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A nematic liquid crystal, a phase of matter composed of rodlike molecules, exhibits
a tendency towards uniform molecular alignment. Bodies inserted into such a fluid can
disturb this orientational order, resulting in elastic stresses bound in the bulk fluid and
exerted on the body surfaces, even at equilibrium. One avenue of energy relaxation is by
a change in the immersed particle positions and orientations, leading to elastic forces and
torques that bodies exert on each other through the fluid. Soft particles offer an additional
means of relaxation, deformation, which in turn can modify particle interactions through
the LC medium. We review classical work on rigid particles and their interactions in
nematic liquid crystals and more recent work on the shapes and interactions of deformable
bodies in LCs. In addition to experimental findings, a number of common mathematical
modeling techniques, both in terms of a director field n and a second-order tensor field
Q, are introduced throughout, including derivations of body forces and torques and, of
particular use in the study of deformable media in LCs, surface tractions and moments.
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I. INTRODUCTION

The study of liquid crystals (LCs) has come a long way since 1888, when botanist Friedrich
Reinitzer first observed a peculiar behavior using cholesterol extracted from a carrot [1]. While
heating the molecular suspension, the fluid properties changed not at one critical temperature, but at
two. First observed was a change in the material properties, solids melting into a cloudy white fluid,
Fig. 1(a). At a yet higher temperature, the optical properties were found to change from cloudy
white to clear. This was very puzzling; the physics of phase change, understood as it was at the
time, would demand that material and optical (and any other) properties should change at the same
temperature. Reinitzer sent a letter to crystallographer Otto Lehmann, who could verify the “two
states of matter” more directly with a microscope fitted with polarized lenses. So began a decades-
long journey towards the development of liquid crystal physics, and the appreciation that molecular
orientational order (which may change how light passes through the medium, for instance) can be
independent of positional order and solidification.

Among the great variety of new phases uncovered during this era were so-called nematic liquid
crystals. A nematic LC is a state of soft matter in which rodlike molecules possess orientational
order but no positional order [2]. These molecules might compose the fluid entirely, showing phase
changes as a function of temperature (thermotropic LCs) or may be immersed in a solvent, showing
phase changes as a function of temperature and concentration [lyotropic LCs; Fig. 1(b)]. The
elongated rodlike structures might actually be composed of stacks of smaller molecules (chromonic
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FIG. 1. (a) As temperature increases above a “second” melting point, a liquid crystal sample loses its
orientational order and becomes optically translucent. Reproduced from Ref. [36]. (b) In a lyotropic nematic
LC, rodlike molecules are immersed in a solvent bath, and phase changes can occur due to a combination
of temperature and concentration changes. (c) The average local molecular orientation is represented as a
director field n(x, t ). Theoretical treatments must respect n �→ −n symmetry. (d) A −1/2 topological defect
corresponds to a 180◦ clockwise rotation in the director angle, on traversing a connected path around a point
in the counterclockwise direction.

LCs). Due to the temperature dependence of the stack lengths, the viscosities of chromonic LCs can
depend strongly on temperature [3]. A popular LC for liquid-crystal display applications is 5CB
[4], which is thermotropic; and a popular LC for experiments involving biological cells is disodium
cromoglycate (DSCG), which is lyotropic and chromonic [3].

Some biological fluids, such as mucus [5,6] and biofilms [7–10], also exhibit anisotropy, which in
turn can affect pathogen transport [11–16]. Biological systems composed of much larger elongated
structures, for instance colonies of motile Escherichia coli [17,18], Bacillus subtilis [19], and
Myxococcus cells [20], have shown similar phase transitions to orientational order. Inside the cell,
biofilaments like microtubules [21,22] and actin [23,24] also reveal emergent and functionally im-
portant anisotropic structure, as does chromatin, the functional form of DNA, which self-organizes
into distinct compartments where internal nematic order arises through active forcing [25–27]. Such
“active suspensions” or “active nematic” fluids have been the subject of intense study since the
early 2000s [28–30]. Medical diagnostics are one of the many potential applications on the horizon
[31–33].

The orientational order of LCs results in an anisotropic, viscoelastic stress response to defor-
mation and flow. In a uniaxial LC, the average local molecular orientation in a small control
volume is commonly represented as a director field n(x, t ), with spatial position x, time t , and
|n(x, t )| = 1 [Fig. 1(c)]. A uniform director field is an energy minimizing ground state, and small
spatial variations in the director field result in an elastic stress response to deformation. Among
the most alluring features of LCs are the almost immediate appearance of topological singularities
in a variety of settings which have associated “charges” satisfying topological conservation laws
[34,35]. Figure 1(d) shows a “−1/2” topological defect, which corresponds to a 180◦ clockwise
rotation in the director angle upon traversing a connected path around a point in the opposite
(counterclockwise) direction. The name “nematic” is due to the threadlike nature of disclination
lines connecting such topological defects (the Greek word for thread is νήμα).

Left unconstrained, a nematic LC tends to relax towards a uniform orientation. Potentially
frustrating this equilibrium configuration are energetically preferred molecular orientations at con-
fining or immersed boundaries [37]. When rigid particles are immersed in an anisotropic fluid,
the director field is generically disturbed, and elastic energy is stored in the fluid at equilibrium.
One means by which that elastic energy may be relaxed is if the immersed particle is deformable.
An equilibrium state is then achieved through a balance between the energy stored in the fluid
and the energy stored by the stretched or otherwise deformed body. Such stretching has much in
common with LC droplets, or “tactoids,” which are observed to elongate due to a competition
between bulk elastic stresses and surface tension [38]. Elastic shells, including vesicles [39–41]
and blood cells [42], introduce other physical penalties, such as shear elasticity, but reveal similarly
elongated structures. Other deformations are also possible, depending on the details of the molecular
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anchoring conditions [40]. Since body deformation reduces the energy stored in the environment,
elastic interactions between two or more immersed bodies is also expected to be affected by particle
deformability.

In this review, we will begin by recalling some of the classical features of LCs with one or
many rigid immersed bodies. Our focus will be confined to the setting where the bodies are large
when compared to the molecular scale, where continuum models for the LC are expected to be
most accurate. LC configurations due to immersed rigid particles, and the associated topological
defects and stresses, represent a base state around which energy-reducing deformations may be
better understood. We then turn to one or many deformable bodies, first by recalling classical
works on LC droplets (“tactoids”), then turning to soft deformable media, including recent work
on the stretching of soft vesicles and cells by an LC medium, nematic surfaces, and multiple body
interactions. Various mathematical modeling techniques, and terminology, are discussed throughout.
Classical models constructed on the director field, n, as well as on a second-order Q tensor are
discussed, and body forces and torques at equilibrium are derived. In addition, and of particular
need when studying the shapes of soft media in contact with a bulk LC, we include derivations
of LC surface tractions and moments associated with different LC models. We conclude with a
discussion which touches on numerical methods, active particles and stresses, and future directions
of inquiry.

A. Mathematical modeling—Free energy density

In the classical Ericksen model of a nematic liquid crystal, mechanical stresses are based on
variations of the Oseen-Frank free energy density, F , which is defined in terms of the director field
n and respects n �→ −n symmetry. This energy is given by

F (n,∇n) = K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 + K3

2
|n × (∇ × n)|2

− K24

2
∇ · [n(∇ · n) + n × (∇ × n)], (1)

where K1, K2, K3, and K24 are the Frank elastic constants (with units of force) and gradients are
defined with respect to spatial position. The first three terms penalize the continuous deformations
of splay (∇ · n), twist (n · ∇ × n), and bend |n × (∇ × n)| [2,43]. The fourth term, with constant
K24, has components already present in the first three terms, plus an additional penalty for a fourth
independent mode, biaxial splay; for a detailed discussion of this term in particular see Ref. [44].
This fourth term is often omitted, as it can be absorbed into a surface energy after integrating over
the domain. Note that these elastic constants are defined differently across the literature, so caution
is advised. These constants must also obey certain inequalities, else the system is mathematically
unstable [44–46]. However, it was noted by Selinger [44] that the arguments used by Ericksen [45]
to develop these inequalities were circular and that the standard inequalities can be violated by
certain LCs. Characteristic values of these constants are on the order of 10−6 dyn, though K2 is
commonly an order of magnitude smaller than K1 and K3 for rodlike suspensions [2].

In the “one-constant approximation,” the constants in Eq. (1) are all assumed to be equivalent to
a single constant K , and the energy density may be written as F = (K/2)∂in j∂in j = (K/2)‖∇n‖2

(here and elsewhere, matrix and tensor norms are taken to be the Frobenius norm). In two-
dimensional systems, the director field may be written in terms of an angle field θ (x) such that n =
(cos θ, sin θ, 0), the one-constant approximation then takes a yet simpler form, F = (K/2)|∇θ |2.
One natural setting in which this two-dimensional representation emerges is in smectic films, where
the LC molecules are positionally ordered along one direction (in contrast to a nematic phase, which
lacks positional order) [47–49]. A nematic LC may also be confined in the third dimension, allowing
the fluid to only deform in-plane [50,51], or be truly two dimensional and one molecule thick, as is
the case in Langmuir monolayers [52–54]. Varying the director field in a manner that changes the
energy results in fluid stresses (see Sec. II A).
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In settings where disclination (line) defects are present, the Oseen-Frank energy density in Eq. (1)
is strongly singular (the integrated energy is infinite). This issue has been accounted for by various
means, including the excision of a small region local to a line defect and replacing the energy there
with a finite core energy. A regularized core energy then accounts for the true energy, which must
involve a local “melting” of orientational order [55]. Another approach has been to use an energy
like that in Eq. (1), but with a soft penalty that allows |n| to drop below unity—a regularization
inspired by Ginzburg-Landau theory [56,57].

The most common approach, however, is to construct a theory on a higher moment of the
orientational distribution, namely the “Q tensor.” For a uniaxial LC, the Q tensor is defined as
Q = S(nn − I/3), where nn is a dyadic product, I is the identity matrix, and S is a spatially
varying scalar-order parameter that indicates the degree to which the LC is in local alignment (the
temperature-dependent Maier-Saupe order parameter) [2,58,59]. The principle eigenvector of the
symmetric, traceless matrix Q is the mean orientation, n. The free energy associated with Q is
decomposed into long-range (elastic) and short-range energies, F = FE + FS , which we introduce
in turn.

The long-range energy density, FE , is the Landau–de Gennes energy density, which combines
rotationally invariant terms that are quadratic in ∇Q. For a uniaxial system,

FE (Q,∇Q) = L1

2
Qi j,kQi j,k + L2

2
Qi j, jQik,k + L3

2
Qi j,kQik, j + L4

2
QmnQi j,mQi j,n

= L1

2
‖∇Q‖2 + L2

2
|∇ · Q|2 + L3

2
∇Q

... (∇Q)T + L4

2
Q : [∇Q : (∇Q)T ], (2)

where repeated indices imply summation, indices after commas indicate partial derivatives, and
the third-order transpose is defined such that (AT )i jk = Ak ji. The third term, with coefficient L3, is
often omitted since it can be related to the second term using Qi j,kQik, j = Qi j, jQik,k + (Qi jQik, j −
QikQi j, j ), j and integrating by parts. In addition, the single cubic term with coefficient L4 is not
exhaustive but is included in service of stability [60]. The Oseen-Frank energy, Eq. (1), is reproduced
if S is fixed, and L1 = (3K2 − K1 + K3)/(6S2), L2 = (K1 − K24)/S2, L3 = (K24 − K2)/S2, and L4 =
(K3 − K1)/(2S3). In the one-constant approximation only L1 is nonzero, and FE = (L1/2)‖∇Q‖2.
As in the Oseen-Frank theory, relations between these constants are necessary to ensure stability
[44,61,62]. An intermediate theory which takes n and S as order parameters results in the Ericksen
model [63].

