
 

Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem
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We investigate the dynamics of a dilute suspension of hydrodynamically interacting motile or immotile
stress-generating swimmers or particles as they invade a surrounding viscous fluid. Colonies of aligned
pusher particles are shown to elongate in the direction of particle orientation and undergo a cascade of
transverse concentration instabilities, governed at small times by an equation that also describes the
Saffman-Taylor instability in a Hele-Shaw cell, or the Rayleigh-Taylor instability in a two-dimensional
flow through a porous medium. Thin sheets of aligned pusher particles are always unstable, while sheets of
aligned puller particles can either be stable (immotile particles), or unstable (motile particles) with a growth
rate that is nonmonotonic in the force dipole strength. We also prove a surprising “no-flow theorem”: a
distribution initially isotropic in orientation loses isotropy immediately but in such a way that results in no
fluid flow everywhere and for all time.
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The last decade has seen an explosion of interest in the
collective dynamics of active particles immersed in fluids,
from swimming microorganisms to magnetically driven and
phoretic colloidal particles [1–13] to kinesin-driven micro-
tubule assemblies [14–21]. A first-principles model of active
suspensions is a mean-field kinetic theory that tracks the
distribution of particle positions and orientations and which
may include hydrodynamic interactions [7,10,22–24] and
short-range physics [24,25]. Constituent particles are clas-
sified as either “pushers” or “pullers” depending on the sign
of the generated stresslet flow, which in turn depends on the
geometry of the body and themechanism of stress generation
[23,26–30]. Other models include Landau-de Gennes
“Q tensor” theories and moment-closure theories [31–36].
Generic features in these systems include long-range coher-
ence, topological defects, and instability [23,36–41].
Much is known about active suspensions that cover the

entire available physical domain. Far less is known about
the invasion of a surrounding particle-free environment,
though this is of considerable importance in the dynamic
self-assembly of swarms [42–44], and in the formation of
biofilms, mycelia, and fruiting bodies [45,46]. Novel means
of bringing bacteria into a confined region using external
flows have allowed for a closer look at rapid expansion,
including acoustic trapping [47,48], UV light exposure [49],

and vortical flows [50,51]. The effects of confinement by
soft boundaries with surface tension has seen theoretical
treatment [52,53], and unstable bands of active particles have
been studied in a dry system [54].
In this Letter, we investigate the dynamics of colonies of

either motile or immotile active particles as they invade a
surrounding viscous fluid. Colonies of aligned pushers are
shown to elongate in the direction of particle orientation
and then undergo a cascade of transverse concentration
instabilities. The initial instability in two-dimensions is
shown to be governed at small times by an equation
that also describes the Saffman-Taylor instability in a
Hele-Shaw cell (flow through a small gap between two
nearby plates), or the Rayleigh-Taylor instability in a two-
dimensional flow through a porous medium. Linear sta-
bility analysis offers approximations that match the results
of full numerical simulations. We close with a proof and
demonstration of a counter-intuitive “no-flow theorem,”
that an isotropically oriented distribution with any initial
concentration profile results in no fluid flow everywhere
and for all time.
Mathematical model.—Following Refs. [23,24], we

describe a dilute suspension of N self-propelled rodlike
particles in a viscous fluid by the particle distribution
function, Ψðx;p; tÞ, where x is the particle position in a
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periodic spatial domainD while p is the particle orientation
vector on the unit ball S (jpj ¼ 1). The number of particles
is conserved, N ¼

R
D

R
S Ψðx;p; tÞdpdx, resulting in a

Smoluchowski equation,

Ψt þ∇ · ð _xΨÞ þ∇p · ð _pΨÞ ¼ 0; ð1Þ

where ∇ ¼ ∇x ¼ ∂=∂x and ∇p ¼ ðI − ppÞ · ∂=∂p.
Neglecting collisions [40], the fluxes _x and _p are given by

_x ¼ V0pþ uðxÞ − dt∇ðlnΨÞ; ð2Þ

_p ¼ ðI − ppÞ · ðp ·∇uÞ − dr∇pðlnΨÞ; ð3Þ

with V0 the swimming speed, dt (dr) the translational
(rotational) diffusivity, uðx; tÞ the fluid velocity, and pp a
dyadic product.
The environment is assumed to be a viscous Newtonian

fluid, driven by stresses generated by the suspended
particles. The flow field u satisfies the Stokes equations,
consisting of momentum and mass conservation,

−∇qþ μ∇2uþ∇ · Σa ¼ 0; ∇ · u ¼ 0; ð4Þ

with q the pressure, μ the dynamic viscosity, and Σa ¼
σhppi the active stress (proportional to the second orienta-
tional moment of Ψ, see below). The coefficient σ is the
force dipole (or stresslet) strength, with σ < 0 for pushers
and σ > 0 for pullers [10], which has been computed for
ellipsoidal Janus particles [27,29] and for more general
particle types [30,55,56], and obtained experimentally for
a few swimming cells [57,58]. Orientational moments will
be denoted by hhðpÞi ¼

R
S hðpÞΨdp. For example, inte-

grating Eq. (1) gives an evolution equation for the particle
concentration, c ¼ h1i, namely,

ct þ∇ · ðcuÞ − dt∇2c ¼ −V0∇ · hpi; ð5Þ

where hpi is the polarity [10].
With l the individual particle length, we scale velocities

by the swimming speedV0 and lengths by themean free path
lc ¼ ðV=VpÞl, where V is the total fluid volume and
Vp ¼ Nl3 is an effective volume of particles, hence lc ¼
VðNl2Þ−1. Time is scaled by lc=V0, force densities are
scaled by μV0=l2

c, and Ψ is normalized by the particle
number density, N=V ¼ ðl2lcÞ−1 ¼ ðl=lcÞl−3. The
dimensionless dipole strength is defined as α ¼ σ=
½μV0l2

c&. With all variables now taken to be dimensionless,
particle conservation is written as κ̃−1

R
D

R
S Ψdpdx ¼ 1,

where κ̃−1 ¼ l3
c=V is proportional to the particle volume

fraction. In the case of immotile particles, a different velocity
scale must be chosen [59].
The far-field velocity due to an individual swimmer

at the origin, oriented in the direction p, is u ¼
αð8πÞ−1pp∶∇GðxÞ where Gij ¼ δij=jxjþ xixj=jxj3 is the

Stokeslet singularity [60]. The active force density is then
given by fa ¼ αðlc=lÞ2∇ · hppi. Following Ref. [23], for
the sake of comparison, we set lc=l ¼ 1. The swimming
speed V0, now taken as dimensionless, is unity for motile
systems and zero otherwise.
Wewill consider the case of confinement tomotion in two-

dimensions in a periodic domain ðx; yÞ ∈ ½0; LÞ × ½0; HÞ,
and invariance in the ẑ direction,writingp ¼ ðcos θ; sin θ; 0Þ
and the distribution as Ψðx; y; θ; tÞ. It is expedient to then
define κ ¼ HL so that κ−1

R
L
0

R
H
0

R
2π
0 Ψdθdydx ¼ 1.

Numerical solution of Eqs. (1)–(4) is carried out using L ¼
H ¼ 50 and a pseudospectral method with 2563 grid points
and dealiasing (using the 3=2 rule) [61]; an integrating factor
method, along with a second-order accurate Adams-
Bashforth scheme, is used for time stepping.
Dynamics of thin active sheets.—To motivate the study

to come we first consider the invasion of a concentrated
cylindrical colony, Gaussian in cross section, of motile
particles initially aligned in the x̂ direction into an empty
viscous fluid, shown in Fig. 1(a). The associated global
flow field is exactly that of a single regularized force dipole,
resulting for pullers in a stable concentration elongation in
a direction orthogonal to the original swimmer orientation
[59,62]. For pushers, the colony-induced velocity field
changes sign and elongation is parallel to the swimming
direction, but if slightly perturbed a transverse concen-
tration instability ensues. Fore-aft symmetry is broken due
to particle motility; the colony splays at the leading tip on
the right, while undergoing a periodic folding at the rear,
reminiscent of the buckling of planar viscous jets, sedi-
menting elastic filaments, and beams extruded into viscous
fluids [63–65].
To better understand this dramatic evolution, we turn

to the behavior of an infinite sheet of particles that are
initially in alignment. Figure 1(b) shows the evolution
of a distribution of immotile (top) and motile (bottom)
pusher particles, initially confined to a thin band, and
with a small transverse concentration perturbation.
Early stages show rapid growth of the wave amplitude.
At the same time, individual particles are rotated so that
they remain nearly tangent to the concentration band
which results in a secondary instability and self-folding.
The same structures are observed again and again on
smaller length scales, though particle motility breaks
left-right symmetry and significantly alters the structure
of subsequent folding events. At longer times, the
system is finally drawn to an unsteady roiling state
(see Ref. [59]), with uniform concentration for immotile
particles [c satisfies a pure advection-diffusion equation
in Eq. (5) in this case] or concentration bands described
by Saintillan and Shelley [23] for motile particles.
To analyze the instability, let hðx; tÞ and ϕðx; tÞ represent

the vertical displacement and polarity of the line distribu-
tion, respectively, with n ¼ hpi=c ¼ ðcosϕ; sinϕ; 0Þ the
normalized polarity. We study the dynamics of this active
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sheet via its far-field self-influence. For small h and ϕ, and
solving Eq. (4) for u [59], we find

ht þ V0hx ¼ vþ V0ϕ; ϕt þ V0ϕx ¼ vx; ð6Þ

v ¼ −
ακ
4L

H½hx&; ð7Þ

where v is the vertical component of velocity evaluated on
the flat surface h ¼ 0, and H½·& is the Hilbert transform,

