0 ∇2θ

(1)
1

〉
, (51)

μ

γ

〈
∂2
y θ

(2)
1

〉 − 1

2

〈
∂yv

(2)
0x

〉 = 〈
v(1)

0 · ∇θ
(1)
0

〉
, (52)

These equations along with the no-slip boundary condition
lead to〈

v
(2)
0x

〉 = 1/2 − γ

γ + 4μ

w

2(1 + w)2

× [(3 + 2w)(1 − e−2y) − 2(1 + w)ye−2y]. (53)

The swimming speed for a transverse wave at low Er is
therefore

UT = ωqb2

2

[
1

2
− γ

4μ + γ

w(2w + 3)

2(1 + w)2

]
+ O(Er2). (54)

These expressions capture the low-Er asymptotic behavior
depicted in Fig. 5. Likewise, the dependence of the flux on
the anchoring strength at low Er (see Fig. 7) follows from the
flow field (53):

QT = 1

4

γωb2

γ + 4μ

w(3w + 4)

(1 + w)2
+ O(Er2). (55)

2. Longitudinal wave

The analysis of the low-Er limit of the longitudinal wave
case is similar to the transverse wave case. To linear order in
εa , the governing equations are the same as Eqs. (44) and (45)
and then (47) and (48); the only changes are the boundary
conditions (19) and (20). Solving these equations with these
boundary conditions yields

θ
(1)
0 = 0, (56)

θ
(1)
1 = −εa

γ

2μ

1 + (1 + w)y

1 + w
e−y cos(x − t), (57)

ψ
(1)
0 = −εaye−y cos(x − t). (58)

Once again the leading-order stream function is the same
as isotropic Stokes flow. The deformation of the swimmer
does not disturb the angle field in the region adjacent to the
swimmer; the disturbance to the angle field is due to the
flow, and therefore θ (1) ∝ Er for small Er. We expect θ (1) or
v(1) to depend only weakly on the anchoring strength, and
this expectation is reflected in the weak dependence of the
power on w (Fig. 3). At small Er, the power dissipated by
the longitudinal-wave swimmer is independent of anchoring
strength, and equal to the power dissipated by the tranverse-
wave swimmer (with b = a) with weak anchoring:

PL

μqω2a2
= 1 + γ

4μ
+ O(Er2). (59)

At second order in εa , the governing equations (23) and (24)
along with the anchoring boundary condition again imply that
〈θ (2)

0 〉 = 0. Furthermore, since θ
(1)
0 = 0, Eqs. (23) and (24)

reduce to 〈∂2
y v

(2)
0x 〉 = 0. Since the first-order flow to leading

order in Er is Stokes flow, we conclude that to second order
in εa , the swimming speed and flux are the same as in the
isotropic case:

UL = −ωqa2

2
[1 + O(Er2)] (60)

and QL/(ωa2) = O(Er2).

C. Large Ericksen number

When the Ericksen number is large, the form of the decay
rate k [Eq. (16)] implies a boundary layer near the swimmer
of thickness,

δ ∝
√

γ + 4μ

γ

1√
Er

, (61)

in both the angle field and flow field, as long as γ �= 0
and c2 �= 0 [recall that c0, c1, and c2 are the coefficients in
the solutions (14) and (15) of the linearized equations]. The
strength of the anchoring w = W/(Kq) does not affect the
boundary layer thickness. Inside the boundary layer, adjacent
to the swimmer, elastic forces and torques balance with viscous
forces and torques. Outside the boundary layer, the elastic
effects can be disregarded, and the local rate of rotation of the
angle field is equal to the local rate of rotation of the fluid.
The boundary layer has a small effect on the power dissipated,
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swimming speed, and flux. To see why, we expand the exact
solutions powers of 1/

√
Er to find for a transverse wave

that

c0 = −i + 1

2Er
+ O(1/Er3/2), (62)

c1 = −i + 1

2Er
+ O(1/Er3/2), (63)

c2 = 1

k
− i

w

Er

4μ + γ

4γ
+ O(1/Er3/2). (64)

Recall that k ∝ √
Er for Er � 1. Since w enters in a term

that is subleading in Er, we see that the effects of anchoring
vanish at larger Ericksen number. Note that to zeroth order in
Ericksen number, we have c0 = c1 = −i and c2 = 0. In other
words, to leading order in Ericksen number, the solution to first
order in dimensionless amplitude εb is precisely the strong-
anchoring solution (35)–(38). The strong-anchoring solution
is the “outer” solution, valid outside the boundary layer, y � δ.
Within the boundary layer, the angle field rapidly changes from
the strong-anchoring condition to whatever value is necessary
to satisfy the anchoring condition (11) for finite w. However,
since c2 gets smaller and smaller as the boundary layer gets
thinner and thinner, the effects of the boundary layer on the
problem is small. Thus, for large Ericksen number, the power
dissipated, swimming speed, and flux are given by the strong-
anchoring limit values: PT ∼ μqω2b2, UT ∼ UTa, and QT ∼
QTa. The same reasoning also applies to the longitudinal case,
where for large Er we find PL ∼ μqω2a2, UL ∼ −ωqa2/2,
and QL ∼ γωa2/(16μ + 4γ ).

VI. SUMMARY

We have calculated the flow field in a two-dimensional
hexatic liquid crystal generated by an infinite one-dimensional
swimmer with internally generated transverse or longitudinal

traveling waves. Working to second order in the amplitude, we
found the power dissipated, the swimming speed, and the fluid
pumped by the swimmer. For a transverse wave, the swimming
speed and power dissipated depends strongly on the rotational
viscosity γ for all Ericksen numbers, and on the anchoring
conditions for low Ericksen number, which is expected to be
the relevant regime for real swimming microorganisms. For a
longitudinal wave, the swimming speed and power generated
is virtually identical to that for swimming in an isotropic fluid,
despite the fact that the flow differs from Stokes flow at large
Ericksen number. For both kinds of waves, there is a nonzero
flux of fluid pumped by the swimmer, in contrast to the case
of a swimmer in a isotropic Newtonian fluid or a viscoelastic
fluid described by the Oldroyd-B model.

We found that the swimmer causes a uniform disturbance
in the angle field infinitely far from the swimmer. In a future
publication we will examine the evolution of the angle and
flow fields in the “start-up” problem, in which the swimmer
starts from rest and accelerates to its steady speed [25]. It
will also be interesting to generalize our calculations to other
geometries, such as circular [11] or spherical squirmers [26,27]
and helical flagella. Likewise, it will be important to generalize
these calculations for swimmers in two- and three-dimensional
nematic liquid crystals.
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