The short-range energy density, FS , commonly called the bulk or thermodynamic energy density,
is due to near-field interactions among molecules, including steric and electrostatic effects. It is
commonly modeled by a truncated Landau–de Gennes expansion (an expansion in S near the
isotropic-nematic phase transition), most commonly in the form (using S2 = 3Tr(Q2)/2):

FS (Q) = A

2

(
1 − U

3

)
Qi jQji − AU

3
Qi jQjkQki + AU

4
(Qi jQji )

2

= A

2

(
1 − U

3

)
Tr(Q2) − AU

3
Tr(Q3) + AU

4
Tr(Q2)2, (3)

with A an energy scale for the phase transition and U the “nematic strength.” The scalar-order
parameter is given approximately by S ≈ 1/4 + (3/4)[1 − 8/(3U )]1/2 and the system is in the
nematic phase when U � 2.8 [64–66]. The general form of the fourth-order expansion was derived
in Ref. [67]. See Ref. [64] for a first-principles development from the distributional perspective, and
Ref. [68] and Sec. V for a survey of numerical methods for their study.

II. RIGID BODIES AND BOUNDARIES

When a boundary is introduced to a liquid crystal, whether as an outer confining boundary or as
an immersed body, surface anchoring physics tends to play an outsized role. Anchoring conditions
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FIG. 2. (a) Homeotropic (normal) anchoring on the surface of a sphere corresponds to a +1 topological
charge. Molecular orientation is indicated by color. (b) Topological balance is achieved in a dipolar LC
configuration; or (c) a (quadrupolar) “Saturn-ring” configuration. The background director field is vertical
in both cases. Reproduced from Ref. [70]. (d) A Saturn-ring defect around a large (100 µm diameter) particle.
Reproduced from Ref. [71]. (e) The LC configuration with planar anchoring on a cylindrical boundary may
be represented as two virtual −1 topological defects and one +2 defect in the interior of the cylinder. The
molecular orientation is colored to show the degree of reorientation. [(f) and (g)] A triangular particle in a
nematic LC (horizontal director in the far field) with tangential anchoring deforms the LC, as viewed (top)
under cross-polarized lenses. Reproduced from Ref. [72].

for the LC at the boundary account for a chemically or mechanically preferred relative orientation;
common situations produce homeotropic (normal) and homogeneous (planar) anchoring conditions
of a given energetic strength. The fact that boundary conditions can so completely tune the bulk
configuration (as well as susceptibility to electric and magnetic fields) underlies many of the familiar
LC commercial applications [69].

Internal boundaries (e.g., those introduced by immersed bodies) present a rich array of possibili-
ties. In addition to imposing boundary conditions on the LC, they are also mobile, responding to the
background director field and to each other. Liquid crystal configurations around rigid particles have
been explored experimentally, numerically, and analytically by a wealth of authors, with notable
reviews given by Stark [73], Muševič [74,75], and Smalyukh [76]. Even a single colloid’s interaction
with a nonuniform background director field is nontrivial, and offers a pathway towards “levitation”
and transport [77,78].

Not only does the LC field need to deform to accommodate these offending boundaries, but
topological invariance can force defects to appear elsewhere in the fluid. A standard example
is that of a sphere with strong (infinite-strength) homeotropic (normal) anchoring conditions,
corresponding to a +1 “hedgehog” topological defect, as shown in Fig. 2(a). If the director field
is uniform in the far-field, then this +1 “topological charge” must be canceled somewhere in the
bulk fluid; this can take the form of a single −1 point defect [the dipolar configuration, Fig. 2(b)]
or a quadrupolar “Saturn-ring” defect, appearing as two −1/2 defects when viewed in a cross
section [Fig. 2(c)] [70,79–81]. Figure 2(d) shows a closer view of a Saturn-ring defect around a
large (100 µm) particle [71]; as in Fig. 2(c), the background director field is vertical (in the direction
of the double arrow). More exotic possibilities arise in cholesteric LCs [82].

Tangential (homogeneous) anchoring may instead introduce “boojum” −1 defects at the particle
surface [83]. The LC director field external to a cylinder may be represented as two virtual −1
topological defects and one +2 defect in the interior of the cylinder [see Fig. 2(e)] [84]. This
quadrupolar structure is generic for widely separated particles with planar anchoring conditions,
though short-range interactions may become dominant due to bifurcations in topological defect po-
sitioning on the particle surface [85], resulting in transitions from repulsive to attractive interactions
of bodies. Particle shape naturally affects the equilibrium LC configuration as well. Figures 2(f)
and 2(g) show the LC distortion around a triangular particle with tangential anchoring conditions,
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viewed through cross-polarized lenses [72]. The topological defects tend to position themselves
at or near sharp corners on such a body, reminiscent of the Kutta condition in classical potential
flow [84].

Hedgehog, Saturn-ring, and dipolar configurations are axisymmetric and twist free. But the
energy-minimizing LC configuration can include such a twist (similar to a swirl flow in fluid
mechanics) for a sufficiently small twist elastic constant relative to the bend and splay constants.
The criterion for twist relaxation to appear in the energy-minimizing configuration around a sphere,
K2/K1 < 2.32(1 − K3/K1), is known as the Williams condition [86–88].

A. Equilibrium and anchoring boundary conditions

Confining or immersed boundaries introduce an additional energetic penalty to deviations from
a preferred orientation, which may be spatially varying along a surface. This energetic penalty is
typically described by a surface energy density (energy per unit area), Fs. The total system energy,
E , combines the bulk LC elasticity with this surface “anchoring” energy,

E =
∫

�

F dV +
∫

∂�

Fs dA, (4)

where � denotes the fluid domain and ∂� its boundary (including internal body surfaces), dV and
dA are infinitesimal volume and surface area elements, and F is modeled either by Eq. (1) or Eqs. (2)
and (3). The director field at equilibrium minimizes the total system energy above.

In the theory based on the director field n, first carried out by Ericksen [89], the surface
energy can be written as Fs(n; ν, τ ), where ν is the unit normal vector pointing into the LC and
τ is a special unit tangent vector of the surface. As an example, in the Rapini-Papoular model
[90,91], the anchoring energy is assumed to be locally quadratic in the deviation away from a
preferred orientation n0 = (n0 · ν)ν + (n0 · τ)τ, while respecting the n �→ −n symmetry of the
rodlike molecules:

Fs = W

2
(1 − (n · n0)2), (5)

where W is the anchoring strength (with units of energy per unit area). Degenerate planar anchoring,
in which the molecules may rotate in the tangent plane of the surface with no energetic cost, can
similarly be imposed through an energy density

Fs = W

2
(n · ν)2. (6)

Changes in the bulk LC energy due to variations in the n field (denoted by δn) are measured by
the functional derivative of E :

δE =
∫

�

∂F
∂n

· δn + ∂F
∂∇n

: ∇(δn) − λn · δn dV +
∫

∂�

∂Fs

∂n
· δn − μn · δn dA, (7)

where λ and μ are Lagrange multipliers imposing |n| = 1 [92]. For two matrices A and B, we define
A : B = Tr(AT B) = Ai jBi j , the Frobenius inner product. Integrating by parts yields

δE = −
∫

�

(h + λn) · δn dV −
∫

∂�

(hs + μn) · δn dA, (8)

where we have introduced the bulk and surface molecular fields

h = ∇ · � − ∂F
∂n

and hs = ν · � − ∂Fs

∂n
, (9a,b)

respectively, with � = ∂F/∂∇n the Ericksen torque stress tensor. At an energy-minimizing equi-
librium, δE = 0, in the absence of any external field we must have h = −λn. Hence, the component
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of h that is orthogonal to n is everywhere zero, i.e.,

[h]⊥ := P(n) · h = 0 in �, (10)

for the projection operator P(n) = I − nn. In the special case of the one-constant approximation,
where F = (K/2)‖∇n‖2, we have � = K∇n and h = K∇2n, and in two dimensions we simply
have that the director angle field is harmonic, ∇2θ = 0. See Appendix A 1 and Refs. [2,46,93] for
more complete discussions.

Natural boundary conditions are also apparent. Since we must have hs = −μn at equilibrium,
the component of hs that is orthogonal to n must also vanish, i.e.,

[hs]
⊥ = 0 on ∂�. (11)

For instance, using the Rapini-Papoular model in Eq. (5) with the one-constant approximation,
we find Robin boundary conditions for the equilibrium director field, with hs = K (ν · ∇n) +
W (n · n0)n0. Furthermore, in two dimensions, the boundary condition reduces to K (ν · ∇θ ) =
(W/2) sin[2(θ − θ0)], where θ0 is the preferred director angle, i.e., n0 = (cos θ0, sin θ0, 0), which
may be spatially varying.

The quantity K/W is called the extrapolation length, it is the distance into the interior of an
infinite, flat boundary at which the strong (infinite) anchoring conditions could instead be applied
with the same resulting director field everywhere [2]. Surface curvature makes this concept only
approximate, as discussed in Ref. [84]. In addition, given a length scale a (perhaps associated with
an immersed body), a dimensionless anchoring strength, w = aW/K , indicates the extent to which
the boundary condition is dictated by the bulk energy (Neumann condition) or the surface energy
(Dirichlet condition).

Although dynamics are outside the scope of this review, Ericksen-Leslie theory accounts for
viscous relaxation of the director field, both through molecular reorientation and through a bulk
flow [94]. The rotational viscosity, γ , sets a timescale for relaxation by the evolution of the director
field. If the rotational viscosity is small, director rotation dominates other mechanisms of energy
relaxation (in particular, flow), and the director field dynamics are governed approximately by
∂n/∂t = [h]⊥/γ , also known as Ginzburg-Landau relaxation. In two dimensions with the one-
constant approximation, this results in a heat equation for the angle field, ∂θ/∂t = (K/γ )∇2θ .

