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A body immersed in a nematic liquid crystal disturbs the fluid’s preferred molecular configura-
tion and increases its stored elastic energy. In an active nematic, the fluid components also generate
a stress in the bulk fluid. By introducing either an immersed body or boundary, a large scale
flow can be triggered due to anchoring boundary conditions alone — a global pressure built by
active stresses at equilibrium is instantly released everywhere. The fluid then imposes viscous, elas-
tic, and active stresses on such surfaces which, if compliant, may result in a surface deformation.
We study the deformations and stresses of a linearly elastic body placed in an active nematic in
two dimensions. Using complex variables techniques, exact expressions for the fluid flow, director
field, surface tractions, and body deformation are derived. Qualitative differences between elastic
and active stress-driven deformations are identified, depending on an active Ericksen number, an-
choring conditions, and body material properties, thereby suggesting a new method for measuring
mechanical stresses in active anisotropic environments. Flow profiles, external confinement, and
anchoring-induced stirring are also addressed.

I. INTRODUCTION

The eukaryotic cell is host to a wide variety of de-
formable organelles, from the nucleus to mitochondria
[1–6]. These organelles reside in complex environments
which can be anisotropic [7, 8], and experience mechan-
ical stresses due to actively driven cytoplasmic flows
[9–15]. The cell membrane itself is also deformable,
and its morphology is commonly influenced by internal
processes. For instance, active anisotropic stresses are
of functional importance in cytoskeletal remodeling of
the nucleus and chromatin configurations [16–20], in the
metaphase spindle [21–23], and in numerous other as-
pects of tissue morphogenesis [24–26]. On a larger length
scale, active systems like bacterial swarms and biofilms
also exhibit anisotropy, among other complex rheological
properties [27–31].

Even when free of bodies, actively-driven anisotropic
flows exhibit very rich and complex dynamics [32–36].
Stability [34, 37–43], topology [44], pattern formation
[45–47], and mixing [48, 49] have seen substantial theo-
retical treatment. Confinement introduces an additional
length scale, which can affect the emergent spatial struc-
ture [50, 51]. Strong active nematic stresses can also
change the shape of deformable confining surfaces [52–
59], and can play a prominent role in directing the motil-
ity of cells [60, 61] and active droplets [62–65].

When an active nematic contains an immersed body,
or inclusion, additional elastic stresses are immediately
introduced. In passive systems, these stresses result in
intricate and beautiful textures [66–68], and can be used
to measure cell material properties [69, 70]. In active
systems, fluid elasticity and anisotropy can redirect the
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emergent flows, leading to complex body dynamics. Re-
cent examples include an investigation of the biased rota-
tion of gear-like bodies [71, 72], complex droplet trajec-
tories [73, 74], and transitions from fixed point to limit
cycle to chaotic dynamics of a circular disk [75]. How
body deformability affects and is affected by such an ac-
tive environment remains largely unexplored.
In this letter, we study an active nematic fluid based on

Ericksen–Leslie theory [36, 76–79] with a soft internal or
external boundary in two dimensions. Complex variable
techniques yield exact analytical representations for the
director field, velocity field, and boundary deformation.
Elastic deformations of bounding surfaces are known to
relieve the elastic energy stored in the bulk LC phase
[80]. Here, we show that active stresses can compete and
eventually dominate this balance, resulting in distinct
geometric signals. In addition, we show that a sponta-
neous stirring flow with a unique plume structure may
be induced with a change in surface anchoring boundary
conditions alone, due to a global pressure release.

II. ACTIVE NEMATIC FLOWS

Active nematic liquid crystals (LCs) can be described
by their locally-averaged molecular orientation (i.e. the
director field) n(x, t) and fluid velocity u(x, t), with
spatial position x, time t, and |n| = 1. The director
field, n, evolves due to gradients in the velocity field,
with strain-rate tensor Eij = (∂iuj + ∂jui)/2 and vor-
ticity tensor Ωij = (∂iuj − ∂jui)/2, and a relaxation
towards equilibrium under the action of the molecular
field, H = −δF/δn, where F is the free energy density.
In the one-constant approximation, F = K∥∇n∥2/2 and
so H = K∇2n, for the single (Frank) elastic constant K
[77]. Together,

(∂t + u · ∇)n = n ·Ω+ λn ·E · (I− nn) + h/γ, (1)

mailto:tgchandler@wisc.edu
mailto:spagnolie@wisc.edu


2

with γ the rotational viscosity, λ the tumbling/reactive
parameter, and h = (I − nn) · H the transverse part
of the molecular field, where nn is a dyadic product
[76–78, 80]. Momentum and mass conservation, under
the assumptions of incompressibility and zero Reynolds
number flow1, are given by

∇ · (σe + σv + σa − pI) = 0 and ∇ · u = 0, (2a,b)

respectively, for ∇ · σ := ∂iσij , pressure p, and elastic,
viscous, and active stress tensors

σe =
K

2
∥∇n∥2I−K∇n · ∇nT

− 1

2
(nh− hn)− λ

2
(nh+ hn),

(3a)

σv = 2µE+ µ1(n·E·n)nn+ µ2(nE·n+ n·En), (3b)

σa = 2αnn, (3c)

respectively. Here, µ is the solvent viscosity, µ1 and µ2

are anistropic viscosities, and α is the activity strength,
which can describe both extensile (α < 0) and contractile
(α > 0) activity [36, 79, 81] (see [82]). Note the conven-
tion taken for the divergence, which is important since
σe is not symmetric.