H½f&ðxÞ ¼ 1

π
P
Z

∞

−∞

fðyÞ
x − y

dy; ð8Þ

where P denotes principal value. The Hilbert transform
is diagonalized in a Fourier basis, with H½eiqx& ¼
−i signðqÞeiqx. The ansatz hhðx; tÞ; ϕðx; tÞi ¼

P
khĥkðtÞ;

ϕ̂kðtÞi expð2πikx=LÞ therefore results in a quadratic eigen-
value problem, and the eigenvalues

λ' ¼ π
4L4

ð−ακjkj − 8ikLV0 ' γkÞ; ð9Þ

where γk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ακðακk2 − 16iLV0kjkjÞ

p
. A comparison to

numerics is shown in Fig. 2 for motile pushers with three
negative dipole strengths along with the theory for a wider
range of α and k. The analytical predictions are accurate for
the entire range studied, with discrepancies owing to the
vertical periodic boundary condition and the nonvanishing
thickness of the active sheet in the simulations.
In the immotile case, V0 ¼ 0 (or in the limit as

jαj=V0 → ∞), sheets of pushers are all unstable and sheets

of pullers are all stable, with growth and decay rates both
given by −πακjkj=ð2L2Þ. This behavior owes to the
velocity field created by the active stress, illustrated in
Fig. 2 (see Supplemental Material Movie M2 [59]), which
amplifies or damps the initial perturbation. The linearized
dynamics are now governed solely by the equation

ht ¼
−ακ
4L

H½hx&: ð10Þ

This expression establishes an unexpected connection to
well-studied phenomena in entirely different settings:

FIG. 1. (a) Concentration evolution of a weakly perturbed cylindrical colony (Gaussian in cross section) of aligned motile pullers
(α ¼ 0.5, right) and pushers (α ¼ −0.5, bottom). Stream function contours are included at t ¼ 0 with solid (dashed) lines representing
positive (negative) values if α < 0, and the signs are reversed if α > 0. See Supplemental Material Movie M1 [59]. (b) Evolution of a
thin sheet of immotile (top) and motile (bottom) pusher particles with α ¼ −1, with initial distribution function Ψðx; θ; t ¼ 0Þ ¼
C expf−ðy − hðxÞÞ2=a2 − θ2=b2g and C a normalization constant. The initial perturbation is given by hðxÞ ¼ 0.1 sinð6πx=LÞ and
ða; bÞ ¼ ð2; 0.2Þ. The polarity field hpi (arrows) shows the local particle orientation. Exponential growth in amplitude leads to a
secondary instability and self-folding at t ≈ 2.5, which plays out again at t ≈ 4 with similar features on a smaller scale (dashed boxes).
The small initial spread in orientation and small noise results in eventual loss of symmetry and the system arrives in an unsteady roiling
state (t ¼ 150) with uniform concentration (immotile particles) or concentration bands (motile particles). See Supplemental Material
Movie M2 [59].

FIG. 2. (Top left) A sheet of aligned pushers is unstable to
transverse concentration perturbations due to its self-generated
velocity field. (Bottom left) The positive growth rate for motile
pushers, comparing numerics and theory. (Right) Theoretical
growth rates for motile pushers for a range of dipole strengths and
wave numbers.
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interfacial instabilities in gravity or pressure-driven Hele-
Shaw problems, or two-dimensional flows in porous
media, without surface tension, whose flow is governed
by Darcy’s Law [66,67] (also known as the Muskat
problem [68,69]). As in the present setting, the classical
Rayleigh-Taylor instability is modified to an exponential
growth rate dependence which is linear in jkj [70]. Such
interfacial instabilities are associated with the formation
of singularities in free-surface flows, e.g., the finite-time
“Moore singularity” development on a vortex sheet in
an inviscid fluid with no surface tension described by
the Kelvin-Helmholtz instability [71,72], a higher-order
system that shares linear growth rate dependence on jkj
[73–77]. We thus observe an identical initial growth
behavior, but nonlinear terms for large amplitude waves
result in a unique folding event in t ≈ 2.5 in Fig. 1(b) and
very different long-time behavior.
Meanwhile in the motile case, V0 ¼ 1, sheets of

pushers remain unstable for any dipole strength. Sheets
of pullers, however, excite a positive-real-part eigenvalue
in Eq. (9). Unlike in the case of pushers, the maximal
eigenvalue is not monotonic in the force dipole strength
(Fig. 3). Expanding about small α, the largest eigenvalue
is found when α ¼ 2L=κ, at which point Re½λþ& ¼
πkð2LÞ−1 (since Re½λþ& ∼ πkακð4L2Þ−1). For either motile
or immotile pullers, the velocity field (oppositely signed
to that illustrated in Fig. 2) rapidly damps the initial
displacement, and it now rotates particles towards the
direction perpendicular to the concentration band.
Motility, however, allows the displacement and orienta-
tion fields to synchronize, leading ultimately to the rapid
growth of the concentration band amplitude and a large
departure away from the initial profile, as shown in
Fig. 3.
For the motile suspensions above with nonzero dipole

strength α, there can be competing effects; in particular,
if maxðRe½λ'&Þ < 0, all solutions to the linear system
eventually arrive at the stable base state, but if the system

departs from the linearized region of the phase space
fast enough such solutions may not be realized in the fully
nonlinear dynamics. This potential for departure is seen
most clearly if the particles are not stress generating: with
α ¼ 0, the wave amplitude grows linearly in time since
any particles with a nonzero initial orientation angle drift
off without resistance along characteristic curves.
Isotropic suspensions remain velocity free: a “no-flow

theorem”: Assuming the uniqueness of solutions to
Eqs. (1)–(4), active suspensions of motile or immotile
particles modeled by Eqs. (1)–(4), which are initially
isotropic in orientation, Ψðx;p; t ¼ 0Þ ¼ Ψ0ðxÞ, result in
no fluid flow, uðx; tÞ ¼ 0, everywhere and for all time.
Sketch of the proof.—The proof assumes the uniqueness

of solutions to Eqs. (1)–(4), which was shown for two
dimensions by Chen and Liu [78]. Consider first the
solutionΨ( to the Smoluchowski equation without velocity
terms,

Ψ(
t þ V0p ·∇Ψ( − dt∇2

xΨ( − dr∇2
pΨ( ¼ 0; ð11Þ

with an initial condition that is isotropic in orientation.
The velocity field generated by this solution, u½Ψ(&, is
given in Fourier space by

ûk½Ψ(& ¼ ð8πjkj2Þ−1ðI − k̂k̂Þ · Σ̂a · k; ð12Þ

Σ̂a · k ¼
Z

D
pðp · kÞΨ̂(

kðp; tÞdp; ð13Þ

where k̂ ¼ k=jkj. Writing k in a spherical (three-
dimensional) or polar (two-dimensional) coordinate system
about p, we find Σ̂a · k ¼ λkðtÞk for some scalar function
λkðtÞ. Hence, ûk½Ψ(& ¼ 0 and then u½Ψ(& ¼ 0. Since
u½Ψ(& ¼ 0, Ψ( also solves Eqs. (1)–(4) with velocity terms
included. By the uniqueness assumption, we finally have
that u ¼ 0 everywhere and for all time for any initially
isotropic distribution. More details are included in the
Supplemental Material [59].
The result is surprising since the system immediately

loses orientational isotropy (see Fig. 4), which would
suggest the quick onset of a nontrivial flow field, but this
is not what we observe. Physically, the active force fa ¼
∇ · Σa is nontrivial for any t > 0 but it is curl-free, so by the
Helmholtz decomposition theorem, fa ¼ ∇λðtÞ for some
scalar field λðtÞ, which thus only modifies the pressure.
As time progresses, the force distribution evolves with the
local active particle alignment, illustrated for two initially
uniform colonies in Fig. 4, but the expanding colonies
simply pass through each other as linear waves. This
behavior can be inferred even when including two-particle
correlations [79].
Moreover, any distributions that result in u ¼ 0 for all

time may be superimposed without generating a velocity
field, for instance a random isotropic distribution may be

