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amics of magnetocapillary
interactions

Rujeko Chinomona,a Janelle Lajeunesse,b William H. Mitchell,b Yao Yaob

and Saverio E. Spagnolie*b

Recent experiments have shown that floating ferromagnetic beads, under the influence of an oscillating

background magnetic field, can move along a liquid–air interface in a sustained periodic locomotion

[Lumay et al., Soft Matter, 2013, 9, 2420]. Dynamic activity arises from a periodically induced dipole–

dipole repulsion between the beads acting in concert with capillary attraction. We investigate analytically

and numerically the stability and dynamics of this magnetocapillary swimming, and explore other related

topics including the steady and periodic equilibrium configurations of two and three beads, and bead

collisions. The swimming speed and system stability depend on a dimensionless measure of the relative

repulsive and attractive forces which we term the magnetocapillary number. An oscillatory magnetic

field may stabilize an otherwise unstable collinear configuration, and striking behaviors are observed in

fast transitions to and from locomotory states, offering insight into the behavior and self-assembly of

interface-bound micro-particles.
1 Introduction

The last decade has seen a burst of interest in the manipulation
of colloidal particles, including applications such as tunable
smart materials and micro-scale self-assembly,1 and the
behavior of colloidal particles bound to a liquid–air interface
and forced by electric and magnetic elds.2–10 Focuses have
included particles of differing types,11–13 the dynamics of self-
assembled vesicles,14 time-dependent forcing,12,15,16 Janus
particles,17,18 self-propelled structures,19 optical effects,20 the
rate of cluster formation,21 and self-assembly on ultra-so
gels.22,23 The introduction of colloidal building blocks into so
media such as uid interfaces, nematic liquid crystals, or more
complex mesophases creates distortions of the medium which
can be used to fabricate more elaborate colloidal objects.1,24–28

Much effort has been devoted to achieving complex self-
assembly by tailoring the shape of the elementary colloidal
building blocks.27,29

In what is playfully known as the “Cheerios effect”,24,30

identical particles oating at an liquid–air interface experience
capillary forces which act to draw them together. The Cheerios
effect and similar surface-mediated aggregation have been
investigated in the context of vesiculation,31,32 colloidal occu-
lation,24,28 millimetric ecology,33,34 and the buckling and folding
dynamics of oating laments.35,36
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Colloidal suspensions, upon the introduction of another
physical force such as a magnetic eld, can exhibit surprising
behaviors and dynamics. Localized magnetic snake and aster
shapes can emerge when the colloidal suspension is conned at
the interface between two immiscible liquids and is energized
by the alternating magnetic eld.9,37 Piet et al. provided an
experimental and theoretical study of this snake–aster transi-
tion, and showed that viscosity can be used to control the
outcome of the dynamic self-assembly in magnetic colloidal
suspensions.13 If the system is well characterized theoretically,
the dominant force balance can be tuned to yield desirable
shapes. Recent examples include the use of adhesion and
delamination,38–44 and swelling and capillary interactions.45–47

In a recent experiment, Lumay et al.48 studied the peculiar
dynamics of a small number of identical oating ferromagnetic
beads, which in addition to capillary attraction also experience
dipole–dipole magnetic repulsion induced by an external
magnetic eld (see Fig. 1). A balance between the attractive
capillary forces and the repulsive magnetic forces leads to a self-
assembled equilibrium structure. Then, upon the introduction
of an oscillating magnetic eld in the plane parallel to the uid
surface, the self-assembled structure transports through the
liquid while undergoing a periodic internal dynamics. Subse-
quent efforts by the same group showed more intriguing tran-
sitions49,50 and self-assembly of magnetocapillary swimmers.51

In this paper, we investigate analytically and numerically the
equilibrium congurations of two and three beads in a constant
and an oscillatory magnetic eld, study the stability of these
congurations to small perturbations, and explore the magne-
tocapillary swimming dynamics described by Lumay et al.48
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Three paramagnetic beads afloat on a meniscus. Reproduced
from Lumay et al.,48 with permission from The Royal Society of
Chemistry.
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Swimming speeds and stability properties are determined
analytically as a function of a dimensionless measure of the
relative repulsive and attractive forces which we term the
magnetocapillary number. The uid is assumed to be suffi-
ciently viscous, or the beads sufficiently small, so that the
Stokes equations of viscous ow apply. For certain physical
parameters, an oscillatory magnetic eld is shown to stabilize
an otherwise unstable collinear conguration, and striking
behaviors are observed in fast transitions to and from propul-
sive states. In addition, large oscillatory magnetic elds can
induce bead collisions. The results may provide insight into the
behavior and self-assembly of interface-bound micro-particles.

The paper is organized as follows. The equations of motion
are described in Section 2, along with a description of the
dimensionless parameters which characterize the system, and a
note on the numerical method used. In Section 3 we describe
equilibrium states of two and more beads in the case of a xed
background magnetic eld, and we study analytically the
stability of these equilibria with the introduction of an oscilla-
tory component of the magnetic eld. In Section 4 we choose
parameters that lead to a periodic mode of locomotion, and we
study the effects of the various parameters on the mean trans-
lational velocity. We conclude with a discussion in Section 5.
2 Equations of motion and
dimensionless parameters

We begin by describing the forces acting on a system of N
negatively buoyant colloidal particles conned to an air–liquid
interface. In the case of a single oating bead, the equilibrium
shape of the interface is determined by a force balance of the
effective weight of the bead (the bead weight minus the Archi-
medean buoyancy force) and surface tension. The length scale
over which the surface exhibits signicant curvature is the
capillary length, ‘c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=Drg

p
, where g is the interfacial surface

tension, Dr is the density difference between the two uids, and
g is the acceleration due to gravity (‘c z 2 mm for an air–water
interface).52 In the case that two identical beads are oating on
the surface, the surface area energy reduces when they are
drawn nearer to each other, giving rise to an attractive force
This journal is © The Royal Society of Chemistry 2015
between them (the Cheerios effect). We denote the position of
the ith bead center by xi, the vector from the ith bead to the jth

bead by rij ¼ xj � xi, the interparticle distance by rij ¼ |rij|, and
we dene r̂ij ¼ rij/rij. The surface deformation due to the pres-
ence of the jth bead leads to an attractive force on the ith bead
given by