A similar calculation is carried out when instead using the Landau–de Gennes theory based on
the Q tensor. Here the functional derivative of of E is

δE =
∫

�

∂F
∂Q

: δQ + ∂F
∂∇Q

... ∇(δQ) − � : δQ dV +
∫

∂�

∂Fs

∂Q
: δQ − μ : δQ dA, (12)

with �i j = λδi j + λkεi jk and µi j = μδi j + μkεi jk , where δi j and εi jk are the components of the
Kronecker delta and Levi-Civita tensor, respectively, and λ, λk , μ, and μk are Lagrange multipliers
that impose the symmetries Tr(Q) = 0 and QT = Q. Integrating by parts yields

δE = −
∫

�

(H + �) : δQ dV −
∫

∂�

(Hs + μ) : δQ dA, (13)

where we have introduced the bulk and surface molecular fields (which are now second-order
tensors)

H = ∇ · � − ∂F
∂Q

and Hs = ν · � − ∂Fs

∂Q
, (14a,b)

respectively, with � = ∂F/∂∇Q now a third-order tensor. Absent any external fields, energy
minimization is achieved when H = −�, and the analog of Eq. (10) is that the symmetric and
traceless (ST) part of the molecular field vanishes at equilibrium,

[H]ST := 1
2 (H + HT ) − 1

3 Tr(H)I = 0 in �. (15)
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The natural boundary conditions in this setting are given by Hs = −μ; that is, the analog to Eq. (11)
is

[Hs]
ST = 0 on ∂�, (16)

see Appendix A 1 and Refs. [95,96] for further details.
Surface anchoring energies are carried forth from those used in n-field theories. The analog of

the Rapini-Papoular energy is a surface energy density

Fs = W

2
Tr[(Q − Q0)2], (17)

where W is the anchoring strength and Q0 = S0(n0n0 − I/3), with the preferred direction n0 and
the corresponding ordering S0 on the surface [97]. For degenerate planar anchoring, instead the
Fournier-Galatola energy is commonly used,

Fs = W

2
Tr[(Q̄ − Q̄⊥)2], (18)

where Q̄ = Q + (S/3)I and Q̄⊥ = P(ν) · Q̄ · P(ν), with P(ν) = I − νν the surface projection op-
erator [98]. For example, in the one-constant approximation, where F = (L1/2)‖∇Q‖2 + FS (Q)
with FS given in Eq. (3), we have � = L1∇Q and H = L1∇2Q − ∂FS/∂Q. Additionally, with the
Rapini-Papoular surface energy in Eq. (17), we have Hs = L1ν · ∇Q − W (Q − Q0).

Models of Q field evolution include Doi-Onsager molecular theories [58,64,99,100] and the
Beris-Edwards model [65] (which has been shown to be equivalent to the Ericksen-Leslie theory
in a particular limit [100,101]). As before, in the simplest setting of a small rotational viscosity,
which provides a separation of timescales between director-field relaxation and fluid flow, the Q
tensor evolves according to the Ginzburg-Landau relaxation, ∂Q/∂t = [H]ST /γ .

B. Body forces, torques, and traction

In order to predict the force and torque (as well as the pointwise tractions and moments) of the LC
on a confining or immersed boundary, we must return to the equations governing the equilibrium LC
configuration. In the presentation of Sec. II A, natural boundary conditions emerged simply when
considering variations in n or Q. We neglected there, however, another generic means of elastic
energy relaxation: spatial repositioning of molecules.

Starting again with the theory constructed on the director field n, a more complete variational
principle involves varying both the LC’s material position, δx, and the director field, δn. By the
principle of virtual work, we have

δE = −
∫

�

F · δx + G · 
n dV −
∫

∂�

f · δx + g · 
n dA, (19)

where we have introduced the Eulerian variation 
n = δn + δx · ∇n, force (per unit volume)
acting on the bulk F, force (per unit area) acting on the boundary f , generalized force (per unit
volume) acting on the bulk G, and generalized force (per unit area) acting on the boundary g. These
generalized forces are related to the couple vectors acting on the bulk and the boundary according
to M = n × G and m = n × g, respectively [2,93].

For bulk and surface energy densities with functional dependence F (n,∇n) and Fs(n; ν, τ ),
calculus of variations leads to expressions for these forces and couples (see Appendix A 1 and
Refs. [2,46,93,102]), that is,

F = ∇ · T, f = ν · T + ∇s · Ts, M = n × h, m = n × hs, (20a–d)

using the surface divergence ∇s = P(ν) · ∇; bulk and surface molecular fields, h and hs, defined in
Eq. (9); and the bulk and surface stress tensors,

T = −pI − � · ∇nT and Ts = FsP(ν) − P(ν) · ∂Fs

∂ν
ν + τ

∂Fs

∂τ
· P(τ ), (21a,b)
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where p is an unknown pressure and � = ∂F/∂∇n is the Ericksen torque stress tensor. The tensor
T is called the Ericksen stress tensor and describes the elastic stresses inside the LC. The tensor Ts

provides an additional source of stress on any confining or immersed boundaries. Such additional
sources of stress arise when incorporating other functional dependencies in the energy densities F
and Fs. For example, including a spatial dependence in the surface energy (e.g., a spatially varying
anchoring strength, W ) leads to an additional Marangoni-like stress f = −∂Fs/∂x (see Ref. [102],
for example).

In the absence of any external fields, the equilibrium equations, Eq. (10) subject to Eq. (11),
require that the moments in Eqs. (20c) and (20d) vanish, i.e., M = m = 0. Additionally, imposing
F = 0 in Eq. (20a) yields the pressure up to an additive constant, p = −F . This leaves the surface
force equation, Eq. (20b), which provides an expression for the traction acting on a boundary. As an
example, � = K∇n in the one-constant approximation, and so

T = K

2
‖∇n‖2I − K∇n · ∇nT , (22)

using the Frobenius norm. Furthermore, the Rapini-Papoular model in Eq. (5) yields the additional
surface stress,

Ts = W

2
(1 − (n · n0)2)P(ν) + W (n · n0)P(ν) · (nn0 − n0n) · P(τ), (23)

for the relaxed direction n0 = (n0 · τ )τ + (n0 · ν)ν. As W → ∞, strong (infinite) anchoring is
recovered from Eq. (11), i.e., n ∼ n0 on ∂D, and the additional stress takes the form Ts ∼
P(ν) · [(ν · �)n0 − n0(ν · �)] · P(τ ). In two dimensions, these tensors can be written in terms of
a director angle, θ , and its preferred boundary value, θ0:

T = K

2
|∇θ |2I − K∇θ∇θ and Ts = W

2
sin2(θ − θ0)ν⊥ν⊥ + W

2
sin [2(θ − θ0)]ν⊥ν, (24a,b)

where ν⊥ is ν rotated by 90◦ counterclockwise. Here the strong anchoring limit, W → ∞, yields
the boundary condition θ ∼ θ0 on ∂D and the surface stress tensor T s ∼ K (ν · ∇θ )ν⊥ν.

The surface tractions on an immersed cylinder in a two-dimensional LC are shown in Fig. 3(a),
where finite-strength (w = aW/K = 1, with a the cylinder radius) tangential anchoring conditions
have been imposed, and the background director field is horizontal. The director and traction fields
are found analytically using methods from complex variables, as briefly discussed in Sec. III. In this
case, the LC configuration is given exactly by a single +2 topological defect at the cylinder center,
and two −1 defects interior to the surface by a distance that depends on the anchoring strength [84].
Looking ahead to the discussion on deformable bodies, the energy stored in LC splay near the fore
and aft points on the body would be reduced if the body were to elongate in those directions. The LC
bend above and below the cylinder would also be reduced by an increase in the body aspect ratio,
assuming the body area is unchanged, resulting in the inward-pointing tractions on those parts of the
body surface. For both reasons, we should expect body elongation with these anchoring boundary
conditions, a theoretical result that we will see played out in numerous experimental settings below.

Figure 3(b) shows the traction on a Janus particle (normal anchoring conditions on the left half,
tangential anchoring on the right half), again with anchoring strength w = 1. There is no net force
on the cylinder in equilibrium, but here again the expected deformations of a soft particle can be
predicted—deformations should inherit the lack of left-right symmetry apparent in the traction field.
Finally, Figs. 3(c) and 3(d) show two examples with homeotropic (normal) anchoring conditions
with large, but finite, anchoring strength (w = 100). Their +1 topological charges are balanced by
defects in the bulk LC, in two-dimensional versions of the dipolar configuration [e.g., Fig. 2(b)],
and in Saturn-ring configuration [e.g., Fig. 2(c)]. As we will see again shortly, even though both
experience zero net force at equilibrium, deformations in the direction of the defects appear as
natural means of reducing stored LC bulk elastic energy and presenting the surface to the LC in
such a way as to more immediately satisfy the preferred anchoring conditions.
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FIG. 3. Surface traction fields on a cylinder of radius a with: (a) tangential anchoring conditions and
anchoring strength w = aW/K = 1; (b) Janus boundary conditions (normal anchoring on the left half, tangen-
tial anchoring on the right half) and again w = aW/K = 1; (c) homeotropic (normal) anchoring conditions
with an exterior −1 topological defect and w = aW/K = 100, a two-dimensional version of the dipole
configuration in Fig. 2(b); (d) homeotropic anchoring conditions with two exterior −1/2 topological defects
and w = aW/K = 100, a two-dimensional version of the Saturn-ring configuration in Fig. 2(c).

Similar stress tensors may be derived for theories based on the Q tensor; see Appendix A 2 and
Refs. [40,95], for example. For the energy densities of the form F (Q,∇Q) and Fs(Q; ν, τ ), the
body and surface forces, F and f , are again given by Eqs. (20a) and (20b), with the surface stress
tensor, T s, given by Eq. (21b) and bulk stress tensor now defined as

T = −pI − � : (∇Q)T , (25)

for � = ∂F/∂∇Q. In the absence of external forcing, the pressure here is again given by the
energy density up to an additive constant, p = −F . For instance, � = L1∇Q in the one-constant
approximation, which yields

T = L1

2
‖∇Q‖2I − L1∇Q : (∇Q)T , (26)

again using the tensor Frobenius norm. Furthermore, the ith component of the couple vectors acting
on the bulk and the boundary are

Mi = εi jk (Q · H − H · Q) jk and mi = εi jk (Q · Hs − Hs · Q) jk, (27a,b)

respectively, where repeated indices indicate summation and H and Hs are the molecular field
tensors defined in Eq. (14). Note that both these couple vectors vanish at equilibrium with no
external body or surface moments, Sec. II A.

III. MULTIPLE RIGID BODIES

When multiple colloidal bodies are introduced to an elastic environment, their quasistatic in-
teractions are dictated by the elastic energy stored in the medium. Just as multiple droplets on a
soft substrate move to reduce an elastic energy [103–106] and floating particles move to reduce
the interfacial surface energy [107–109], so, too, can particles immersed in an LC move to reduce
the bulk elastic energy. Complex near-body interactions may also emerge due to the positional
rearrangement of essential topological defects [70,110–112]. Spherical colloids with the dipolar LC
structure of Fig. 2(b) can align in the direction of the background director field [Fig. 4(a)] or if in the
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FIG. 4. [(a) and (b)] The dipolar defect configuration of Fig. 2(b) can result in director-aligned multicolloid
chaining, while the Saturn-ring (quadrupolar) configuration of Fig. 2(c) leads to side-by-side chaining. The
background director field is indicated by a double arrow. Reproduced from Ref. [70]. [(c) and (d)] Saturn-ring
defects around two spheres of diameter 19 µm merge into an “entangled hyperbolic defect,” in experiments and
simulations. Reproduced from Ref. [124]. (e) Interactions can depend on particle orientation; two triangular
particles in anti-alignment, in a vertical background director field, attract. Reproduced from Ref. [72]. (f) Two
elongated particles settle into an energy-minimizing lateral configuration; the field is colored by the scalar order
parameter S, showing greater disorder (melting and defects) close to the bodies. Reproduced from Ref. [126].
(g) Three elongated particles, with a complex “defect” (isosurfaces of S = 0.25 are shown). Reproduced from
Ref. [126]. (h) Multiple colloids with dipolar defects exhibit “antiferromagnetic” defect placement (alternating
orientation among neighbors) in three dimensions; associated out-of-plane displacements are visible with a
side-view (inset). Reproduced from Ref. [127].

quadrupolar, Saturn-ring state, align in kinked chains nearly orthogonal to the background director
field [Fig. 4(b)] [70]. Spherical colloids with tangential anchoring, meanwhile, are known to form
kinked chains aligned at 30◦ to the LC-preferred alignment axis [85,113–117] or more complex
crystal lattice structures [118,119].