FIG. 3. (Left) Sheets of motile puller particles are unstable
(here α ¼ 0.1 and dt ¼ dr ¼ 0.001). Arrows show the
polarity field, hpi, at t ¼ 20. See Supplemental Material
Movie M3 [59]. The initial condition is along an unstable
eigenvector, hðx; 0Þ ¼ 0.144 cosð6πx=LÞ − 0.063 sinð6πx=LÞ
and ϕðx; 0Þ ¼ 0.1 cosð6πx=LÞ. (Right) Theoretical growth rates
for motile pullers are nonmonotonic in α.
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perturbed by another distribution which has the property
that ∇ · hppi ¼ ∇χðtÞ for any scalar χðtÞ, and still u ¼ 0
for all time. Physics that introduce nonlinearities in Eq. (1),
such as near-field steric repulsion, are expected to nullify
the theorem.
The stability of the theorem to an initial localized

alignment is not simply determined, as the initially iso-
tropic state is not a stable base state. However, in light of
the stability of the isotropic state of uniform concentration
to large wave number perturbations [23], we expect an
initial damping back towards isotropy. But on an extremely
long timescale in a sufficiently large domain, the low wave
number residue of the initial disruption is expected to lead
to eventual growth along with a nontrivial flow. We have
verified this prediction in at least one setting by numerical
simulation, placing an aligned colony, as in Fig. 1(a), into a
random concentration field that is orientationally isotropic.
Persistent nematic alignment, for instance, due to a boun-
dary, may result in a more immediate transition to a global
mean flow.
Conclusion.—We have investigated colonies of active

particles in the dilute regime invading a quiescent fluid.
Colony-scale elongation depends on the sign of the active
stress and can result in a self-buckling and self-folding
cascade. Exponential growth at small times, with growth
rate linear in jkj, is mathematically equivalent to the
Saffman-Taylor instability in a Hele-Shaw cell or Rayleigh-
Taylor instability in a two-dimensional flow through a
porous medium. The stability of sheets of pullers depends
on particle motility with a growth rate that is nonmonotonic
in the dipole strength. Strikingly, a suspension modeled
by pure far-field hydrodynamic interactions which is
initially isotropic in orientation, even though isotropy is
not preserved, results in no mean-field fluid flow every-
where and for all time.
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Active matter invasion of a viscous fluid: Unstable sheets and a no-flow

theorem - Supplemental material

A. Flow due to a single active particle

The flow generated by a single active particle, for instance a swimming E. coli cell (Fig. 1a),

can result in a coherent organization of many such particles on much longer length scales than the

individual particle size (exhibited by a suspension of B. subtilis cells in Fig. 1b).

Zeiss 40! (NA 1.3) oil immersion objective and a high-
speed camera at 40 fps (Fastcam SA-3, Photron). Movies
were recorded in pairs for each field of view (768!
800 pix; 1 pix ¼ 0:36! 0:36 !m2), one with bright-field
illumination and one with fluorescence excitation by a
633 nm laser (B&W Tek) at #20 mW. These movies
were taken immediately after each other with a #3 min
time lag between subsequent pairs. During the #10 min
imaging period for each device, the motility of B. subtilis
cells decreased markedly due to oxygen depletion [29].
The experimental setup yields quasi-2D projected velocities
of 3D suspension motion (see Fig. 1 and the Supplemental
Material [38]). Data were analyzed under the assumption
that the flow structures are isotropic, as verified by test
measurements at different distances from the chamber
bottom. Commercial particle image velocimetry (PIV)
software (Dantec Flow Manager) was used to determine
the bacterial flow velocity (vx, vy) from bright-field images
[Figs. 1(a) and 1(b)]. PIV data were corrected for systematic
pixel-locking errors [30]. Data shown in Figs. 2 and 3 are
based on seven movie segments (40 fps, each 50 s long)
corresponding to seven different activity levels.

Adopting standard statistical measures from classical
turbulence analysis, global bacterial flow properties were
quantified by the in-plane kinetic energy ExyðtÞ ¼ hðv2

x þ
v2
yÞ=2i and in-plane enstrophy !zðtÞ ¼ h!2

z=2i, where

!z ¼ @xvy ' @yvx is the vertical component of vorticity
and h( ( (i is a spatial average. While Exy and !z fluctuate,

their time averages ( "Exy, "!z) are approximately constant

during the 50 s time interval used in the data analysis
[Figs. 2(b) and 2(c)]. Over 2 orders of magnitude in energy

[Fig. 2(d)] we observe the linear scaling "!z ¼ "Exy=#
2,

with # ) 24 !m being roughly one half of the typical
vortex radius.
Probability distribution functions (PDFs) of the in-plane

bacterial velocity are approximately Gaussian, with a
slight broadening due to collective swimming [Fig. 2(a)].
The negative values of the equal-time spatial velocity
correlation function [VCF; Fig. 3(a)] indicate the existence
of vortices [4] (Fig. 1). The VCF is remarkably robust with
respect to changes in the bacterial activity; in particular,
the typical vortex radius Rv # 40 !m, estimated from the
first zero of the VCF, depends only weakly on the kinetic
energy. This result is consistent with recent findings by
Sokolov and Aranson [8] for freestanding films. The vortex

FIG. 1 (color online). Flow fields from experiments and simu-
lations [38]. (a) Very dense homogeneous suspension of B.
subtilis overlaid with the PIV flow field showing collective
bacterial dynamics. Longest arrows correspond to velocity of
30 !m=s. (b) Streamlines and normalized vorticity field deter-
mined from PIV data in (a). (c) Turbulent ‘‘Lagrangian’’ flow of
fluorescent tracer particles (false-color) in the same suspension,
obtained by integrating emission signals over 1.5 s. (d) Partial
snapshot of a 2D slice from a 3D simulation of the continuum
model (parameters in Table I). Scale bars 70 !m.

FIG. 2 (color online). Experimental results for bacterial and
medium flows, color-coded for activity level. (a) PDFs of the
Cartesian in-plane velocity components, normalized by their
mean values and standard deviations, are approximately
Gaussian (dashed) for both tracers and bacteria, with observable
systematic deviations. The bacterial flow PDFs show slight
broadening due to active swimming, which is well-reproduced
by the model (1). By contrast, the PTV distributions exhibit
higher peaks at small velocities (inset) due to accumulation of
tracers near vortex centers. (b), (c) Mean kinetic energy and
enstrophy of the in-plane bacterial flow components show mod-
erate fluctuations during the data acquisition period, very similar
to corresponding PTV data (not shown). (d) The time-averaged
enstrophy scales linearly with the time-averaged energy. Open
circles are averages of the curves in (b), (c). Error bars indicate
temporal standard deviations.

PRL 110, 228102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

228102-2
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FIG. 1. Left: Experimental particle-image-velocity (PIV) near an E. coli cell ([1], with permission). Right:
A swimming suspension of B. subtilis cells ([2], with permission), overlaid with a PIV flow field. The scale
bar is 35 µm; the longest arrows correspond to a velocity of 30 µm/s.

We begin by providing a very simple model to clarify the relationship of the parameter � in the

mean-field model to the force dipole strength of an individual organism. A single force/torque-free

swimming body, as illustrated in Fig. 2a, may be viewed as a moving hydrodynamic force dipole in

the far-field, where the force on the fluid from the flagellum is balanced by that on the moving cell

body. In the simple model shown in Fig. 2b the cell body is treated as a sphere of radius A, and

the flagellum is idealized as a small sphere of radius a a distance d from the cell body and moving

with speed v � V0 along the �x̂ axis (i.e. with relative speed v away from the cell body).

