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EXACT AND APPROXIMATE SOLUTIONS FOR ELASTIC
INTERACTIONS IN A NEMATIC LIQUID CRYSTAL\ast 

THOMAS G. J. CHANDLER\dagger AND SAVERIO E. SPAGNOLIE\dagger 

Abstract. Anisotropic fluids appear in a diverse array of systems, from liquid crystal displays
to bacterial swarms, and are characterized by orientational order. Large colloidal particles immersed
in such environments disturb the medium's orientational order, resulting in a stored elastic energy
within the bulk. As a consequence, multiple immersed bodies interact at equilibrium through fluid-
mediated forces and torques, which depend on the bodies' positions, orientations, and shapes. We
provide the equilibrium configuration of a model nematic liquid crystal with multiple immersed bodies
or inclusions in two dimensions, as well as the associated body forces, torques, and surface tractions.
A complex variables approach is taken which leans on previous work by Crowdy [Solving Problems
in Multiply Connected Domains, SIAM, Philadelphia, 2020] for describing solutions with multiply
connected domains. Free periods of a complex director field, which correspond to topological defect
positioning and net topological charge, are determined numerically to minimize a global stored elastic
energy, including a contribution of a weak (finite) anchoring strength on the body surfaces. Finally,
a general, analytical description of two-body far-field interactions is provided, along with examples
using two cylindrical inclusions of arbitrary position and size, and two triangles of arbitrary position
and orientation.
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1. Introduction. Many fluids are host to a suspension of elongated bodies which
show a preference toward orientational alignment. In a uniaxial liquid crystal, the
local molecular orientation, averaged over a small control volume, is represented as a
director field \bfitn (\bfitx , t), with spatial position \bfitx , time t, and | \bfitn (\bfitx , t)| = 1. Deformations
of the director field away from uniformity result in an elastic stress response [18, 85].
Such fluids have been of great industrial interest for decades due to their optical
properties [102], applicability to medical science [101], chemical and biological sensing
[11], and the design of soft active materials [10]. Active biological systems have been
similarly described [51, 21], from the dynamic ordering of mucus [93], biofilms [94],
and tissues [74, 53] to suspensions of swimming bacteria [71, 38, 72] and the interior
of cells [9, 23, 61].

Among the most alluring (and analytically challenging) features of liquid crystals
is the prevalence of topological singularities, which satisfy global conservation laws
[46, 3]. The locations of the defects on the surface or in the fluid depend on the
relationship between the bulk elastic energy and the surface anchoring conditions on
any domain boundaries. In addition to focusing elastic stress on immersed surfaces,
topological defects are important sites in biological settings for the onset of cell death
and extrusion [73], layer formation [14], cell accumulation [37], cell sorting [5], and
morphogenesis [52, 92, 97]. They have also been considered for directed self-assembly
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2477

[55, 96] and control [62, 28, 47, 49, 25]. Analytical insight into defect positioning and
its consequences for locally stored elastic energy is, thus, of broad interest.

Bodies immersed in a liquid crystal (that are much larger than the liquid crystal
constituents) disturb the orientational order of the bulk liquid crystal. Confining or
immersed boundaries introduce preferential orientations of the director field with a
given strength (for instance, a tangential anchoring condition); these generally lie in
competition with the preferred uniformity of the orientation field [83]. If there are
multiple immersed bodies or boundaries, the elastic energy may be reduced by altering
their relative positions and orientations. Dipolar and quadrupolar far-field interac-
tions between colloids (depending on normal or tangential anchoring conditions) have
been investigated in three dimensions [66, 70, 27, 2], and similarly between a colloid
and a confining boundary [26]. When many colloids are introduced to a liquid crystal
they can self-assemble into linear chains [64, 44, 76, 20]. When the bodies are suf-
ficiently well separated, their long-range interactions conjure a related problem, the
interaction of topological defects themselves [86, 36].

Near-field interactions, meanwhile, can be strongly nonlinear due to the inter-
action and positional rearrangement of topological defects [87, 4, 13, 36]. The self-
assembly of colloids in liquid crystals has seen wide use in the engineering of smart ma-
terials, with applications ranging from biosensors to dynamic porous membranes [7].
Rather than colloid translations and rotations to reduce the system energy, a sep-
arate path toward relaxation is available if the immersed particles are deformable
[50, 56, 103, 59, 75].

As a consequence of defect repositioning in near-field interactions, spherical col-
loids with tangential anchoring can settle into a configuration with broken symmetry,
and multiple colloids can self-assemble into a chain aligned at an angle of 30\circ with the
alignment axis of the liquid crystal [65, 63, 80, 88, 19] or into kinked chains [77, 29].
Crystal lattice configurations have also been observed [60, 55, 29]. More exotic inter-
actions include particle binding via Saturn-ring defect interactions [33, 90, 89, 79]. In
addition to their positioning relative to the director field alignment axis, colloid inter-
actions through the liquid crystal also depend on the particle geometry and relative
orientation. Two triangular bodies, for instance, can be arranged such that they are
either attractive or repulsive just by rotating them relative to one another [41, 79].

While a variety of numerical methods for exploring liquid crystal configurations
have been developed [95], analytical solutions of the equilibrium director field con-
figuration are needed in order to better understand the geometry-dependent, liquid
crystal--mediated elastic body interactions. Even though the equilibrium director field
is a harmonic function in the single Frank elastic constant approximation [18], these
body interactions are not simple to determine due to nonlinear anchoring boundary
conditions and topological defects, whose positions are unknown a priori.

The equilibrium director field around a single immersed body already introduces
a number of important features, which inform the question of body interactions. In
Chandler and Spagnolie [12], we used complex variables techniques to find analytical
solutions in the asymptotic regime of large surface anchoring strengths. Among our
findings, we showed that topological singularities are preferentially positioned at or
near sharp corners of an immersed body, depending on whether the anchoring strength
is infinite or finite. When multiple bodies are immersed in the fluid, or if a nearby wall
or other boundary is present, the problem tends that much further from tractability.
The complex variables approach for interactions was used to similarly characterize
the interactions of two topological defects [86].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

6/
24

 to
 1

28
.1

04
.4

6.
20

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2478 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

Fig. 1. Left: The physical z-domain with two rigid bodies immersed in a two-dimensional ne-
matic liquid crystal, where z = x+ iy. The liquid crystal is described by a director field \bfitn = (cos\theta ,
sin\theta ,0) with director angle \theta (z) \in [0, \pi ) for z \in D. The boundaries of the two bodies are shown as
solid curves, \partial D1 and \partial D2, with unit normal and tangent vectors \^\bfitnu k(s) and \^\bfits k(s), respectively. The
effective (or virtual) boundaries are shown as dotted curves, \partial Dw

1 and \partial Dw
2 . Right: The conformally

mapped \zeta -domain. The pole at \zeta \infty corresponds to z\rightarrow \infty in the physical domain.

The problem of determining harmonic functions with generic boundary conditions
in multiply connected domains has been explored in great depth by Crowdy [17]. Us-
ing complex variables, the problem can be recast as a search for a locally holomorphic
function with particular boundary conditions. The physical domain is first confor-
mally mapped to a multiconnected annulus, and then a series of images of a free-space
Green's function across all of the (now circular) boundaries leads in the direction of
the solution, although additional care must be taken to monitor the periods of the
holomorphic function and related auxillary functions around each boundary.

In this paper, we use the approach put forth by Crowdy [17] to analyze multibody
interactions in a nematic liquid crystal. Figure 1 provides a schematic of the general
problem. Just as in the case of a single immersed body, the nonlinear boundary con-
ditions and topological defect positions in the strong anchoring limit pose additional
challenges, which are overcome upon appeals to the energy. Although a single body
has no force or torque acting upon it [12], analogous to d'Alembert's paradox in clas-
sical potential flow theory, two bodies can impose forces and torques on each other
through the fluid, as has been observed experimentally [41]. These interactions are
generically shape and orientation dependent. A number of additional nonlinear phe-
nomena will be examined along the way, including a symmetry breaking instability
when two cylinders are drawn nearer to each other, corresponding to a discontinuous
jump in the topological defect positions.

This paper is organized as follows. We begin in section 2 with a review of the
mathematical model, including a discussion of boundary conditions and surface trac-
tions, and we recall from [12] the effective boundary technique that allows for the so-
lution of a weak (finite) anchoring problem based on the solution of a strong (infinite)
anchoring problem with a slightly different boundary. Analytical solutions for two
immersed bodies are then provided in section 3. Two worked examples of multiple-
body interactions are then presented, which demonstrate the above methodology for
determining the two-dimensional director field at equilibrium, including the selection
of the topological charges and defect positions on the body surfaces. The first of these
two examples is given in section 4, where we investigate two immersed cylinders with
tangential anchoring, which includes the case of a single cylinder near an infinite wall
as a limiting case. We consider a more involved example in section 5, the interactions
between two triangular prisms, where we again provide formulae for the body forces
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2479

and torques, and observe how defect positioning and particle interactions are orienta-
tion dependent, reproducing experimental findings. When the distance between the
bodies is large, asymptotically valid approximations may be derived, as described in
section 6. Finally, in section 7, we provide a closing summary and directions of future
applications.

2. Mathematical formulation. We begin with a description of the general
problem and recall the relevant structure developed for the case of a single immersed
body [12]. Consider a two-dimensional nematic liquid crystal outside N simply con-
nected bodies, as illustrated in Figure 1 for N = 2. The liquid crystal domain and the
boundary of the kth body are denoted by D and \partial Dk, respectively. Assuming the
one-constant approximation, the director angle, \theta (x, y), is described by the Dirichlet
free energy \scrF surface := K| \nabla \theta | 2/2, where K is the single Frank elastic constant. In
general there are distinct elastic moduli penalizing liquid crystal bend and splay de-
formations, but they tend to be comparable [8, 104], and the single constant model is
often used to simplify mathematical analysis [18].