The system is made dimensionless by scaling upon an
intrinsic length scale L (e.g. the size of an immersed
body), velocity scale U (to be defined), and stress scale
K/L2. The system is then characterized by the dimen-
sionless Ericksen number, activity strength, and viscosity
ratios [82]:

Er :=
µUL

K
, A :=

αL

µU
, γ′ :=

γ

µ
, µ′

j :=
µj

µ
. (4a–d)

For small rotational Ericksen numbers, γ′Er ≪ 1, the
fluid flow does not affect the director field, and at leading
order from (1) we have

h = (I− nn) · ∇2n = 0. (5)

Further, assuming small viscosity ratios, γ′, µ′
i ≪ 1,

Eq. (2a) yields

−∇p+∇2u+ 2A∇ · (nn) = 0. (6)

In the examples presented in this letter, the fluid flow is
induced by activity alone; thus, the velocity scale is set by
the activity strength, U = |α|L/µ, and the assumption of
a small Ericksen number is equivalent to assuming weak
activity, γ′Er = |α|γL2/(µK) ≪ 1. 2

1 The Reynolds number is defined as Re = ρ|α|L2/µ2, with ρ the
fluid density, and other terms defined above.

2 In 2D incompressible flows, a general µ2 can actually be absorbed
into the isotropic viscosity by taking µ 7→ µ− µ2/2.

FIG. 1. The activity-induced flow of a 2D nematic LC out-
side a cylinder for A = −1 (i.e. extensile activity). (a) The
director lines for w = 10 are shown as blue curves. (b,c) The
activity–induced velocity field is shown for (b) w = 1 and
(c) w = 10. The black arrows show the flow direction and the
color denotes the fluid speed,

√
u2 + v2. Contractile activity

with A = 1 corresponds to flipping the flow direction.

A. Two-dimensional active nematics

In 2D, the director field can be described by an angle
field θ(x, y) ∈ [0, π) such that n = (cos θ, sin θ), and a
streamfunction ψ(x, y) can be introduced such that u =
(∂yψ,−∂xψ). The director field, governed by h = 0,
reduces to Laplace’s equation for θ, while the momentum
equation (6) is equivalent to Poisson’s equation for the
scalar vorticity, ω = −∇2ψ:

∇2θ = 0, (7a)

∇2ω = A [2∂yx cos(2θ) + (∂yy − ∂xx) sin(2θ)] . (7b)

Here, we absorb the isotropic parts of the stress tensors
into the pressure by taking p 7→ p + A. The leading-
order, dimensionless, traceless stress tensors are denoted
with hats:

σ̂e =
1

2
|∇θ|2I−∇θ∇θ, (8a)

σ̂v = ∇u+∇uT , (8b)

σ̂a = 2nn− I, (8c)

giving the dimensionless (bulk) stress tensor σ = σ̂e +
Er (σ̂v +Aσ̂a − pI).
At any boundaries, we assume the fluid velocity van-

ishes and the director field relaxes locally towards a pre-
ferred angle θ0(s) due to surface anchoring of strength
W (i.e. Rapini–Papoular anchoring [83]):

∂sψ = ∂νψ = 0 and ∂νθ =
w

2
sin [2(θ − θ0)] , (9a,b)
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for the anticlockwise arclength derivative ∂s = ŝ ·∇, nor-
mal derivative pointing into the LC ∂ν = ν̂ · ∇, and the
dimensionless anchoring strength w :=WL/K.
With z = x+ iy and z̄ = x− iy its complex conjugate,

the system may be written in complex variables as

∂zz̄θ = 0 and ∂z̄(p− iω) = A∂ze
2iθ, (10a,b)

with vorticity ω = −4∂zz̄ψ and velocity, u = (u, v), given
by u− iv = 2i∂zψ. Integrating (10) yields

θ = − arg f ′(z) (11a)

and p− iω = A∂z
[
g(z) + f(z)/f ′(z)

]
, (11b)

for some locally-holomorphic functions f and g [84]. We
assume the LC does not contain any topological defects,
so f is non-zero and singularity free inside the LC, though
this assumption can be relaxed [85, 86]. Inserting the
imaginary part of (11b) into ∂zz̄ψ = −ω/4 and integrat-
ing yields

ψ =
A

4
Im

[
z̄g(z) + h(z) +

∫
f(z) dz /f ′(z)

]
, (12)

for another locally-holomorphic function h. The first two
terms in (12) correspond to the well-known form of a
biharmonic function with Goursat functions h and g [87],
while the last term accounts for the active forcing.

Analytical solutions for the director and velocity fields
are obtained, provided that functions f , g, and h, which
are locally holomorphic within the LC and satisfy the
boundary conditions in (9), may be found. The problem
for f derived here is equivalent to the potential problem
explored in Refs. [88, 89] for a passive LC, but g and h
depend on activity.

B. Anchoring-controlled flows

As an example, consider a cylinder of radius L of infi-
nite extent immersed in a weakly-active nematic LC. In
the far-field, we assume the LC is aligned horizontally in
a direction orthogonal to the cylinder’s long axis and the
fluid velocity vanishes. The LC is assumed to be tangen-
tially anchored to the body with finite strength, i.e. (9b)
with θ0 = arg(iz) mod π on |z| = 1. Without the body,
the system sits at an equilibrium, with n = x̂ and u = 0,
and the active stress is absorbed by the pressure.

To find the activity-induced flow, we first determine
the LC director angle θ = − arg f ′. Here, the potential
f(z) must be locally holomorphic in 1 < |z| < ∞ and
satisfy the finite anchoring condition on |z| = 1, and
f(z) ∼ z as |z| → ∞. The solution to this problem is

θ = − arg f ′(z) = − arg(1− ρ2/z2), (13)

where ρ(w) := (
√
1 + 4/w2 − 2/w)1/2 is an effective ra-

dius [88]. The corresponding director lines (which lay

parallel to n) are plotted in Fig. 1(a) for w = 10. Mean-
while, the Goursat functions h(z) and g(z) must be lo-
cally holomorphic in 1 < |z| < ∞ and yield a fluid ve-
locity that vanishes on |z| = 1 and as |z| → ∞. This
ultimately yields the streamfunction (see [82]):

ψ =
Aρ2

8
Im

[
(|z|2 − 1)2

z2(z2 − ρ2)
+

1− |z|2 + 2 log |z|
(z2 − ρ2)/(2ρ2)

]
. (14)

The corresponding flow is shown in Fig. 1(b,c) for w = 1
and w = 10, with A = −1 (i.e. extensile activity).
A prominent feature of the induced flow is a plume

extending symmetrically to both the left and right of the
cylinder (see Fig. 1(b,c)). Far from the body,

u+ iv = −2i∂z̄ψ ∼
[
ρ2 cos(2ϑ)− cos(4ϑ)

]Aρ2eiϑ
2|z|

, (15)

as |z| → ∞, for ϑ = arg z. This far-field flow behavior
is critically dependent on the effective radius ρ(w), and
hence the anchoring strength w. The plume angle, thus,
decreases from π/4 to 0 as the anchoring strength w is in-
creased from 0 to ∞, while the plume speed is largest at
w = 8/3. The velocity field does not appear as a dipole
or stresslet in the far-field, but the sum of a dipole and a
quadrupole — the mere presence of the body initiates ad-
ditional flow far away due to the distributed active stress,
leading to bulk flow release. This also demonstrates that
a body with non-trivial anchoring conditions is sufficient
to induce a large scale flow through its presence alone.

