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Continuum mechanics, abridged.

[/ ] L
X X w(Xat)
. 1 /—\ °
“Reference configuration” “Current configuration”
(0) Q(t)
x(X,1)

U(X,t) or u(x,t) displacement field

e Material description: U(X,t) = x(X,t) — X
e Spatial description: wu(x,t) == — X(x,1)



Continuum mechanics, abridged.

X X x(X,1)

Q(0) Q(t)

Deformation Gradient Tensor (the Jacobian matrix of the map )

o0x; ox \ '
J

How does a line element transform?

dx; = dX; = ——dX; = F;;dX;
—ox; T ax; T YT
(Finstein summation notation:

repeated index —> implied sum)

So: dx=F -dX



Continuum mechanics, abridged.

[ [ ] L F(Xt):%e-e-—
x| X £(X 1) 0X;
- de =F-dX
Q(0) Q(t)

What about the length of a line element?

de| = Vdx -de =+/(F-dX) - (F-dX)=(dX -FT . F.dX)!/?
= (dX - C-dX)'?
e Right Cauchy-Green tensor: C(X,t) = F! . F
Standard measure of “strain”:
e Green-Lagrange Strain tensor E = £(C —I) = (FT - F —1I)

(HW): Show dX -E-dX = i(|dz|* — |[dX|?)

(Where else do we see “stretch-squared?”)
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Intuitively, the strain should depend on the displacement gradient,

/[ /] [

x(X,t)

U(X,t)=x(X,t) - X

an 8:1;7-
it At N
ox;,  ox; 7
VU:VZB—I:FT(X,t)—I, [VU]U
Or, 1n the current configuration,
ou 0X
U=——=1—-—"——=1-F (¢
Vat Ox Ox (@)
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Therefore, we can write the Strain Tensor E in terms of VU:':
E=5[I+VU)-I+VU)" -1 =3 [(VU+VU")+VU-VU"],

or, in index notation,

L (90U | 0U;\ 1 (08U dU;
2

8Xj i 8Xz 8Xz 8XJ> ) (Symmetnc).

e Derive similar tensors in the spatial coordinates:

e.g. dz|?> — |dX|*> = 2dz - e dz, e=L1(I-F7T.F)

T

(Finger tensor)

1 i 0y 1 (Oug 0 . .
€jj = 5 (2;2 - GZZ > 5 ( 81::;]; 6;];) (Euler — Almansi strain tensor)

NO|—

Note: E = 0 does not imply U = 0! However, we do have that E = 0= C =1 = |dz| = |dX]|

(Rigid body motion)



Linear (Hookean) constitutive law

Assume small deformation everywhere, (X ,t) ~ X

({9%8 N 6UjN8Uj

Then (9X@ 5’:13@ 8Xz -~ 85177;7

1
And E ~ §(Vu +Vul) =e
Hooke’s Law is an observation of a linear relationship between the stress o and the strain e.
0i; = Cijki€kl,

81 constant model.... weeee !
Use symmetries (to 36) and demand isotropy (down to two!) & = )\(V : u)I + 2ue

Side notes:

F = ma: Navier (or Lamé) equation  poUtt = A+ p)V(V - u) + pAu

1
Stored elastic energy: W (e) = 5)\(6%)2 + ,u(eijeij)
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Euler-Bernoulli beam theory:
mechanically linear, geometrically nonlinear

Ifh/R<1

The displacements  U(X, ¢) might be huge (so U 2 u)

But the gradients VU (X, t) are order h/R << 1.

In this theory 1t 1s still assumed that the Hookean constitutive law applies,
even though large deformations are permissible.



Historical aside:

638: Gallleo Galilel, Fracture of rods and cylinders.