At the boundaries, the Rapini--Papoular form of the surface anchoring energy is
given by \scrF surface := Wk sin

2(\theta  - \phi k)/2, where Wk is the anchoring strength and \phi k

is the preferred orientation defined on \partial Dk [67]. Examples will be provided for the
important case where \phi k represents the tangent angle on the surface of the kth body,
but the formulation below is valid for general \phi k.

Combining the bulk and surface energies yields the net free energy

\scrE :=
K

2

\int \int 
D

| \nabla \theta | 2dA+

N\sum 
k=1

Wk

2

\int 
\partial Dk

sin2 (\theta  - \phi k)ds,(2.1)

where s is an anticlockwise arc length parameterization of the bodies, and dA and ds
are the infinitesimal surface area and arc length elements, respectively. The principle
of virtual work applied to (2.1) yields the equilibrium equation for the director angle

\nabla 2\theta = 0 in D,(2.2)

subject to the weak anchoring boundary conditions,

 - K
\partial \theta 

\partial \^\nu k
+

Wk

2
sin [2(\theta  - \phi k)] = 0 on \partial Dk,(2.3)

for k \in \{ 1, . . .N\} , where \^\bfitnu k = - \bfitx \bot 
s is the fluid-pointing unit normal on the kth body,

as depicted in Figure 1. The traction on the kth surface due to the liquid crystal is
also determined in this process (see [12]) and is given by

\bfitt k =K

\biggl( 
1

2
| \nabla \theta | 2\^\bfitnu k  - 

\partial \theta 

\partial \^\nu k
\nabla \theta 

\biggr) 
+

Wk

2

\Bigl( 
sin(\theta  - \phi k)

2\^\bfits k + sin [2(\theta  - \phi k)] \^\bfitnu k

\Bigr) 
s
,(2.4)

where \^\bfits k =\bfitx s is the unit tangent vector on the kth body, and the subscript s denotes
an arc length derivative. Given a director field that satisfies (2.2) and (2.3), the energy
and surface traction associated with the liquid crystal can be computed using (2.1)
and (2.4), respectively.

The problem is made dimensionless by scaling all lengths upon a characteristic
length scale associated with the immersed bodies, a, and defining a dimensionless
free energy, \^\scrE := \scrE /K, and tractions, \^\bfitt k := a2\bfitt k/K. The resulting equations are
governed by the dimensionless anchoring strengths wk := aWk/K. The dimensionless
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2480 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

free energy of the liquid crystal may be written as a boundary integral using the
divergence theorem, i.e.,

\^\scrE =
1

2

N\sum 
k=1

\int 
\partial Dk

 - \theta 
\partial \theta 

\partial \^\nu k
+wk sin

2 (\theta  - \phi k)ds.(2.5)

Henceforth, we shall only work in these dimensionless variables.

2.1. Complex variable representation. To access a wide range of complex
variable techniques, we introduce the complex coordinate z := x + iy and complex
director angle

\Omega (z) := \tau (x, y) - i\theta (x, y),(2.6)

where \tau (x, y) = Re\Omega (z) is a harmonic conjugate of \theta (x, y) = - Im\Omega (z) (i.e., \tau x = - \theta y
and \tau y = \theta x) [12]. Since \theta (x, y) is harmonic in D, \theta x  - i\theta y must be holomorphic in
D and \Omega (z) is at least locally holomorphic. In general, \Omega may not be single-valued
around each immersed body, thus the period around each must be defined. We write\oint 

\partial Dk

d\Omega \equiv 1

i

\int 
\partial Dk

\theta x  - i\theta ydz =\Upsilon k  - 2\pi iMk for k \in \{ 1, . . .N\} ,(2.7)

for some given real constants \Upsilon k and half-integers Mk, which correspond to the topo-
logical charge of the kth body.

In these complex variables, the boundary condition (2.3) is equivalent to the
constraints \Bigl( \bigm| \bigm| e\Omega (z)

\bigm| \bigm| 2\Bigr) 
s
+wkIm

\Bigl[ 
e2i\phi ke2\Omega (z)

\Bigr] 
= 0 on \partial Dk,(2.8)

for k \in \{ 1, . . . ,N\} ; the net free energy (2.5) may be written as

\^\scrE =
1

4

N\sum 
k=1

\oint 
\partial Dk

Im
\Bigl[ \Bigl( 

\Omega (z) - \Omega (z)
\Bigr) 
\Omega \prime (z)zs

\Bigr] 
+wkRe

\Bigl[ 
1 - e\Omega (z) - \Omega (z)e2i\phi k

\Bigr] 
ds,(2.9)

where the bar denotes a complex conjugate, and the surface traction on the kth body,
\^\bfitt k \equiv (\^txk, \^t

y
k) given by (2.4), satisfies

\^txk  - i\^tyk =
1

2i
\Omega \prime (z)2zs +

wk

8

\Bigl[ \Bigl( 
2 + e - 2i\phi ke\Omega (z) - \Omega (z)  - 3e2i\phi ke\Omega (z) - \Omega (z)

\Bigr) 
\=zs

\Bigr] 
s
.(2.10)

Integrating the traction around \partial Dk yields the net dimensionless force, ( \^F x
k ,

\^F y
k ), and

torque, \^Tk, acting on the kth body:

\^F x
k  - i \^F y

k =

\oint 
\partial Dk

\^txk  - i\^tykds=
1

2i

\oint 
\partial Dk

\Omega \prime (z)2dz,(2.11a)

\^Tk =

\oint 
\partial Dk

(x - xk)\^t
y
k  - (y - yk)\^t

x
kds=

1

2
Re

\biggl[ \oint 
\partial Dk

(z  - zk)\Omega 
\prime (z)2dz

\biggr] 
+\Upsilon k,(2.11b)

where zk = xk + iyk is the center of torque of the kth body.
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2481

3. Analytical solutions for two immersed bodies. In this section, we con-
sider the interaction of two immersed bodies (N = 2). The liquid crystal is assumed to
be oriented with the x-axis in the far-field and subject to finite tangential anchoring on
both \partial D1 and \partial D2, with dimensionless anchoring strengths w1 and w2, respectively;
that is, \Omega (z)\rightarrow 0 as | z| \rightarrow \infty and \Omega (z) satisfies (2.8) with \phi k = arg(zs) mod \pi .

We first show that the two bodies appear as equal and opposite topological charges
in the far-field, and that their periods similarly sum to zero. Consider the contour
integral

\oint 
C
d\Omega for a closed contour C which encircles both bodies. Since \Omega \prime (z) is holo-

morphic in D, the contour can be deformed within D via Cauchy's integral theorem.
By taking the contour to infinity and imposing the far-field condition, \Omega (z) \rightarrow 0 as
| z| \rightarrow \infty , we find that the integral vanishes and, thus, \Omega is single-valued outside the
two bodies. However, \Omega may be multivalued along contours that pass between the
bodies. It follows that the period of \Omega around \partial D1 must be the additive inverse of
the period around \partial D2, i.e., \Upsilon := \Upsilon 1 =  - \Upsilon 2 and M := M1 =  - M2 in (2.7). The
two bodies, thus, appear as topological defects of charge M1 =M and M2 =  - M in
the far-field. We shall focus our attention on the case M = 0 since this is known to
minimize the free energy for an isolated body [12].

At large anchoring strengths, subjecting a director field to finite-strength tangen-
tial anchoring on a boundary \partial Dk (i.e., (2.8) with \phi k = arg(zs) mod \pi ) is asymptoti-
cally equivalent to subjecting it to strong (exact) tangential anchoring on an effective
interior boundary \partial Dw

k , i.e.,

Im
\Bigl[ 
e\Omega (z)zs

\Bigr] 
=\scrO (1/w3

k) on \partial Dw
k ,(3.1)

as wk \rightarrow \infty [12]. The effective (or virtual) boundary, \partial Dw
k , is found by displacing the

physical boundary, \partial Dk, by  - \^\bfitnu k(s)/wk  - \^\bfits \prime k(s)/(2w
2
k) +\scrO (1/w3

k). This asymptotic
equivalence was termed the ``effective boundary technique"" [12].

Analytical progress can be made by writing the complex director as

\Omega (z) = log f \prime (z) + g(z),(3.2)

where g(z) is any locally holomorphic function that accounts for the periods in (2.7),
i.e., \oint 

\partial D1

dg=\Upsilon and

\oint 
\partial D2

dg= - \Upsilon ,(3.3a,b)

and f \prime (z) is a single-valued holomorphic function that accounts for the boundary con-
ditions (3.1). Without loss of generality, we may choose g(z) such that its imaginary
part vanishes on \partial Dw

1 and is constant on \partial Dw
2 . The boundary conditions for f(z)

then follow from integrating (3.1) with respect to arc length. Together these yield the
following problem: find functions f(z) and g(z) such that

g(z) locally holomorphic in Dw,(3.4a)

Img(z) = 0 on \partial Dw
1 ,(3.4b)

Img(z) = \alpha on \partial Dw
2 ,(3.4c)

g(z)\rightarrow i\beta as | z| \rightarrow \infty ,(3.4d)

with periods (3.3) and real constants \alpha and \beta , which are to be determined, and

f(z) locally holomorphic in Dw,(3.5a)

Imf(z) = 0 on \partial Dw
1 ,(3.5b)

Im
\bigl[ 
ei\alpha f(z)

\bigr] 
=C on \partial Dw

2 ,(3.5c)

f(z)\sim e - i\beta z as | z| \rightarrow \infty ,(3.5d)
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2482 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

for some unknown constant C. Here, we have fixed the gauge of f such that the
constant in (3.5b) vanishes. A unique solution is selected by specifying the period of
f around each body, i.e.,\oint 

\partial Dw
1

df =\Gamma 1 and

\oint 
\partial Dw

2

ei\alpha df =\Gamma 2,(3.6)

for real periods \Gamma 1 and \Gamma 2.
By an extension of the Riemann mapping theorem for multiconnected domains

(due to Koebe, see discussion in [30]), there exists a conformal map, z = h(\zeta ), from
the doubly connected effective domain z \in Dw to the annulus q \leq | \zeta | \leq 1, with \partial Dw

1

mapped onto | \zeta | = 1, \partial Dw
2 onto | \zeta | = q, and z =\infty to an interior point \zeta = \zeta \infty such

that z = h(\zeta )\sim C\infty /(\zeta  - \zeta \infty ) as \zeta \rightarrow \zeta \infty . According to the Riemann mapping theorem,
there are three real degrees of freedom for any conformal map of a simply connected
domain. In the case of a doubly connected domain, however, two of these degrees
of freedom are needed to ensure the annulus is concentric. Thus, only a rotational
degree of freedom remains, which we use to place \zeta = \zeta \infty on the positive real axis, so
that 0< q < \zeta \infty < 1. The remaining parameters q, \zeta \infty , and C\infty are dependent on the
geometry and positions of the two bodies and must be determined.