III. SURFACE TRACTIONS AND SOFT
BOUNDARIES

Stresses due to passive LC elasticity, actively-driven
viscous flow, and direct activity all contribute to surface
forcing. The LC introduces a surface traction te = ν̂ ·
σ̂e + ∂st

s, where σ̂e is the Ericksen elastic stress tensor
given in (8) and

ts =
w

2
sin2(θ − θ0)ŝ+

w

2
sin[2(θ − θ0)]ν̂ (16)

is a surface stress vector associated with finite surface-
anchoring [80]. Activity, meanwhile, produces a surface
traction ta = Er ν̂ · (σ̂v + Aσ̂a − pI) for the (traceless)
viscous and active stress tensors, σ̂v and σ̂a given in (8).
If a boundary is soft, it will generally be deformed

by the surface tractions above. As a first step towards
understanding more complex materials, we assume the
boundary is part of an isotropic solid that deforms ac-
cording to plane stress/strain in the framework of linear
elasticity, with shear modulus µs and Poisson’s ratio ν
[90, 91]. At equilibrium, the elastic solid can be described
by an Airy-stress function, A(x, y), which satisfies the bi-
harmonic equation, ∇4A = 0. We can, thus, write

A = Im[z̄G(z) +H(z)], (17)
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for two (new) Goursat functions, G and H, that are lo-
cally holomorphic within the solid (but not necessarily
the LC), analogous to g and h in (12) [90]. These Gour-
sat functions yield the symmetric stress tensor within the
solid, Σij , via the Kolosov–Muskhelishvili formulae,

Σ11 − Σ22 − 2iΣ12 = 2iz̄G′′(z) + 2iH ′′(z) (18a)

and Σ11 +Σ22 = 4 ImG′(z), (18b)

and the solid displacement, (U, V ), can be expressed as

2M(U − iV ) = iκG(z) + iz̄G′(z) + iH ′(z), (19)

up to an arbitrary body displacement and rotation, for
the dimensionless elastic modulusM := µsL

2/K and κ =
(3− 4ν) or (3− ν)/(1 + ν), when assuming plane strain
or plane stress, respectively.

Stress balance at the LC-solid interface, ν̂ ·Σ+te+ta =
0, yields the boundary conditions for G and H:

∂s

[
z̄G′(z)−G(z) +H ′(z)

]
= (tex+ t

a
x)− i(tay+ t

e
y). (20)

A. Activity-controlled deformations

Returning to the example of a unit cylinder with tan-
gential anchoring, the director angle (13) and stream-
function (14) yield analytic expressions for the elastic
traction, tex+itey, and activity-induced traction, tax+itay =

AEr(1/z − ρ2z). The cylinder is now assumed to be de-
formable, and so, we seek the Airy stress (17). Here,
the Goursat functions G(z) and H(z) must be locally
holomorphic in |z| < 1 and satisfy (20) on |z| = 1; the
solution is provided in [82].

Without activity (A = 0), boundary deformations help
to reduce the elastic energy stored in the bulk LC [80].
Figure 2 shows the LC configurations and body deforma-
tions for three different anchoring strengths and κ = 5/3
(i.e. an incompressible cylinder, ν = 1/2, under plane
stress). For large anchoring strengths, w ≫ 1, most
of the LC energy is stored local to the left and right
poles of the cylinder, with a singular energy emerging
in the case of strong (infinite) anchoring (w = ∞) due
to the appearance of two −1 Boojum topological de-
fects at z = ±1 [88, 92]. This localized energy within
the LC results in large localized surface tractions as
w → ∞: tex + itey = O(w2) when z ± 1 = O(1/w), and
tex + itey = O(1) otherwise. This, in turn, leads to large
localized deformations; in particular, we find that

U + iV ∼ 3w

8M

[
U(1− z)− U(1 + z)

]
, (21)

as w → ∞, where

U(Z/w) = κ/(1+Z)+1/(1+Z̄)+(Z+Z̄)/(1+Z̄)2, (22)

corresponds to a deformation that is only apparent when
z ± 1 = O(1/w). As the anchoring strength decreases,

FIG. 2. (top) Deformation of a soft cylinder immersed in
a passive nematic LC with AEr = 0, M /w = 5, κ = 5/3,
and dimensionless anchoring strengths ① w = 0.1, ② w = 1,
and ③ w = 10. Color indicates the maximum shear stress,
τ =

√
(Σ11 − Σ22)2/4 + Σ2

12, within the cylinder and the blue
curves are director lines. (bottom) The positions, (xmax, 0),
and value, τmax = maxx τ , of the largest maximum shear
stress plotted as a function of w.

stress is no longer concentrated at the poles and the max-
imum shear stress τ(x, y) =

√
(Σ11 − Σ22)2/4 + Σ2

12 (a
common indicator of mechanical failure [91]) is greatest
at (±xmax, 0), where xmax decreases from 1 when w = ∞,
to 0 when w ≤ 24/35, as shown in Fig. 2.
In an active nematic (A ̸= 0), the activity leads to an

additional deformation:

U + iV = Ue + iV e +AEr
[
(1− κ)ρ2z+2z̄

]
/(4M ), (23)

where (Ue, V e) is the deformation of a cylinder immersed
in a passive LC. As this addition is proportional to the
activity strength, A, activity can act with or against the
elastic effects of the LC, depending on if it is extensile
(A < 0) or contractile (A > 0). In particular, the aspect
ratio, AR, of the deformed cylinder is given by

AR ∼ 1 + U
∣∣
z=1

− V
∣∣
z=i

= 1 + (AEr−W)/M , (24)

where

W =
3κ

2ρ
(arctanh ρ− arctan ρ)− 3w

8
(1 + κ). (25)

Thus, if AEr > W (which includes passive LCs since
W < 0), the deformed shape is elongated with the x-axis
(i.e. the preferred axis of the LC). While, if AEr < W,
the shape is elongated with the y-axis (i.e. perpendic-
ular to the preferred axis). The aspect ratio is one at
the critical value AEr = W, see Fig. 3. Therefore, con-
tractile activity (A > 0), in this setting, always leads
to parallel elongation, while extensile activity (A < 0)
yields perpendicular elongation, as long as the activity is
sufficiently strong.
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FIG. 3. (top) Deformation of a soft cylinder immersed in
an active nematic LC with w = 5, M = 50, κ = 5/3, and
④ AEr = −8 < W (extensile), ⑤ AEr = W ≈ −3.55 (ex-
tensile), and ⑥ AEr = 4 > W (contractile). Color indicates

the maximal shear stress,
√

(Σ11 − Σ22)2/4 + Σ2
12, within the

cylinder and the blue curves are director lines. (bottom) The
critical active Ericksen number, AEr = W, at which the de-
formed cylinder has aspect ratio one, plotted as a function of
w for κ = 5/3. The points ①–③ correspond to the configura-
tions shown in Fig. 2.