The defects produced by interacting colloids can be deformed more substantially [59,120–
122], leading to beautiful, entangled defect loops [123]. Figures 4(c) and 4(d) show two spherical
colloids whose Saturn-ring defects have merged into a single “entangled hyperbolic defect” [124]
(or “figure of theta defect” [50]); see also Refs. [122,125], and the review by Tkalec and Muševič
[50].

Colloid interactions can also be tuned by both the particle shape and orientation. Lapointe et al.
[72] examined regular polygons immersed in a nematic LC [shown in Figs. 2(f) and 2(g)], and found
that attraction or repulsion can be set by the relative particle orientations, as shown in Fig. 4(e). Red
arrows indicate the direction of forcing on each body. The interaction of elongated bodies in a
LC is strongly influenced not only by their anchoring boundary conditions but also by their aspect
ratio [128,129]. Elongated bodies can also lead to a number of different chain configurations [130].
Figure 4(f) shows two such particles, which settle into an energy-minimizing lateral configuration
relative to the background director field; Fig. 4(g) shows a similar result for three particles, with
a complex “defect” shown (isosurfaces of S = 0.25) [126]. A broader review of colloidal chains
may be found in Ref. [131]. More recent work has seen more intricate patterns, for instance fractal
colloidal self-assembly [132]. Confining boundaries can add an extra layer of complexity to these
interactions [133,134].

Ongoing work on the interactions of rigid particles include examination of different LC phases,
like chiral magnetic and cholesteric LCs [135], and three-dimensional self-assembly which, like
chaining, is governed by topological defect positioning [127]. Recent observed phenomena in-
clude “antiferromagnetic” ordering of spheres with alternating dipolar defect structure in three
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dimensions, shown in Fig. 4(h). We direct the interested reader to a more substantial overview
of colloidal interactions in LCs by Smalyukh [76].

A. Multipole expansion and complex variables techniques

Particle interactions through the LC medium are in general highly nonlinear and depend on the
intricate configurations of topological defects produced by the presence of each body in the fluid.
Important mathematical insight, however, is offered when it can be assumed that the director field
does not substantially deviate from uniformity (even with bodies present) and under the one-constant
approximation. Writing n = ẑ + n′, where ẑ is the unit vector in the direction of the background field
and n′ is a small perturbation, which is perpendicular to ẑ since 1 = |n| ∼ 1 + n′ · ẑ, the equilibrium
field must be harmonic, P(n) · ∇2n ∼ ∇2n′ = 0 (see Sec. II A). The disturbance field due to a
particle may then be understood through a classical multipole expansion, just as in electrostatics
or hydrodynamics, with coefficients, a�m, determined by the anchoring boundary conditions:

n′ =
∞∑

�=0

�∑
m=−�

a�m|x|−�−1Y m
� (η, ξ ), (28)

where Y m
� is the spherical harmonic function of degree � and order m and (η, ξ ) are angular spherical

coordinates. As a simple example, for a spherical particle of radius a, on which nondegenerate planar
anchoring to a preferred orientation τ is assumed, the disturbance caused by the particle is n′ =
(1 + 1/w)−1(a/|x|)τ, with w = aW/K the dimensionless anchoring strength. This disturbance, a
monopole, results in a net torque on the body (and an equal and opposite torque on the surrounding
LC). Normal or tangential anchoring conditions on torque-free particles are known to give rise to
dipolar or quadrupolar far-field interactions, respectively [75,136–139], with some examples having
already been discussed above. More complex surface chemistry can result in yet higher spatial
moments [140].

Particle interactions may, in turn, be approximated through a standard method of reflections, lead-
ing to the prediction of multipolar interactions in three dimensions [76,116,141–144]. Theoretical
far-field predictions of interparticle forces, for example those of Ref. [34], have been found to very
accurately describe experimental measurements [145]. The one-constant approximation was also
found to be accurate in the context of particle interactions in Ref. [146] if the elastic constants are
comparable. For systems with much larger elastic penalties to splaying than bending, however, the
angle between a chain of quadrupolar particles and the bulk director field was found to be close to
0, in contrast to the typically observed 30◦. Furthermore, large differences in elastic constants were
found to break the isotropy of interacting asymmetric particles, leading to the possible formation of
zones of repulsion, which are not observed under the one-constant approximation.

In two dimensions, recall that the director field may be represented by an angle field θ (x) such
that n = (cos θ, sin θ, 0), which at equilibrium is harmonic in the one-constant approximation,
∇2θ = 0 (see Sec. II A). Numerous methods of finding solutions immediately come forward, each
impeded only by potentially complex boundary geometries, generically nonlinear boundary con-
ditions, and topological constraints. An elegant approach to solving these problems uses complex
variables and techniques, resulting in representations for generic particle shapes that are exact for the
limit of strong anchoring boundary conditions, and asymptotically valid for large, finite anchoring
strengths [84,148,149]. Figure 5(a) shows the equilibrium director lines for a two-dimensional LC
field, which is uniform at infinity, with finite-strength tangential anchoring conditions on the surface
of a triangular inclusion, computed with these techniques. For large but finite anchoring strengths,
Dirichlet conditions can be assumed on a virtual surface just inside the boundary, which leaves both
the fluid equations and the boundary conditions invariant under a conformal mapping.

For multiple bodies, conformal mapping techniques for multiply connected domains established
by Crowdy and collaborators [150] unlock exact and approximate interaction potentials between
particles in LCs. This complex variable approach allows for the analytical computation of particle
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(b)(a)

FIG. 5. (a) Director lines around an immersed triangular body in two dimensions; Dirichlet boundary
conditions may be assigned on a virtual surface (dashed lines) just interior to the actual body surface, a critical
step when using conformal mapping techniques with a finite anchoring strength. Reproduced from Ref. [84].
(b) Two triangular particles attract or repel depending on their relative orientations, and positioning relative to
the background director field (horizontal in all cases shown). There is no net torque acting on each triangle,
and the arrows indicate the direction of force. Reproduced from Ref. [147].

interactions at arbitrary positions and orientations, not just in the far field. Figure 5(c) shows the
director fields so produced, along with net forces indicated by red arrows, for two triangular particles
positioned and oriented in different configurations relative to the (horizontal) background director
field. Each triangle is in a local rotational equilibrium, with no net torque acting on it. Particle
repulsion and attraction, as in the experiment shown in Fig. 4(e), were reproduced analytically
[147].

IV. DEFORMABLE BODIES

The elastic energy stored in an LC with immersed rigid particles can be reduced by particle
translation and rotation, giving rise to the nontrivial interactions of colloids discussed above. An
additional means of energetic relaxation arises when those particles, or any confining boundaries,
are deformable. In this case, a competition emerges between the effects of the bulk elasticity and
body elasticity, which selects energy minimizing boundary shapes. Recent efforts have included
LC-mediated deformations of vesicles and more complex cells, as we will discuss. But we begin
this section by reviewing a related system, finite LC domains immersed in an isotropic phase, known
as tactoids.

A. Tactoids

Although droplets are not often considered bodies, finite LC domains immersed in an isotropic
phase (“tactoids”) reveal some of the most important features of fluid-structure interactions in LCs.
In particular, tactoids are not spherical. Instead, they tend to deform so as to reduce the degree of
LC deformation, while satisfying the anchoring conditions, as shown in Fig. 6(a). The tactoids are
viewed through cross-polarizing lenses, and the shading corresponds to a dipolar LC configuration
inside each droplet [151]. As a thought experiment, a tactoid of fixed volume, elongated to a needle
shape, places no elastic burden on the LC, as modeled for instance by Eq. (1). Resisting this
elongation, however, is a surface tension between the isotropic and nematic phases, and ultimately
shapes of finite aspect ratio are observed. This elongation may also be understood by considering
the surface tractions on a rigid body with tangential anchoring conditions, as shown in Fig. 3(a).

Since tactoid shape selection is due to the competition between the bulk elastic energy and the
surface tension, the degree of tactoid elongation depends on its size, described for various limits
by Prinsen and van der Schoot [38]. Their tidy energy scaling argument for elongated dipolar
tactoids is as follows. Consider a prolate ellipsoidal tactoid with semimajor and semiminor axis
lengths R and r, respectively, and volume V = (4π/3)r2R. The free energy density is estimated by
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FIG. 6. Droplets of LC phases in isotropic environments, or tactoids, are elongated due to a competition
between bulk LC elasticity and surface tension. (a) Dipolar LC configurations inside the tactoid are visible
under cross-polarizers. Reproduced from Ref. [151]. (b) Larger droplets remain closer to spherical, and smaller
droplets are more elongated, as reproduced in numerical simulations. Reproduced from Ref. [154]. [(c) and (d)]
A population of tactoids shows a continuum of configurations, from bipolar to homogeneous (constant) director
configurations. Reproduced from Ref. [155]. (e) A topological transformation in the interior of a tactoid, as two
defects merge into one, by increasing the splay elastic constant, K1. Reproduced from Ref. [156]. (f) Reversible
dipolar to radial transformations of the LC configuration can be triggered with the addition of surfactants.
Reproduced from Ref. [157]. (g) More exotic LC droplet configurations are possible using chiral (cholesteric)
LCs. Reproduced from Ref. [158]. (h) Negative tactoids (isotropic droplets inside nematic LCs) show localized
deformations near topological defects. The background director field is that of a +1/2 defect (left) or a −1/2
defect (right). Reproduced from Ref. [159].

assuming strong tangential surface anchoring. Noting that ∇ · n is on the order of 1/R and splay
deformation is far larger than bending and twisting for elongated configurations, the Oseen-Frank
energy density in Eq. (1) is approximated as F ≈ (K1/2)(∇ · n)2 ∼ K1/R2. With the volume of
the droplet V above, this suggests that the total bulk LC elastic energy scales like E ∼ K1R(r/R)2.
Meanwhile, the contribution of the surface tension energy scales roughly as γ Rr, with γ the surface
tension. Balancing these two energies predicts the aspect ratio for a given volume,

R

r
∼

(
K1

γ

)3/5

V −1/5. (29)

Hence, smaller droplets are deformed more substantially, which will be seen again later with soft
elastic shells. This may appear counterintuitive since droplets of isotropic media (inside other
isotropic media) tend to be nearly spherical due to the growing importance of surface tension as
the droplet size is reduced. More generally, tactoid elongation and shapes depend on the relative
sizes of the Frank elastic constants [152]. Volume reduction, possible for some polymeric droplets,
also leads to elongation and for small twist constants may also trigger a twist relaxation of the
Williams type [86,153].