Fj
c ¼ 2pgāBo5/2S2K1(rij / ‘c)r̂ij, (1)

where g is the surface tension, ā is the bead radius, Bo is the
Bond number, Bo¼ (ā/‘c)

2, and K1($) is the rst modied Bessel
function of the second kind. Finally, S¼ (2d� 1)/3� cos(qc)/2 +
cos3(qc)/6, where qc is the contact angle at the bead–air–uid
interface and d is the ratio of the bead and liquid densities.30

The introduction of an external magnetic eld to the system
can lead to induced dipole–dipole repulsion or attraction
between oating paramagnetic particles. An isolated para-
magnetic bead in a uniform eld of strength H0 induces a
magnetic dipole moment m, where

m ¼ 4

3
pa3cH0; (2)

and c is the effective magnetic susceptibility. The dipole
moment associated with each particle is then given bym ¼ (4/3)
pā3cB/m0, where B is the local ux density which combines the
ux density of the external magnetic eld B0 (B0 ¼ m0H0, where
m0 is the free-space permeability), and a local dipolar compo-
nent. The resulting force on the ith bead due to the induced
dipole on the jth bead is given by

F j
m ¼� 3m0

4p

 
ðm$mÞr̂ij � 5

�
m$r̂ij

�2
r̂ij þ 2

�
m$r̂ij

�
m

rij4

!
(3)

(see ref. 53). We will consider external magnetic elds with a
constant vertical component (in the ẑ direction, perpendicular
to the uid surface) and an oscillatory horizontal component (in
the x̂ direction, parallel to the uid surface). This yields B ¼ �Bzẑ
+ �Bx sin(2p�f t)x̂, with �f the frequency of the oscillating magnetic
eld, and so the induced magnetic force may be written as

F j
m ¼ �

 
4pa6c2Bz

2

3m0

! 
F j

0 þ
 
Bx sinð2pf tÞ

Bz

!2

F j
x

!
; (4)

where

F j
0 ¼ � r̂ij

rij4
;F j

x ¼
�r̂ij þ 5

�
x̂$r̂ij

�2
r̂ij � 2

�
x̂$r̂ij

�
x̂

rij4
: (5)

As illustrated in Fig. 2, this force can induce further repul-
sion or attraction, depending on the arrangement of the beads
relative to the direction of the magnetic eld. If the beads are
aligned perpendicular to the horizontal eld, the dipole axes
will tilt in unison as shown in Fig. 2b, resulting in a slight extra
repulsion between the beads due to an increase in the magni-
tude of the total magnetic ux density |B|. However, if the beads
are aligned parallel to the horizontal eld, the magnetic dipole
axes will rotate so as to diminish the magnetic attraction
between the beads, as shown in Fig. 2c.
Soft Matter, 2015, 11, 1828–1838 | 1829



Fig. 2 Illustration of the anisotropic effect of the horizontal component of themagnetic field on two floating beads. (a) A vertical field leads to an
induced dipole–dipole repulsion. (b) A component of the magnetic field in the direction perpendicular to the line of centers between the beads
leads to a tilting of the dipole axes, leaving the bead repulsion unchanged for fixed |B|. (c) If the beads are aligned with the horizontal magnetic
field component, the tilting of the dipole axes result in a reduced repulsion, or even a magnetic attraction for sufficiently large horizontal field
amplitude Bx.
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Absent any other forces on the beads it will be shown that
locomotion is impossible, so that the viscous hydrodynamic
forces must be considered to account for the locomotion seen in
the experiments. We will consider the uid regime where the
viscous dissipation overwhelms any inertial effects (Stokes
ow).54 The Reynolds number associated with individual bead
motion through the uid is given by Re ¼ rā�f d/m, where r is the
uid density, d is a characteristic amplitude of bead displace-
ment during oscillation, and m is the uid viscosity. The uid
used in the experiments is a glycerol–water mixture, resulting a
characteristic viscosity m¼ 10�3 Pa s. The beads have radius ā¼
250 mm, the magnetic eld frequency is approximately �f ¼ 3 Hz,
and typical displacement amplitudes are d ¼ ā/5, resulting in a
small Reynolds number: Re z 0.03.

The uid ow u generated by the motion of the jth bead is
modeled through the most slowly decaying fundamental solu-
tion of the viscous Stokes equations, the Stokeslet singularity,55

u j ¼ 1

8pmrij

�
Iþ r̂ji r̂ji

T
�
$Fh; (6)

where I is the identity operator and �Fh is the viscous drag on
the jth bead. The Stokes drag law in an innite uid states that
Fh ¼ 6pmā _xj. This is a rough approximation; the beads are only
partially immersed and the ow above is appropriate for a uid
of innite extent and no boundaries. However, the effect of
partial immersion may be understood as a reduction in the
effective bead radius ā, and the effect of the shear-free liquid–air
interface could be modeled using the method of images55,56

which at leading order would introduce a factor of 2 to the ow
above (which may cancel the effect of partial immersion).

Including all of the forces acting on the beads, and under the
assumption of linearity (for instance, assuming that the surface
deformation gradient is sufficiently small), the particle motions
can be understood as a superposition of pairwise interactions.
Momentum balance then gives

x
:
i ¼

X
jsi

�
u j þ F j

6pma

�
; (7)

where Fj ¼ Fjc + Fjm, the combined capillary attraction and
magnetic repulsion.
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2.1 Non dimensionalization

The system is made dimensionless by scaling lengths on the
capillary length, ‘c, forces on the capillary force F , where F ¼
2pgāBo5/2S2, velocities on F /(6pmā), and time on 6pmā‘c/F .
The dimensionless velocity of the ith bead (where all variables
are now assumed to be dimensionless) then satises

x
:
i ¼

X
jsi

�
u j þ F j

�
; (8)

where

F j ¼ F
�
rij
�
r̂ij � M cðBx sinð ftÞÞ2

 
r̂ij � 5

�
x̂$r̂ij

�2
r̂ij þ 2

�
x̂$r̂ij

�
x̂

rij4

!
;