B. Bounded domains and spontaneous stirring

The fluid flow triggered by the presence of a boundary
may also be advantageous in interior domains like biolog-
ical cells — settings in which a distribution of molecules,
such as nutrients, chemicals, or oxygen, benefit the sys-
tem’s function [93–96]. Consider an active nematic LC
bounded inside and (weakly) tangentially anchored to a
cylinder with anchoring strength w. Here, the director
angle of the LC can be written as θ = arg(1 − ρ2z2),
for the effective radius introduced in the external prob-
lem, ρ(w) = (

√
1 + 4/w2 − 2/w)1/2, while the flow can

be expressed in terms of a streamfunction (see [82]):

ψ =
A

8
(|z|2 − 1) Im

[1− ρz

z2
log(1− ρz)

+
1 + ρz

z2
log(1 + ρz)

]
.

(26)

Figure 4(a) shows the director lines inside a cylinder
that has deformed according to linear elasticity [82]. The
final deformed shape resembles a tactoid [97], with a lo-
calized deformation at the left and right poles occurring
for large anchoring strengths due to the appearance of
two +1 aster defects when w = ∞. The deformed shape
is dependent on the active Ericksen number, AEr, with
extensile activity (A < 0) leading to parallel elongation
and sufficient contractile activity (A < 0) yielding per-
pendicular elongation [82] — opposite to the dependence
on the activity strength in the external problem.

Figures 4(c–e) show stirring induced by extensile ac-
tivity. Varying the activity and anchoring strength af-
fects the rate of stirring. The maximum fluid speed,
|u|max, is plotted as function of anchoring strength in
Fig. 4(b), for both the external and internal problems.
The speeds plateau for large anchoring strengths, and de-
crease according to |u|max ∼ 2|A|w/(25

√
5) and |u|max ∼

|A|w2/(600
√
5) as w → 0, for the external and internal

problem, respectively. The extent to which this stirring
flow is mixing is an interesting but separate question [98].
Mixing is notoriously challenging in highly viscous flows
and in confined geometries [99], but is likely promoted
by a wide spatial distribution of active stress [48, 49].

FIG. 4. (a) Deformation of a soft cylinder enclosing a
passive nematic LC with AEr = 0, w = 10, M = 50,
and κ = 5/3. Color delineates the maximum shear stress,√

(Σ11 − Σ22)2/4 + Σ2
12, within the solid and the blue curves

are director lines. (b) Plot of the maximum fluid speed,
|u|max = maxx

√
u2 + v2, as a function of w for the LC ex-

ternal and internal to a cylinder. The asymptotic behaviours
as w → 0 are shown as black dashed lines. (c–e) Snapshots
at times (c) t = 0, (d) t = 100/|A|, and (e) t = 200/|A| of
colored fluid particles transported due to extensile activity
inside the cylinder for w = 10.

IV. CONCLUSIONS AND DISCUSSIONS

We have shown that the configurations and dynamics
of an active nematic can be affected dramatically by the
mere presence of a boundary, for any non-trivial anchor-
ing strength. It suggests that energy bound in a uniform
active nematic can be released as a large scale flow due
to a localized inclusion alone.
The spontaneous flow that arises is characterized by

unique plumes whose structure is anchoring strength de-
pendent. The body may then deform in response to
this anisotropic, viscoelastic flow, in a generally localized
manner near (virtual) topological defects. Such flows can
also produce a spontaneous stirring, and likely mixing,
of the environment. The associated symmetry breaking
can lead to cell or droplet division and motility [100–102].
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Looking to the horizon, biological cells are host to a mul-
titude of active anisotropic networks. Can such fluids be
triggered into motion solely by the passive anchoring con-
ditions on an arriving organelle? This mechanism could
offer an energy-efficient way to generate precisely timed
mixing flows within the cellular environment.

New experiments on the shapes and dynamics of
deformable inclusions in active nematics is needed.
Testable hypotheses include the differential direction of
elongation, which may be tuned by varying either the ac-
tivity strength (e.g. by changing the density of molecular
motors [23]) or by changing the body stiffness. With
sufficient perpendicular elongation due to strong exten-
sile activity, as in the top left panel of Fig. 3, body rota-
tion may also ensue to reduce the bulk elastic energy. We
thus predict that a diverse zoology of body dynamics will
emerge with increasing extensile activity in particular.

Consequences for intracellular form and function are
also expected. Taking the metaphase spindle as an ex-
ample [22, 103], using a length scale L = 20 µm, bulk
elastic constant K = 400 pN [23], and contractile activ-
ity strength α ∼ 35 pN/µm2 [23, 53, 104], we find that
AEr ≈ 35. Balancing against surface tension, compa-
rable parameters can provide the spindle’s characteristic
shape [23, 53]. Such elastic and activity-induced stresses
would both stretch an immersed body in the direction
parallel to the background director field. These mechan-
ics would seem to be of additional service in the splitting
of sister chromatids, which separate and are pulled to-

wards the two spindle poles during anaphase A [105, 106].
Chromosomes can also be repelled in a direction perpen-
dicular to the director in metaphase, due to LC elastic
interactions [89, 107]. Our results suggest a more com-
plex picture if active stresses are included, which would
impose an additional attraction (e.g. from Fig. 1 with
oppositely signed flow).
Extensile activity in a related synthetic system, taking

L ≈ 200 µm, instead has AEr ≈ −1500 [35, 71, 108]. Such
a highly extensile suspension is likely to result in large
deformations of any soft inclusions in the direction per-
pendicular to the background director field. This could
add to the already complex body dynamics that have
been observed in such systems [71].
Future directions will require different machinery.