In the \zeta -plane, the two potentials G(\zeta ) := g(z(\zeta )) and F (\zeta ) := f(z(\zeta )) satisfy

G(\zeta ) locally holomorphic in q < \zeta < 1,(3.7a)

ImG(\zeta ) = 0 on | \zeta | = 1,(3.7b)

ImG(\zeta ) = \alpha on | \zeta | = q,(3.7c)

G(\zeta ) = i\beta at \zeta = \zeta \infty ,(3.7d)

with periods
\oint 
| \zeta | =1

dG= - \Upsilon and
\oint 
| \zeta | =q

dG= - \Upsilon and

F (\zeta ) locally holomorphic in q < \zeta < 1,(3.8a)

ImF (\zeta ) = 0 on | \zeta | = 1,(3.8b)

Im
\bigl[ 
ei\alpha F (\zeta )

\bigr] 
=C on | \zeta | = q,(3.8c)

F (\zeta )\sim C\infty e - i\beta /(\zeta  - \zeta \infty ) as \zeta \rightarrow \zeta \infty ,(3.8d)

with periods
\oint 
| \zeta | =1

dF = - \Gamma 1 and
\oint 
| \zeta | =q

ei\alpha dF =\Gamma 2.

The analytical solution to (3.7) and (3.8) can be found by using the method of
images to construct functions akin to generalized Green's functions [17]. The full
derivation is provided in section SM1 in the supplemental material. We find that

G(\zeta ) = - \Upsilon 

2\pi i
log \zeta ,(3.9)

which yields the constants \alpha =\Upsilon log q/(2\pi ) and \beta =\Upsilon log \zeta \infty /(2\pi ), and

F (\zeta ) =
C\infty e - i\beta 

\zeta \infty 
K(\zeta /\zeta \infty ) - C\infty ei\beta 

\zeta \infty 
K(\zeta \infty \zeta )

 - \Gamma 1

2\pi i
log

P (\zeta /\zeta \infty )

P (\zeta \infty \zeta )
 - \Gamma 2e

 - i\alpha 

2\pi i
log

P (\zeta /\zeta \infty )

P (\zeta \infty \zeta /q2)
,

(3.10)
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2483

where

P (\zeta ) := (1 - \zeta )

\infty \prod 
k=1

(1 - q2k\zeta )e
2ki\alpha 

(1 - q2k/\zeta )e
 - 2ki\alpha 

,(3.11a)

and K(\zeta ) :=
\zeta P \prime (\zeta )

P (\zeta )
=

\zeta 

\zeta  - 1
+

\infty \sum 
k=1

\biggl( 
e - 2ki\alpha q2k

\zeta  - q2k
 - q2ke2ki\alpha 

1/\zeta  - q2k

\biggr) 
.(3.11b)

Note that, since 0 < q < \zeta \infty < 1, this infinite product and summation converge
absolutely within the annulus, and only a few terms are needed to obtain accurate
approximations. The solution (3.10) can be understood as follows: the first two terms
account for the pole at \zeta = \zeta \infty by introducing an infinite cascade of images across
the two body boundaries, | \zeta | = 1 and | \zeta | = q, and the final two terms account for the
periods around the two bodies by introducing logarithmic cuts between \zeta = \zeta \infty and
\zeta = 1/\zeta \infty (i.e., across | \zeta | = 1) and \zeta = \zeta \infty and \zeta = q2/\zeta \infty (i.e., across | \zeta | = q).

With these two potentials, the complex director angle is

\Omega (z) = log f \prime (z) + g(z) = log [F \prime (\zeta )/h\prime (\zeta )] - \Upsilon log \zeta /(2\pi i),(3.12)

where \zeta = h - 1(z) and

F \prime (\zeta ) =C\infty 
e - i\beta 

\zeta 2\infty 
K \prime (\zeta /\zeta \infty ) - C\infty ei\beta K \prime (\zeta \infty \zeta ) +

\Gamma 2e
 - i\alpha 

2\pi i\zeta 

+
\Gamma 1 +\Gamma 2e

i\alpha 

2\pi i\zeta 
K(\zeta \infty \zeta ) - \Gamma 1 +\Gamma 2e

 - i\alpha 

2\pi i\zeta 
K(\zeta /\zeta \infty ).

(3.13)

The above expression has been simplified using the identity P (\zeta /q2) = - \zeta P (\zeta )e
2i\alpha 

/q2.
Finally, the director angle is given by \theta =  - Im\Omega (z), and the free energy, surface
tractions, body forces, and body torques are computed by inserting (3.12) into (2.9)--
(2.11). Analyzing these solutions further, however, requires the specification of the
physical domain (i.e., the conformal map h(\zeta )). We therefore proceed to consider two
concrete examples: two interacting circular cylinders and two interacting triangular
prisms. Following these, we will provide a more general analytical perspective which
is available when the bodies are well separated.

4. Example 1: Two cylinders with tangential anchoring. Consider a liq-
uid crystal outside two immersed cylinders, one centered at z = 0 with dimensionless
unit radius, and the other centered at z = dei\chi with dimensionless radius b. We
denote the boundaries of these cylinders as \partial D1 and \partial D2, respectively. The liquid
crystal is assumed to be oriented with the x-axis in the far-field and is subject to
finite tangential anchoring on each cylinder: \Omega (z)\rightarrow 0 as | z| \rightarrow \infty and \Omega (z) satisfies
(2.8) with \phi = arg(zs) mod \pi on the surfaces | z| = 1 and | z - dei\chi | = b. We shall also
assume that both cylinders have vanishing topological charge, i.e.,

\oint 
\partial Dk

d\theta = 0. This
configuration is plotted in Figure 2.

For large anchoring strengths (i.e., w1 \gg 1 and w2 \gg 1), the effective bound-
ary technique may be implemented and the solutions derived in section 3 may be
used. The first step is to find the effective boundaries corresponding to the two cylin-
ders, | z| = 1 and | z  - dei\chi | = b. In [12], we showed that the effective boundary
corresponding to a unit cylinder with anchoring strength w is a cylinder of radius
| z| = \rho (w) := (

\sqrt{} 
1 + 4/w2  - 2/w)1/2. This effective boundary is not only consistent
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2484 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

Fig. 2. Example 1. Two-dimensional liquid crystal outside a unit cylinder centered at z = 0 and
a cylinder of radius b centered at z = dei\gamma (\partial D1 and \partial D2, black solid curves). The effective domain
boundaries are shrunken cylinders of radii \rho (w1) and b\rho (bw2), respectively (\partial Dw

1 and \partial Dw
2 , black

dotted curves). Integral curves of the director field are shown in blue for w1 = w2 = 10, d = 2.75,
b = 0.5, \chi = \pi /6, and using numerically determined energy-minimizing periods: \Gamma \mathrm{m}\mathrm{i}\mathrm{n}

1 \approx  - 0.3097,
\Gamma \mathrm{m}\mathrm{i}\mathrm{n}
2 \approx 0.3786, and \Upsilon \mathrm{m}\mathrm{i}\mathrm{n} = - 0.0225.

with the asymptotic expression in (3.1) for large w, but it in fact holds for all an-
choring strengths (i.e., w\geq 0). It follows that, here, a suitable choice for the effective
boundaries of the two cylinders is | z| = \rho (w1) and | z  - dei\chi | = b\rho (bw2), which we
denote as \partial Dw

1 and \partial Dw
2 , respectively.

The next step is to find a conformal map, z = h(\zeta ), which maps the effective
domain z \in Dw to the annulus q\leq | \zeta | \leq 1. Consider the M\"obius transformation,

z = h(\zeta ) = \rho (w1)e
i\chi \zeta \infty \zeta  - 1

\zeta  - \zeta \infty 
.(4.1)

This map is a composition of three conformal maps: Z := ze - i\chi /\rho (w1) rotates and
expands the domain so that the primary cylinder is of unit size and the secondary
cylinder lies on the positive real axis; \eta := 1/Z reflects the exterior of the unit cylinder
into the interior; and \eta := (\zeta  - \zeta \infty )/(\zeta \infty \zeta  - 1) is an automorphism of the unit disc,
which centers the eccentric circles. Without loss of generality, we place \zeta \infty on the
positive real axis. The resulting transformation, (4.1), maps z =\infty onto \zeta = \zeta \infty and
\partial D1

w onto | \zeta | = 1, while \zeta \infty and q are chosen such that \partial Dw
2 is mapped onto | \zeta | = q.

Using the results of section 3, the complex director angle, \Omega = \tau  - i\theta , is given
by the expression (3.12) with \zeta = h - 1(z) = (\zeta \infty z  - \rho (w1)e

i\chi )/(z  - \zeta \infty \rho (w1)e
i\chi ) and

C\infty = - (1 - \zeta 2\infty )\rho (w1)e
i\chi . The three periods in (3.12), i.e., \Gamma 1, \Gamma 2, and \Upsilon , still remain

unknown. Determining these requires the computation and minimization of the free
energy (2.9). Before we address this, however, it is useful to analyze the singularities
of \Omega (z) (i.e., the topological defects) within the effective domain, Dw.