(9)

and we have dened the dimensionless horizontal magnetic
eld amplitude Bx ¼ �Bx/�Bz and frequency f ¼ 3mā‘c�f /F , and the
dimensionless force

FðrÞ¼ K1ðrÞ� M c

r4
: (10)

In the above we have introduced a key dimensionless
constant M c, which we term the magnetocapillary number,

M c ¼ 1

‘c
4F

 
4pa6c2Bz

2

3m0

!
¼ 2a5c2Bz

2

3m0gBo
5=2S2‘c

4
; (11)

which compares the relative magnitudes of the repulsive
magnetic force and the attractive capillary force. Finally, the
dimensionless uid velocities in eqn (8) are written as

u j ¼ 3a

4rij

�
x
:
j þ
�
x
:
j$r̂ji
�
r̂ji

�
; (12)

where a ¼ ā/‘c is the dimensionless bead radius.
In this paper we will restrict our attention to a regime where

the particles and inter-particle distances are smaller than the
capillary length, a � 1, and in the forthcoming analysis we will
frequently use an approximation of the rst modied Bessel
function of the second kind, K1(r)z 1/r for r� 1 (though in the
numerical simulations we need not make such an assumption).
This journal is © The Royal Society of Chemistry 2015



Fig. 3 Equilibria for (a) two beads and (b and c) three beads for a
constant vertical magnetic field. The equilateral triangle is an asymp-
totically stable configuration, and the inter-particle distances at
equilibrium are each identical to the equilibrium distance in the two-
bead problem, r* ¼ M c

1/3. The equilibrium distance in the collinear
case (c) is slightly smaller, ~r ¼ (17M c/24)

1/3.
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In the experiments of Lumay et al.,48 the bead radius is
approximately 10% of the capillary length (az 0.1), though the
inter-particle distances are not much smaller than the capillary
length. The magnetic eld strengths are approximately �Bz ¼ 2.5
� 10�3 T and �Bx ¼ 4� 10�3 T, with frequencies on the order of �f
¼ 1 Hz.

Estimating the magnetocapillary number relevant to the
experiments is nontrivial given the large number of physical
parameters in its denition. However, the equilibrium cong-
uration gives us a clue. When Bx ¼ 0, an equilibrium for two
beads (and three beads, as we will show in the following section)
is achieved when F(r) ¼ 0, where the capillary attraction exactly
balances the magnetic repulsion. With K1(r) z 1/r, the equi-
librium bead distance is then given by r ¼ M c

1/3. The equilib-
rium distances described in the experimental work are on the
order of 4a, resulting in an approximate value of the magneto-
capillary number of M c z 0.06. In addition, this gives a means
of estimating F without measuring d, qc, S and g. Namely,
using ā ¼ 2.5 � 10�4 m, ‘c ¼ 2.5 � 10�3 m, m0 ¼ 4p � 10�7 N
A�2 (the permeability of the vacuum) and c ¼ 3.6 (the magnetic
susceptibility of chrome steel beads57), we nd that F z 2.8 �
10�8 N. Appropriate dimensionless quantities for under-
standing the experiments are then a ¼ 0.1, Bx ˛ [0, 2], and f z
2.5 (using �f ¼ 1 Hz). These are the values used in the present
work unless otherwise stated.

Finally, the dimensional velocity scale in the experiments for
frequency �f ¼ 3 Hz is estimated to be U ¼ 6 mm s�1. Average
speeds of the center of mass in the experiments were found to
be as large as one bead radius per period, corresponding to a
dimensionless swimming speed of Uz (2.5� 10�3 m)(3 s�1)/U
z 1.25. The capillary wavelength in the experiment is (2pg/
r�f 2)1/3 z 6 cm, i.e. much larger than the particle systems, and
we will neglect such effects.

As a way to explore parameter space and to test the validity of
the analytical expressions that will be derived in this paper, the
system of eqn (8) are integrated numerically. Due to the relative
velocity dependence of the Stokeslet ow, the system is implicit
in the bead velocities at every moment in time. An explicit
specication of the bead velocities is recovered by inverting a 2N
� 2N matrix for a given conguration at every moment in time.
In some cases the numerical integration is tasked with dis-
tinguishing periodic swimmingmotions from periodic but non-
swimming states with high condence. Time-stepping is ach-
ieved using the fourth-order Runge–Kutta method, and any
results presented in the remainder of the paper remain robust
upon reducing the timestep size. We have veried the accuracy
of the method by a convergence study and comparison to exact
solutions in the simplest symmetric settings.

3 Equilibrium states and stability

Consider two oating beads under the inuence of a xed
vertical magnetic eld in the ẑ direction (Bx ¼ 0). In equilibrium
the beads are motionless, and the inter-particle distances are
determined by a balance of the induced dipole–dipole repulsion
and the capillary attraction, F(r) ¼ 0 in eqn (10). Approximating
the modied Bessel function for r � 1 as K1(r) z 1/r, this
This journal is © The Royal Society of Chemistry 2015
balance is achieved when 1/r ¼ M c/r
4, so that the equilibrium

distance between the beads is given by r*¼ M c
1/3. Naturally, the

equilibrium distance increases with the magnetocapillary
number (a measure of the relative strength of the magnetic
repulsion). Linearizing eqn (8) about this xed point, the
equilibrium conguration is easily found to be asymptotically
stable to perturbations.

Similarly, consider three oating beads located at the
vertices of an equilateral triangle as in Fig. 3b. Equilibrium is
achieved when each pair Fi + Fj ¼ 0, for i, j ˛ {1, 2, 3} and i s j.
Since the beads are not collinear, the three resulting equations
require that each pairwise force is balanced, Fi ¼ 0. Hence, the
equilibrium distance for three beads in this equilateral place-
ment is identical to that in the two-bead case, r* ¼ M c

1/3, and
just as in the case of two beads this equilateral placement is
asymptotically stable.