An example of a large simulated LC droplet, which is only moderately stretched at equilibrium, is
shown in Fig. 6(b) [154]. Smaller, and hence more elongated, tactoids are shown from experiments
in Figs. 6(c) and 6(d). This population of tactoids actually shows a continuum of possible LC
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configurations across a narrow region of droplet lengths, from bipolar configurations with “boojum”
defects at the poles, to homogeneous (uniform) configurations [155].

Tactoid geometries can be studied more directly by considering local force balance. The surface
energy density, Fs, defined in Sec. II A introduces an effective surface tension, which may or may
not depend on surface anchoring conditions. For instance, replacing Fs in Eq. (4) by a constant
surface energy, Fs = γ , a familiar surface tension arises in Eq. (20),

∇s · Ts = ∇s · [γ P(ν)] = 2γ κν, (30)

with mean surface curvature κ = −∇s · ν/2, where ∇s = P(ν) · ∇ is the surface del operator. If γ

varies along the surface, then an additional tangential contribution, the Marangoni stress, appears
as well. Volume-preserving deformations require global information; this constraint informs the
selection of the pressure.

Beyond the aspect ratios and shapes of tactoids, their internal LC configurations offer additional
intrigue. By varying the Frank elastic constants, the associated deformations are penalized differ-
ently, which can have striking consequences. Figure 6(e) shows a topological transformation inside
a tactoid, caused by increasing the splay elastic constant, K1 [156]. As splay becomes more costly,
the dipolar configuration with two +1/2 defects (white dots) is abandoned in favor of a state with
pure bend around a single central +1 defect.

Rearrangement of LC configurations can be more directly manipulated as well, which has put
them in the spotlight for potential use in the design of functional materials [160,161]. For example,
surfactants like sodium dodecyl sulfate (SDS) can be used to tune the internal LC configuration
by changing the orientation of the LC molecules at the interface [157,162–164]. Figure 6(f) shows
simulated droplets in a dipolar configuration (left), which can be changed to a radial configuration
(right) on the addition of SDS. Bipolar to toroidal transitions are also possible [165]. Even more
exotic chiral droplet shapes have been observed using cholesteric liquid crystals, an example of
which is shown in Fig. 6(g) [158,164,166,167].

The inverted case, isotropic droplets immersed in a nematic phase (i.e., “negative tactoids”), show
the formation of cusps as the droplet is locally pulled into the direction of topological defects, as
shown in Fig. 6(h) [159]. Such local morphology changes can act to reduce the large elastic energy,
associated with such defects, stored in the bulk LC [154]. These local deformations have also been
observed in the gravitational rise of a Newtonian bubble in a nematic LC [168] and in entirely
different settings, including GUVs in electric fields [169]. This general principle, predictable by
considering the surface tractions on similarly shaped rigid particles (see Sec. II B) will be seen
again shortly in other contexts.

Other areas of investigation on tactoid shape and structure include the role of confinement [88],
finite constituent size [170], defect positioning [155], as well as their relevance in other areas
of materials science [171–173], biological probing, and sensing applications [174–176] and in
active biological machinery like the mitotic spindle [21,22,177–181]. The reader is also directed to
Ref. [46], which includes a full chapter on mathematical modeling of droplets in LCs, including
jump conditions that appear when handling surface cusps, special solutions, and the shapes of
floating drops. Rigorous mathematical analysis in this area remains a topic of modern research
[182].

B. Mathematical modeling—Surface elasticity

When a deformable body is immersed in a liquid crystal, its deformation modes depend on
its material properties. To model the surface deformations caused by the LC tractions discussed
in Sec. II B, a kinematic description of the deformation is needed. Looking ahead to the following
sections, we first recall some of the standard modeling techniques used to study elastic deformations
of an isotropic membrane; for further details see Refs. [183,184].

With X representing a point on an undisturbed reference surface, we denote by x(X ) its current
position (after deformation). Elastic energy depends on the surface displacement gradient, defined
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by

F = P(ν) · ∂x
∂X

· P(N), (31)

where N and ν are the outward-pointing normals in the reference and current configurations, respec-
tively, and P(ν) = I − νν is a projection operator, as in Sec. II A. The surface (left) Cauchy-Green
strain tensor, F · FT , then has eigenvalues λ2

1, λ2
2, and 0, with corresponding eigenvectors d1, d2,

and ν [184,185]. Here λ1 and λ2 are the principle extension ratios measured along the deformation
directions d1 and d2 in the tangent plane of the deformed surface. Following Skalak et al. [186], we
define the surface strain invariants as I1 := λ2

1 + λ2
2 − 2 and I2 := λ2

1λ
2
2 − 1.

Stretching the membrane (i.e., λi �= 1) results in internal membrane stresses, which can be written
in terms of an in-plane Cauchy stress tensor T. At equilibrium, these stresses must balance any
external tractions acting on the surface, f , according to f = ∇s · T, where ∇s = P(ν) · ∇ is the
surface del operator—if this traction is due to an ambient LC, then f is given by (20b). For example,
for small strains (|λ2

i − 1| 
 1), the internal membrane stresses are given by two-dimensional linear
elasticity (i.e., Hooke’s law), with stress tensor

T = 2Gs

1 − νs
[(1 − νs)E + νsTr(E) P(N)], (32)

for the surface Green-Lagrange strain tensor E = (1/2)[FT · F − P(N)] ≈ P(N) · (D + DT ) · P(N)
and D = ∂x/∂X − I. Here Gs and νs are the two-dimensional shear modulus and Poisson’s ratio,
respectively.

For larger strains, the Hookean approximation does not capture the nonlinear response of the
material. A wide range of nonlinear elastic phenomena may instead be captured using a hyperelastic
or Green material model. In an isotropic hyperelastic material, the relationship between strain and
stress is governed by a material-dependent strain energy density, W (I1, I2), written in terms of the
strain invariants above. The in-plane Cauchy stress tensor is then given by

T = 1

J
F · ∂W

∂F
= 2

J

[
∂W
∂I1

F · FT + J2 ∂W
∂I2

P(ν)

]
, (33)

where J2 = I2 + 1 = det(F · FT + NN), see Ref. [185]. If the surface is incompressible (area
preserving), then a pressure term −pP(ν) is added to T above, where p acts as a Lagrange multiplier
to enforce J = 1.

As a common example, the strain energy density for a two-dimensional neo-Hookean surface
can be written as

W = Gs

2

(
I1 + 1

I2 + 1
− 1

)
, (34)

and then the Cauchy stress, from Eq. (33), is given by

T = Gs

J

[
F · FT − 1

J2
P(ν)

]
. (35)

This strain energy is derived from the isotropic volume-incompressible neo-Hookean model for
three-dimensional rubberlike materials and assumes the membrane has a very small uniform
thickness [183,187]. Here the area dilatation is unrestricted, but it is compensated by a thinning
of the membrane (i.e., the material volume is preserved). In practice, this model is effective at
modeling a wide-range of materials (at least for small strains). However, in general, it does not
exhibit the material response seen at larger strains; for example, the weak resistance to shear and
strong resistance to area dilation seen in red blood cells [188].
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FIG. 7. Deformable bodies in nematic LCs stretch to relieve the fluid’s stored elastic energy. (a) A giant
unilamellar vesicle (GUV) is spherical when the surrounding (and internal) LC is in the isotropic phase. The
LC quenches into the nematic phase below a critical temperature, and the GUV stretches along the director
axis. The spherical vesicle has diameter 10 μm, and the directors are schematic. Reproduced from Ref. [39].
(b) When deformed by the LC, larger GUVs remained nearly spherical, while smaller GUVs were highly
elongated, but with a substantial volume decrease suggesting a possible rupture and fluid efflux. Reproduced
from Ref. [39]. (c) A 3D reconstruction of Z-stack images obtained through confocal microscopy of a red
blood cell, stretched by the interaction with a surrounding nematic LC. Reproduced from Ref. [42]. (d) A stiff
biconcave disk (discocyte) with tangential anchoring conditions rotates until its line of symmetry is orthogonal
to the background director field in simulations; two defects appear at the fore and aft points on the surface
(isocontours of scalar parameter S = 0.4 are shown in blue). Reproduced from Ref. [42]. (e) A softer cell is
stretched in direction of the background field, and perpendicular to its initial line of symmetry, extending the
simulation in (d). Reproduced from Ref. [42].

In the Skalak model of red blood cells [186,189], the deformation away from an initial biconcave
configuration is penalized by the strain energy density,

W = ES

4

(
I2
1 + 2I1 − 2I2

) + ED

8
I2
2 , (36)

where ES and ED are the (constant) elastic shear and area dilation moduli, respectively, which
have units of energy per area (see also Refs. [187,188,190–192]). Common values are ES =
4.2 × 10−6 N/m and ED = 10−4 N/m [189,190,193]. From Eq. (33), we have

T = ES

2J
(I1 + 1)F · FT + J

2
(EDI2 − ES )P(ν). (37)

For a review of other hyperelastic energies used to model lipid bilayers, and for use in other
biological settings, see Refs. [194,195].

C. Vesicles, membranes, cells, and shells

While droplets often separate two fluids or fluid phases by little more than surface tension, other
barriers involve additional components, as is the case with molecular monolayers and membranes.
These thin layers introduce additional energetic costs to deformation, which now enter the balancing
act with the bulk and surface LC energies when determining equilibrium particle shapes.

As an example, Fig. 7(a) (left) shows a giant unilamellar vesicle (GUV) in the isotropic phase of
DSCG, a lyotropic chromonic LC, which is believed to confer finite-strength tangential anchoring
conditions on the LC that is both exterior and interior to the surface. When the temperature is
cooled below a critical value, an isotropic-to-nematic phase transition occurs and elongated GUVs
are instead observed, like that in Fig. 7(a) (right). In this study by Mushenheim et al. [39], two
distinct populations were observed: Like tactoids, smaller GUVs were elongated and spindlelike,
while large GUVs were more spherelike. The smaller GUVs showed a substantial reduction in
volume through the isotropic-to-nematic transition, seen via the bimodal opening angle statistics in
Fig. 7(b). However, while large surface area changes of tactoids are inhibited by surface tension,
GUVs are nearly inextensible, presenting a much stiffer constraint. A sphere cannot deform at fixed
volume without changing its surface area; thus, only vesicles with a reduced interior volume can be
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substantially elongated. This indicates that the GUVs likely ruptured in the process of quenching
from the isotropic to the nematic phase, and internal fluid escaped to the surrounding environment,
thus allowing for more substantial elongation. More complex geometries can also emerge in this
relaxation process. Jani, Nayani, and Abbott used this observation of efflux to generate a wide
variety of GUV shapes, which appeared on phase cycling from the isotropic to nematic phase and
back again [41].

Vesicles are composed of lipids which are free to move throughout the surface, and there is
no elastic penalty to in-plane shearing. Vesicle bending, however, does elicit an elastic response,
characterized by its bending rigidity. A common model is the Canham-Helfrich energy,

Eb =
∫

∂�

γ + kc

2
(2H − c0)2 + k̄K dA, (38)

where γ is a surface tension, H and c0 are the mean and spontaneous or preferred curvature, K is the
Gaussian curvature, and kc and k̄ are the bending and saddle-splay moduli [196–198]. For closed,
smooth surfaces the integrated Gaussian curvature is invariant (the Gauss-Bonnet theorem links this
quantity to the surface topology alone) and the third term may be neglected. For more complete
discussions see Refs. [199,200].