Large deformations will more completely couple the LC
configuration and flows, and a finite rotational viscosity
will introduce an additional timescale [77, 109]. The ana-
lytical limits provided herein may still be of use for steer-
ing investigations of these more highly nonlinear regimes.
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Supplemental material for “Active nematic response to a deformable body or
boundary: elastic deformations and anchoring-induced flow”
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I. GOVERNING EQUATIONS

According to Erickson–Leslie theory [S1], in the absence of any body forces and torques, the components (denoted
by subscripts) of the director field, ni, and fluid velocity, ui, evolve according to

γ1Ni = Hi − γ2Eiknk − Lni, (S1a)

ρ(∂tvi + vk∂kvi) = ∂kσki, and ∂iui = 0, (S1b,c)

for the co-rotational time flux Ni = ∂tni+vk∂kni+Ωiknk; Lagrange multiplier L, which imposes nini = 1; strain-rate
tensor and vorticity tensor

Eij =
1

2
(∂iuj + ∂jui) and Ωij =

1

2
(∂iuj − ∂jui), (S2a,b)

respectively; Ericksen torque stress tensor and molecular field

Πij =
∂F
∂∂inj

and Hi = ∂kΠki −
∂F
∂ni

, (S3a,b)

respectively, where F(n,∇n) is the Frank free energy of the LC; and stress tensors

σij = (F − p)δij − ∂inkΠjk + 2αninj + σ̃ij , (S4a)

σ̃ij = α1nkEkpnpninj + α2Ninj + α3niNj + α4Eij + α5njEiknk + α6niEjknk, (S4b)

where repeated indices denote summation and δij is the Kronecker delta. Note that σij is not a symmetric tensor, and
it is defined such that νiσij is the jth component of the stress acting on a surface of normal ν̂. Here, ρ is the density, p
is the pressure, α is the activity strength, αi are the Leslie viscosities, γ1 = α3−α2, and γ2 = α3+α2 = α6−α5, where
the last equality is the Parodi relation. Under the one-constant approximation, F = (K/2)∥∇n∥2 ≡ (K/2)∂inj∂inj
for the single (Frank) elastic constant K, this yields the torque stress tensor Πij = K∂inj and molecular field
Hi = K∇2ni.

Using the fact that Nini = 0 (which follows from nini = 1), the evolution equation (S1a) can be decomposed into
its component parallel and perpendicular to n,

L = −γ2nkEkini and γ1Ni = hi − γ2nkEkj(δji − njni), (S5a,b)

respectively, where hi = (δij − ninj)Hj is the projected molecular field. Inserting (S5b) into (S4b) and rearranging
yields

σ̃ij = α4Eij +

(
α1 +

γ22
γ1

)
nkEkpnpninj +

α5α3 − α6α2

γ1
(niEjknk + njEiknk) +

α2

γ1
hjnj +

α3

γ1
nihj . (S6a)

Consequently, we introduce five new constants (to replace the five independent viscosities above),

µ :=
α4

2
, µ1 := α1 +

γ22
γ1
, µ2 :=

α5α3 − α6α2

γ1
, λ := −γ2

γ1
, γ := γ1. (S7a–e)

∗ tgchandler@wisc.edu
† spagnolie@wisc.edu

mailto:tgchandler@wisc.edu
mailto:spagnolie@wisc.edu


2

Assuming the system’s Reynolds number is negligible (i.e. the left-hand side of (S1b) is zero), we are then left with
the system introduced in the main text, Eqs. (1)–(3).

Non-dimensionalizing this system using a length scale L, velocity scale U , and time scale L/U yields

∂tn+ u · ∇n = n ·Ω+ λn ·E · (I− nn) +
h

γ′Er
, (S8a)

∇ · (σe + Erσv +AErσa − Er pI) = 0 and ∇ · u = 0, (S8b,c)

for the elastic, viscous, and active stress tensors

σe =
1

2
∥∇n∥2I−∇n · ∇nT − 1

2
(nh− hn)− λ

2
(nh+ hn) , (S9a)

σv = 2E+ µ′
1(n ·E · n)nn+ µ′

2(nE · n+ n ·En), (S9b)

σa = 2nn, (S9c)

respectively. Here, A, Er, λ, γ′, µ′
1, and µ

′
2 are the dimensionless parameters defined in the main text and nn and

similar terms are dyadic products.
For small viscosity ratios and rotational Erickson number, γ′, µ′

i, γ
′Er ≪ 1, the stress tensors reduce to

σe =
1

2
∥∇n∥2I−∇n · ∇nT +O(γ′Er), (S10a)

σv = ∇u+∇uT +O(µ′
iEr), (S10b)

σa = 2nn. (S10c)

Inserting these into (S8) yields the asymptotic system found in the main text

h = (I− nn) · ∇2n = O(γ′Er), ∇ · u = 0, (S11a,b)

∇2u−∇p+ 2A∇ · (nn) = O(γ′, µ′
i). (S11c)

where we have used that ∇ · σe = O(γ′Er), which follows from (S11a) and |n| = 1.

A. Two-dimensional theory

In 2D, the LC can be described by a director angle, θ(x, y), and a streamfunction, ψ(x, y), such that n = (cos θ, sin θ)
and u = (ψy,−ψx). Here, we absorb the isotropic parts of the stress tensors, (S10), into the pressure by taking
p 7→ p+A. At leading-order, the system (S11) is

∇2θ = 0, (S12a)

∂yω − ∂xp = A [∂x cos(2θ) + ∂y sin(2θ)] , (S12b)

∂xω + ∂yp = A [∂y cos(2θ)− ∂x sin(2θ)] , (S12c)

with vorticity ω = −∇2ψ. On any immersed or confining boundaries, the fluid velocity vanishes and the director field
is subject to Rapini–Papoular anchoring [S2, S3], i.e.

∂sψ = ∂νψ = 0 and ∂νθ =
w

2
sin [2(θ − θ0)] , (S13a,b)

respectively, where w is the dimensionless anchoring strength (as defined in main text), θ0 is the preferred director
orientation on the boundary, and ∂s = ŝ · ∇ and ∂ν = ν̂ · ∇ are the arclength derivative and normal derivative,
respectively, for the unit anticlockwise tangent vector ŝ and unit normal vector pointing into the LC ν̂.