Another equilibrium conguration exists when the three
beads are collinear, in which case equilibrium is achieved when
F(r) + F(2r) ¼ 0; again using K1(r) z 1/r, the beads settle to a
slightly smaller distance ~r ¼ (17M c/24)

1/3, as illustrated in
Fig. 3c. This collinear conformation is asymptotically stable to
perturbations along the axis of the bead placement, but is
asymptotically unstable to any perturbations that destroy bead
collinearity, with the perturbed conguration rapidly rearrang-
ing to form an equilateral triangle. This may also be understood
through a simple argument: the inter-particle distance in the
three bead case is smaller than in the two bead case, so that
neighboring bead pairs are under compression. Given a
perturbation that destroys collinearity, the neighboring beads
under compression give rise to a force leading to the further
degradation of collinearity. The instability of the collinear
Soft Matter, 2015, 11, 1828–1838 | 1831



Fig. 4 The critical value of Bx above which two oscillating beads
aligned with the horizontal magnetic field collide.
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conguration is reminiscent of the buckling of oating elastic
laments due to capillary self-attraction.36

3.1 Stability of equilibria under an oscillating magnetic eld

The stability of the equilibria illustrated in Fig. 3 are straight-
forward to analyze, but the introduction of an oscillating
component of the magnetic eld, Bx s 0, introduces new
complexity and reveals some surprises. In particular, two beads
are driven towards alignment with the horizontal eld, a suffi-
ciently large oscillation can stabilize the previously unstable
collinear conguration, and an equilateral conguration is
driven towards a perpendicular alignment with the eld.

3.1.1 Stability and collision of two oscillating beads. First
we consider the simple case of two oating beads. If the beads
are aligned with the oscillating magnetic eld (r̂12 f x̂), the
particles will oscillate along the x̂ axis due to both the rotation
of the magnetic dipoles and the modulation of the amplitude of
the net magnetic eld, with the distance between the beads
varying in time, and with no movement along ŷ (see Fig. 2c).
Meanwhile, if the beads are aligned perpendicular to the
oscillating magnetic eld (r̂12 f ŷ), the particles will move
periodically along ŷ, now due only to the modulation of the net
magnetic eld and with no movement along x̂ (see Fig. 2b).

More generally, let r̂12 form an angle q with x̂ as shown in
Fig. 3a, and assume that the beads are placed initially at the
equilibrium distance r* where F(r*) ¼ 0. Writing the inter-
particle vector as r12 ¼ x2 � x1 ¼ r ¼ r(cos(q)x̂ + sin(q)ŷ), then
using eqn (8) we nd

r
: ¼ � 3a

4r

�
r
: þ r

:
r̂
�� 2FðrÞr̂

þ 2M c

r4
ðBx sinð ftÞÞ2

��
1� 5 cos2ðqÞ�r̂þ 2 cosðqÞx̂�: (13)

Decomposing the system dynamics into its radial and
angular components, we have�

1þ 3a

2r

�
r
: ¼ � 2FðrÞ� M c

r4
ðBx sinð ftÞÞ2

�
1þ 3 cosð2qÞ�; (14)

�
1þ 3a

4r

�
q
:
¼ � 2M c

r5

�
Bx sinð ftÞ

�2
sinð2qÞ: (15)

Assuming a constant separation distance r and Bx s 0, eqn
(15) indicates that the angle q ¼ p/2 (where the beads are set
perpendicular to the oscillating eld) is unstable, and that the
system will be driven to a stable orientation, q ¼ 0 (where the
beads are aligned with the oscillating eld) for q ˛ [0, p/2]. In
general, however, the distance r also uctuates in time, but r is
uniformly bounded below in the regime of interest (the bodies
cannot overlap), which is sufficient to ensure that q ¼ 0 is the
only stable equilibrium. Hence, two beads are driven towards
alignment with the oscillating horizontal eld for any relative
amplitude Bx s 0.

For a sufficiently large oscillating magnetic eld the
magnetic dipole moments may undergo a large rotation (see
Fig. 2c) and the two beads may collide. The critical value of Bx
1832 | Soft Matter, 2015, 11, 1828–1838
above which this occurs, determined by numerical integration
of the dynamics, is shown as a function ofM c and f in Fig. 4. The
value is larger for larger M c since the magnetic repulsion is
stronger and the beads remain distant, and for larger
frequencies when the bead dynamics are driven by the mean
horizontal eld, hBx2 sin2()i ¼ Bx

2/2, instead of its full
magnitude, kBx2 sin2()kN ¼ Bx

2.
To estimate this value we set q ¼ 0 in eqn (14) and consider

two limits. First, in the limit as f / 0, we set r ¼ 2a (so that the
beads are just in contact) and ask if the interaction is repulsive
for all time. With K1(r) z 1/r, this results in the critical value
Bx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 8a3M c

�1Þ=2
p

. If M c is small, the magnetic repulsion
is relatively weak and the beads collide with only a small
oscillation of the eld (or even with no oscillating eld for
extremely small M c), while for any appreciable M c the critical
value increases towards Bx ¼ 1=

ffiffiffi
2

p
, as observed in Fig. 4. Next,

in the limit as f / N, ignoring capillary attraction (which can
only reduce the critical value of Bx for collision) the beads are
certain to collide if the period average of 1 � 2Bx

2 sin2() is
negative, or Bx ¼ 1. This upper bound is consistent with the
numerical results in Fig. 4.

3.1.2 Stability of three oscillating beads. The stability of
three beads due to the oscillating horizontal magnetic eld is
even more interesting, as there is a surprising stabilization of
the collinear state. If the system is initially collinear and placed
in alignment with the horizontal magnetic eld then the eld
oscillation acts only to modulate the inter-particle distances in a
periodic fashion. However, consider a perturbation to the
system that retains up-down symmetry, a translation of the
central bead by a relative angle q that breaks collinearity as
shown in Fig. 5a. The beads oscillate in time at the frequency of
the horizontal magnetic eld, but may return towards the
oscillating collinear state or may deteriorate towards a different
oscillating state. Fig. 5b shows the deterioration of a nearly
collinear oscillatory state with M c ¼ 1.5, Bx ¼ 0.25, and q(0) ¼
0.1; the system escapes to a state oscillating about the equilat-
eral triangle conguration. Meanwhile, the bead trajectories
using M c ¼ 1.5 and Bx ¼ 0.7 are shown in Fig. 5c, where the
system is initialized as a perturbation away from the stable
This journal is © The Royal Society of Chemistry 2015



Fig. 5 (a) A schematic of three beads, symmetrically perturbed. (b) A nearly collinear configuration is unstable for small or zero Bx; here withM c¼
1.5 and Bx ¼ 0.25 the beads are driven towards the nearly equilateral configuration. (c) A large perturbation away from the equilateral config-
uration with M c ¼ 1.5 and Bx ¼ 0.7 is driven to the collinear oscillating state.
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equilateral conguration when Bx ¼ 0. The system oscillates
briey and then transitions rapidly to the oscillating collinear
state.