6/8: Hooke's Law, F=-kx Ut tensio sic vis
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/05: Jacob Bernoulli, Elastic line or Elastica
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Resistance to bending Is proportional to curvature e

“Gallleo’s Problem™
| 744: Daniel Bernoulli suggests to Euler:

minimize the integral of the square curvature



Euler-Bernoulli beam theory

The complete approach is an asymptotic calculation based on the small number € = h / R

where R is the inverse of the largest curvature in the problem.

xX(s,t)

Arc-length s 15 the reterence configuration label X!

In the asymptotic calculation (or ask Bernoulli) 1t 1s shown that the elastic energy 1s given by

:—//{ds K:|XSS‘

If we wish to study an inextensible rod/sheet, we need a Llagrange multiplier:

B (" br
E = —/ |X58|2d8—|—/ (S)(|XS| —1)*ds
2 | .2




Euler-Bernoulli beam theory

Why all this talk about inextensibility?

Stretching energy o< h
Bending energy o h°



Euler-Bernoulli beam theory

B [ L'
5:_/ \XSSdes+/ (9) (13,1 — 1)2 ds
>/, .2

Principle of virtual work: at equilibrium,

g.5_5 — bm Elx +eg| — &% — 0 Ve
0X e—0 g

B [t Lo
Elx+ cg] = / xon + cgaa|? ds + / ) (. + gl — 1)2ds
0 0

Integrate by parts...



Euler-Bernoulli beam theory

Had we 1ncluded kinetic energy in the calculation, we would have found F=ma:

PXtt = _BXSSSS + (T(S)Xs)s

“Euler-Bernoulli beam”™

While integrating by parts we find “solvability” conditions from the boundary terms:

(Bx)(0) =0,  (Bxy)(L) =0

(Tx)(0) = (Bxy)(0),  (Tx,)(L) = (Bxys),(L).



Euler-Bernoulli beam theory

S

Even better!

Let § =X4 = (cosf(s),sinb(s))
Then li(S) = 0, (S) (so choose arc-length and tangent angle whenever possible!)

1 1
f=-B <lﬁ}33 -+ §/<z3> n—=--B (9335 -+ 59?) n

\_ (Flag model!)

Small amplitude? (s,9(s)) = (z,y(x))
0 ~ y,

I~ _Byaca:xa:y



FEuler-Bernoulli beam theory

An equation for the tension: use the constraint! 04 (|x4]?) =0 = X, - X5 = 0

(stay tuned)
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Active elastohydrodynamics

WAVE PROPAGATION ALONG FLAGELLA

By K. E. MACHIN
Department of Zoology, University of Cambridge

(Received 13 May 1958) | Exp. Biol.

Biophysical Journal Volume 74 February 1998 1043-1060 1043

Trapping and Wiggling: Elastohydrodynamics of Driven Microfilaments

Chris H. Wiggins,* D. Riveline,* A. Ott, and Raymond E. Goldstein®

*Department of Physics, Princeton University, Princeton, New Jersey 08544 USA,; *Institut Curie, Section de Physique et Chimie,
75231 Paris Cedex 05, France; and $Department of Physics and Program in Applied Mathematics, University of Arizona,

Tucson, Arizona 85721 USA



Active elastohydrodynamics

“a 1
Force balance: —¢ [ﬁﬁ + Btt] Xy = Db (’{88 T 5'%3) n ¢ = In(

Small amplitude approximation: (Y: = —BYzrzq
Nondimensionalize: x = Lz, y= Lj, t=1t/w,
Ui = —QYizzi

A hyperdiftusion equation
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o= gfm - (@)4

l(w) = (B/Cw)!/

Penetration length

Or: Sp=L/l(w) (Sperm number)



Biophysical Journal Volume 74 February 1998 1043-1060 1043

Trapping and Wiggling: Elastohydrodynamics of Driven Microfilaments

Chris H. Wiggins,* D. Riveline,” A. Ott,* and Raymond E. Goldstein®

*Department of Physics, Princeton University, Princeton, New Jersey 08544 USA; *Institut Curie, Section de Physique et Chimie,
75231 Paris Cedex 05, France; and SDepartment of Physics and Program in Applied Mathematics, University of Arizona,
Tucson, Arizona 85721 USA

Propulsive Force
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FIGURE 6 Solutions to EHD problem II for filaments of various

FIGURE 7 Scaling function Y for propulsive force. The large &£ expan-
rescaled lengths &£.

sion is plotted for &£ > 2, and the small-Z solution is plotted for £ < 3.5.