4.1. Topological defects. The director field corresponding to (3.12) does not
contain defects in the fluid domain since \Omega (z) is analytic by construction. There are,
however, two  - 1 defects on the boundary of each effective cylinder, that is,

\Omega (z)\sim log
\Bigl[ 
z  - \rho (w1)e

ia\pm 
1

\Bigr] 
as z\rightarrow \rho (w1)e

ia\pm 
1 ,(4.2a)

and \Omega (z)\sim log
\Bigl[ 
z  - dei\chi  - b\rho (bw2)e

ia\pm 
2

\Bigr] 
as z\rightarrow dei\chi + b\rho (bw2)e

ia\pm 
2 ,(4.2b)
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2485

for some real constants a\pm 1 and a\pm 2 . These defects tend to points on the body surfaces
in the limits as \rho (w1 \rightarrow \infty ) \rightarrow 1 and \rho (bw2 \rightarrow \infty ) \rightarrow 1. Furthermore, we will show
that their positions (i.e., the arguments a\pm 1 and a\pm 2 ) are of the utmost importance
for understanding body interactions within the liquid crystal, and we shall refer to
these as ``effective-boundary defects."" (Note that there are in fact a countably infinite
number of ``defects"" within the two cylinders, corresponding to the singularities of
the analytical continuation of \Omega (z) within | z| \leq \rho (w1) and | z - dei\chi | \leq b\rho (bw2). These
singularities are the images of the above four effective-boundary defects and \zeta = \zeta \infty 
across | \zeta | = 1 and | \zeta | = q---a consequence of the method of images.)

For a single immersed body, in [12], we showed that the positions of two effective-
boundary defects are set by a single unknown period \Gamma , which is determined by
minimizing the free energy of the liquid crystal. Analogously, here the positions
of the four effective-boundary defects are set by minimizing the energy for the three
unknown periods, \Gamma 1, \Gamma 2, and \Upsilon . By inserting the Schwarz functions of the two
circles, \=z = S1(z) = 1/z for \partial D1 and \=z = S2(z) := de - i\chi + b2/(z  - dei\chi ) for \partial D2,
into the expression (2.9) with ei\phi k = zs = 1/

\sqrt{} 
S\prime 

k(z), the net free energy appears
as the real part of a sum of two closed contour integrals (corresponding to the two
bodies). These integrals are computed numerically in order to determine the energy-
minimizing values \Gamma 1 = \Gamma min

1 , \Gamma 2 = \Gamma min
2 , and \Upsilon = \Upsilon min, which we pursue using the

Nelder--Mead simplex search method (fminsearch in MATLAB) [40]. Figure 2 shows
integral curves of the energy-minimizing director field in blue for the given physical
configuration, while the effective-boundary defects are shown as red dots. A loss of
symmetry due to the two bodies is apparent.

When the two effective cylinders have equal radii (i.e., \rho (w1) = b\rho (bw2), for exam-
ple when b= 1 and w1 =w2), the domain is symmetric across the line y sin\chi = - x cos\chi 
and one finds that \zeta \infty =

\surd 
q. After minimizing the energy, the positions of the effective-

boundary defects are also found to be symmetrically located with \Gamma min
1 = - \Gamma min

2 and
\Upsilon min = 0. The complex director angle, (3.12), then takes the simplified form

\Omega (z) = log

\Biggl( \infty \sum 
k= - \infty 

\biggl[ 
q2k

(\zeta  - q2k\zeta \infty )2
 - q2ke - 2i\chi 

(\zeta \infty \zeta  - q2k)2

\biggr] 
+

ie - i\chi Gmin

\zeta 

\Biggr) 
+ 2 log (\zeta  - \zeta \infty ) ,

(4.3)

where \zeta (z) = h - 1(z) = (\zeta \infty z  - \rho (w1)e
i\chi )/(z  - \zeta \infty \rho (w1)e

i\chi ) and \Gamma min
1 =  - \Gamma min

2 =
2\pi (1 - \zeta 2\infty )\rho (w1)G

min.

4.2. Body forces and symmetry breaking configurations. Changing the
body positions results in a change in the total elastic energy stored in the fluid---
external forces are, thus, required to keep the bodies fixed in place. The force acting
on a body is found by integrating \Omega \prime (z)2/(2i) around a closed contour containing
it, i.e., (2.11a). Integrating around a closed contour containing both bodies yields
the total force acting on the system, but since \Omega (z) \sim 0 as | z| \rightarrow \infty , this integral
must vanish [12]. It follows that the force acting on one of the cylinders is equal and
opposite to the force acting on the other cylinder, i.e., ( \^F x

2 ,
\^F y
2 ) =  - ( \^F x

1 ,
\^F y
1 ). We

compute this force using adaptive quadrature in MATLAB.
The force acting on \partial D2 is plotted in the phase portrait in Figure 3(a) for b= 1,

w1 = w2 = 10, and the numerically determined energy-minimizing periods \Upsilon min =
0 and \Gamma min

1 =  - \Gamma min
2 . Furthermore, three examples of the forces on the cylinders

at different body configurations, as well as the quasi-static liquid crystal director
field, are presented in Figure 3 1 -- 3 . If the line of centers between the particles is
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2486 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

(a) (b)

Fig. 3. Example 1. (a) A contour plot showing the dimensionless net force, ( \^F 2
x ,

\^F 2
y ), acting

on a cylinder placed at | z  - dei\chi | = b due to a unit cylinder at z = 0 for w1 = w2 = 10, b = 1, and
energy-minimizing periods \Gamma \mathrm{m}\mathrm{i}\mathrm{n}

1 =  - \Gamma \mathrm{m}\mathrm{i}\mathrm{n}
2 and \Upsilon \mathrm{m}\mathrm{i}\mathrm{n} = 0. Arrows denote the direction of the force

and color denotes the magnitude, | \^F 2
x  - i \^F 2

y | . The cylinder cannot be placed inside | z| = 1 + b = 2
(dashed curve) due to the unit cylinder at z = 0 (solid curve). (b) The dimensionless net force acting
on inline cylinders (\chi = 0) is shown as solid lines for the energy-minimizing periods and dashed
lines for vanishing periods (\Gamma 1 = \Gamma 2 = \Upsilon = 0). These solutions diverge as d decreases, resulting
in a supercritical pitchfork bifurcation. The multiple energy-minimizing states are delineated by the
white dashed lines in (a). In 1 -- 3 , the integral curves of the director field are shown as blue curves
for dei\chi = 3i, 5, and 4, while the direction of the force acting on the two cylinders is shown by the
red arrows.

either parallel or antiparallel to the alignment axis, the bodies experience a repulsion
from one another, provided they are sufficiently separated (Figure 3 1 -- 2 ). But
this interaction is unstable to symmetry breaking perturbations. For instance, if
the angle between the body centers is small, but nonzero, body forces would seek
to increase this angle. Additionally, when the cylinders are inline (\chi = 0 or \pi ),
the energy-minimizing configuration undergoes a supercritical pitchfork bifurcation
as the separation distance, d, decreases; this is delineated by the white dashed line in
Figure 3(a) and is shown explicitly in Figure 3(b). This bifurcation is a result of the
effective-boundary defects transitioning from being up-down symmetric (Figure 3 2 )
to being off-axis (Figure 3 3 ). Setting \Upsilon = \Gamma 1 = \Gamma 2 = 0, instead of minimizing the
energy, fixes the locations of the defects to always be up-down symmetric, resulting
in the cylinders being repulsive at all separation distances---see the dashed line in
Figure 3(b). This symmetry breaking, and associated snapping from repulsion to
attraction, has been observed for spheres with tangential anchoring as well [80, 88].

If the bodies were free to move (and the relaxation time of the liquid crystal was
sufficiently small so that a quasi-static approximation could be made), the cylinders
would eventually attract each other along a path diagonal to the preferred orientation
of the liquid crystal. Thus, while spheres with strong tangential anchoring have been
found to align experimentally at a 30\circ offset from the alignment axis [65, 63, 80],
cylinders are predicted to align at a 45\circ offset. More generally, the offset angle of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2487

Fig. 4. Example 2. Two-dimensional liquid crystal outside two triangles with corners at the
roots of z3 = e3i\chi 1 and (z  - dei\chi )3 = b3e3i\chi 2 (\partial D1 and \partial D2, black solid lines). The effective
domain boundaries are similar triangles with corners at the roots of z3 = (1  - 2/w)3e3i\chi 1 and
(z  - dei\chi )3 = (b - 2/w)3e3i\chi 2 (\partial Dw

1 and \partial Dw
2 , black dotted lines). Integral curves of the director

field are shown in blue for w = 10, d = 2.5, b = 0.75, \chi 1 = \pi /3, \chi 2 = \pi /6, \chi = \pi /6, and energy-
minimizing periods: \Gamma \mathrm{m}\mathrm{i}\mathrm{n}

1 = 0.00, \Gamma \mathrm{m}\mathrm{i}\mathrm{n}
2 = 2.41, and \Upsilon \mathrm{m}\mathrm{i}\mathrm{n} = - 0.01.

stable configuration is dependent on the anchoring strengths and the ratio of cylinder
radii, b. For example, when w1 = w2 = 10 and b = 1 (as pictured in Figure 3) the
stable configurations are at a much smaller offset angle of approximately 8\circ . This
is substantially smaller than the chaining angle observed in two dimensions for two
sharp bodies [19], suggesting that corners, which promote defect repositioning, can
have an outsized effect. Fixing the locations of the defects, instead of minimizing the
energy for their locations, results in a comparable offset angle.