To explore when the system returns to the oscillating
collinear state or deteriorates under such a symmetric pertur-
bation we look rst to the numerical simulations. For a given
value of M c we rst determine numerically the (unstable)
collinear equilibrium conguration in the case Bx ¼ 0 (solving
for r*), then shi the center bead symmetrically a distance r*/10
to give the initial condition for the oscillatory cases with Bx > 0.
The system either recovers to an oscillatory collinear state
(circles in Fig. 6), or collapses to the periodic dynamics about
the equilateral triangle conguration (triangles in Fig. 6).
Beyond a critical value of the horizontal magnetic eld strength
that depends on the magnetocapillary number, the oscillatory
collinear state is found to be stable. The threshold value of the
eld strength diminishes monotonically to zero with increasing
magnetocapillary number, reaching zero at approximately M c
Fig. 6 The final state of a symmetrically perturbed oscillatory collinear
configuration. Symbols show the results of numerical simulations. A
symmetrically perturbed collinear system either recovers (circles), or
collapses to oscillatory dynamics about the equilateral triangle
configuration (triangles). Simultaneous motion is indicated by like
colored arrows. The solid line shows the critical value of the horizontal
magnetic field strength distinguishing stability/instability as predicted
analytically, from eqn (21). The nearly equilateral configurationmay still
be stable for Bx > B*

x, and in practice we observe hysteresis: the nearly
equilateral state is stable to perturbations for Bx much larger than B*

x.
Square symbols indicate the value of Bx above which the beads collide.
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z 2.74. We will return to this special value shortly. For yet larger
values of Bx, the particles again collide. The computed values
distinguishing this collapse of the system are shown in Fig. 6 as
squares, and we observe a slow monotonic increase in the
critical value with increasing magnetocapillary number as in
the two-bead case.

The critical value of Bx which distinguishes the stability of
the collinear state to transverse perturbations may be deduced
by studying the equations of motion that describe r(t) and q(t)
(see Fig. 5a), and assuming that both q andM cBx

2 are small. The
hydrodynamic interactions are neglected to simplify the anal-
ysis. Aer dropping all terms of order O(q2) we arrive at the
following system,

r
: ¼ �FðrÞ� Fð2rÞ � 17Cx

8r4
sin2ð ftÞ; (16)

d

dt
lnðqÞ¼ � 1

r

	
2FðrÞ � Fð2rÞþ 79Cx

8r4
sin2ð ftÞ



; (17)

where we have dened Cx ¼ M cBx
2. To begin our analysis, we

denote by ~r the value of r for which dr/dt¼ 0 in (16) when Cx¼ 0,
or where F(~r) + F(2~r) ¼ 0. Considering rst eqn (16), assuming
that Cx � 1 we pursue a regular perturbation expansion that
results in the ansatz

rðtÞ¼ ~rþ Cx

�
Aþ gðtÞ

f

�
þO

�
Cx

2
�
; (18)

where A is a constant and g(t) is a mean-zero oscillatory function
whose magnitude is of order unity. To nd A, note that over
many periods, the average of the right hand side of eqn (16) can
be rewritten as�ACx(F0(~r) + 2F0(2~r))� 17Cx(16~r

4)�1 + O(Cx)
2, and

by setting it to 0 we obtain

A ¼ � 17

16~r4ðF 0ð~rÞþ 2F 0ð2~rÞÞ : (19)

This constant represents a shi in the mean relative position
of neighboring beads with the introduction of a nontrivial
oscillatory part of the magnetic eld. Inserting the ansatz (18)
into eqn (17), the time-average of the right hand side of eqn (17)
over many periods is given by (using F(~r) + F(2~r) ¼ 0),

1

~r

�� 3F
�
~r
�þ Cx

�� 2F 0�~r�Aþ 2F 0�2~r�Aþ 3AF
�
~r
�
~r�1

�ð79=16Þ~r�4
��þO

�
Cx

2
�
: (20)
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The oscillating collinear conguration, q ¼ 0, is stable if and
only if this expression is negative, hence by setting it equal to
0 we determine the critical Cx, denoted by C*

x, that separates
stability from instability. Aer inserting the value A from above
and using F(~r) + F(2~r) ¼ 0, we nd

C*
x ¼ � 16~r5Fð~rÞðF 0ð~rÞþ 2F 0ð2~rÞÞ

17Fð~rÞþ ~r½15F 0ð~rÞþ 64F 0ð2~rÞ� : (21)

The critical magnitude of the horizontal magnetic eld
required for stability, B*

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C*
x=M c

p
is shown as a continuous

function of M c in Fig. 6. The approximation, which neglects
hydrodynamic interactions and terms of size O(Cx

2), is reason-
able throughout the entire range of M c considered, in part
because the resulting values are small and hence are consistent
with the omission of the O(Cx

2) terms. The analysis slightly
overestimates the transition value for small M c, when the
equilibrium distance between beads is small and hydrodynamic
interactions become more important. With the magneto-
capillary number relevant to the experiments estimated to be
approximately M c ¼ 0.06, the limiting transition value for B*

x as
M c / 0 of approximately B*

x ¼ 0.586 is of note. Based on the
nature of its calculation, the approximation eqn (21) is likely to
be more accurate at higher oscillation frequencies.