L

lo

L=21,

L=31p

WAVE PROPAGATION ALONG FLAGELLA

By K. E. MACHIN
Department of Zoology, University of Cambridge

(Received 13 May 1958) | Exp. Biol.

3 L=4ig L=101,

J
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Fig. 3. Calculated wave-patterns on a flagellum. Vertical amplitudes have been exaggerated for clarity.
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WAVE PROPAGATION ALONG FLAGELLA

By K. E. MACHIN
Department of Zoology, University of Cambridge

(Recetved 13 May 1958)

However, it is clear from Fig. 3 that a passive elastic flagellum of uniform cross-
section driven from one end cannot exhibit more than 1} wavelengths along its
length. Further, the amplitude of the wave decreases exponentially. If a flagellum
exhibits more than 1} wavelengths, or has a sustained amplitude along its length,
the propagation of the waves cannot be due to a passive mechanism. This con-
clusion is unaffected by the nature of the drive at the proximal end, since the
secondary wave becomes negligible beyond 34,

—— L = 50 ym ——

d ~ 500 nm

Spermatozoa of Lytechinus and Ciona (sea urchin)
Brokaw, J. Exp. Biol. (1965).



New Journal of Physics

An Institute of Physics and Deutsche Physikalische Gesellschaft Journal

Generic aspects of axonemal beating

Sébastien Camalet and Frank Jilicher

PhysicoChimie Curie, UMR CNRS/IC 168, 26 rue d’Ulm, 75248 Paris
Cedex 05, France

E-mail: scamalet@curie.fr and julicherQcurie.fr

New Journal of Physics 2 (2000) 24.1-24.23 (http://www.njp.org/)
Received 7 June 2000; online 4 October 2000
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O = (B +af + it +70) + ~d@BIb — afi + )

1

q

¢ = SLjee — a0, (b f) ~Boy(d) + Li(af —B )

&1

1

r(s,t) =r(0,t) + /OS(COS Y, sin ) ds’

Small amplitude: 9 = €1

52@%

O(e?)

T =Ty + er + €1 + O(e)

To = O 1S a constant,

€100 = =By +0i + af)



Self-organized beating F(t) = Z £, einet
Alt) =) A, e™!
Two-state model for molecular motors fn =X (Q, w)An

iw/a+ (w/a)?
1+ (w/a)?

X(Q,w) = K +ilw — p k)

which is the linear response function obtained for a two-state model, see appendix C. Here, K
is an elastic modulus per motor, A an internal friction coefficient per motor, £ is the cross-bridge
elasticity of a motor and €2, with 0 < € < 72, plays the role of a control parameter, « is a
characteristic ATP cycling rate. Higher-order terms F(?"*1) have to be taken into account if the
third or higher order in € is considered.

For (2 < (), the system is passive and not moving, for {2 > (). it exhibits spontaneous oscillations

10¢F '

0./21 |
(kHz) |

0.5}

1 5 10 50
L (um)

Figure 8. Oscillation frequency w. /27 at the bifurcation point



Question: What 1s the ‘optimal’ geometry for planar, slender body (headless) locomotion?

Partial answer:
Periodic waves (Pironneau & Katz, JEM (1974), Tam [PhD Thesis, MIT] (2008)).

Infinite length
optimality condition: [¢| =~ 40° Lighthill, STAM Rev. (1976)

(0 /\/\ (Helical motions avoid this complication)

But what if there are other energetic costs!?




What 1s the shape of the optimal elastic flagellum?