At large separation distances, the bodies only weakly interact and the force ap-
pears to resemble an asymptotic pole of the form

\^F x
1  - i \^F x

1 = - \^F x
2 + i \^F x

2 \sim  - C/
\bigl( 
dei\chi 

\bigr) 5
as d\rightarrow \infty (4.4)

for some C > 0, which is consistent with previous work on far-field quadrupolar
interactions in a nematic liquid crystal [42]. We will return to this topic for arbitrary
particle shapes and sizes in section 6, but first we explore a second example.

5. Example 2: Two triangles with tangential anchoring. In this section,
we consider two equilateral triangles, one with corners at the roots of z3 = e3i\chi 1 and
the other with corners at the roots of (z - dei\chi )3 = b3e3i\chi 2 . We denote these triangles
as \partial D1 and \partial D2, respectively. As before, the liquid crystal is assumed to be oriented
with the x-axis in the far-field and subject to finite tangential anchoring on each
triangle. Both triangles are also assumed to have vanishing topological charge, i.e.,\oint 
\partial Dk

d\theta = 0. This configuration is plotted in Figure 4.
Here we again make use of the effective boundaries, internal to the physical bound-

aries, upon which the anchoring is strong (i.e., perfect tangential anchoring). Since an-
gles are preserved under the effective boundary technique, the triangle \partial D1 is mapped
to a similar triangle with corners at the roots of z3 = (1  - 2/w1)

3e3i\chi 1 [12], which
we denote as \partial Dw

1 . Likewise, the triangle \partial D2 is mapped to a similar triangle with
corners at the roots of (z - dei\chi )3 = (b - 2/w2)

3e3i\chi 2 , which we denote as \partial Dw
2 . These

effective triangles are shown in Figure 4 as dotted lines.
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2488 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

Next, we seek a conformal map, z = h(\zeta ), that maps the effective domain z \in Dw

onto the annulus q \leq | \zeta | \leq 1. This is achieved by using an extension to the Schwarz--
Christoffel mapping for multiply connected polygonal domains [16]. The mapping
takes the form

z = h(\zeta ) =A+B

\int \zeta 
\prod 3

k=1

\bigl[ 
P0(s/a

k
1)P0(s/a

k
2)
\bigr] 2/3\bigl[ 

sP0(s/\zeta \infty )P0(s\=\zeta \infty )
\bigr] 2 ds,(5.1)

where A and B are complex constants and

P0(\zeta ) := (1 - \zeta )

\infty \prod 
k=1

(1 - q2k\zeta )(1 - q2k/\zeta ),(5.2)

i.e., (3.11a) with \alpha = 0. Here, \zeta = \zeta \infty is the image of z = \infty and \zeta = ak1 and \zeta = ak2
are the images of the corners of \partial Dw

1 and \partial Dw
2 on | \zeta | = 1 and | \zeta | = q, respectively.

Without loss of generality, we shall place \zeta = \zeta \infty on the positive real axis by setting the
rotational degree of freedom of the annulus. The remaining 12 accessory parameters
(A, B, q, argakj , and | \zeta \infty | ) are determined by ensuring the six vertices are mapped
correctly.

Determining the accessory parameters of a Schwarz--Christoffel mapping is itself
a challenging problem [22], and we will turn to numerical techniques. The MATLAB
toolbox plgcirmap [58] computes the conformal mapping from a given multiply con-
nected polygonal domain onto a circular domain. We use this package to compute
the mapping from the effective domain, z \in Dw, onto an auxiliary domain outside
two circular cylinders, | \eta | = r1 and | \eta  - DeiX | = r2, while preserving orientation at
infinity, i.e., z \sim \eta + \scrO (1/\eta ) as | \eta | \rightarrow \infty . Here, r1, r2, D, and X are numerically
determined real numbers. We then apply a M\"obius transformation that maps this
auxiliary domain onto the annulus q\leq | \zeta | \leq 1, that is,

\eta (\zeta ) = r1e
iX \zeta \infty \zeta  - 1

\zeta  - \zeta \infty 
,(5.3)

where \zeta \infty and q are chosen such that | \eta  - DeiX | = r1 is mapped onto | \zeta | = q---this
final mapping is analogous to (4.1). The composition of these two conformal maps is
equivalent to computing the Schwarz--Christoffel mapping (5.1), by the uniqueness of
conformal mappings [1, 30].

5.1. Topological defects. Equipped with the above conformal map, the com-
plex director angle, \Omega (z) = \tau (x, y) - i\theta (x, y), can be expressed as (3.12) with C\infty =
 - r1e

iX(1 - \zeta 2\infty ). By construction, \Omega (z) is analytic outside \partial Dw
1 and \partial Dw

2 , thus there
are no topological defects in the fluid domain. However, defects appear at the corners
of the effective triangles (a consequence of the Schwarz--Christoffel mapping), as well
as two additional  - 1 defects on each effective boundary. These ``effective-boundary
defects"" are akin to those found for the two immersed cylinders, (4.2), and their po-
sitions are controlled by the three periods, \Gamma 1, \Gamma 2, and \Upsilon . As before, these periods
are determined by numerical minimization of the free energy, (2.9). This is achieved
by parameterizing each side of the triangle and evaluating the integral and conformal
map numerically for given b, d, \chi , \chi 1, \chi 2, w1, w2, \Gamma 1, \Gamma 2, and \Upsilon . The resulting energy
is then minimized to determine \Gamma 1 =\Gamma min

1 , \Gamma 2 =\Gamma min
2 , and \Upsilon =\Upsilon min.

An example of a director field found in the manner above is shown as blue curves
in Figure 4, while the effective-boundary defects are shown as red dots. Note that
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2489

three defects are located at the corners of the effective boundaries, while the fourth
sits along one straight edge. Corners are natural locations for topological defects to
reside in order to reduce the total elastic energy in the liquid crystal, just as the Kutta
condition selects the circulation (by the placement of a surface stagnation point at
a sharp edge) in potential flow theory [12]. In general, the final effective-boundary
defect is not found at a corner due to the constraint of horizontal alignment in the
far-field. Thus, one triangle is allowed to have both defects at corners (with three
possible pairs) and the other triangle is only allowed one defect at a corner (again,
with three possible choices). Each of the 3 \times 3 \times 2 = 18 possible combinations of
corners for the effective-boundary defects to be located correspond to local energy-
minimizing configurations. Determining precisely which three corners yield the global
energy minimum requires direct comparison. The liquid crystal configuration around
a single regular polygon has also been studied using a reduced Landau--de Gennes
framework [35, 34].

In the case shown in Figure 4, the three corners that provide a global energy
minimum as w1,w2 \rightarrow \infty are the three closest to the horizontal axes passing through
the triangle centers (i.e., the preferred alignment of the liquid crystal). This heuristic
has at least appeared valid at large separation distances, d, and holds asymptotically
as d \rightarrow \infty (see section 6.6 and section SM2 in the supplemental material). Thus,
the defect locations are predominantly dependent on the orientations of each triangle,
i.e., \chi 1 and \chi 2. Denoting the six corners of the two effective triangles as \^ck = (1 - 
2/w1)e

i\chi 1e2i\pi k/3 and \^Ck = dei\chi + (b  - 2/w2)e
i\chi 2e2i\pi k/3 for k \in \{  - 1,0,1\} , we find

that the three select corners are delineated by the parameter-space plot in Figure 5.

Fig. 5. Example 2. Plot of the triangles' orientation (\chi 1, \chi 2)-space showing the three triangle
corners at which an effective-boundary defect is located in the strong anchoring limit, w1,w2 \rightarrow \infty .
Here, the black solid lines partition the parameter space, while \^ck = (1  - 2/w1)ei\chi 1e2i\pi k/3 and
\^Ck = dei\chi +(b - 2/w2)ei\chi 2e2i\pi k/3 with k \in \{  - 1,0,1\} denote the six corners of the effective triangles.

Color is proportional to the asymptotic torques \^T1 \sim  - \^T2 as d \rightarrow \infty , as defined in (6.27). These
torques drive the triangles to individually rotate until they are either pointed upward (\gamma k = - \pi /6) or
downward (\gamma k = \pi /6). In 1 -- 3 , the integral curves of the director field outside triangles oriented
at the labeled angles are shown as blue curves, while the effective-boundary defects are shown as red
dots, for w= 100, d= 5, b= 1, \chi = \pi /4, and energy-minimizing periods: \Gamma 1 =\Gamma \mathrm{m}\mathrm{i}\mathrm{n}

1 , \Gamma 2 =\Gamma \mathrm{m}\mathrm{i}\mathrm{n}
2 , and

\Upsilon =\Upsilon \mathrm{m}\mathrm{i}\mathrm{n}.
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2490 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

For example, if \chi 1 = \pi /3 and \chi 2 = \pi /6, then the three effective-boundary defects are
located at \^c1, \^C0, and \^C1, as shown in Figure 4 by the red dots. (Note that 6 out of the
18 possible corner combinations are never global energy minima.) For finite anchoring
strengths, the sharp transitions between the 12 regions in Figure 5 are smoothed out,
with the defects lying close to, but not exactly at, the corresponding corners [12].