The shapes of more complex cells have also been explored in a nematic LC. Red blood cells at
rest, for instance, take the shape of a discocyte (a biconcave disk). Their material and geometric
properties include a significant shear elasticity owing to the spectrin network internal to the
membrane, a large dilational modulus, and a relatively small reduced volume (a smaller volume
than that of a sphere with the same surface area). Figure 7(c) shows a three-dimensional (3D)
reconstruction of Z-stack images obtained by Nayani et al. [42] through confocal microscopy of a
red blood cell, stretched by interaction with a surrounding nematic LC. Simulations were then used
to infer material properties of the cell from this deformation. Figure 7(d) shows a rigid biconcave
disk (discocyte) inside a nematic LC, modeled using the Q-tensor theory described in Sec. II A,
with finite tangential anchoring boundary conditions assumed. The cell first rotates so that its line
of symmetry is perpendicular to the direction of the background director field, and two defects
appear at the fore and aft points on the cell; an isocontour of the scalar order parameter, S = 0.4, is
shown in blue.

Figure 7(e) shows the quasistatic relaxation of this Skalak model red blood cell [see Sec. IV B,
particularly Eq. (36)] inside the nematic LC. The cell elongates in the direction of the background
director field and orthogonally to its initial line of symmetry. Two lobes remain in the ultimate
state, revealing memory of the cell’s resting geometry. Due to the large dilational modulus for red
blood cells, the deformation is nearly inextensible, and bending energy (which is not included in
the Skalak model) is negligible. Instead, the surface deformation is dominated by shear strain [42].
Additional cell types, including human Schwann cells, have also very recently been probed using
this methodology [201].

Homeotropic (normal) anchoring conditions can result in a different mode of deformation.
Figure 8(a) shows the quasistatic relaxation of a simulated vesicle with strong homeotropic an-
choring conditions [40]. In this case, the presence of the undeformed (spherical) particle results in
a Saturn-ring defect, shown as a melted region (a region with a diminished scalar order parameter,
S) in blue. If the particle is allowed to deform, however, then the sphere bulges outward towards the
Saturn-ring, providing that high-energy region with a surface on which to better match the anchoring
conditions. This is at the cost, however, of an increased surface bending and stretching energies. This
is consistent with the deformation suggested by viewing the traction field on a rigid particle (even
in two dimensions) with the appropriate bulk topological defects [see Fig. 3(d)].

When the Frank energy of the bulk LC is small compared to membrane bending stiffness, surface
tension, and surface anchoring energy, as is the case for small membranes, a Laplace-Helfrich
equation describing the membrane shape may be derived [202]. Just as for membranes containing
and immersed in isotropic fluids [203], intricate phase diagrams of membrane shapes emerge.
Figure 8(b) shows a ternary phase diagram across a range of membrane bending stiffness, kc,
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FIG. 8. (a) A simulated vesicle with homeotropic (normal) anchoring deforms in the direction of its Saturn-
ring defect, increasing the elastic energy stored in the vesicle, but decreasing the elastic energy stored in the
nematic LC. Reproduced from Ref. [40]. (b) A ternary phase diagram for two-dimensional LC membranes
over a range of membrane bending stiffness, kc, surface tension, γ0, and anchoring strength, W . Reproduced
from Ref. [202]. (c) Constant area shapes of two-dimensional nematic droplets with elastic boundaries with
two +1 defects. Top: division is energetically preferred above a critical shape parameter; bottom: division can
occur directly into four cells, or indirectly through two intermediate droplets. Reproduced from Ref. [204].

surface tension, γ0, and anchoring strength, W . When bending elasticity and anchoring strength are
of comparable size, up-down symmetry breaking is observed; and, as the surface tension is reduced,
the wave number of surface deformations increases. When the anchoring strength is small, classical
membrane shapes are found. But at large anchoring strength, spindle shapes appear yet again, even
though the bulk LC energy has been neglected.

The analog of negative tactoids in this setting are deformable membranes or shells which contain
an LC in their interior. Of particular recent interest are the shapes of cell membranes which emerge
in conjunction with active internal nematic stresses (see Sec. V). As a stepping stone, Leoni et al.
studied the geometries and division of nematic LCs in two dimensions with elastic boundaries,
and internal +1 defects modeling centrosomes in the mitotic spindle [204]. Figure 8(c) (top)
shows a progression of energy-minimizing solutions depending on a single shape parameter, which
incorporates active processes and controls centrosome separation; division occurs above a critical
value. Four model centrosomes can directly divide the original cell into four daughter cells, or
indirectly, through two intermediate droplets, Fig. 8(b) (bottom).

The line is blurred between LC droplets and elastic shells when surfactants are introduced to
the system. Surfactants can bind to a droplet or tactoid interface, conferring additional surface
physics, from rigidification to surface gradients leading to Marangoni stresses. Early probes into
the shapes of droplets that incorporate elastic surface moduli include work by Lishchuk and Care
[162] and Silvestre et al. [47], and then by Mackay and Denniston, who computed the equilibrium
shapes of one elastic shell and two interacting shells in an anisotropic fluid [205], to be discussed in
Sec. IV E.

D. Nematic surfaces

Some soft materials themselves have internal nematic order. The surface shape is then governed
by in-plane elastic LC stresses, along with with additional costs associated with surface tension
(nematic films) and/or costs due to out-of-plane deformations, which are different for vesicles or
membranes and shells.

We have already seen how the tractions on rigid colloids are suggestive of the deformations that
will ensue when a body is made compliant. Similarly, the equilibrium in-plane nematic order on
rigid surfaces offers insight into the deformation modes of soft nematic surfaces. In particular,
topological defects are points of elevated, or potentially extreme, elastic stress, which will be
given a new opportunity to relax when the surface is made deformable. Accordingly, the resulting
force balance can result in a variety of equilibrium shapes. On a rigid sphere, in the one-constant
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FIG. 9. (a) Equilibria of a film with in-plane nematic ordering, with strong tangential anchoring on the
boundaries. Bifurcations from homogeneous to inhomogeneous ordering (akin to a Fréedericksz transition)
arise beyond a critical value that depends on the relative surface tension to Frank elastic constant, for a
given boundary distance-to-radius ratio, ξ = h/r. Modified from Ref. [216]. (b) Deformation of a sphere
using a Landau–de Gennes–Helfrich model, with two of the four +1/2 defects visible. Color represents the
scalar order parameter, S, which diminishes near the defects. Reproduced from Ref. [227]. (c) A smectic
polymer vesicle (left) and simulated nematic vesicle (right) deform in the directions of topological defects
into tetrahedral shapes. Reproduced from Ref. [219]. (d) Spiral in-plane ordering of an active nematic,
buckled into a funnel-like profile with a topological defect at the tip. Reproduced from Ref. [230]. (e) Surface
morphogenesis of active epithelial cells with nematic ordering show pronounced tubulation, in stark contrast
to a growing isotropic shell. Reproduced from Ref. [231]. (f) Left: simulations of a fluctuating nematic surface
reveal kinetic trapping of defects, which are circled in the central panel. Right: fluorescence microscopy of
a lipid vesicle (DPPC) with in-plane ordering and molecular tilt, crumpling below a critical temperature for
isotropic-to-nematic phase transition. (Scale bar 20 µm). Reproduced from Ref. [220].

approximation, four +1/2 defects relax to the vertices of a tetrahedron [206], while if bending is
much more costly than splaying, then they may instead collapse onto a great circle [207] (see also
Refs. [208–212]). For a closed vesicle or membrane that takes the form of a topological sphere, i.e.,
a genus-0 surface, the Gauss-Bonnet theorem states that the total topological charge of a nematic
confined to the local tangent plane is an invariant; specifically, the charges must add up to 2. On
a torus, defects need not be present, though the dynamic process of relaxation and annihilation of
defects can depend on the surface curvature [213].

The energy of a nematic film pairs Frank elasticity with surface tension [214–216]. An example
of such a free energy with the one-constant approximation is

E =
∫

∂�

γ + K

2
‖∇sn‖2 dA, (39)

where n is confined to the local tangent plane on the surface, γ is a surface tension, and ∇s =
P(ν) · ∇, as in Sec. IV B. Figure 9(a) shows the equilibrium configurations of a film with in-plane
nematic ordering and strong tangential anchoring on two circular boundaries of radius r, separated
by a distance h [216]. The relative separation distance, ξ = h/r, affects the inward or outward
bulging of the film, and for a sufficiently large value of the dimensionless group, γ /Kr2, there is a
bifurcation from homogeneous to inhomogeneous ordering (akin to a Fréedericksz transition, [2]).
For a discussion on thin film modeling and the stability of nematic films, see Ref. [217].

Nematic vesicles and some membranes are composed of components that may move freely as a
fluid layer (or often a bilayer), or become polymerized [218–220]. Such systems pair Frank elasticity
with a Helfrich surface energy like that in Eq. (38). Vesicles and membranes with in-plane nematic
ordering can relax into prolate and cylindrical geometries [211,221], toroidal shapes [206], and
pseudospheres (shapes of constant negative Gaussian curvature) [222] and may result in tubulation
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[223]. Although tubulation and elongation are commonly observed, in-plane order can also suppress
the formation of membrane necks, depending on the molecular tilt order on the surface [224].

Due to the requirement of defects on closed surfaces, as previously noted, the in-plane LC
elasticity is often described using an energy based on a surface tangential Q tensor. A Landau–de
Gennes–Helfrich model energy couples this with membrane bending costs (see Refs. [212,225–
227]). Figure 9(b) shows the deformation of a sphere using such a model, with the surface colored
by the scalar order parameter S. The scalar order decreases near the four +1/2 defects, two of
which are visible in the image [227]. It is notable that the energy minimizing configuration does
not combine defects into two +1 defects, placed at the poles of an axisymmetric tactoidlike shape,
which might be expected. On reducing the internal volume, the tetrahedral arrangement of defects
can result in a more pronounced surface deformation. Figure 9(c) shows a smectic polymer vesicle
and accompanying simulation [219]. The resulting shapes can vary considerably depending on the
relative bending-to-splaying energetic costs. Passive selection of shapes in this way may allow for
the design of new classes of responsive supramolecular structures and materials [228,229].

Nematic shells, meanwhile, can relax into somewhat more complex shapes, including stomato-
cytes and elongated, bulbous shapes [232], and other exotic geometries, for example those shown
in Fig. 8(b). Such inquiries extend classical work on membrane shapes with isotropic elastic energy
densities [203,233,234]. Mathematical analysis addressing questions of existence of minimizers and
well-posedness in nematic shells have been taken up in Refs. [235–237].

More complex out-of-plane energies require more substantial modeling, as is used to describe
LC elastomers [238,239]. Modes of LC elastomer deformation not generally seen in films and
vesicles, like wrinkling, are commonly observed [240–242]. LC elastomers have also been used
as a programmable material, capable of generating complex desired topographies [243–245].