PHYSICS OF FLUIDS 22, 031901 (2010)

The optimal elastic flagellum

Saverio E. Spagnoliea) and Eric Laugab)

Department of Mechanical and Aerospace Engineering, University of California, San Diego,

9500 Gilman Drive, La Jolla, California 92093-0411, USA

0.09
0.08¢
0.07¢
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0.04¢
0.03¢
0.02¢
0.01¢

10%10(143)

FIG. 11. (Color online) Swimming efficiencies for the optimal flagellum of
finite length as a function of the bending cost Ag: total (7, solid line) and
hydrodynamic (7, dashed line) efficiencies.

FIG. 15. Spermatozoa of two marine invertebrates. (a) Superimposed im-
ages of the headless spermatozoon of Lytechinus. (b) Spermatozoon of Cha-
etopterus exhibits nonintegral spatial wave numbers. [Reproduced with per-
mission from C. J. Brokaw, J. Exp. Biol. 43, 455 (1965). Copyright © 1965,
The Company of Biologists. ]



And much more...

IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 72 (2009) 096601 (36pp) doi:10.1088/0034-4885/72/9/096601

The hydrodynamics of swimming
microorganisms

Eric Lauga' and Thomas R Powers>

! Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla,
CA 92093-0411, USA
2 Division of Engineering, Brown University, Providence, RI 02912-9104, USA

E-mail: elauga@ucsd.edu and Thomas_Powers @brown.edu



Available online at www.sciencedirect.com

® JOURNAL OF
sc'E"cE@D'REcT COMPUTATIONAL

2 3 PHYSICS
ELSEVIER Journal of Computational Physics 196 (2004) 8—40

www.elsevier.com/locate/jcp

Simulating the dynamics and interactions of flexible fibers
in Stokes flows

Anna-Karin Tornberg “, Michael J. Shelley

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, NY 10012, USA
Received 11 June 2003; received in revised form 10 October 2003; accepted 20 October 2003
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Fig. 3. Pronounced buckling occurs for = 3 x 10°.




Soft Matter RSCPublishing

PAPER

Elastocapillary self-folding: buckling, wrinkling, and
collapse of floating filaments

Cite this: Soft Matter, 2013, 9, 1711
Arthur A. Evans,*@ Saverio E. Spagnolie,"‘b Denis Bartolo® and Eric Lauga®

. . . ~vL3  Attraction
_ Q=" ~
(Non-dimensionalized on L, B/L) 5 Bending




"The Cheerios effect

B = va?In(R/L.), “Capillary monopoles”

7y Interaction strength
- Fluid (Surface tension)
- Material (Contact angle, gravity)

- Particle geometry
Keller, 1998

{. Capillary length = \/ o / Apg Vella & Mahadevan, 2005

Anurida Maritima springtall (cosmopolitan collembolan)

Mendel, Hu & Bush 2005



Linear stability analysis
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Long-time behavior?

y(s,0) = 0.05sin(ms) —
y(s,0) = 0.05sin(77s) —

—0.8
—~A— Q = 2500, F = 0 10 Q = 2500
—1.0 (k" =T7.4) | \%
. : e _
FE E F = 800
AU
—14 F = 500
—1.4 e
16 ZJZ% M) 5&\ %L —
—1.6
o 2 4 6 &8 10 12 14 0 20 40 60 8 100 120
103 ¢ 103 ¢
051 05}
0.4} 0.4F
03F 0D3F
02F D2F
01F 01}
= 0 = 0
01F 01
02+ 02
03f 031
0.4+ -0.4F
05}t 051
El U.I2 D.I4 U.IB EI.IB 1I El 0.12 U.Itl EI.IB D.IB 1I

X X

Gross features of ultimate shapes are suggested by linear stability analysis



Highly deformed states
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J. Fluid Mech. (2013), vol. 735, pp. 705-736. (© Cambridge University Press 2013 705
doi:10.1017/jfm.2013.512