5.2. Body forces and torques. As in our first example, the dimensionless net
force and torque exerted on each of the triangles can be computed by evaluating the
contour integrals in (2.11). Since \Omega \prime (z)2 is analytic outside the effective triangles,
the integration contours can be freely deformed within the liquid crystal bulk. As
before, it follows that the force acting on each triangle is equal and opposite, i.e.,
( \^F x

2 ,
\^F y
2 ) =  - ( \^F x

1 ,
\^F y
1 ). We compute the forces and torques integrals using adaptive

quadrature in MATLAB.
The torques acting on each body desire to rotate the triangles until one of their

sides is aligned with the preferred axis of the liquid crystal (i.e., the horizontal,
\chi k = \pm \pi /6). Furthermore, the equal and opposite forces acting on each body want
the triangles to rotate around a midpoint until they are horizontally (\chi = 0 or \pi )
or vertically (\chi =\pm \pi /2) aligned. These observations suggest that if the bodies were
free to move and the relaxation time of the liquid crystal was sufficiently small, then
the two triangles would ultimately be aligned vertically or horizontally and pointed
upward or downward. Once in this configuration, the interaction force is dependent
on the triangles' orientations, as shown in Figure 6. In particular, we observe that
in line triangles (\chi = 0 or \pi ) repel each other when pointed in the same direction
(e.g., \chi 0 = \chi 1 =  - \pi /6, Figure 6(a)), but attract when oriented in opposing direc-
tions (e.g., \chi 0 =  - \chi 1 =  - \pi /6, Figure 6(b)). Inversely, parallel triangles (\chi = \pm \pi /2)
attract each other when both pointed in the same direction (e.g., \chi 0 = \chi 1 =  - \pi /6,
Figure 6(c)), but repel when oriented in opposing directions (e.g., \chi 0 =  - \chi 1 = \pi /6,
Figure 6(d)). These numerical results converge to the general far-field asymptotics
derived in section 6 as d \rightarrow \infty , in particular (6.28), as shown in Figure 6(e). This
orientation-dependent interaction between triangles has previously been observed ex-
perimentally by Lapointe, Mason, and Smalyukh [41].

More will be said about the interactions between two triangular bodies below, but
it will first be of use to examine the interactions of two bodies that are well separated
more generally.

6. Far-field interactions between two general bodies. An isolated body
immersed in a liquid crystal only locally disturbs the director field with the director
angle decaying according to \theta \sim \scrO (a/| z| ) as | z| \rightarrow \infty (a dipole) in general, where a is
a length scale associated with the body. If there is no period around the body, instead
the director field decays more rapidly, as a quadrupole, \theta \sim \scrO (a2/| z| 2) [12]. It follows
that two immersed bodies separated by a large distance will only weakly interact. In
this section, we shall analyze this weak interaction for two arbitrary bodies immersed
in a director field that is oriented with the x-axis in the far-field. The challenge comes
from the periods in (2.7). Such periods are not possible for an isolated body since
it results in a logarithmic growth in the director angle [12]. However, this can be
avoided in the case of two immersed bodies by introducing opposing periods, as in
(3.3), including the case in which the second ``body"" is an outer boundary or infinite
wall. Importantly, it is thus possible that the solution for an isolated body is not
recovered in the large separation distance limit.

We begin in section 6.1 by formally introducing the separation distance, d, by
considering the conformal map, z = h(\zeta ), which was introduced in section 3. Then, in
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2491

a b c

e

d

Fig. 6. Example 2. Integral curves of the director field outside two identical triangles held in
parallel (a), (b) with \chi = \pi /2 and series (c), (d) with \chi = 0, for d = 2, b = 1, w = 10, and energy-
minimizing periods: \Gamma 1 = \Gamma \mathrm{m}\mathrm{i}\mathrm{n}

1 , \Gamma 2 = \Gamma \mathrm{m}\mathrm{i}\mathrm{n}
2 , and \Upsilon = \Upsilon \mathrm{m}\mathrm{i}\mathrm{n}. In (a), (c) the triangles are pointing

in the same direction (\chi 1 = \chi 2 =  - \pi /6), while in (b), (d) the triangles are pointing in opposing
directions (\chi 1 =  - \chi 2 = \pi /6). The red arrows point in the direction of the force acting on each

triangle. The magnitude of the force, | \^Fx
1  - i \^F y

1 | = | \^Fx
2  - i \^F y

2 | , versus the separation distance, d, in
configurations (a)--(d) is plotted as colored curves in (e). As d increases, all four curves converge
to the asymptotic solution (6.28), which is shown as a black dashed line. The logarithmically scaled
plot is shown in the inset.

section 6.2, we derive an expansion for the director field as d\rightarrow \infty using the general
expression (3.12). Finally, in sections 6.3 and 6.4, we compute the resulting force and
torque acting on each body. These asymptotic results are applied to the two examples:
two immersed cylinders in section 6.5 and two immersed triangles in section 6.6.

6.1. Asymptotic conformal map. In section 3, we introduced the conformal
map z = h(\zeta ), which maps the doubly connected effective domain, z \in \partial Dw, to the
annulus, q\leq | \zeta | \leq 1, with \partial Dw

1 mapped to | \zeta | = 1, \partial Dw
2 mapped to | \zeta | = q, and z =\infty 

mapped to \zeta = \zeta \infty \in (q,1). By construction, this map is analytic in the annulus except
for a first-order pole at \zeta = \zeta \infty . It can, thus, be expressed as the Laurent expansion

z = h(\zeta ) =
C\infty 

\zeta  - \zeta \infty 
+

\infty \sum 
j=0

hj\zeta 
j +

\infty \sum 
j=1

Hj

\zeta j
(6.1)
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2492 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

for some complex coefficients hj and Hj . (For example, for the two cylinders consid-
ered in section 4, C\infty =  - \rho (w1)e

i\chi (1 - \zeta 2\infty ), h0 = \rho (w1)e
i\chi \zeta \infty , and hj = Hj = 0 for

j \geq 1.)
If we instead consider the two bodies as isolated, then, according to the Riemann

mapping theorem, there exist two conformal maps, z = a(\eta ) and z = A(\eta ), from the
exterior of \partial D1 and the exterior of \partial D2 to the interior of a unit circle | \eta | < 1, where
\eta is a new complex variable. These maps may always be defined such that z =\infty is
mapped to \eta = 0 and can be written as the series expansions

z = a(\eta ) =
a - 1

\eta 
+

\infty \sum 
j=0

aj\eta 
j and z =A(\eta ) =

A - 1

\eta 
+

\infty \sum 
j=0

Aj\eta 
j(6.2)

for some complex coefficients aj and Aj . In addition, since the disc has rotational
symmetry, a(\eta ) and A(\eta ) both contain a rotational degree of freedom, we shall fix
this by assuming a - 1 > 0 and A - 1 > 0. (For example, for the two cylinders consider
in section 4, a - 1 = \rho (w1), A - 1 = b\rho (bw2), a0 = 0, A0 = dei\chi , and aj = Aj = 0 for
j \geq 1.) Here, it is useful to introduce the two parameters

d := | A0  - a0| and ei\chi :=
A0  - a0
| A0  - a0| 

,(6.3a,b)

which measure the bodies' separation distance and relative argument, respectively.
As the distance between the two bodies is increased (i.e., d \rightarrow \infty ), we expect

q/\zeta \infty \rightarrow 0 and \zeta \infty \rightarrow 0. Furthermore, the conformal maps from the doubly connected
domain to the annulus, h(\zeta ), and from the doubly connected domain to the inverted
annulus, h(q/\zeta ), should recover the maps a(\eta ) and A(\eta ) up to rotational degree of
freedom. That is, h(\zeta )\sim a(eib\zeta ) and h(q/\zeta )\sim A(eic\zeta ) as d\rightarrow \infty for some b, c\in ( - \pi ,\pi ]
to be determined. Inserting the series expansions (6.1) and (6.2) yields the leading-
order balance

\infty \sum 
j=0

hj\zeta 
j +

\infty \sum 
j=1

Hj +C\infty \zeta j - 1
\infty 

\zeta j
\sim a - 1

eib\zeta 
+

\infty \sum 
j=0

aj
\bigl( 
eib\zeta 

\bigr) j
,(6.4a)

\infty \sum 
j=0

(hj  - C\infty /\zeta j+1
\infty )qj

\zeta j
+

\infty \sum 
j=1

Hj\zeta 
j

qj
\sim A - 1

eic\zeta 
+

\infty \sum 
j=0

Aj

\bigl( 
eic\zeta 

\bigr) j
,(6.4b)

as d\rightarrow \infty . Above, we have expanded the pole at \zeta = \zeta \infty using the fact that \zeta \ll \zeta \infty 
and \zeta \ll q/\zeta \infty .

Equating the series coefficients yields the asymptotic expressions for C\infty , \zeta \infty , q,
hj , and Hj as d\rightarrow \infty . The unknown rotation angles, b and c, are then set by enforcing
the requirements that q > 0 and \zeta \infty > 0, which yields b= \pi  - \chi and c= - \chi . Together,
we find that

C\infty \sim  - a - 1e
i\chi , \zeta \infty \sim a - 1

d
, q\sim a - 1A - 1

d2
,(6.5a--c)

hj \sim aj
\bigl( 
 - e - i\chi 

\bigr) j
, Hj \sim Aj

\bigl( 
qe - i\chi 

\bigr) j
,(6.5d,e)

as d\rightarrow \infty . It follows that the conformal map has three dominant behaviors,

z = h(\zeta )\sim 

\left\{     
a(\eta ) for \eta = - e - i\chi \zeta ,

A(\eta ) for \eta = qe - i\chi /\zeta ,

(A0  - a0)/(1 - \eta ) + a0 for \eta = \zeta /\zeta \infty ,

(6.6)
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ELASTIC INTERACTIONS IN A NEMATIC LIQUID CRYSTAL 2493

as d\rightarrow \infty , corresponding to the three regions: (i) local to the primary body, | \zeta | \sim 1;
(ii) local to the secondary body, | \zeta | \sim q =\scrO (1/d2); and (iii) away from both bodies,
| \zeta | \sim \zeta \infty =\scrO (1/d).