The traceless stress tensors are denoted with hats:

σ̂e =
1

2
[(∂yθ)

2 − (∂xθ)
2](xx− yy)− ∂xθ∂yθ(xy + yx), (S14a)

σ̂v = 2∂xyψ(xx− yy) + (∂yyψ − ∂xxψ)(xy + yx), (S14b)

σ̂a = cos(2θ)(xx− yy) + sin(2θ)(xy + yx), (S14c)
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where x and y are the unit vectors in the x and y directions, respectively. The elastic and activity-induced stresses
acting on a surface are

te = ν̂ · σ̂e + ∂st
s and ta = Er ν̂ · (σ̂v +Aσ̂a − pI), (S15a)

respectively, for the surface stress vector (which comes from the surface anchoring condition [S4])

ts =
w

2
sin(θ − θ0)

2ŝ+
w

2
sin [2(θ − θ0)] ν̂. (S16)

Changing coordinates from x and y to the complex position z = x+ iy and its complex conjugate z̄ = x− iy yields
the problem

∂zz̄θ = 0 and ∂z̄(p− iω) = A∂ze
2iθ. (S17a,b)

Integrating yields the solution

θ = − arg f ′(z), p− iω = A∂z
[
g(z) + f(z)/f ′(z)

]
, ψ =

A

4
Im
[
z̄g(z) + h(z) +

∫
f(z) dz /f ′(z)

]
, (S18a–c)

for functions f , g, and h, which are locally holomorphic in the LC and satisfy the boundary conditions (S13). Note
that the fluid velocity, u = (u, v), can be expressed as

u− iv = 2iψz =
A

4

[
z̄g′(z)− g(z) + h′(z) + ∂z

(∫
f(z) dz

f ′(z)

)
− f(z)

f ′(z)

]
. (S19)

On a bounding surface, z̄ can be related to z using the boundary’s Schwarz function [S5], and the surface tractions
can be computed using

tex − itey = 2i(∂zθ)
2∂sz + ∂s(t

s
x − itsy), (S20a)

tax − itay = Er
(
[4∂zzψ − iAe−2iθ]∂sz − ip ∂sz̄

)
, (S20b)

tsx − itsy =
w

8

(
2 + e2i(θ−θ0) − 3e2i(θ0−θ)

)
∂sz̄. (S20c)

B. Solid deformation

According to plane stress/strain in linear elastostatics, the deformation, (U, V ), and stress tensor, Σ, of an isotropic
elastic solid can be written in terms of an Airy stress function, A(x, y), which satisfies the biharmonic equation,
∇4A = 0 [S6, S7]. This biharmonic function can be written in terms of two Goursat functions, G and H, that is

A = Im [z̄G(z) +H(z)] , (S21)

where G and H are locally holomorphic in the solid and satisfy the stress balance on the LC–solid interface, −ν̂ ·Σ =
te + ta. The solid stress tensor, Σij , is given by the Kolosov–Muskhelishvili formulae,

Σ11 − Σ22 − 2iΣ12 = 2iz̄G′′(z) + 2iH ′′(z) and Σ11 +Σ22 = 4 ImG′(z), (S22a,b)

and the solid displacement, (U, V ), is given by

2M(U − iV ) = iκG(z) + iz̄G′(z) + iH ′(z), (S23)

where M and κ are the dimensionless elastic modulus and Muskhelishvili constant defined in the main text. Using
(S20) and (S22), the first integral of the interface stress balance is

z̄G′(z)−G(z) +H ′(z) =

∫
tex − itey + tax − itay ds, (S24)

where z̄ can be related to z using the Schwarz function for the interface. This stress balance is unique up to an
arbitrary integration constant.
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II. EXAMPLE 1: CYLINDER IMMERSED IN AN ACTIVE LC

In this section, we derive analytical expressions for the director field, streamfunction, and Airy stress function
associated with the first example considered in the main text: a soft unit cylinder immersed in a weakly-active
nematic LC, subject to (finite) tangential anchoring.

A. Director field

Chandler and Spagnolie [S3] showed that the director field can be expressed in terms of a potential function f(z)
such that θ = − arg f ′. Here, f(z) must be holomorphic in ρ < |z| < ∞, have a constant imaginary-part on |z| = ρ,

and satisfy f(z) ∼ z as |z| → ∞, for the effective/virtual radius ρ(w) = (
√

1 + 4/w2 − 2/w)1/2. By Milne-Thomson
circle theorem, this has solution

f(z) = z + ρ2/z. (S25)

(Note that this is unique up to an additive imaginary logarithm, iγ log z for γ ∈ R. We shall only consider the up–down
symmetric case with γ = 0, which minimizes the (Frank) elastic energy [S3].) This potential yields the director angle
given in the main text,

θ = − arg f ′(z) = − arg(1− ρ2/z2), (S26)

which holds for all anchoring strengths w > 0.

B. Streamfunction

Inserting (S25) into (S18c) yields the streamfunction

ψ =
A

4
Im

[
z̄g(z) + h(z) +

z̄2/2 + ρ2 log z̄

1− ρ2/z2

]
, (S27)

for the two Goursat functions h(z) and g(z), which are locally holomorphic in 1 < |z| < ∞ and yield a fluid velocity
that vanishes on |z| = 1 and as |z| → ∞.