The sedimentation of flexible filaments

Lei Li!, Harishankar Manikantan?, David Saintillan’
and Saverio E. Spagnolie'{

1 [t 5 1 [t 5
&= = / B(s)|xs|"ds + = / T(s)(lxg|” — 1) ds
2 Jo 2 Jo

L L
— / f(s)-x(s)ds — / F,(s) -x(s) ds,
0 0



Sedimenting fiber suspensions are beautiful and complex

Guazzelli Lab
. o Koch & Shaqgteh, (1989),
); What 1s the role of flexibility? Metzger, Guazzelli & Butler (2005),
. Saintillan et al. (2006),
( Start with one ﬁber /) Tornberg & Gustavvson (2009),
(2011)

Guazzelli & Hinch (2011).



Hydrodynamic interactions lead to drag anisotropy of slender filaments




There are two physical mechanisms which may lead to bending



There are two physical mechanisms which may lead to bending

QP 90 0000
gl 202 !

U=—Apg x; = —Uy + Zuj(xz-)
I j#i

'Two sources of bending:

Spatial variation in gravitational potential “Internal” hydrodynamic interactions

(to be described 1n this talk)



The force per unit length on the filament 1s found by the principal of virtual work

Scaling upon...

Dimensionless viscous drag:

f(s) = —Fy(s) — (T(s)xs)s + B(B(5)Xss)ss

Viscous Gravity Tension Elasticity

drag

rEa*
4|F | L?

Elasto-gravitation number: 5 =

B > 1. Stiff filaments (rods)
B < 1: Floppy filaments



Fluid-body interactions are determined by slender-body theory (Johnson, 1980)

a
e=—-—<1 ——

L
x; = —A[f] — K[f] + (¢° log(e))
Y N

Local operator Nonlocal integral operator

f(s) = —Fy(s) — (T'(s)xs)s + B(B(8)Xss)ss

An equation for the tension: use the constraint!  9;(|xs|*) =0 = x4 - x4 = 0

—2(c — DTy + (¢ + D|xy|*T — 2¢,T, — x, - 0,K[(Tx,),]
= (Tc — 5)BB($)Xy * Xy + 6(c — 1) BB(S)|X 55 |* + 68¢,B(5)Xs; * Xy
+ B(4¢,By + (5¢ — 3)Byy) | x5 |> + 4(4c — 3) BBXy, » Xss — X » 0, K[(BX,) ]
+ (¢ —3)xg + Fy +2(c — Dx; + 0,F, + 2cx, « Fy + x, - 0,K[Fy(s)]. (2.12)



Weakly flexible filaments are not rigid rods: 3 rEa*

44 7
. . e - — > 1
shapes and trajectories slowly vary towards equilibrium 4|F | L?
Q J | F ™=
- Initial angle with -
gravity
N 0() =T / 64 ~ >
T | l—
| & B = 0.02

- 9():7T/4 — >




Terminal sedimenting shapes

Rigid rod: 8 — o0 Xu & Nadim, (1994)



Flexible filament dynamics vary on well separated time-scales

'Two (three) time scales:

1. Very fast time scale for relaxation from 1initial state (ignored)
2. Time scale for sedimenting one body length: ¢ = O(1)

3. Time scale for shape changes and reorientation: 7 =1¢/8 = O(1)

(6>1)



Confined cloud shapes are predicted in dilute suspensions

f=10.1

(6> 1)




Confined cloud shapes are predicted in dilute suspensions
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Sedimentation of flexible filaments in the floppy regime: a surprise?

0

CO0O00O0

(k1)



Sedimentation of flexible filaments in the floppy regime: a surprise?

(a)

o O
@
o @
® ?

A sedimenting flexible filament should buckle!