In the simplest theory hydrodynamic interactions are neglected beyond demanding force bal-

ance. The forces on the fluid due to the cell body and “flagellum” are given by the leading order

Faxén’s law (neglecting terms of order d�1 and beyond), F
A

= 6⇡µAV0 and F
a

= 6⇡µa(V0 � v),

respectively. With no external force acting on the body we must have F
A

+ F
a

= 0, which results

in the swimming speed V0 = av/(A + a). Placing the cell body at the origin, the flow far away

from the cell is given by:

u ⇡ 1

8⇡µ

⇥
G(3)(x) � G(3)(x � dx̂)

⇤ · (F
A

x̂), (1)

where x̂ = x/|x|, xx is a dyadic product, and

G(3)(x) =
1

|x|
✓
I +

xx

|x|2
◆

(2)
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Figure 1. The fluid velocity far from a swimming E. coli is modeled at leading order as that
of a Stokeslet dipole. At the next order, the flow in the far-field varies due to the length asym-
metry between the backward-pushing propeller and the forward-pushing cell body (producing
a Stokeslet quadrupole), the finite size of the cell body (producing a source dipole), and the
rotation of the flagellum and counter-rotation of the cell body (producing a rotlet dipole).

instance Hernandez-Ortiz et al. 2005; Saintillan & Shelley 2008; Hohenegger & Shelley
2010). A swimmer such as the one illustrated in Fig. 1, in which a flagellar propeller
pushes a load through the fluid, is generally referred to as a pusher, in contrast to such
organisms as Chlamydomonas which pulls a cell body through the fluid with a pair of
flagella. At the next order (decaying as 1/R3), the flow in the far-field varies due to the
length asymmetry between the backward-pushing propeller and the forward-pushing cell
body (producing a Stokeslet quadrupole), due to the finite size of the cell body (produc-
ing a source dipole), and due to the rotation of the flagellum and counter-rotation of the
cell body (producing a rotlet dipole). Vector field cross-sections of the Stokeslet dipole,
source dipole, and Stokeslet quadrupole singularities are shown in Fig. 2. The strengths
of these singularities have been measured experimentally for the organisms Volvox carteri

and Chlamydomonas reinhardtii by Drescher et al. (2010), and for E. coli by Drescher
et al. (2011). The e↵ects of the Stokeslet quadrupole component of spermatozoan swim-
ming has been suggested by Smith & Blake (2009), and force-quadrupole hydrodynamic
interactions of E. coli have been studied by Liao et al. (2011).

While the flow field is set up instantaneously in Stokes flow upon the variation of an
organism’s geometry, the means of propulsion of a particular organism might be unsteady.
In general the singularity strengths can be time-dependent, varying for example with the
di↵erent phases of a swimming stroke pattern. As an example, the highly time dependent
flow field generated by the oscillating motions of C. reinhardtii has been examined by
Guasto et al. (2010). Nevertheless, for a first broad look at the far-field representation
above we will restrict our attention to constant values of the singularity strengths for
the remainder of our study. Also, we have assumed in the description given by (2.17)
that there are no net body forces or torques on the organism, which would require the
inclusion of Stokeslet and rotlet singularity terms as well (as explored for the organism
Volvox by Drescher et al. 2009). While some organisms are not neutrally buoyant and do
experience a body force or torque due to gravity, many others (including most bacteria)
live on such a scale that such e↵ects are negligible. In addition, we assume that there

F�F
d

F�F
d

V0

F�F
d

(a) (b) (c)v � V0

FIG. 2. (a) A neutrally-buoyant swimming organism is a hydrodynamic force dipole in the far-field, with
fluid forcing from the flagellum and the moving cell in balance. (b) A simplified swimming model, where
the flagellum is treated as a sphere a distance d from the cell body which moves with speed v � V0 to the
left. Through force balance this drives the cell body to move to the right with the “swimming speed” V0.
(c) Biofilaments sliding past each other by the action of molecular motors can also be viewed as imposing a
force dipole on the surrounding fluid.

is the Stokeslet singularity in three-dimensions [3]. For large |x| we expand to find

u ⇡ dF
A

8⇡µ
x̂x̂ : rG(3)(x) =

�

8⇡µ
x̂x̂ : rG(3)(x). (3)

For a given organism geometry and propulsive mechanism we therefore have a link between the

swimming speed V0 and the dipole strength � with units of work, which in this case is � ⇡ 6⇡µAV0d.

Note that if d ! 0, for there to be a finite dipole value � the force on the fluid from the cell

body F
A

must grow like 1/d, which is possible so long as the instantaneous relative flagellum

speed v increases as 1/d (though a more accurate treatment requires inclusion of hydrodynamic

interactions). In general a swimming body induces higher moments in a multipole expansion [4].

Stresslet coe�cients for ellipsoidal Janus particles are given in Refs. [4, 5]. Coarse-graining using

the model above leads to the active stress written in the main paper. Experiments by Drescher

et al. [1, 6] determined that the velocity field far from an E. coli cell was well approximated as a

force dipole with strength �/(8⇡µ) = �31.8µm3/s. Using a cell body size ` ⇡ 3µm and swimming

speed V0 ⇡ 22 µ m/s, for E. coli we have a dimensionless dipole strength ↵ ⇡ �4(`/`
c

)2, where `
c

is the mean free path (see the main text).

B. The flow due to a cylindrical, Gaussian colony of aligned particles

With  (x,p, t) the distribution of particles per volume in phase space (see the main text), the

flow field generated by a single particle located at the origin in three-dimensions and pointing in a

direction p0 is provided in the limiting case of  (x,p) = ̃�0(x)�0(y)�0(z)�
p0(p), where ̃ = V/`3

c

,

`
c

is the characteristic particle size, and V is the volume of the spatial domain D. The delta

functions are defined such that
R
D

�
0

(x) dx = 1 and
R
S

�
p0(p) dp = 1, where S is the unit ball

(|p| = 1).

Meanwhile, the flow field generated by a concentrated line of particles in the ẑ direction, centered

at the origin in the xy-plane and all pointing in a direction p0, is instead provided by  (x,p) =

�0(x)�0(y)�
p0(p). In this two-dimensional setting we require

R
✓0+⇡

✓0�⇡

�
✓0(✓) d✓ = 1, and we assume

that motion is confined to the xy-plane. It is now more convenient to adjust the notation from

vectors in R3 to vectors in R2, e.g. x = (x, y), x0 = (x0, y0), p = (cos ✓, sin ✓), and I is the 2x2



3

identity matrix.

A useful approximation of the singular representation above is a cylindrical concentration which

is Gaussian in its cross-sectional profile,

 (x, y, ✓) =


⇡3/2a2"q(")
e�r

2
/a

2�(✓�✓0)2/"2 , (4)

with r =
p

x2 + y2 and " ⌧ 1, and q(") = erf(⇡/"), which tends to 1 rapidly as " ! 0, and  is a

normalization constant defined such that the total integral of  is unity. The active stress on the

fluid is then, for small ",

⌃
a

(x) = ↵

Z
✓0+⇡

✓0�⇡

 (x, y, ✓)pp d✓ =
↵

⇡a2
e�r

2
/a

2
p0p0 + O("2), (5)

where ⌃
a

is now represented as a 2x2 matrix. Part of the active stress only serves to modify the

pressure and has no e↵ect on the flow; it is common to extract this part by removing an isotropic

tensor from ⌃
a

, and to write

⌃
a

(x) =
↵

⇡a2
e�r

2
/a

2

✓
p0p0 � 1

2
I

◆
+ O("2). (6)

The body force on the fluid is then given by

f
a

= r · ⌃
a

(x) = �2↵

⇡a4
e�r

2
/a

2

✓
p0(p0 · x) � 1

2
x

◆
. (7)

Recalling that the system has been made dimensionless, with force density scaled upon µV0/`2
c

(µ

is the viscosity, V0 the dimensional swimming speed, and `
c

the mean free path), the pressure q

and flow u which satisfy

�rq + r2u + f
a

= 0, (8)

r · u = 0, (9)

and which are also independent of z are given by superposition,

u(x0) =
1

4⇡

Z

R2
G(x

0

� x) · f
a

(x) dx, (10)

G(x) = � log(|x|)I +
xx

|x|2 , (11)

where in this setting it is the two-dimensional Stokeslet singularity, G, which arises [3].