Firstly, to ensure ψ is single-valued around |z| = 1, let h(z) = h̃(z) + ρ2 log z/(1− ρ2/z2):

ψ =
A

4
Im

[
z̄g(z) + h̃(z) +

z̄2/2 + 2ρ2 log |z|
1− ρ2/z2

]
. (S28)

We now need to find g and h̃ such that the fluid velocity,

u− iv = 2i∂zψ =
A

4

[
z̄g′(z) + h̃′(z)− ḡ(z̄)− z + ρ2/z

1− ρ2/z̄2
− 2ρ2

z3
(z̄2 − z2)/2 + ρ2/2 + 2ρ2 log |z|

(1− ρ2/z2)2

]
, (S29)

vanishes on |z| = 1 and as |z| → ∞. Note that the pressure and vorticity are given by (S18b), which is

p− iω = A

(
g′(z) + ∂z

z̄ + ρ2/z̄

1− ρ2/z2

)
. (S30)

Consider the functions

g(z) = G(z)− ρ2(1 + ρ2z2)

z(z2 − ρ2)
and h̃(z) = H(z) +

z2

2
− 1

2z2
+

1/2 + ρ4

z2 − ρ2
. (S31a,b)

These are holomorphic in 1 < |z| <∞ provided G and H are holomorphic there. Furthermore,

u− iv =
A

4

[
G′(z)/z +H′(z)− Ḡ(1/z)

]
on |z| = 1, (S32a)

and u− iv ∼ A

4

[
z̄G′(z) +H′(z)− Ḡ(z̄)

]
as |z| → ∞, (S32b)
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which both vanish provided H′(z) = Ḡ(1/z)−G′(z)/z, G(z) ∼ az+ b as |z| → ∞, and H′(z) ∼ b̄ as |z| → ∞, for a ∈ R
and b ∈ C. Since G and H are holomorphic in 1 < |z| < ∞, they can be expressed as Laurent expansions around
z = 0. It immediately follows that G(z) = az + b and H(z) = b̄z + c for c ∈ C. Here, b and c are complex constants
that can be set to zero, without loss of generality, while a is a real constant that sets the reference pressure at infinity,

p− iω ∼ Aa as |z| → ∞, (S33)

which we also take to be zero.
Inserting (S31) into (S28) and (S29) with G = H = 0 yields the streamfunction given in the main text,

ψ =
Aρ2

8
Im

[
(|z|2 − 1)2

z2(z2 − ρ2)
+

1− |z|2 + 2 log |z|
(z2 − ρ2)/(2ρ2)

]
, (S34)

and the fluid velocity

u− iv = 2i∂zψ =
Aρ2

4
(|z|2 − 1)

[
2/z − z̄ + ρ2(z − 1/z3) + ρ4/z

(z2 − ρ2)2
− 1/z̄ − ρ2/z

z̄ − ρ2

]
− Aρ4z log |z|

(z2 − ρ2)2
. (S35)

Furthermore, using zs = iz, z̄ = 1/z, and w = 4ρ2/(1− ρ4), the tractions (S20) acting on |z| = 1 are

tex − itey =
3z(1/ρ2 + z2)

2(1/ρ2 − z2)2
− 3z(z2 − 3ρ2)

2(z2 − ρ2)2
+

3 + ρ2

1 + ρ2
1

2z
and tax − itay = AEr

(
z − ρ2

z

)
. (S36a,b)

C. Airy stress function

We next find the solid Goursat functions G(z) and H(z), which must be holomorphic in |z| < 1 and satisfy the
stress balance (S24) on |z| = 1. Integrating the surface tractions given in (S36), and imposing z̄ = 1/z and zs = iz,
we find that the stress balance can be expressed as

1

z
G′(z)−G(1/z) +H ′(z) =

i(3 + ρ2)

2z(1 + ρ2)
+

3iz/2

z2 − ρ2
+

3iz/2

z2 − 1/ρ2
+

3i

2ρ
log

1− ρ/z

1 + ρ/z
− iAEr

(
z +

ρ2

z

)
. (S37)

The trick to finding G and H here is to use that G(z) and H ′(z) are holomorphic in |z| < 1, while Ḡ(1/z) is
holomorphic in |z| > 1; this allows one to match the terms on the left-hand side of (S37) with those on the right-hand
side.

Consider the functions

G(z) = G(z) + 3 + 2ρ2

1 + ρ2
iz

2
+

3iz/(2ρ2)

1/ρ2 − z2
− 3i

2ρ
log

1/ρ+ z

1/ρ− z
− iAEr

ρ2z

2
, (S38a)

and H(z) = H(z)− 3iz2/2

1/ρ2 − z2
− iAEr

z2

2
, (S38b)

These are holomorphic in |z| < 1 as long as G and H are holomorphic there, and (S37) is satisfied provided H′(z) =
Ḡ(1/z)− G′(z)/z. As G and H are holomorphic at z = 0, they can be expressed as Taylor expansions around z = 0.
It follows that G(z) = az+ b and H(z) = b̄z+ c for a ∈ R and b, c ∈ C. Constant c is arbitrary and can be set to zero,
while b and a correspond to a rigid body motion. In particular, using the displacement equation (S23) with (S38),
the origin is rotated anticlockwise by the signed angle −a(1+κ)/(2M) and is displaced by U0+iV0 = ib̄(1+κ)/(2M).
We set a and b to zero so that the origin and its orientation are preserved.
Overall, inserting (S38) with G = H = 0 into (S22) and (S23) gives the stress and displacement of the cylinder,

respectively. The deformed cylinder’s aspect ratio and the asymptotic displacement as w → ∞ given in the main text
follow from these expressions.

III. EXAMPLE 2: CYLINDER CONFINING AN ACTIVE LC

In this section, we derive analytical expressions for the director field, streamfunction, and Airy stress function
associated with the second example considered in the main text: a weakly-active nematic LC inside a soft unit
cylinder, subject to (finite) tangential anchoring.
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A. Director field

Using the effective/virtual boundary technique presented in Ref. [S3], the director angle can be described by a
potential function f(z), which is holomorphic in |z| < 1/ρ and has a constant imaginary-part on |z| = 1/ρ, where

ρ(w) = (
√

1 + 4/w2 − 2/w)1/2. This problem has the solution

f(z) =
1

2ρ
log(1 + ρz)− 1

2ρ
log(1− ρz), (S39)

yielding the director angle

θ(z) = − arg f ′(z) = arg(1− ρ2z2). (S40)

This solution hold for all anchoring strengths w > 0.

B. Streamfunction

Inserting the potential (S39) into (S18b) yields the fluid pressure and vorticity,

p− iω = A

(
g′(z)− ρz log

1 + ρz̄

1− ρz̄

)
, (S41)

while (S18c) yields the streamfunction

ψ =
A

4
Im

[
h(z) + z̄g(z)− z2

2
log(1− ρ2z̄2)− ρ

z̄z2

2
log

1 + ρz̄

1− ρz̄

]
. (S42)

The fluid velocity can then be computed by taking a partial derivative of ψ with respect to z, that is

u− iv = 2i∂zψ =
A

4

[
h′(z) + z̄g′(z)− ḡ(z̄) +

ρz̄2

2
log

1− ρz

1 + ρz
− ρz̄z log

1 + ρz̄

1− ρz̄
− z log(1− ρ2z2)

]
. (S43)

Note that these expressions are continuous in |z| ≤ 1 provided h and g are holomorphic there. We now find the
Goursat functions h and g, which yield a fluid velocity, (S43), that vanishes on |z| = 1.