(k1)



Numerical simulations show filament buckling in the floppy regime

B=5x10"4

| | |

0.5 F -
0.0 F -

= -0.5 F .
1.0 F .
1.5 F -

| | |
-0.5 0.0 0.5

(B < 1)



Filament buckling: linear stability analysis v

Trailing half Leading half
A (@) 100 - - (b) 200 . .
0 100 | B=10""
T 100 | 0
v — 200 100 |
(k> 1) — ;? 300 | 200 |
o

—400 t =300 |

=500 } —400 ¢

—>

—600 | 500 |

—600

—700
0

o(k) ~ log ( ! ) (£7°k* — B(4mk)* + 4mik)

€2 k?
/ \ N traveling wave

tension elastic restoration

1 Most unstable mode: k* = !

167/ 3 167/23

Buckling can occur in the range 0 < k <




What about suspensions?




A suspension of spheroids 1s unstable to density perturbations Koch & Shagfeh, (1989)

‘Extensional’ ‘Compressional’
quadrant quadrant

\ Aﬂ Regions of higher density Longest wavelengths

m increase sedimentation speeds are most unstable

and promote particle rotations (container size)

Low particle High particle
density density



A suspension of spheroids 1s unstable to density perturbations Koch & Shagfeh, (1989)

‘Extensional’ ‘Compressional’
quadrant quadrant

\\ ..///
Ny

l{((ﬂ Regions of higher density Longest wavelengths

, J(ﬂ/]/ﬂ\\ — increase sedimentation speeds are most unstable
,U/ W and promote particle rotations (container size)

Low particle High particle
density density
1 e
Basic kinetic model: v / / U(x,p,t)dxdp =n P : probability distribution
vV JQ
: . oV . .
Conservation of particles: 5 + Vi (X¥)+ Vy - (pV) =0
X=u;+u;—D-VyInV¥
Fe A A
L. ° L . ° S — ° 29 H
P=DPs+Pa— Dy - VpolnV¥ p 87T,uL225SHl( )

j \ 0

self-rotation disturbance flow

StOkﬁS ﬂOW: _,UJV)%ud_I_quCl:FGC(x’ t)3 Vx'ud:()a C(xa t):/ l’p(x’pv t)dp
£2



'The base orientational distribution depends on the relative size
between Brownian fluctuations and flexibility

Base state: n(x) = / U(x,p,t)dp constant (Well-mixed / homogencous)

B ~n exp(—2ncos®0) p
\IJO(X,H,Qb) — \IJO(Q) — 9 fl exp(—Qan)du
—1

B A Pe Pe — Fc;L
17 48Blog(1/e2)  ° kpT

Base orientational distribution

Even for weak Brownian
motion and flexibility,

their relative size affects the
base state significantly

2(H)




Fillament compliance leads to a base state which 1s more unstable. ..
B — oo / N

i

Low particle High particle
density density

Z.eroth wavenumber remains Low particle High particle
density density

the most unstable

‘The anisotropic limit leads to a
wavelength-independent instability



...but compliance also suppresses instability!

__ N—
y\’ > S— N

\_/ \-/
/(m\h\ j(m
JJ/ | W (Particle clustering 1s inhibited)
Low particle High particle
density density
. . o FaL
Thermal fluctuations also suppress instability Pe = T
B

Instability enhancement / suppression is dictated by n oc Pe/f3:



Instability enhancement / suppression is dictated by n oc Pe/ 3 : Pe = T
B
Z.ero-wavenumber growth rates: 4
g Anisotropic base state, A= mha 5
Flexibility suppresses instability enhanced ek
\: N
the instability W W W 2> /Q\
A\ A\ \
10 . PN
RN
107 1 o0
(©) 2
\—’ 100 Isotropic base state,
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Wall effects: a first look from the UW Applied Math Lab

0 ~ —45°, ¢p =~ 0° (Side wall)

“Reversing”







Consider an arbitrarily oriented prolate or oblate spheroid...