Finally, colloidal membranes—liquidlike monolayers composed of aligned, rod-shaped
particles—share similarities with nematic surfaces. These membranes, which are typically one
rod-length thick, may not lie perfectly in the tangent plane, but their morphology is again dictated by
a balance of in-plane fluidlike dynamics and out-of-plane bending elasticity [246,247]. Particularly
if the constituents are chiral, a great variety of membrane shapes can emerge, from catenoids to
Enneper surfaces [248–250].

Although outside of the scope of this review, when nematic order is accompanied by active
stresses, associated membrane shapes are not only exotic, but dynamic and chaotic [251–254].
For a detailed symmetry-based theory covering nematic and polar active surfaces see Ref. [255].
Figure 9(d) shows an active nematic, with spiral in-plane ordering, buckling into a funnel-like
profile with a topological defect at the tip [230], while Fig. 9(e) shows the tubulation during the
growth of model epithelial cells confined to a topological sphere [231]. These deformations lie in
stark contrast to the dynamics expected with isotropic in-plane mechanical stresses [230]. In-plane
order can also strongly affect the nature of membrane fluctuations. Figure 9(f) shows an image from
experiments using a lipid vesicle with in-plane ordering and molecular tilt, with accompanying
simulations, crumpling below a critical temperature for isotropic-to-nematic phase transition [220].
In this study, kinetic trapping of defects in strongly curved regions, circled in the central panel of
Fig. 9(f), prevented their relaxation or annihilation.

Templating out-of-plane deformations by defects is used frequently in biological systems, though
generally in more active settings like those noted above. Defect-induced stresses are a precursor to
epithelial cell death and extrusion [256] and morphogenesis [230,231,257], can suppress cancer cell
clearance from a mesothelial monolayer [258], and can affect the dynamics of neural stem cells in
the central nervous system [259].

E. Multiple deformable bodies

The combination of elastic particle deformability and interaction has thus far seen relatively
little attention, perhaps owing to the substantial difficulties involved in modeling, solving, and
characterizing such complex systems. A notable early work is by Mackay and Denniston, who
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FIG. 10. (a) Two deformable bodies with homeotropic (normal) anchoring approach each other over time,
stretching as they draw near, and deforming antisymmetrically as their defects locally repel. Reproduced
from Ref. [205]. (b) The surface elastic energy (hollow circles), LC elastic energy (hollow squares), and the
total energy (their sum; black circles) associated with the progression in (a). The individual energies show
multiple discontinuities in the separation distance. Reproduced from Ref. [205]. [(c) and (d)] Two shells in two
dimensions initially repel then attract, and find an equilibrium alignment angle. Reproduced from Ref. [260].
(e) Chiral deformation instability of a deformable boundary due to a deformable internal inclusion. Reproduced
from Ref. [261]. (f) Two deformable shells with homeotropic (normal) anchoring conditions connected by an
entangled hyperbolic (figure of theta) defect (courtesy Art Evans). (g) The deformed shapes in (f); colored
by bending energy (left), revealing both flat (developable) regions and a sharp ridge extending towards the
Saturn-ring disclination.

showed the attraction of two deformable shells with homeotropic (normal) anchoring conditions
in two dimensions [205]. Figure 10(a) shows a progression in time of two such circular shells.
Most immediately noticeable is their individual elongation, as expected from Fig. 3(d), and like
that in three dimensions in Fig. 8(a). Next, the bodies attract, followed by symmetry breaking
deformations. This symmetry breaking is reminiscent of the surface defect rearrangement noted
for two rigid particles [85,147], which tend to locally repel each other. Here, however, the motion of
the defects is accompanied by surface deformations in those directions. More subtle are a sequence
of discontinuities in the relative energy. Figure 10(b) shows the associated changes in the surface
stretching energy (hollow circles), bulk LC elastic energy (hollow squares), and their sum (black
circles) as a function of the separation distance. While the total energy appears continuous in the
separation distance, there are multiple discontinuities in the individual energies. Two rigid cylinders
show a single energy discontinuity in the separation distance due to a pitchfork bifurcation in the
defect positions [147]; with deformable shells, in this case three such discontinuities are observed.
The number of discontinuities depends on the surface material properties [205].

If instead tangential anchoring conditions are used, then a different configuration is observed.
Figures 10(c) and 10(d) show the initial and final positions, respectively, of two elastic shells in
two dimensions, with a vertical background director field. The shells initially repel then attract
and settle to an equilibrium alignment angle of roughly 30◦. This alignment angle was found to
decrease as the body aspect ratio increased [260]. It is not uncommon to find symmetry breaking in
multibody interactions even with rigid particles in nematic LCs, for instance in the examples shown
in Figs. 4(b) and 4(h), and we observe this again here with deformable particles. Figure 10(e) shows
an additional example of symmetry breaking with deformable boundaries. In this case a nematic
LC is confined to a deformable annulus with tangential anchoring conditions. The outer and inner
boundaries elongate to reduce the bound elastic energy in the LC, but a chiral symmetry breaking
deformation is observed [261,262].

Symmetry-breaking positioning and deformations need not always emerge in LC-mediated
particle interactions. Some highly deformed bodies can find a symmetric equilibrium state, even
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with complex topological singularities in the fluid. Figure 10(f) shows simulations of two linearly
elastic elastic shells with homeotropic anchoring, their individual Saturn-ring defects having merged
into a single entangled hyperbolic (figure of theta) defect, similar to those found using rigid
particles, Figs. 4(c) and 4(d). This configuration was computed using an a linearly elastic shell
penalizing stretching and bending, and the Q tensor theory via an immersed boundary approach (as
in Ref. [42]). The shapes of these symmetrically deformed shells are shown in Fig. 10(g); the body
on the left is colored by the bending energy in the shell, which shows a sharp ridge of bending along
the edge extending outwards towards the Saturn-ring defect, as in Fig. 8(a), and an additional ridge
extending towards the ring-shaped defect in between them. The regions of the bodies closest to each
other are flat, which is preferred both by the homeotropic anchoring conditions (the LC direction can
extend directly from one surface to the other without bending or splaying), and the bending energy
in the elastic shell is also zero. The LC energy-relieving body deformations have promoted the
appearance of developable surfaces, ruled surfaces with zero Gaussian curvature. General principles
of elastic surface energy minimization begin to come into view [200,263].

V. CONCLUSIONS AND OUTLOOK

In this review, we have aimed to present some of the fundamental features of soft body defor-
mations by liquid crystalline environments in the nematic phase, as well as the mathematical tools
needed to study them. Even at equilibrium, such systems are not simply characterized, or analyzed,
outside of special circumstances. But broadly speaking, soft bodies and inclusions deform in order
to reduce the elastic burden on the bulk LC, but in such a way that their own surface energy is not
greatly increased. Elongation of tactoids and elastic shells with tangential anchoring is one example.
Local deformations near topological defects to better satisfy anchoring boundary conditions is
another. Analysis of one and many rigid particles still provides a great deal of information, since the
surface tractions from the bulk and surface LC energies informs which deformations will ensue if
immersed bodies are made compliant.

Even within the class of problems involving elastic media immersed in a nematic LC, there
are many additional directions of immediate interest. Forests of deformable fibers immersed in a
nematic LC can bend when the director field is manipulated, e.g., with an electric field [264,265].
And, commonly, membranes themselves possess orientational order, which has seen substantial
theoretical investigation. We only scratched the surface of this flourishing area in Sec. IV D.

Given the degree of nonlinearity and the wide separation of length scales inherent to the systems
described, continued development of fast and accurate numerical methods is needed. Immersed
boundary methods that have been used to study soft particles in Oldroyd-B viscoelastic fluids
[266–270] have also been used to study them in nematic LCs [42,68,271–273]. However, the
accuracy of these methods can suffer when used in settings where gradients in the bulk fluid are
needed (e.g., the Ericksen stress), to the point of nonconvergence, even if some bulk measures like
net forces (or quasistatic relaxation) do converge [274]. Griffith and Patankar review a broader class
of immersed interface methods in Ref. [275]. Other approaches applicable for nematic LCs include
the finite element method [276], diffuse interface methods [277,278], and the use of radial basis
functions [66]. Related methods for viscoelastic flows that might be modified for use with nematic
LCs include an immersed-finite-element method [279], immersed boundary-lattice Boltzmann
method [40,280–282], and a front-tracking approach [283]. Numerical interfacial rheology on its
own requires care; for an overview of related numerical methods see Ref. [284].

There are hydrodynamic analogs of the systems presented here that have received parallel
attention [285]. For instance, bodies moving through LCs can experience anisotropic viscous drag,
which can be strongly nonlinear in the velocity [73,286–289], unlike the linear drag characteristic of
classical viscous flows [290]. The deformable bodies immersed in the LC may even be bacteria or
other microorganisms, interacting with the environment through both elastic and anisotropic viscous
stresses [12]. The bulk LC field can be used to steer swimmer trajectories [11–13], and different
topological defects can induce different bacterial accumulation or depletion [291,292]. Undulatory
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motions have been studied theoretically [293] and numerically [272,273]; fluid anisotropy reveals
substantial affects on swimming speeds, and even swimming directions. Pair interactions between
two active particles immersed in an LC can depend on surface anchoring conditions [294]. In some
cases the LC leads to swimmer repulsion; in others, collisions and group swimming have been
observed [295]. And, as briefly introduced in Sec. IV D, adding activity to a nematic LC shell can
produce wildly chaotic vesicle deformations and in-plane flows.

Meanwhile, the shapes and dynamics of deformable media by active stresses is a research
area that dovetails with work on active gels [296] and locomotion in complex fluids and complex
environments [28,297–299]. The deformable body may even be motile, as is the case for some LC
droplets. Marangoni stresses can couple to internal elastic modes, resulting in coherent swimming,
and generic symmetry breaking can result in chiral trajectories [300,301]. Reviews of this rapidly
growing branch of the literature can be found in Refs. [302,303].

Looking ahead, experiments continue to be performed at a blistering rate, examining the func-
tional consequences of biological cell shapes, and what can be gained by their manipulation.
Measuring the elastic properties of cells using LCs is predicted to move into broad territory,
given its natural benefits over more delicate methods like stretching with optical tweezers [304].
When biofilaments like microtubules or actin confer bulk LC elasticity to a fluid, particularly when
activated by molecular motors or other active stresses, it is even more natural to inquire about the
functional roles of the resultant enclosing membrane shapes. Analysis of surface tractions and body
shapes, which incorporate not only the fluid elastic stress but also active stresses and their associated
flows, is yet another direction that will undoubtedly continue to flourish in the near future.

Reinitzer, Lehmann, and other early pioneers of liquid crystal physics would surely be astonished
to see how many different areas it has now informed, even extending to the shapes and function of
biological cells. We hope for and expect such amazement when looking back on the next decades
of research on deformable media in liquid crystalline environments.
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APPENDIX: VIRTUAL WORK PRINCIPLE

In this Appendix, we derive the equilibrium forces and torques associated with a nematic LC
confined to a domain � and subject to anchoring conditions on the boundary ∂�. We shall start by
considering the simpler theory, based on a director field n, in Sec. A 1. We then go on to consider
the Landau–de Gennes Q-tensor theory in Sec. A 2.