To investigate the flow far from the origin we expand the Stokeslet singularity around x = 0
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and develop a multipole expansion,

u(x0) =
1

4⇡

Z

R2
G(x0) · f

a

(x) + [x · r
x

G(x0)] · f
a

(x) + [
1

2
xx : r

x

r
x

G(x0)] · f
a

(x) + ... dx

=
1

4⇡
G(x0) ·

Z

R2
f
a

(x) dx +
1

4⇡
r

x

G(x0) ·
Z

R2
xf

a

(x) dx

+
1

8⇡
r

x

r
x

G(x0) :

Z

R2
xxf

a

(x) + ... dx, (12)

or in component form using Einstein summation notation,

u
i

(x0) =
1

4⇡
G

ij

(x0)Fj

+
1

4⇡

@G
ij

@x
k

(x0)S
jk

+
1

8⇡

@2G
ij

@x
k

@x
m

(x0)R
jkm

+ ..., (13)

where

F
j

=

Z

R2
f
a

(x)
j

dx, S
jk

=

Z

R2
x
k

f
a

(x)
j

dx, R
jkm

=

Z

R2
x
k

x
m

f
a

(x)
j

dx. (14)

Note that (taking care to distinguish the target point and derivative variable, x, with the source

point x0),

@G
ij

@x
k

(x0) =
(x0)

k

�
ij

|x0|2 � �
ik

(x0)j + �
jk

(x0)i
|x0|2 +

2(x0)i(x0)j(x0)
k

|x0|4

=
((x0)

k

�
ij

� �
ik

(x0)j � �
jk

(x0)i) |x0|2 + 2(x0)i(x0)j(x0)
k

|x0|4 . (15)

Inserting the smoothed distribution into the expressions above we find F
j

= 0 and R
jkm

= 0 by

symmetry, but

S
jk

=

Z

R2
x
k

f
a

(x)
j

dx = �↵
✓
p
0

p
0

� 1

2
I

◆

jk

, (16)

and higher order terms with an odd number of derivatives in the series will also be non-zero. In

the far-field, the velocity field is therefore a stresslet with

u(x0) =
�↵x0

4⇡|x0|2
✓

�1 +
2(p0 · x0)

2

|x0|2
◆

. (17)

The identity part of the coe�cient matrix S results in zero velocity contribution and only adjusts

the local pressure. With p0 = x̂ we have, for |x0| � 1 and " ! 0,

u(x0) =
�↵(x2

0 � y20)

4⇡|x0|4 x0. (18)

For small |x0|, however, we have (in the limit as " ! 0),

u(x0) =
↵(�x0, y0)

8⇡a2
+ O(|x0|2). (19)
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C. Connection of the Gaussian colony flow to regularized Stokeslets

There is a direct connection between the flow due to a cylindrical colony (or circular in two-

dimensions) which is Gaussian in cross-section, and the flow due to a “regularized Stokeslet” [7].

In two-dimensions, the point force “blob” with small parameter "̃,

f =
3↵"̃3

2⇡(|x0|2 + "̃2)5/2
p, (20)

results in the velocity field (see Ref. [7]):

u0(x0) =
1

4⇡

("
� log(

p
|x0|2 + "̃2 + "̃) +

"̃(
p|x0|2 + "̃2 + 2"̃)

(
p|x0|2 + "̃2 + "̃)

p|x0|2 + "̃2

#
I

+
(
p|x0|2 + "̃2 + 2"̃)

(
p|x0|2 + "̃2 + "̃)2

p|x0|2 + "̃2
x
0

x
0

)
· f . (21)

A derivative in the p direction gives the regularized force dipole,

u(x0) = p · r
x0u

0(x0), (22)

which is the same far-field flow as that described in the previous section. Looking in the near field

we find that the association is precise when "̃ = a
p

3/2, where a is the Gaussian width of the

cylindrical colony with Gaussian cross-section.

D. Self-stretching of aligned Gaussian colonies

As a preliminary step we first consider a circular Gaussian colony of nearly aligned particles,

 (x, ✓, t = 0) = Ce�r

2
/a

2�✓

2
/"

2
, (23)

where r =
p

x2 + y2, C is a numerically-determined normalization constant, and the periodic

domain size (x, y) 2 [0, L) ⇥ [0, H) is large enough to make negligible any e↵ects from periodic

spatial boundary conditions (L = H = 50 in the simulations). For motile pusher particles with

Gaussian radius a = 4, angular spread " = 0.2, and dipole strength ↵ = �0.5, numerical simulations

reveal a nearly fore-aft symmetric self-stretching in the direction of motion (see the figure in the

main text). Perturbing the initial data slightly by setting r =
p

x2 + (y � 0.1 sin(2⇡x/L))2 in (23),

the dynamics are roughly unchanged for small times, but after the colony becomes su�ciently thin

it undergoes a transverse concentration instability. Fore-aft symmetry is broken partly by the

initial angular spread but primarily due to particle motility; the colony splays at the leading tip

on the right, while undergoing a periodic folding at the rear reminiscent of the buckling of planar

viscous jets, sedimenting elastic filaments, and beams extruded into viscous fluids.

A puller colony (↵ = 0.5) instead elongates perpendicular to the swimming direction (also
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shown in the main text), the perturbation appearing never to play a role, and a colony-scale

splaying develops on the time-scale associated with the individual swimming speed. Videos of

expanding pusher and puller colonies are included as Supplemental Material Movie M1.

To understand the dynamics of the initially polarized Gaussian patches we turn to equations

describing the zeroth-moment of  . Defining

c(x, t) = h1i, n(x, t) =
1

c(x, t)
hpi, (24)

hh(p)i =

Z

⌦
h(p) (x,p, t) dp, (25)

and integrating the Smoluchowski equation we find

c
t

+ r · [(u + V0n)c] = d
t

r2c. (26)

In the locally aligned setting we have n ⇡ p
0

, where p
0

is the direction of alignment, and we

study instead

c
t

+ r · [(u + V0p0

)c] = d
t

r2c, (27)

where V0 is either 1 or 0 (motile or immotile). With n = p0 fixed, and assuming that c(x, t)

remains in the shape of a Gaussian for all time, then the aspect ratio of a colony can be deduced if

we are able to provide the velocity field u generated by the self-straining motion of the suspension.

With the initially Gaussian colony defined in (4) with spatial radius a but with center of mass

x
c

(t) = (x
c

(t), y
c

(t)) (taking x
c

(0) = 0) we have

u(x0) =
↵

8⇡a2
{�(x0 � x

c

), (y0 � y
c

)} , (28)

where

x
c

(t) =
1



Z

R2
{x, y}c(x, t) dx, (29)

which is normalized using �1
R
R2 c(x, t) dx = 1. Importantly, we also make the approximation

that a(t) = b(t) = a0 in the velocity profile for all time, an approximation to which we will shortly

return.

The axis lengths of the initially circular patch should vary as follows at small times. First we

define the axis lengths {a(t), b(t)} by the second spatial moment of the concentration about its

center,

{a(t)2, b(t)2} =
2



Z

R2
{(x � x

c

(t))2, (y � y
c

(t))2}c(x, t) dx. (30)

For example if c(x, t) = (⇡ab)�1 exp(�[(x�x
c

)2/a2+(y�y
c

)2/b2]) this returns the values a(t) = a

and b(t) = b.



7

With n ⇡ x̂ and inserting u from above, we have

c
t

+ V0cx � ↵

8⇡a20
((x � x

c

(t))c
x

� (y � y
c

(t))c
y

) = d
t

r2c. (31)

If we assume that the concentration remains Gaussian over time, then

c(x, t) =


⇡a(t)b(t)
exp

✓
�(x � x

c

(t))2

a(t)2
� (y � y

c

(t))2

b(t)2

◆
. (32)

Given the symmetries inherent in this Gaussian profile, integration by parts reveals that

d

dt
x
c

=
1



Z

R2
{x, y}c

t

dx = V0x̂. (33)

A similar calculation leads to the dynamics of the semi-major and semi-minor axis lengths of the

ellipsoidal patch,

d

dt
{a(t)2, b(t)2} = {2a(t)a0(t), 2b(t)b0(t)}

=
2



Z

R2
�2{(x � x

c

(t))x0
c

(t), (y � y
c

(t))y0
c

(t)}c(x, t) + {(x � x
c

(t))2, (y � y
c

(t))2}c
t

(x, t) dx, (34)

and integrating by parts we find

{2a(t)a0(t), 2b(t)b0(t)} =

⇢
�↵a(t)2

4⇡a20
+ 4d

t

,
↵b(t)2

4⇡a20
+ 4d

t

�
. (35)

From this we deduce that

a(t) =
a0p
↵

s

e
� ↵t

4⇡a20

✓
↵+ 16⇡d

t

e
↵t
4⇡a20 � 16⇡d

t

◆
, (36)

b(t) =
a0p
↵

q
16⇡d

t

e
↵t
4⇡a20 + ↵e

↵t
4⇡a20 � 16⇡d

t

, (37)

and hence an aspect ratio

r(t) =
b(t)

a(t)
=

q
(↵+ 16⇡d

t

)e↵t/(4⇡a
2
0) � 16⇡d

t

q
(↵� 16⇡d

t

)e�↵t/(4⇡a20) + 16⇡d
t

. (38)

If d
t

= 0 we have the simple result r(t) = exp[↵t/(4⇡a20)] indicating a timescale for development

of ⌧ = 4⇡a20/(|↵|). Taylor expanding a(t) and b(t) about t = 0 we find the approximation

r(t) = 1 +
2↵t

8⇡a20 + (16⇡d
t

� ↵)t
+ O(t2). (39)

Here we see a competition between di↵usion, which seeks to return the aspect ratio to unity, and

self-stretching, the direction of which depending on the sign of ↵: pushers (↵ < 0) elongate in the
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x̂ direction (r(t) decreases from 1), pullers (↵ > 0) elongate in the ŷ direction (r(t) increases from

1).