Consider the functions

g(z) = G(z)− 1

z
(1− ρz) log(1− ρz)− 1

z
(1 + ρz) log(1 + ρz) + ρ2z, (S44a)

and h(z) = H(z) +
1

2z2
(1− ρz) log(1− ρz) +

1

2z2
(1 + ρz) log(1 + ρz). (S44b)

These are holomorphic in |z| ≤ 1 as long as G and H are holomorphic there. Furthermore, they yield

u− iv =
A

4

[
G′(z)/z +H′(z)− Ḡ(1/z)

]
on |z| = 1, (S45)

which vanishes provided H′(z) = Ḡ(1/z) − (1/z)G′(z). As with the previous example, inserting a Taylor expansion
for G(z) and H(z) around z = 0 yields G(z) = az + b and H(z) = b̄z + c for a ∈ R and b, c ∈ C. Here, b and c are
arbitrary, and so can be set to zero, while a sets the reference pressure at the origin,

p− iω ∼ Aa as |z| → 0, (S46)

which we assume to vanish.
Overall, inserting (S44) with G = H = 0 into (S42) yields the streamfunction given in the main text,

ψ =
A

8
(|z|2 − 1) Im

[
1− ρz

z2
log(1− ρz) +

1 + ρz

z2
log(1 + ρz)

]
, (S47)

while the fluid pressure, vorticity, and velocity follow from (S41) and (S43). Furthermore, using zs = −iz, z̄ = 1/z,
and w = 4ρ2/(1− ρ4), the tractions (S20) acting on |z| = 1 are given by

tex − itey =
ρ2z(3− ρ2z2)

2(1− ρ2z2)2
+

z(z2 + ρ2)

2(z2 − ρ2)2
− 1 + 3ρ2

1 + ρ2
1

2z
, (S48a)

and tax − itay = AEr

[
z log

(
1− ρ2/z2

)
+

ρ

z2
log

1− ρz

1 + ρz
− 1− ρ4

1/z − ρ2z
+

2ρ2

z

]
. (S48b)
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C. Airy stress function

The solid Goursat functions, G(z) and H(z), must be locally holomorphic in 1 < |z| < ∞, yield a displacement
that vanishes as |z| → ∞, and satisfy the stress balance (S24) on |z| = 1. Integrating the surface tractions (S48) and
using z̄ = 1/z and zs = −iz, we find that the stress balance can be expressed as

1

z
G′(z)−G(1/z) +H ′(z) =

∫
tex − itey ds+

∫
tax − itay ds, (S49)

where ∫
tex − itey ds = −ρi

2
log

1− ρz

1 + ρz
− iz/2

z2 − 1/ρ2
− iz/2

z2 − ρ2
+

1 + 3ρ2

1 + ρ2
i

2z
, (S50a)

and

∫
tax − itay ds = iAEr

[
z log(1− ρ2/z2) + ρ log

z + ρ

z − ρ
+

(
1

2ρ
− ρ

2z2

)
log

1− ρz

1 + ρz
− ρ2

z

]
. (S50b)

Here, we can equate the G′(z) and H ′(z) terms on the left-hand side of (S49) with the terms holmorphic in |z| > 1
on the right-hand side. Similarly, the Ḡ(1/z) term is identified with the terms holomorphic in |z| < 1.

Consider the functions

G(z) = G(z) + iρ

2
log

z + ρ

z − ρ
+

iρ2z/2

z2 − ρ2
+ iAEr

[
ρ2z2 − 1

2ρ
log

z + ρ

z − ρ
− ρ2z

]
, (S51a)

and H(z) = H(z) +
iρ2

1 + ρ2
log z − iρ2/2

z2 − ρ2
+ iAEr

[
z2 − 1/ρ2

2
log(1− ρ2/z2) + ρ2 log z

]
. (S51b)

These are locally holomorphic in 1 < |z| < ∞ provided G(z) and H(z) are locally holomorphic there, also (S49) is
satisfied provided H′(z) = Ḡ(1/z)− G′(z)/z. Since G(z) ∼ G(z) and H ′(z) ∼ H′(z) as |z| → ∞, the displacement of
the solid, (S23), satisfies

2M(U − iV ) ∼ iκG(z) + iz̄G′(z) + iH′(z) as |z| → ∞, (S52)

which vanishes only if G(z) = 0 and H(z) = c for some arbitrary constant c ∈ C, which we set to zero.
Overall, inserting (S51) with G = H = 0 into (S22) and (S23) yields the stress and displacement of the solid. For

large anchoring strengths, w → ∞, we find that

U + iV ∼ w

8M

[
U(z − 1)− U(−1− z)

]
, (S53)

for the localized deformation

U(Z/w) = κ/(1 + Z) + 1/(1 + Z̄) + (Z + Z̄)/(1 + Z̄)2. (S54)

which is only apparent local to the left and right poles, i.e. when z ± 1 = O(1/w). Note that this closely resembles
the asymptotic expression found for the immersed cylinder example, as discussed in the main text.

For a general anchoring strength, the aspect ratio of the deformed shape is given by

AR ∼ 1 + U
∣∣
z=1

− V
∣∣
z=i

= 1 + (W1 −AErW2)/M , (S55)

with

W1 =
κρ

2
(arctanh ρ+ arctan ρ) +

w

8
(1 + κ), (S56a)

and W2 =
κ

2ρ
(arctanh ρ+ arctan ρ) + ρ(1− κ/2)(arctanh ρ− arctan ρ) +

1

2
log(1− ρ4). (S56b)

Since W1,W2 ≥ 0, we find that the deformed shape is elongated with the y-axis if AEr > W1/W2 and elongated
with the x-axis if AEr < W1/W2. Therefore, extensile activity (A < 0) always leads to parallel elongation, while
contractile activity (A > 0) yields perpendicular elongation, as long as the activity is sufficiently strong. Note that
this is in direct contrast to immersed cylinder example, which was discussed in the main text.
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