1. Director field theory

We first derive the equilibrium forces and torques associated with a nematic LC delineated by a
director field n(x), with spatial position x and |n| = 1. Similar derivations and further details can be
found in Refs. [2,46,93,102]. Here the net energy of the system is assumed to take the form

E =
∫

�

F (n,∇n) − λ

2
(|n|2 − 1) dV +

∫
∂�

Fs(n; ν, τ ) − μ

2
(|n|2 − 1) dA, (A1)

for the bulk energy density F , e.g., Eq. (1); surface energy density Fs, e.g., Rapini-Papoular, Eq. (5),
or degenerate planar anchoring, Eq. (6); and Lagrange multipliers λ and μ, which impose |n| = 1.
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a. Energy variation

There are two mechanisms by which the energy may be reduced: The molecules may translate
or rotate in place. These correspond to a variation in the spatial position x̃ = x + u(x), with
displacement vector u := δx, and the director field ñ(x̃) = n(x) + r(x), with the Eulerian variation
r := 
n = δn + δx · ∇n. The Lagrangian variation of the director field, n, has already been de-
scribed in Sec. II A, leading to the equilibrium equations, Eq. (10) subject to Eq. (11). The variation
in position adds an extra layer of complexity to the variational problem. Here we denote the defor-
mation matrix as F = (∂ x̃/∂x)T = I + ∇uT and shall only consider incompressible deformations,
i.e., ∇ · u = 0.

Since incompressible, the infinitesimal volume element is conserved, i.e., d̃V = det F dV ∼ dV .
The infinitesimal area element, however, varies according to Nanson’s formula,

d̃A = det F |F−T · ν| dA ∼ (1 + P(ν) : ∇su) dA, (A2)

where ν is the unit normal vector pointing into the LC, P(ν) = I − νν is the surface projection
operator, and ∇s = P(ν) · ∇ is the surface gradient. The surface normal and tangent vector vary
according to

ν̃ = F−T · ν

|F−T · ν| ∼ ν − ∇su · ν and τ̃ = F · τ

|F · τ| ∼ τ + τ · ∇su · P(τ), (A3a,b)

respectively. Finally, we note that a variation of the gradient of the director field is

∇̃ñ = ∇̃n + ∇̃r ∼ ∇n + ∇r − ∇u · ∇n. (A4)

Altogether, the above identities yield the functional derivatives of the energy densities,

δF = r · ∂F
∂n

+ (∇r − ∇u · ∇n) :
∂F
∂∇n

, (A5a)

and δFs = r · ∂Fs

∂n
− (∇su · ν) · ∂Fs

∂ν
+ (τ · ∇su · P(τ)) · ∂Fs

∂τ
, (A5b)

and, hence, the functional derivative of the net energy

δE =
∫

�

δF − λn · r − p(∇ · u) dV +
∫

∂�

δFs + Fs(P(ν) : ∇su) − μn · r dA, (A6)

where p is a Lagrange multiplier imposing incompressibility (∇ · u = 0). Inserting Eq. (A5) into
Eq. (A6) and integrating by parts (noting that −ν is the outward pointing unit normal of the domain
�) yields

δE = −
∫

�

(h + λn) · r + (∇ · T) · u dV −
∫

∂�

(hs + μn) · r + (ν · T + ∇s · Ts) · u dA

+
∫

∂�

∇s · (Ts · u) dA, (A7)

for the bulk tensor, T, and surface tensor, Ts, defined in Eq. (21) and the bulk molecular field, h,
and surface molecular fields, hs, defined in Eq. (9).

b. Principle of virtual work

At equilibrium, the energy variation in Eq. (A7) is postulated to satisfy the principle of virtual
work, as expressed in Eq. (19). To interpret this equation, we consider two specific cases. First, for
an arbitrary infinitesimal displacement a, for which u = a and r = 0, we obtain the conservation of
linear momentum at equilibrium,

δE = −a ·
(∫

�

F dV +
∫

∂�

f dA

)
. (A8)
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Thus, F and f are forces acting on the bulk (per unit volume) and the boundary (per unit area),
respectively. The generalized forces, G and g, can be related to moments by considering an arbitrary
infinitesimal rigid rotation ω, for which u = ω × x and r = ω × n. Inserting these into Eq. (19) and
rearranging yields

δE = −ω ·
(∫

�

x × F + n × G dV +
∫

∂�

x × f + n × gdA

)
, (A9)

which, at equilibrium, describes the conservation of angular momentum. This yields the moment
vectors acting on the bulk and the boundary, M = n × G and m = n × g, respectively [2,93].
We now find expressions for these forces and generalized forces, by comparing the virtual work
principle, Eq. (19), to the energy variation, Eq. (A7).

On the one hand, by comparing the infinitesimal variation in the position, u, we find the force
equilibrium equations within the bulk and on the domain boundary,

F = ∇ · T and f = ν · T + ∇s · Ts, (A10a,b)

respectively. Thus, T is the stress tensor within the LC (called the Ericksen elastic stress) and Ts is
an additional stress vector defined on the LC boundary.

On the other hand, by comparing the infinitesimal variation in the director field, r, we find the
generalized force equilibrium equations within the bulk and on the domain boundary,

G = h + λn and g = hs + μn, (A11a,b)

respectively. It follows that M = n × h is the moment vector acting on the fluid by the LC and
m = n × hs is the couple moment vector acting on the domain boundary by the LC.

The final integral in Eq. (A7) is a line integral after applying the divergence theorem. By the
principle of virtual work, this gives rise to point forces at sharp edges. These point forces shall not
be discussed here further, but the reader is pointed to Ref. [46] for more information.

c. Conservative body forces

Consider the simplification of a conservative body force, that is F = −∂�/∂x and G = −∂�/∂n
for some energy density function �(x, n). (Here the trivial case, � = 0, corresponds to no external
forcing.) The bulk equilibrium equations, (A10a) and (A11a), take the form

∂�

∂x
− ∂ p

∂x
− ∇ ·

(
∂F
∂∇n

· ∇nT

)
= 0 and

∂�

∂n
+ ∇ · ∂F

∂∇n
− ∂F

∂n
− λn = 0, (A12a,b)

respectively. Defining the total derivative as dx := ∂x + ∇n · ∂n + ∇(∇n) : ∂∇n, we find that

d

dx
(� − p − F ) = ∂

∂x
(� − p) + ∇n · ∂

∂n
(� − F ) − ∇(∇n) :

∂F
∂∇n

= λ∇n · n = 0, (A13)

where we have used Eq. (A12) and n · ∇n = 0, which follows from n · n = 1. Integrating this with
respect to x yields the pressure p = � − F + p0, up to an additive constant p0.

2. Q-tensor theory

We now derive the equilibrium forces and torques associated with a nematic LC described by
a symmetric and traceless tensor Q(x), with spatial position x. The net energy of the system is
assumed to take the form

E =
∫

�

F (Q,∇Q) − � : Q dV +
∫

∂�

Fs(Q; ν, τ ) − μ : Q dA, (A14)

for the bulk energy density F , e.g., Eqs. (2) and (3); surface energy density Fs, e.g., Rapini-Papoular,
Eq. (17), or Fournier-Galatola, Eq. (18); and �i j = λδi j + λkεi jk and µi j = μδi j + μkεi jk (where
repeated indices indicate summation, and δi j and εi jk are the components of the Kronecker delta and
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Levi-Civita tensor), for the eight Lagrange multipliers λ, λk , μ, and μk that impose the symmetries
Tr(Q) = 0 and QT = Q.

a. Energy variation

Analogous to the variational principle presented in Sec. A 1 for the theory based on the director
field n, the energy here may be reduced by either varying the spatial position, x̃ = x + u(x), with
displacement vector u := δx, or the alignment tensor, Q̃(x̃) = Q(x) + R(x), with Eulerian variation
R := 
Q = δQ + δx · ∇Q. Using the variation identities in Eqs. (A2)–(A4), one can show that the
functional derivative of the energy is

δE =
∫

�

δF − � : R − p(∇ · u) dV +
∫

∂�

δFs + Fs(P(ν) : ∇su) − μ : R dA, (A15)

where p is the Lagrange multiplier imposing impressibility,

δF = R :
∂F
∂Q

+ (∇R − ∇u · ∇Q)
...

∂F
∂∇Q

, (A16a)

and δFs = R :
∂Fs

∂Q
− (∇su · ν) · ∂Fs

∂ν
+ (τ · ∇su · P(τ)) · ∂Fs

∂τ
. (A16b)

Integrating by parts yields

δE = −
∫

�

(H + �) : R + (∇ · T) · u dV −
∫

∂�

(Hs + μ) : R + (ν · T + ∇s · Ts) · u dA

+
∫

∂�

∇s · (Ts · u) dA, (A17)

for the bulk and surface molecular field tensors, H and Hs, defined in Eq. (14), and the bulk and
surface stress tensors, T and Ts, defined in Eqs. (25) and (21b), respectively.

b. Principle of virtual work

At equilibrium, the energy variation satisfies the principle of virtual work,

∂E = −
∫

�

F · u + G : R dV −
∫

∂�

f · u + g : R dA, (A18)

for the force acting on the bulk F, force acting on the boundary f , generalized force acting on the
bulk G, and generalized force acting on the boundary g. Here the generalized forces are second-
order tensors (in contrast to in Sec. A 1, where they were vectors). These can again be related to
the moment vectors acting on the bulk and the boundary, M and m, respectively, by considering
an arbitrary infinitesimal rigid rotation ω. Here u = ω × x and Ri j = ωk (εiklQl j + ε jkl Qil ), where
repeated indices imply summation and εikl is the Levi-Civita symbol. Inserting these into Eq. (A18)
and rearranging yields, at equilibrium, the conservation of angular momentum

∂E = −ω ·
(∫

�

x × F + M dV +
∫

∂�

x × f + m dA

)
, (A19)

for M i = εi jk (Q · G − G · Q) jk and mi = εi jk (Q · g − g · Q) jk , see, e.g., Ref. [95] for further
details.

By comparing the energy variations, Eqs. (A17) and (A18), we find the force and generalized
force equilibrium equations,

F = ∇ · T, f = ν · T + ∇s · Ts, G = H + �, g = Hs + μ. (A20a–d)

It follows that the moment acting on the fluid and on the domain boundary by the LC are those given
in Eq. (27).
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c. Conservative body forces

Consider again the simplification of a conservative body force, that is F = −∂�/∂x and G =
−∂�/∂Q for some energy density function �(x, Q). Here the bulk equilibrium equations take the
form

∂�

∂x
− ∂ p

∂x
− ∇ ·

(
∂F

∂∇Q
: ∇QT

)
= 0 and

∂�

∂Q
+ ∇ · ∂F

∂∇Q
− ∂F

∂Q
− � = 0. (A21a,b)

Defining the total derivative as dx := ∂x + ∇Q : ∂Q + ∇(∇Q)
... ∂∇Q, we have that

d

dx
(� − p − F ) = ∂

∂x
(� − p) + ∇Q :

∂

∂Q
(� − F ) − ∇(∇Q)

...
∂F

∂∇Q
= ∇Q : � = 0, (A22)

after imposing Eq. (A21) and the symmetries of Q, i.e., Tr(Q) = 0 and QT = Q. As before, it
follows that p = � − F + p0.
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