Figure 3 shows the steadily decreasing aspect ratio of a colony of aligned pushers with ↵ = �1,

with Gaussian initial concentration width a0 = 10. The evolution is captured very well by fixing

n = x̂ and using the velocity field found numerically at t = 0, u(x, t) = u(x, t = 0) (solid line

in Fig. 3). The linear expansion of the velocity field around the origin results in the expression

Eq. (38) and is shown as a dashed line. A cubic approximation to the velocity field, which results

in a more accurate prediction (to be described), is shown as a dash-dotted line.

FIG. 3. The colony aspect ratio from simulations and di↵erent theoretical approximations. Solid line: fixing
n = x̂ and using the velocity field found numerically at t = 0, u(x, t) = u(x, t = 0). Dashed line: prediction
using the linearized velocity field near the origin, Eq. (38). Dash-dotted line: prediction using the cubic
approximation of the velocity field near the origin, from Eq. (47).

The linear theory above captures the timescale for stretching but is not particularly accurate.

While the velocity field in Eq. (19) used to derive Eq. (38) describes the stretching of a circular

region smaller than the Gaussian width near the origin, it does not provide an accurate picture of

the flow throughout the entire Gaussian colony; the leading order approximation of the velocity

field becomes inaccurate at a distance from the origin smaller than the Gaussian width. Figure 4

shows the computed velocity field at t = 0 generated by a Gaussian colony of radius a0 = b0 = 2

and centered at x
c

= (25, 25). The horizontal velocity along the cross-section at y = 25 is plotted as

well, along with the far-field approximation from (18), the near-field linear approximation from (19),

and a near-field cubic approximation (to be described). The departure of the linear approximation

from the full velocity field becomes significant well before |x � 25| = 2.

A. Higher-order Taylor expansions of u

A cubic estimate of the velocity field, also shown along the central cross-section in Fig. 4, does

improve the prediction of the aspect ratio, r(t). The estimate up to O(|x|4) (for a colony centered
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FIG. 4. Left: Velocity field at t = 0 due to a Gaussian colony of radius a0 = b0 = 2 placed at (xc, yc) =
(25, 25). Right: Numerical and competing approximations of the horizontal velocity along the cross-section
at y = 25, from Eqs. (18), (19), and (40).

at the origin) is given by

u =
↵

48⇡a6
�
x
��6a4 + 2a2

�
x2 + 3y2

�� 3x2y2
�
, y
�
6a4 � 2a2

�
3x2 + y2

�
+ 3x2y2

� 
+ O(|x|4).

(40)

Integration as before results in the following:

a0 =
↵

32⇡a60
a2
�
4a20a

2
�
r2 + 1

�� 3a4r2 � 8a40
�

+ 4d
t

, (41)

b0 =
↵

32⇡a60
b2
�
a2
�
3b2 � 4a20

�
+ 8a40 � 4a20b

2
�

+ 4d
t

, (42)

and, if desired,

r0 =
↵

32⇡a60
a2
�
4a20a

2
�
r2 + 1

�� 3a4r2 � 8a40
�

+
4d

t

a
. (43)

Consider the case d
t

= 0. Then r0(t)/a0(t) = �2r(t)/a(t), so

r(t) =
a20

a(t)2
. (44)

Inserting this into the equation for a(t) we have

a0(t) =
↵
��11a20a(t)2 + 4a(t)4 + 4a40

�

64⇡a40a(t)
. (45)
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Solving,

a(t) = a0

r⇣
11 � p

57 tanh
⇣p

57↵t
64⇡a20

+ tanh�1
⇣q

3
19

⌘⌘⌘

2
p

2
, (46)

and thus

r(t) =
8

11 � p
57 tanh

⇣p
57↵t
64⇡a20

+ tanh�1
⇣q

3
19

⌘⌘ . (47)

For small t,

r(t) = 1 +
3↵t

32⇡a20
+ O(t2). (48)

E. Dynamics of an active sheet

We first examine the behavior of an infinite sheet of particles which are initially in near align-

ment. Figure 5 shows the evolution of a distribution of pusher particles with ↵ = �1, initially

confined to a thin band and with a small transverse perturbation. Early stages show rapid growth

of the wave amplitude. At the same time the vorticity field rotates individual particles so that they

remain nearly tangent to the concentration band (see Supplemental Material Movie M2). What

follows is a transient passage from one seemingly stationary attracting state to another until the

system is finally drawn to the aperiodic roiling state described by Saintillan & Shelley [8]. The

dynamics suggest the presence of numerous unstable stationary or periodic solutions.

To understand the initial instability we consider a line density of swimming particles and develop

a theory to describe its evolution through far-field hydrodynamic self-interactions without transla-

tional or rotational di↵usion. We identify the curve (a cross-section of an infinite two-dimensional

sheet) as the zero level set of the function F (x, y, t) = h(x, t) � y, where h(x, t) represents the

curve’s vertical displacement and �(x, t) is the angle of the swimmer at station x relative to the

x-axis. The evolution of F in the presence of the fluid velocity field u = (u, v) depends on the

total velocity u+ V0p = (u + V0 cos�, v + V0 sin�) (with V0 = 1 for motile particles and V0 = 0 for

immotile particles) by

@h

@t
+ (u + V0 cos�)

@h

@x
� (v + V0 sin�) = 0, (49)

which on the surface of the sheet, y = h(x, t), is given by

@h

@t
+ (u + V0 cos�)

@h

@x
� (v + V0 sin�) = 0. (50)
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t=5
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↵ < 0

u(x)

50

y

0

0.5

1.5
0

12
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50

y

0
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FIG. 5. Evolution of a thin band of motile pusher particles, ↵ = �1, with initial distribution function
 (x, ✓, t = 0) = C exp{�(y�"h(x))2/a2 �✓2/b2} with C a normalization constant. The initial perturbation
is given by "h(x) = 0.1 sin(6⇡x/L) and (a, b) = (2, 0.2). Exponential growth in amplitude leads to the
development of an internal thrust-wake (t = 3) and a buckling cascade to smaller and smaller wavelengths
(t 2 [3, 6]). After passing through numerous almost stationary states, including looped (t = 54) and rotating
aster (t = 70) patterns, symmetry is eventually broken and the suspension arrives in an aperiodic roiling
state (t = 100). See Supplemental Material Movie M2.

For a nearly-flat surface (small h) we expand u(x, y, t) about y = 0 to find

@h

@t
+

✓
u|

y=0 + h
@u

@y

���
y=0

+ O(h2) + V0 cos�

◆
@h

@x
�
✓

v|
y=0 + h

@v

@y

���
y=0

+ O(h2) + V0 sin�

◆
= 0.

(51)

Meanwhile the swimming angle �(x, t) in the Lagrangian frame evolves via

d�

dt
= �u

x

sin(2�) +
v
x

2
(1 + cos(2�)) � u

y

2
(1 � cos(2�)), (52)

with subscripts indicating derivatives, so in the Eulerian frame we instead have

@�

@t
+ (u + V ⇤

0 cos�)�
x

= �u
x

sin(2�) +
v
x

2
(1 + cos(2�)) � u

y

2
(1 � cos(2�)). (53)

Expanding also about y = 0 and � = 0 we have

@�

@t
+ (u|

y=0 + h u
y

|
y=0 + O(h2) + V0(1 + O(�2)))�

x

= � �u
x

|
y=0 + h u

xy

|
y=0 + O(h2)

�
(2�+ O(�3)) +

1

2

�
v
x

|
y=0 + h v

xy

|
y=0 + O(h2)

�
(2 + O(�2))

� 1

2

�
u
y

|
y=0 + h u

yy

|
y=0 + O(h2)

�
(O(�2)). (54)
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We now introduce the series expansions of h,� and u as

h(x, t) = "h(1)(x, t) + "2h(2)(x, t) + O("3), (55)

�(x, t) = "�(1)(x, t) + "2�(2)(x, t) + O("3), (56)

u(x, y, t) = "u(1)(x, y, t) + "2u(2)(x, y, t) + O("3). (57)

Up to order ", we have

@h(1)(x, t)

@t
+ V0

@h(1)(x, t)

@x
= v(1)(x, 0, t) + V0�

(1), (58)

@�(1)(x, t)

@t
+ V0

@�(1)(x, t)