The analysis above tells us nothing about the stability of the
nearly equilateral conguration, which may still be stable for Bx
> B*

x. In fact, in numerical simulations we observe hysteresis: the
nearly equilateral state is stable to perturbations for Bx much
larger than B*

x. For values Bx just above the critical threshold B*
x,
Fig. 7 The oscillating equilateral triangle configuration is stable when or
fixed. (a) The angle Q(t), shown in (d), as a function of time for three fre
shown, where Q(tn) ¼ Q(0)exp(�ltn) and tn ¼ pn/f; l is seen to decay stro
decreases with increasing frequency of oscillation. (d) The physical mecha
the horizontal field deforms the configuration into a nearly isosceles tri
alignment with the field, resulting in a return of the system to the unpert
perturbation away from the symmetrically oriented equilateral case, and h
small system rotations.
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a brief decrease in the magnetic eld strength can lead to the
destabilization of a nearly collinear state which does not return
upon the recovery of the magnetic eld.

We pause here to point out some constraints on the physical
system. In the calculation above we have used the fact that the
beads are repulsive at short distance and attractive at long
distance (which is the case for the values M c considered).
However, for sufficiently large values of the magnetocapillary
number (M c > 2.74), F(r*) + F(2r*) ¼ 0 has a solution but the
distant beads are no longer attracted to each other; the expo-
nential decay of the Bessel function allows the magnetic
repulsion to dominate even in the far-eld. The collinear state
becomes unstable even to collinear perturbations! Yet another
issue arises for M c > 3.34, as there is no such equilibrium: the
beads only interact via dipole–dipole repulsion. In the above
and for the remainder of the paper we will assume that M c <
2.74.

Returning to the question of collapse, we look to eqn (16) and
perform the same estimates as for the two-bead case. For f/ 0,
setting r ¼ 2a and asking whether there is a time for which the
interaction can be attractive, the resulting estimate is a critical

value of the horizontal eld, Bx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 192a3M c

�1=17Þ=2
p

,
which is very slightly smaller than the estimate in the two-bead
case. For large values of M c the beads are well separated and a
somewhat larger horizontal eld amplitude is necessary to
induce a collision. Meanwhile, for f / N, again ignoring
capillary attraction results in an upper bound of Bx ¼ 1. For
nite f and large M c the critical value then lies between these
two values, as we observe in Fig. 6.
iented perpendicular to the horizontal magnetic field. Here Bx ¼ 0.5 is
quencies and two magnetocapillary numbers. (b) The decay rate l is
ngly with increasing magnetocapillary number. (c) The decay rate also
nism of stability, illustrated. For a small rotation of the stable orientation
angle; the closest beads rotate strongly towards the stable two-bead
urbed oscillating configuration. The above may also be seen as a small
ence is also themechanism by which the symmetric case is unstable to
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3.1.3 Stability of the equilateral conguration to small
rotations. Finally, we observe in simulations that the oscillating
equilateral conguration is stable when aligned perpendicular
to themagnetic eld, (the line of symmetry is in the ŷ direction –

the arrangement shown at the bottom le of Fig. 6), and is in
unstable when aligned symmetrically with the oscillating eld.
To quantify this stability we deneQ as the angle between ŷ and
‘ ¼ x1 � (x2 + x3)/2, with sin(Q) ¼ x̂$‘/|‘|. Fig. 7a shows Q(t) as a
function of time for a selection of frequencies and magneto-
capillary numbers, with Bx ¼ 0.5 xed, and we observe expo-
nential decay with oscillations in every case. The rate of decay,
however, depends on the frequency and the magnetocapillary
number. We therefore dene the exponential decay rate l for
the discrete map Qn ¼ Q(tn) with tn ¼ pnf:1 for integer values of
n, and l ¼ �limn/N log(Qn/Q0)/tn. Fig. 7b and c show that this
decay rate decreases rapidly with increasing magnetocapillary
number for M c ˛ (0, 1), and also decreases somewhat with
increasing frequency.

The physical mechanism underlying this unexpected result
is illustrated in Fig. 7d. For a small rotation of the equilateral
conguration the horizontal magnetic eld brings the beads on
the bottom of Fig. 7d closer to each other and they rapidly rotate
towards alignment with the eld (the stable two-bead congu-
ration), resulting aer a few cycles to a return of the system to
the unperturbed oscillating state. Larger magnetocapillary
numbers place the beads further from each other so that the
stabilizing two-bead adjustment to the oscillating eld is not as
strong. Meanwhile, increasing the frequency of oscillation
keeps the beads from undergoing large amplitude variations in
position, again inhibiting the mechanism, and resulting in
smaller decay rates. The mechanism by which the symmetri-
cally oriented equilateral triangle is unstable is identical to the
description above – the illustration in Fig. 7d may be seen
instead as a small rotation away from the symmetric state, so
that a small rotation drives the system away from the symmetric
conguration and towards the stable oscillating state.
Fig. 8 The swimming speeds for a range of horizontal magnetic field
amplitudes Bx with M c ¼ 0.06 fixed. The beads swim along the axis of
symmetry withmonotonically increasing speedwith increasing Bx until
the beads collide at Bx z 0.7. Symbols show the result of numerical
simulations, while the solid line represents the O(Bx

4) asymptotic
approximation from eqn (30).
4 Fast magnetocapillary swimming
requires other physics

In the experiments of Lumay et al.,48 it was shown that three or
more beads in the presence of an oscillating horizontal
magnetic eld may swim across the liquid–air interface. To
explore the possibility of swimming in the mathematical model
studied here, we simulate the dynamics of three beads using the
parameters estimated based on the experiments, as discussed
in Section 2. Namely, we consider a magnetocapillary number
M c ¼ 0.06, dimensionless frequency f ¼ 2.5, and horizontal
magnetic eld amplitudes Bx ˛ [0, 1]. As we have seen in the
previous section, for this value of M c and horizontal elds with
Bx \z 0:5, the collinear oscillating state is unstable and the
system is driven to a nearly equilateral conguration with any
perturbation away from collinearity. However, we have also
found in numerical simulations that the nearly equilateral
conguration is stable for considerably larger values of Bx. In
particular, simulations suggest that with M c ¼ 0.06, the nearly
This journal is © The Royal Society of Chemistry 2015
equilateral conguration is stable for all values of Bx up to Bx z
0.7, at which point the magnetic eld is large enough to create
magnetic attraction and the simulations become nonphysical
(the bodies collide).