6.2. Asymptotic director field. In section 3, the horizontal liquid crystal
outside two immersed bodies was found to have a complex director angle (3.12).
Using the fact that q = \scrO (1/d2) and \zeta \infty = \scrO (1/d) as d \rightarrow \infty , i.e., (6.5), the infinite
sum in (3.11b) can be written as

K(\zeta ) = - \zeta 

1 - \zeta 
 - 

\infty \sum 
j=1

q2je2i\alpha \zeta j

1 - q2je2i\alpha 
+

\infty \sum 
j=1

q2je - 2i\alpha /\zeta j

1 - q2je - 2i\alpha 
,(6.7)

provided 1/d4 \ll | \zeta | \ll d4. Inserting this into (3.13) yields the potential expansion

F \prime (\zeta ) =
C\infty ei\beta 

(\zeta \infty \zeta  - 1)2
 - C\infty e - i\beta 

(\zeta  - \zeta \infty )2
+

1

2\pi i

\Gamma 1 +\Gamma 2e
i\alpha 

\zeta  - 1/\zeta \infty 
 - 1

2\pi i

\Gamma 1 +\Gamma 2e
 - i\alpha 

\zeta  - \zeta \infty 

+
\Gamma 2e

 - i\alpha 

2\pi i\zeta 
 - 

\infty \sum 
j=1

q2j

\zeta j+1
\infty 

\biggl( 
Fj\zeta 

j - 1  - Fj

\zeta j+1

\biggr) 
,

(6.8)

provided 1/d3 \ll | \zeta | \ll d3, with the \scrO (1)-constants

Fj :=
1

e2i\alpha  - q2j

\biggl[ 
jC\infty ei\beta +

\Gamma 1 +\Gamma 2e
i\alpha 

2\pi i
\zeta \infty 

\biggr] 
 - \zeta 2j\infty 

e2i\alpha  - q2j

\biggl[ 
jC\infty e - i\beta +

\Gamma 1 +\Gamma 2e
 - i\alpha 

2\pi i
\zeta \infty 

\biggr] 
.

(6.9)

At this point, we can distinguish the three asymptotic regions described in (6.6).
In each of these regions, the expression (6.8) can be simplified further and the cor-
responding director field, (3.12), can be computed as d\rightarrow \infty . Below we provide the
resulting complex director field at leading-order:

(i) Local to the primary body, \eta = - e - i\chi \zeta =\scrO (1), we find that

\Omega (z) = log

\biggl[ 
(1 - ei(\beta +\gamma 1)\eta )(1 + ei(\beta  - \gamma 1)\eta )

 - \eta 2a\prime (\eta )/a - 1

\biggr] 
 - i\beta  - \Upsilon 

2\pi i
log \eta +\scrO (1/d),(6.10)

with \eta = a - 1(z) + \scrO (1/d) and \beta =  - \Upsilon log(d/a - 1)/(2\pi ) + \scrO (1/d) as d \rightarrow \infty , for
\Gamma 1 = 4\pi a - 1 sin\gamma 1.

(ii) Local to the secondary body, \eta = qe - i\chi /\zeta =\scrO (1), we find that

\Omega (z) = log

\biggl[ 
(1 - ei(\delta +\gamma 2)\eta )(1 + ei(\delta  - \gamma 2)\eta )

 - \eta 2A\prime (\eta )/A - 1

\biggr] 
 - i\delta +

\Upsilon 

2\pi i
log \eta +\scrO (1/d),(6.11)

with \eta = A - 1(z) +\scrO (1/d) and \delta = \beta  - \alpha = \Upsilon log(d/A - 1)/(2\pi ) +\scrO (1/d) as d \rightarrow \infty ,
for \Gamma 2 = 4\pi A - 1 sin\gamma 2.

(iii) Away from both bodies, \eta = \zeta /\zeta \infty =\scrO (1), we find that

\Omega (z) = - \Upsilon 

2\pi i
log \eta +

\Gamma 1e
i\beta 

2\pi i

1 - \eta 

dei\chi 
+

\Gamma 2e
i\delta 

2\pi i

1/\eta  - 1

dei\chi 
+\scrO (1/d2),(6.12)

with \eta \sim (z  - A0)/(z  - a0) +\scrO (1/d2) as d\rightarrow \infty .
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2494 THOMAS G. J. CHANDLER AND SAVERIO E. SPAGNOLIE

Overall, as the separation distance increases (d\rightarrow \infty ), the director fields local to
the two bodies, (6.10) and (6.11), do not recover the director field outside an isolated
body [12]. Instead, they are coupled by an equal and opposite period \Upsilon , which induces
a logarithmic director angle away from the two bodies, that is,

\theta (z) = - Im\Omega (z)\sim log

\bigm| \bigm| \bigm| \bigm| z  - a0
z  - A0

\bigm| \bigm| \bigm| \bigm| +\scrO (1/d),(6.13)

in the far-field, i.e., (6.12). The period \Upsilon , as well as the two other periods \Gamma 1 and
\Gamma 2, also control the locations of the four effective-boundary defects (as introduced
in section 4.1); these are located on the effective bodies at z \sim a(\pm e - i(\beta \pm \gamma 1)) and
z \sim A(\pm e - i(\delta \pm \gamma 2)). Determining these three periods requires the minimization of
the free energy of the liquid crystal. This energy is given by the boundary integral
expression in (2.9), but takes the form

\^\scrE = \^\scrE 1(\Gamma 1,\Upsilon )+ \^\scrE 2(\Gamma 2,\Upsilon )+\scrO (1/d),(6.14)

as d\rightarrow \infty , where \^\scrE 1 and \^\scrE 2 are the boundary integral in (2.9) around the two bodies
\partial D1 and \partial D2 with the director angles (6.10) and (6.11), respectively. These integrals
can be evaluated and, hence, minimized for \Upsilon , \Gamma 1, and \Gamma 2 to \scrO (1/d).

6.3. Asymptotic force. The force acting on a body submerged in a liquid
crystal is given by (2.11a). Since \Omega \prime (z) is analytic within the liquid crystal, it follows
from Cauchy's integral theorem that the force acting on the primary body is equal
and opposite to the force acting on the secondary body, which can be expressed as

\^F x
1  - i \^F y

1 = - \^F x
2 + i \^F y

2 = - 1

2i

\oint 
| \zeta | =R

\biggl( 
d\Omega 

d\zeta 

\biggr) 2
d\zeta 

z\prime (\zeta )
(6.15)

for any R \in (q,1). If we take R = \zeta \infty , then we can insert the asymptotic expansion
(6.12) with \eta = \zeta /\zeta \infty ; this yields

\^F x
1  - i \^F y

1 \sim 1

8\pi 2idei\chi 

\oint 
| \eta | =1

\biggl( 
\Upsilon 

\eta 
+

\Gamma 1e
i\beta 

dei\chi 
+

\Gamma 2e
i\delta 

dei\chi 
1

\eta 2

\biggr) 2

(1 - \eta )
2
d\eta ,(6.16)

as d \rightarrow \infty . The integrand in (6.16) is analytic in | \eta | \leq 1 except for a pole at \eta = 0.
Cauchy's residue theorem, thus, yields

\^F x
1  - i \^F y

1 = - \^F x
2 + i \^F y

2 \sim  - \Upsilon 2

2\pi dei\chi 
+

\Upsilon (\Gamma 1e
i\beta +\Gamma 2e

i\delta )

2\pi (dei\chi )2
 - \Gamma 1\Gamma 2e

i(\beta +\delta )

\pi (dei\chi )3
,(6.17)

as d\rightarrow \infty , for \beta = - \Upsilon /(2\pi ) log(d/a - 1) and \delta =\Upsilon /(2\pi ) log(d/A - 1).

6.4. Asymptotic torque. The torque acting on a body submerged in the liquid
crystal is given by (2.11b). Since \Omega \prime (z) is analytic within the liquid crystal, it follows
from Cauchy's integral theorem that the torque acting on the primary body is

\^T1 =\Upsilon  - 1

2
Re

\Biggl[ \oint 
| \zeta | =R

(z(\zeta ) - a0)

\biggl( 
d\Omega 

d\zeta 

\biggr) 2
d\zeta 

z\prime (\zeta )

\Biggr] 
(6.18)

for any R \in (q,1). If we again take R = \zeta \infty , then we can insert the asymptotic
expansion (6.12); this yields

\^T1 \sim \Upsilon +
1

8\pi 2
Re

\Biggl[ \oint 
| \eta | =1

\biggl( 
\Upsilon 

\eta 
+

\Gamma 1e
i\beta 

dei\chi 
+

\Gamma 2e
i\delta 

dei\chi 
1

\eta 2

\biggr) 2

(1 - \eta )d\eta 

\Biggr] 
.(6.19)
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The integrand is again analytic in | \eta | \leq 1 except for a pole at \eta = 0. Cauchy's residue
theorem, thus, yields

\^T1 \sim \Upsilon +
\Upsilon \Gamma 1

2\pi d
sin(\chi  - \beta ) - \Gamma 1\Gamma 2

2\pi d2
sin(2\chi  - \beta  - \delta ),(6.20)

as d\rightarrow \infty . The torque on the secondary body is similarly determined to be

\^T2 \sim  - \Upsilon  - \Upsilon \Gamma 2

2\pi d
sin(\chi  - \delta ) +

\Gamma 1\Gamma 2

2\pi d2
sin(2\chi  - \beta  - \delta ),(6.21)

as d\rightarrow \infty .

6.5. Far-field interactions between two cylinders. As a first example of
far-field interactions, consider the two cylinders introduced in section 4. Here, the
asymptotic director field local to | z| = 1 and | z  - dei\chi | = b is given by (6.10) and
(6.11) with the conformal maps

z = a(\eta ) = \rho (w1)/\eta and z =A(\eta ) = dei\chi + b\rho (bw2)/\eta ,(6.22a,b)

respectively. Due to rotational symmetry of the cylinder, the energy of the liquid crys-
tal local to each body---i.e., \scrE 1(\Gamma 1,\Upsilon ) and \scrE 2(\Gamma 2,\Upsilon ) in (6.14)---is minimized when the
four effective-boundary defects, z \sim \pm \rho (w1)e

i(\beta \pm \gamma 1) and z  - dei\chi \sim \pm b\rho (bw2)e
i(\delta \pm \gamma 2),

are aligned with the preferred axis of the liquid crystal [12]. It follows that the free en-
ergy is minimized when \beta = \delta = \gamma 1 = \gamma 2 = 0, that is the periods vanish as d\rightarrow \infty ; thus,
the leading-order director fields, (6.10) and (6.11), recover the solution for an isolated
cylinder [12]. Furthermore, by considering an expansion of the free energy, we find
that, at least, \Upsilon = o(1/d), \Gamma 1 = o(1/d), and \Gamma 2 = o(1/d) as d \rightarrow \infty . Higher-order
terms are, thus, needed in (6.17) to obtain a leading-order expression for the force
acting on the cylinders.