@x
= v(1)

x

(x, 0, t). (59)

Now, let us consider the influence of the line distribution on the velocity field. The following

assumes an ansatz for the distribution:

 (x, ✓, t) =


⇡abq(b)L
e�(y�"h(x,t))2/a2�[✓�"�(x,t)]2/b2 , (60)

where a/H ⌧ 1, b ⌧ 1, and " ⌧ 1, and q(b) = erf(⇡/b) ! 1 rapidly as b ! 0 (recall the

periodic domain is given by (x, y) 2 [0, L) ⇥ [0, H), with L = H = 50 in the simulations, and

then  = LH = 502). Here y = "h(x, 0) is the initial curve through space occupied by the active

suspension (with small band thickness a ⌧ 1) and "�(x, 0) is the initial particle orientation along

that curve (tightly confined for b ⌧ 1). Note that for all time we have

1



Z
L

x=0

Z 1

y=�1

Z
"�+⇡

✓="��⇡

 (x, ✓, t) d✓ dy dx = 1. (61)

The associated fluid stress is

⌃
a

(x) = ↵

Z
"�+⇡

"��⇡

 (x, ✓, t)

✓
p(x)p(x) � 1

2
I

◆
d✓

=
↵

⇡1/2aL
e�(y�"h(x,t))2/a2

✓
p0(x)p0(x) � 1

2
I

◆
+ O("2, b2), (62)

where p0 = x̂ + "�(x, t)ŷ. Locally at a station x, this corresponds to a vertically integrated stress

⌃
a

(x) =

Z 1

y=�1
⌃

a

(x) dy =
↵

L

✓
p0(x)p0(x) � 1

2
I

◆
+ O("2). (63)

Then the velocity at a point on the filament x0 = (x, "h(x, t)) is given by the integrated e↵ect
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of the distribution of stresslets,

u(x) =
1

4⇡

Z

R2
G

ij

(x � x0)f
j

(x0) dx0 =
1

4⇡

Z

R2
G

ij

(x � x0)@
k

(⌃
a

)
kj

(x0) dx0

= � 1

4⇡

Z

R2
@
k

G
ij

(x � x0)(⌃
a

)
kj

(x0) dx0

=
�↵
4⇡L

Z
L

0

⇢
1

(x � x0)
x̂ + "

h(x, t) � h(x0, t)

(x � x0)2
ŷ

�
dx0 + O("2), (64)

where G(x) = � log(|x|)I + xx/|x|2 as before. The orientation field �(x, t) does not appear in the

flow field up to first order in ". The integrals above are to be taken in the principal value sense.

To continue the analysis we will assume periodicity in x, or alternatively for a finite patch to

assume that L � 1 and that x is near the center of the domain and not near the endpoints, resulting

first in the vanishing of the x̂ component of the velocity field. To investigate the ŷ component we

expand h(x, t) and �(x, t) in a Fourier basis in space, writing

h(x, t) =
X

k

ĥ
k

(t)eiqx, �(x, t) =
X

k

�̂
k

(t)eiqx, (65)

with q = 2⇡k/L. Then with ⇠ = x0 � x,

Z
L

0

h(x, t) � h(x0, t)

(x � x0)2
dx0 ⇡

Z 1

�1

h(x, t) � h(x0, t)

(x � x0)2
dx0

= lim
a!0

Z �a

�1
+

Z 1

a

h(x, t) � h(x + ⇠, t)

⇠2
d⇠, (66)

resulting in

u(x, t) =
�⇡"↵

2L2

X

k

|k|ĥ
k

(t) exp(2⇡ikx/L)ŷ, (67)

and we also need @u/@x, which is given by

u
x

(x) =
�⇡2i"↵

L3

X

k

|k|ĥ
k

(t) exp(2⇡ikx/L)ŷ. (68)

Upon insertion into (58), we find

ĥ0
k

+
2⇡ikV0

L
ĥ
k

=
�⇡↵|k|

2L2
ĥ
k

+ V0�̂
k

, (69)

�̂0
k

+
2⇡ikV0

L
�̂
k

=
�⇡2ik|k|↵

L3
ĥ
k

. (70)

The solution of this system is given by

 
ĥ
k

(t)

�̂
k

(t)

!
= P

 
e�+t 0

0 e��t

!
P�1

 
ĥ
k

(0)

�̂
k

(0)

!
, (71)
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with eigenvalues given by

�± =
⇡(�↵ |k| � 8ikLV0 ± �

k

)

4L2
, (72)

where �
k

=
p
↵(↵k2 � 16iLV0k|k|), and the associated eigenvectors (the columns of P) are

p+ =

0

@
iL (�↵|k| + �

k

)

4⇡↵k|k|
1

1

A , p� =

0

@
iL (�↵|k| � �

k

)

4⇡↵k|k|
1

1

A . (73)

If the particles are not stress-generating, ↵ = 0, with h(x, t = 0) = h0(x) and �(x, t = 0) = ✓(1)0 (x),

we find

�(x, t) = �0(x � V0t), (74)

h(x, t) = h(x � V0t) + t V0�(x � V0t), (75)

so the wave amplitude grows linearly in time, just as expected, since any particles with nonzero

initial angle simply drift o↵ into space without resistance along characteristic curves.

In the other limit, we assume either immotile particles, V0 = 0, or take the limit |↵|/V0 ! 1.

Then if ↵ > 0 (pullers) we find �+ = 0 and �� = �⇡|↵k|/(2L2), with associated eigenvectors

p+ = ŷ, p� = �ix̂ +
2⇡k

L
ŷ. (76)

Meanwhile, if ↵ < 0 (pushers) we find �+ = ⇡|↵k|/(2L2) and �� = 0, with

p+ = �ix̂ +
2⇡k

L
ŷ, p� = ŷ. (77)

Both include a neutral direction associated with a pure shift of the sheet in the vertical direction.

To measure the growth rates �+ and �� numerically the simulation is seeded with an initial

condition given by (61), and we choose h(x, t = 0) = ĥ
k

(0)eiqx and �(x, t = 0) = �̂
k

(0)eiqx

with q = 2⇡k/L such that the vector [ĥ
k

(0), �̂
k

(0)] is pointing in the direction of either eigen-

vector p+ or p�. The Smoluchowski equation is then evolved by a single time step with size

dt = 10�7. We designate h(x, t) to be the center of mass location at each value of x in the

y direction; in other words, we calculate h(x, t) =
R

yc(x, y, t)dy/
R

c(x, y, t)dy. In addition, we

calculate � by �(x, t) = arctan(ñ
y

(x, t)/ñ
x

(x, t)) where ñ
x

(x, t) =
R

n
x

c(x, y, t)dy/
R

c(x, y, t)dy

and ñ
y

(x, t) =
R

n
y

c(x, y, t)dy/
R

c(x, y, t)dy. Then ĥ
k

and �̂
k

are determined using a one dimen-

sional Fourier transform of h and � respectively. Finally, the growth rate is found by evaluating

�+ = log
⇣
|�̂

k

(dt)|/|�̂
k

(0)|
⌘

/dt. The results of this numerical investigation are shown in the main

text, where we find a close agreement between the theory and the simulations.
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F. Connection to the Kelvin-Helmholtz/Sa↵man-Taylor/Rayleigh-Taylor instabilities

The instability of a flat vortex sheet in an inviscid, inertial flow to sinusoidal perturbation is

known as the Kelvin-Helmholtz instability. If the position of the two-dimensional sheet is param-

eterized by s and expressed in complex form, z(s) = x(s) + iy(s), then the dynamics of the sheet

are governed by the Birkho↵ equation:

@z⇤

@t
(s, t) =

1

2⇡i
�
Z 1

�1

�(s0, t)

z(s, t) � z(s0, t)
ds0, (78)

where z⇤(s) = x(s) � iy(s), and �(s0, t) is the vortex sheet strength, which moves with the flow,

�
t

(s, t) = 0. Consider the simplest case, such that the vortex sheet strength is constant, � = �.

For a small sinusoidal perturbation we have the Ansatz z(s, t) = s + i"h(s, t), with " ⌧ 1, so that

@z⇤

@t
= �i"

@h

@t
(s, t) =

�

2⇡i
�
Z 1

�1

1

(s � s0) + i"(h(s, t) � h(s0, t))
ds0. (79)

Expanding about " = 0,

@h

@t
=
�

2⇡
�
Z 1

�1

"�1

s � s0
� i

h(s, t) � h(s0, t)

(s � s0)2
ds0, (80)

and removing the singular part of the principle value integral, we find

@h

@t
=

�i�

2⇡

Z 1

�1

h(s, t) � h(s0, t)

(s � s0)2
ds0, (81)

which is precisely the form seen in (64) save for an extra factor of i, which acts to rotate the flow

field by 90� in the complex plane.