Setting Bx ¼ 0.5, and initializing the system in the Bx ¼
0 equilateral equilibrium conguration, the three beads oscil-
late in a periodic and le-right symmetric fashion with a very
small net dri along the ŷ direction. Transport in the direction
perpendicular to the oscillating part of the magnetic eld is
consistent with what is observed in the experiments. The system
swims along the axis of symmetry with speed U ¼ 1.5 � 10�4, so
that each bead translates one bead radius only aer many
thousands of cycles. Fig. 8 shows the computed swimming
velocity as symbols for a range of Bx, with M c ¼ 0.06 xed. The
velocity increases monotonically until the bodies collide at Bxz
0.7. Other simulations not shown here suggest that the swim-
ming mode is stable to small random perturbations of the
initial conguration (while large perturbations may deliver the
system to the stable oscillatory collinear state for large hori-
zontal magnetic elds Bx as previously described).

We proceed now to investigate the swimming speed by
another asymptotic calculation. Once again we consider the
case where |Bx|� 1 and employ a regular asymptotic expansion.
The dynamics are constrained to the symmetric conguration
illustrated in Fig. 5b, and the departure of the beads from their
relative equilibrium positioning is assumed to be small. Letting
3 ¼ M cBx

2 � 1, the bead positions are written as

x1 ¼
 ffiffiffi

3
p

2
r*þ 3y

ð1Þ
1 þ.

!
ŷ; (22)

x2 ¼
�
r*

2
þ 3x

ð1Þ
2 þ.

�
x̂þ

�
3y

ð1Þ
2 þ.

�
ŷ; (23)

x3 ¼ �
�
r*

2
þ 3x

ð1Þ
2 þ.

�
x̂þ

�
3y

ð1Þ
2 þ.

�
ŷ; (24)
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with F(r*) ¼ 0. The expressions above are inserted into the
equations of motion, eqn (8). Taylor expanding about 3¼ 0, and
writing F(r) ¼ F1(r � r*) + ., at rst order in 3 the resulting
system is written compactly as

_x ¼ F1Ax + cBB _x + (1 � cos(2ft))c, (25)

where x ¼ (y(1)1 , x(1)2 , y(1)2 )T, F1 > 0 and cB ¼ 3a/(4r*) with

A ¼
0
@ �3=2 � ffiffiffi

3
p 


2 3=2

� ffiffiffi
3

p 

4 �9=4

ffiffiffi
3

p 

4

3=4
ffiffiffi
3

p 

4 �3=4

1
A; (26)

B ¼
0
@ 0 � ffiffiffi

3
p 


2 7=2

� ffiffiffi
3

p 

4 �2 0

7=4 0 1

1
A; (27)

and c ¼ ½16ðr*Þ4��1ð�2
ffiffiffi
3

p
; � 9;

ffiffiffi
3

p ÞT. Although the expres-
sions above do not rely on this approximation, should we set
K1(r) z 1/r then r* ¼ M c

1/3 and F1 ¼ 3/M c
2/3. Inverting to isolate

the velocity,

_x ¼ F1(I � cBB)
�1Ax + (1 � cos(2ft))(I � cBB)

�1c. (28)

Since A has one zero eigenvalue and two negative eigen-
values, the same is true of (I � cBB)

�1A as long as cB is suffi-
ciently small. The system is diagonalized by writing (I �
cBB)

�1A¼ TJT�1, where J is a diagonal matrix with diagonal
terms 0, l2, l3, with l2, l3 < 0. Note that the rst column of T is
(1, 0, 1)T, which is the eigenvector of A corresponding to the
eigenvalue 0. Performing a change of variables, y ¼ T�1x, we
have that

_y ¼ F1Jy + (1 � cos(2ft))d, (29)

with d ¼ T�1(I � cBB)
�1c, and it is possible to show that the

solution must be of the form y¼ e0 + e1 cos(2) + e2 sin(2) with
constant unknown vectors e0, e1, and e2. In particular, due to the
structure of the vector c there is no linearly growing part of y in
time (see Appendix A). Since we must have Je0 + d ¼ 0, the rst
component of the vector e0 is le unspecied, so that y is only
determined up to a constant multiple of (1, 0, 1)T, which simply
indicates the invariance of the dynamics under translations in
the ŷ direction. The remaining vectors e1 and e2 are solved by
inverting a 6 � 6 system of equations. The symbolic computa-
tion soware Mathematica was used to solve for the somewhat
long expressions which we do not reproduce here. The main
result of the calculation above, however, is that there is no
swimming of order 3 (i.e. of order M cBx

2).
To nd a nontrivial swimming speed we must proceed with

the asymptotic expansion to terms of size O(32)¼O(M c
2Bx

4). The
linear system at the next order is identical to the one at rst
order but with amore involved forcing term that depends on the
O(3) dynamics. The full solution at second order is found in a
similar calculation as for the solution at rst order, but the
dynamics involve a term that grows linearly in time. The
resulting expression for the swimming speed, writing U¼ 32U2 +
O(33) ¼ U2M c

2Bx
4, is given by
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U2 ¼ 864
ffiffiffi
3

p
af 2F1

�
9a2 þ 15ar*� 8ðr*Þ2

�
F�1; (30)

F ¼ (r*)5(9a � 4r*)(f2(15a + 8r*)2 + 144F1
2(r*)2)

� (f2(171a2 + 72ar* � 64(r*)2)2 + 144F1
2(r*)2(9a � 4r*)2).

(31)

The analytical estimate of the swimming speed is shown in
Fig. 8 as a solid line. The accuracy of the approximation begins
to deteriorate near Bx z 0.4. Investigating eqn (30) allows for
the optimization of parameters for maximizing the swimming
speed in some contexts. For instance, setting M c ¼ 0.06 and a ¼
0.1, the swimming speed is maximized by selecting the
frequency fz 15.2, which increases U2 to 0.32 (from U2 ¼ 0.065
in the case f ¼ 2.5). Nevertheless, the swimming speed in that
case is still exceptionally small. Note that larger oscillation
frequencies can increase the available relative horizontal eld
strengths Bx, since the dipole moments are redirected before
particles can collide. At least up until the regime of bead colli-
sion, with increased Bx come larger particle excursion distances,
larger hydrodynamic interactions, and greater swimming
speeds.