After accounting for the higher-order terms in (6.8), we find that

\^F x
1  - i \^F y

1 = - \^F x
2 + i \^F y

2 \sim  - \Upsilon 2

2\pi dei\chi 
 - 

2i\Upsilon (a2 - 1  - A2
 - 1)

(dei\chi )
3  - 

48\pi a2 - 1A
2
 - 1

(dei\chi )
5 ,(6.23)

as d\rightarrow \infty , where a - 1 = \rho (w1)\sim 1 - 1/w1 and A - 1 = b\rho (bw2)\sim b - 1/w2 are the radii
of the two effective cylinders. When the radii of the effective cylinders equate, i.e.,
a - 1 =A - 1, the added symmetry implies that \Upsilon = 0 and \Gamma 1 = - \Gamma 2 for all separation
distances, d > 0. In this case, the asymptotic force is given by the quadrupolar
interaction (4.4) with C = 48\pi a2 - 1A

2
 - 1, which is consistent with the results presented

in Figure 3.

6.6. Far-field interactions between two triangles. As a second example,
consider the two triangular prisms explored in section 5. Here, the asymptotic director
fields local to the two triangles, \partial D1 and \partial D2, are given by (6.10) and (6.11) with
the conformal maps

z = a(\eta ) =

\biggl( 
1 - 2

w1

\biggr) 
h(e3i\chi 1\eta 3)

h(1)\eta 
,(6.24a)

and z =A(\eta ) = dei\chi +

\biggl( 
b - 2

w2

\biggr) 
h(e3i\chi 2\eta 3)

h(1)\eta 
,(6.24b)
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respectively, for the hypergeometric function h(\zeta ) = 2h1( - 2/3, - 1/3; 2/3; \zeta ). The
conformal maps a(\eta ) and A(\eta ) are Schwarz--Christoffel mappings, which map the
exterior of the effective polygon onto the unit disc [1, 12]. The corners of the effective
polygons, z = \^ck = (1 - 2/w1)e

i\chi 1e2i\pi k/3 and z = \^Ck = dei\chi + (b - 2/w2)e
i\chi 2e2i\pi k/3

for k \in \{  - 1,0,1\} , are mapped to points on the unit circle, \eta =\^bk = e - i\chi 1e - 2i\pi k/3 and
\eta = \^Bk = e - i\chi 2e - 2i\pi k/3, respectively.

For large anchoring strengths (w1,w2 \rightarrow \infty ), the energy of the liquid crystal at-
tains a local minimum when three of the four effective-boundary defects are located
at corners of the effective triangles. Furthermore, the energy is globally minimized
when the three corners are those closest to the horizontal axes passing through the
triangle centers, as delineated in Figure 5. (This observation is shown to hold asymp-
totically in section SM2 in the supplemetal material.) Since the locations of the
four effective-boundary defects are known asymptotically, i.e., z \sim a(\pm e - i(\beta \pm \gamma 1)) and
z \sim A(\pm e - i(\delta \pm \gamma 2)), one can apply a simple geometric argument to derive expressions
for the three periods as d \rightarrow \infty . Below, we present the results of this argument
assuming that | \chi 1| , | \chi 2| \leq \pi /3, without loss of generality.

If | | \chi 1|  - \pi /6| < | | \chi 2|  - \pi /6| , then the two effective-boundary defects on \partial D1 lie
at corners, while the location of the third free defect depends on the orientation of
\partial D2. It follows that

\gamma 1 = sgn(\chi 1)\pi /6, \beta = \chi 1  - sgn(\chi 1)\pi /6,(6.25a,b)

\gamma 2 =

\Biggl\{ 
\chi 2  - \delta if 0< | \chi 2| <\pi /6,

\delta  - \chi 2 + sgn(\chi 2)\pi /3 if \pi /6< | \chi 2| .
(6.25c)

Alternatively, if | | \chi 1|  - \pi /6| > | | \chi 2|  - \pi /6| , then the two effective-boundary defects on
\partial D2 lie at corners and we find that

\gamma 2 = sgn(\chi 2)\pi /6, \delta = \chi 2  - sgn(\chi 2)\pi /6,(6.26a,b)

\gamma 1 =

\Biggl\{ 
\chi 1  - \beta if 0< | \chi 1| <\pi /6,

\beta  - \chi 1 + sgn(\chi 1)\pi /3 if \pi /6< | \chi 1| .
(6.26c)

With these variables, the three periods can be computed using \Gamma 1 \sim 4\pi sin\gamma 1/a - 1,
\Gamma 2 \sim 4\pi b sin\gamma 2/A - 1, and \Upsilon \sim  - 2\pi \beta / log | d/a - 1| \sim 2\pi \delta / log | d/A - 1| , for a - 1 = (1  - 
2/w1)/h(1) and A - 1 = (b - 2/w2)/h(1). The asymptotic forces and torques are then
given by (6.17), (6.20), and (6.21).

As an example, consider the case of two identical triangles (b = 1) with large
anchoring strengths (w = w1 = w2 \gg 1). Here, the torques acting on each triangle
satisfy

\^T1 \sim  - \^T2 \sim 
2\pi 

log | d/a - 1| 

\Biggl\{ 
sgn(\chi 1)\pi /6 - \chi 1 if | | \chi 1|  - \pi /6| < | | \chi 2|  - \pi /6| ,
\chi 2  - sgn(\chi 2)\pi /6 if | | \chi 1|  - \pi /6| > | | \chi 2|  - \pi /6| ,

(6.27)

as d \rightarrow \infty , where a - 1 = (1 - 2/w)/h(1) \approx 0.73(1 - 2/w). (Note that this expression
for log | d/a - 1| \^T1/(2\pi ) is shown as the contours in the (\chi 1, \chi 2)-space in Figure 5.)
These torques drive the triangles to individually rotate until they point either upward
(\chi k =  - \pi /6) or downward (\chi k = \pi /6), with \Upsilon = 0. Critically, the torques in (6.27)
only decay proportional to 1/ logd as d\rightarrow \infty , thus one would expect the triangles to
experience a rotation even when very well separated. Once oriented with \chi k =\pm \pi /6,
the triangles interact according to the force

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\^F x
1  - i \^F y

1 = - \^F x
2 + i \^F y

2 = - sgn(\chi 1\chi 2)
4\pi a2 - 1

(dei\chi )3
+\scrO (1/d4),(6.28)

as d\rightarrow \infty , where a - 1 = (1 - 2/w)/h(1)\approx 0.73(1 - 2/w). In particular, this force rotates
the triangles around each other until they are in parallel (\chi =\pm \pi /2) or series (\chi = 0
or \pi ), depending on if they are pointed in the same direction (\chi 1 = \chi 2 =\pm \pi /6) or in
opposite directions (\chi 1 = - \chi 2 =\pm \pi /6), respectively. In either case, the triangles are
then attracted to each other, as observed in Figure 6(a), (d). It should be noted that
the magnitude of the force in (6.28) is | \^F x

1  - i \^F y
1 | \sim 4\pi a2 - 1/d

3, which is independent
of the triangle orientation. This result is compared to the full numerical solutions in
Figure 6(e), suggesting that one obtains a good approximation provided the bodies
are separated by (approximately) two body widths. Shape-dependent interactions
have indeed been observed experimentally [41, 6].

7. Conclusions. Even though the director angle in a nematic liquid crystal is
a harmonic function in the single Frank constant approximation, finding solutions
is not a simple task. Nonlinear, Robin boundary conditions provide one challenge,
but a far greater difficulty lies in the selection of topological defect locations, either
on body surfaces in the strong anchoring limit, or on effective boundaries outside
of the fluid domain for weak (finite) anchoring strengths. While this was somewhat
straightforward for a single immersed particle [12], multiple bodies demand a more
technical analysis. Fortunately, conformal mapping techniques for multiply connected
domains could be used effectively as part of this program [17].

Looking ahead, the equilibrium configuration provides a first step in the direction
of modeling the anisotropic viscous drag on moving bodies [69, 84, 45, 31] and the
dynamics of bodies immersed in active suspensions [43, 68, 98], for applications like
microrheology [32, 15] and self-assembly [99] (see also [54, 78]). Fluid anisotropy
also impacts individual bacterial trajectories [57, 105, 91, 39, 24, 82], as well as the
interactions among nearby bacteria [81]. The locations of topological defects are
of particular interest in an effort to template molecular self-assembly [96, 48], and
their tendency to reside near sharp boundary features is intriguing [6]. The solutions
presented herein may offer a degree of insight on these current scientific pursuits.

Another question of interest, but one which requires different tools to explore,
pertains to the relevance of distinct bend and splay moduli. Fortunately, these mod-
uli are comparable in common liquid crystals like PAA, 5CB, and DSCG at room
temperature [18, 8, 104], and we suspect that the changes from the present results
will be limited. Twist moduli can be substantially smaller, however, and out-of-plane
relaxation of stress is another generic possibility (see, for example, [100]) that should
be addressed.

Other open questions are of a more analytical variety. The energy change with
body rotations has also been recently considered and found to be no worse than
Lipschitz continuous in the orientation of bodies in three dimensions [2]. With defects
jumping from the corners on one body to another under rotation, as we have observed
with two triangular bodies in section 5, we conjecture that no further smoothness in
the energy will be possible to show generally.

Although our examples were restricted to the examination of two bodies, there is
nothing in the analysis presented here that does not immediately extend to a greater
number of bodies. We are eager to see these techniques used to describe many-body
elastic interactions, though it may be that the simpler far-field interactions will prove
more useful as a starting point for suspension configurations.
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