Another view is o↵ered by further consideration of the governing equations in (58), and we

now make a connection between the first order velocity field and the Hilbert transform. Writing

↵̃ = ↵/(4L) (and suppressing the time dependence, for clarity) we have the vertical component

of the velocity given by

v = � ↵̃
⇡

Z
L

0

h(x) � h(x0)

(x � x0)2
dx0 ⇡ � ↵̃

⇡

Z 1

�1

(h(x0) + (x � x0)h
x

(x0)) � h(x0)

(x � x0)2
dx0

= � ↵̃
⇡

Z 1

�1

h
x

(x0)

x � x0 dx0 = �↵̃H[h
x

], (82)

where

H[f ] =
1

⇡
�
Z 1

�1

f(x0)

x � x0 dx0 (83)

is the Hilbert transform. The operator H is skew-symmetric, commutes with di↵erentiation for

su�ciently smooth data (i.e. @
x

H[f ] = H[f
x

]), and has trigonometric functions as eigenvectors
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(H[eiqx] = �i sign(q)eiqx). The principle system may therefore be written as

h
t

+ V0hx

= �↵̃H[h
x

] + V0�, (84)

�
t

+ V0�x = �↵̃H[h
xx

]. (85)

Applying the operator (@
t

+ V0@x) to the first equation and using the second we find

(@
t

+ V0@x)
2h = �↵̃H[h

xt

+ 2V0hxx

]. (86)

In the immotile case, with V0 = 0, the dynamics of h reduce to

h
t

= �↵̃H[h
x

]. (87)

This is the exact form found in the evolution of the interface between two fluids of the same

viscosity but di↵erent density, either confined between two closely-spaced plates (in a Hele-Shaw

cell) or in a two-dimensional porous medium flow, without surface tension, whose flow governed

by Darcy’s Law. With or without the viscosity di↵erence and surface tension this is also known as

the Muskat problem (see the main text for references).

G. Proof of the “no-flow theorem”

The proof assumes uniqueness of solutions to the full Smoluchowski - Stokes system described in

the main text, which was shown for two-dimensions by Chen & Liu [9]. Suppose that  is initially

isotropic in orientation,  (x,p, t = 0) =  0(x), and consider the following modified system of

equations:

 
t

+ r · (ẋ ) + r
p

· (ṗ ) = 0, (88)

ẋ = V0p � d
t

r (ln ) , (89)

ṗ = �d
r

r
p

(ln ) , (90)

�rq + r2u + r · ⌃
a

= 0, (91)

r · u = 0, (92)

⌃
a

(x) = �

Z

⌦
ppT (x,p, t) dp, (93)

where r = r
x

and r
p

= (I�pp) · @/@p, and the spatial domain is either unbounded or periodic.

Note that the terms coupling the time evolution of  to the flow u have been removed from the

original system of equations. Thus  is determined completely by (88)-(90) and the provided initial

condition  0. We will show that the velocity generated by  (x,p, t) is zero for all space and time

when  is initially isotropic in orientation. We will then demonstrate that this same  solves the

original system of equations.
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From (91) and (92), the flow u in Fourier space is given by

û =
1

|k|2 (I � k̂k̂) · ⌃̂ · k. (94)

Note that if ⌃̂ · k = �
k

(t)k for some scalar function �
k

(t), then û = 0. We will demonstrate that

this is in fact the case. Combining (88) – (90), we have that

 
t

+ V0p · r
x

 � d
t

r2
x

 � d
r

r2
p

 = 0. (95)

Performing a spatial Fourier transform we find

 ̂
t

� iV0p · k ̂+ d
t

|k|2 ̂� d
r

r2
p

 ̂ = 0, (96)

where  ̂ =  ̂
k

(p, t). Note that (96) is non-autonomous in p; this results in Fourier mode coupling

if a Fourier decomposition is performed in p as well. Instead, we continue by making the trans-

formations: k̂ = R · ẑ and p = R · q where R is a rotation matrix. Then (96) may be written

as

 ̂
t

� iV0|k|q · ẑ ̂+ d
t

|k|2 ̂� d
r

r2
q

 ̂ = 0, (97)

where now  ̂ =  ̂
k

(q, t).

We proceed to demonstrate that ⌃̂ ·k = �
k

(t)k. This intermediate result is the primary part of

the proof with dependency on dimensionality. Thus two- and three-dimensional analysis are now

treated independently.

Two-dimensions: In two-dimensions we write q in terms of polar coordinates:

 ̂
t

� iV0|k| cos ✓ ̂+ d
t

|k|2 ̂� d
r

r2
q

 ̂ = 0, (98)

where r2
q

= @
✓✓

and  ̂ =  ̂
k

(✓, t). Since the isotropic initial condition and equations are invariant

with respect to the transformation ✓ ! �✓, the solution is also invariant with respect to these

transformations. Thus,  ̂
k

(✓, t) =  ̂
k

(�✓, t). We now compute ⌃̂ · k:

⌃̂ · k =

Z

⌦
pp · k ̂

k

(p, t) dp. (99)

Then applying the transform p = R · q, we find

⌃̂ · k = |k|R ·
Z

⌦
qq · ẑ ̂

k

(q, t) dq. (100)

We now transform to variable ✓:

⌃̂ · k = |k|R ·
Z

⇡

�⇡

d✓ q(✓) cos ✓ ̂
k

(✓, t), (101)
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where q(✓) = (sin ✓, cos ✓). Given that  is even with respect to ✓, it follows that the ẑ component

only remains in the integral. We are left with

⌃̂ · k = |k|R · ẑ
Z

⇡

�⇡

d✓ cos2 ✓ ̂
k

(✓, t), (102)

which provides the desired result,

⌃̂ · k = �
k

(t)k, (103)

where

�
k

(t) =

Z
⇡

�⇡

d✓ cos2 ✓ ̂
k

(✓, t), (104)

and finally û = 0.

Three-dimensions: In three-dimensions we instead write q in terms a spherical coordinate sys-

tem,

 ̂
t

� iV0|k| cos ✓ ̂+ d
t

|k|2 ̂� d
r

r2
q

 ̂ = 0, (105)

where r2
q

= (sin�)�2@
✓✓

+(sin�)�1@
�

(sin�@
�

) and  ̂ =  ̂
k

(✓,�, t). Since the initial condition and

equations are invariant with respect to the transformations ✓ ! �✓ and � ! �� independently, the

solution is also invariant with respect to these transformations by uniqueness. Thus,  ̂
k

(✓,�, t) =

 ̂
k

(�✓,�, t) and  ̂
k

(✓,�, t) =  ̂
k

(✓, ��, t). We now compute ⌃̂ · k:

⌃̂ · k =

Z

⌦
pp · k ̂

k

(p, t) dp, (106)

by applying the transform p = R · q:

⌃̂ · k = |k|R ·
Z

⌦
qq · ẑ ̂

k

(q, t) dq. (107)

Transforming to azimuthal and polar angles ✓ and �, we have

⌃̂ · k = |k|R ·
Z

⇡

0
d✓

Z 2⇡

0
d�q(✓,�) cos ✓ ̂

k

(✓,�, t), (108)

where q(✓,�) = (sin ✓ cos�, sin ✓ sin�, cos ✓). Given that  is even with respect to both ✓ and �

independently, it follows that only the ẑ component remains in the integral. We are left with

⌃̂ · k = |k|R · ẑ
Z

⇡

0
d✓

Z 2⇡

0
d� cos2 ✓ ̂

k

(✓,�, t). (109)

Therefore we find that

⌃̂ · k = �
k

(t)k, (110)
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where

�
k

(t) =

Z
⇡

0
d✓

Z 2⇡

0
d� cos2 ✓ ̂

k

(✓,�, t) (111)

and finally û = 0.

Given that we have established that ⌃̂ · k = �
k

(t)k for both two- and three-dimensions, and

consequently that û = 0, we now observe that the distribution  that solves the system (88)-(93)

also solves the original system by the inclusion of the velocity terms (which are zero):

 
t

+ r
x

· (ẋ ) + r
p

· (ṗ ) = 0, (112)

ẋ = V0p + u(x) � d
t

r
x

(ln ) , (113)

ṗ = (I � pp) · (p · ru) � d
r

r
p

(ln ) , (114)

�rq + r2u + r · ⌃
a

= 0, (115)

r · u = 0, (116)

⌃
a

(x) = �

Z

⌦
ppT (x,p, t) dp. (117)

And assuming uniqueness of solutions to this system (see Ref. [9]), u is zero for any initial

condition that is isotropic in orientation.
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