In zero Reynolds number locomotion, the Scallop theorem
states that no propulsion is possible if the kinematics are time-
reversible (so-named for the single degree of freedom available
to a simple scallop).58–60 In the present setting, the dynamics of
the three beads are very nearly but not quite time-reversible so
locomotion is possible. However, the beads nearly move back
and forth along the same curve throughout each cycle, so that
the kinematics are not sufficiently well removed from reversible
dynamics to result in a signicant swimming speed. Other
simple swimming bodies in viscous uids are designed specif-
ically to avoid such reversible kinematics, such as the three-
bead model swimmer of Naja and Golestanian.61
5 Discussion

We have investigated the stability and dynamics of two and
three oating paramagnetic beads under the inuence of
capillary attraction andmagnetic repulsion. The introduction of
an oscillating horizontal magnetic eld was found to inuence
the stability properties in surprising fashion: two beads are
driven towards alignment with the oscillatory part of the eld,
while three beads are driven towards a nearly equilateral
arrangement unless the horizontal eld is of large amplitude, in
which case the horizontal collinear state is asymptotically
stable. We proceeded to study the locomotion of the nearly
equilateral conguration and compared the results of analytical
and numerical calculations, which matched closely for a wide
range of Bx.

One of the main ndings of this research is that the Sto-
kesian hydrodynamic interactions are not sufficient to describe
the observed dynamics in the experiments, and to our knowl-
edge the question of precisely how the experimental swimming
speeds are achieved remains open. Although not presented here
we have also considered the effect of particle and uid inertia by
solving the Basset–Boussinesq–Oseen equation of unsteady
This journal is © The Royal Society of Chemistry 2015
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ow.62 However, since the Reynolds numbers relevant to the
experiments are very small, Re z 0.03, we have found that
inertia has only a very small effect on the computed swimming
speed.

We have also investigated the role of Brownian uctuations,
but the dimensionless diffusion constant relevant to the exper-
iments (from the uctuation-dissipation theorem) leads to forces
six orders of magnitude smaller than the capillary and magnetic
forces on the beads. Moreover, even for articially inated values
of the diffusion constant the dynamics are still driven on average
by a deterministic swimming motion at the same mean swim-
ming speed. Recall that the oscillatingmagnetic eld renders the
swimming conguration stable to rotational perturbations.
Hence, thermal effects which act to reorient the body are over-
damped and the swimming system tends to remains on course
as it moves through the uid unless the diffusion constant is
extremely large. This said, the physical forces that lead to
swimming speeds in the work of Lumay et al.48 that are orders of
magnitude larger than those derived in this paper are almost
certainly immune to the effects of thermal uctuations.

Other physics appears to be necessary in order to describe
the experiments. For instance, we have neglected bead rota-
tions, and their subsequent effects on magnetic dipole
moments, inter-particle forces, surface effects, and associated
uid structures and viscous stresses. We have also neglected the
partial immersion of the beads, though while viscous drag
might seem to reduce the swimming speed, the beads cannot
translate at all on average without the hydrodynamic interac-
tions. Finally, the model of capillary attraction may be too
simplistic: a modulation of the surface shape and associated
forces with bead translation and rotation may be important.
Appendix
(A) No magnetocapillary swimming at O(Bx

2)

Here we show that the three bead system described in Section 4
does not swim at rst order in M cBx

2, which is assumed to be
small. Specically, we will show that with A given in (27), that
the center of mass grows linearly in time as t/N if and only if
c1 + 2c3s 0, and since this is not the case, there is no swimming
at rst order. Writing x ¼ (y(1)1 , x(1)2 , y(1)2 )T, and recalling the
change of variables y ¼ T�1x, the center of mass at rst order is
given by

yðtÞ ¼ 1

3
y1ðtÞ þ 2

3
y2ðtÞ ¼ ð1=3; 2=3; 0ÞTyðtÞ

¼ ð1=3; 2=3; 0Þ

0
BB@

1 * *

0 * *

1 * *

1
CCAyðtÞ ¼ y1ðtÞ þ C2y2ðtÞ þ C3y3ðtÞ

(32)

for some constants C2 and C3. Now recall that y satises

_y ¼ F1Jy + (1 � cos(2ft))d, (33)

where d ¼ T�1(I � cBB)
�1c, and c ¼ �16ðr*Þ4��1�

ð�2
ffiffiffi
3

p
; � 9;

ffiffiffi
3

p ÞT. Component-wise, we write _yi ¼ F1liyi +
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(1 � g(t))di, with g(t) ¼ cos(2). Since l2, l3 < 0, y2(t) and y3(t)
both remain uniformly bounded in time. As for y1(t), since the
rst diagonal term of J is 0, y1(t) satises _y1 ¼ (1 � g(t))d1, hence

y1ðtÞ � d1tð¼ d1

ðt
0
gðsÞdsþ y1ð0ÞÞ is uniformly bounded in time.

Using eqn (32), we have that |�y(t)� d1t| is uniformly bounded in
time; in other words, the swimming speed is given by d1.

However, d1 s 0 if and only if c1 + 2c3 s 0, which we will now
show. Let us denote the columns of A by {a1, a2, a3}. By
inspection we have that c ˛ span{a1, a2, a3} if and only if c1 + 2c3
¼ 0. Recall from the diagonalization process that T�1(I� cBB)

�1A
¼ JT�1, whose rst row is a zero vector. In other words, if c1 + 2c3
¼ 0, then the rst component of T�1(I � cBB)

�1c is 0 (since c ˛
span{a1, a2, a3}), which gives that d1 ¼ 0. On the other hand, if c
; span{a1, a2, a3}, then d1 cannot be 0, since the set c such that
d1 ¼ 0 has dimension 2 and span{a1, a2, a3} is already of
dimension 2. Inspecting c we note that indeed c1 + 2c3 ¼ 0, and
hence there is no swimming of order 3 (i.e. of order M cBx

2).
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