(gravity)
>

Previous analytical work:

Sphere (exact): Goldman 1967, O’Neill 1964

Spheroid far from wall (2D forces; no dynamics): Wakiya 1959
Slender rod: Russel, Hinch, Leal & Tieftenbruck, 1977

Numerical (3D fluid; dynamics confined to 2D):

First-kind boundary integral method: Hsu + Ganatos 1989, 1994
Regularized Stokeslets with images: Ainley 2008
Ensembles of spheres: Kutteh 2010

Surprisingly, no previously known analytical solutions for general body eccentricity and/or 3D motion



Far-field asymptotic expressions for the body velocity may be derived
using the method of reflections

Stokeslet image

(Blake 1971)

Stokeslet Zero velocity on the wall



Clean ode’s were derived for the full 3D dynamics for arbitrary eccentricity (and wall tilt)

h
21 9/
T

cos(20) B cos(26) D
h? [A_/#_C h? ]_/74)

é:cosgb(

3
i 3singtanf [ —6e? N 3e* cos? § — 8e* + 10e? — 4
T 642 —e2) \ 2 iz

h = cos ¢sin(26) [E - F]

) enslaved!

A-F are simple functions ot particle eccentricity e

— > W 6) A e+ 2 (i E L E
,0)=exp| —— | | —cos — — 4+ —
P\ " En A Ah T 2A2



Periodic tumbling, reversing, and glancing...

= ().30

Y

§

{ D D

457 907 —] 0= —45°

Reversing Glancing Tumbhng

“appears” “appears” vanishes

Periodic tumbling
(~rolling)

The trajectory 1s very sensitive to the body shape for nearly spherical bodies!



Natural numerical method: half-space kernels

sruu(x) = | Gxy) - £(y)dS, + u / u(y) - T(x,y) - fy) dS,
S(t) S(t)

+ [ G ey) E)dS, [ uly) T ) ads,

STt) S(t) /

This took some work!

Closure: x € S(t) : u(x) =U+ Q2 xx  Unknown / specified

/ fdS =F, / x X fdS =L Specified / unknown
S(t) S(t)

Either way, results in an integral equation for f



Natural numerical method: half-space kernels

8ruu(x) =
S(t)

_|_
S(t)

G(x,y) - £(y) dS, + /S L) T y) A,

G*(x.y) £(y)dS, +u [ uly) - T"(x.y) fds,

S(t) /

This took some work!

Trouble!

Fredholm integral equation of the first kind for £

You are 71 heoretically Naked

(Slender body theory: don’t use too many gridpoints!)




Going further: a generalized traction integral equation

(with walls / background flows)

- -

p 57‘\
Lorentz reciprocal identity (~ Green’s identity) @
W', fio+W', fs =<, fp+ W, fs
/ 1 C
w;(x) = o— | TigCe,)ny)yi(y) dSy + — | Cij(x, ) i(y) dS,
St Jp 37 Jp
Distribution of stresslets Completion flow

(rank deficient) (e.g. internal singularities)



Going further: a generalized traction integral equation
(with walls / background flows)

- -

Lorentz reciprocal identity (~ Green’s identity) @
@', o+ W', fs =W, fip+u, fs

--------

1

) = fD (e, )mU ) dSy + - fD C.i(x, ) (9) dS,

Distribution of stresslets Completion flow
(rank deficient) (e.g. internal singularities)

Resulting integral equation, e.g. near a wall, with a background shear flow (rate )

350+ gom) [ TR A0S, + [ B psioas,

D

= ¢ (Uj + €k (ye — Yg)) — 1y (51jn3(.)’) + 53]'”10’)) + 6177/ (51jY3 - 53jY1) + 617)/ (51jZ3(.Y) + 53j21()’))

Second-kind boundary integral equation for £

(See also: Liron & Barta ’92, Kim & Power *93,
Ingber & Mondy °93, Keaveny & Shelley *11)



The analytical predictions are confirmed for all but the closest of wall-interactions

Glancing - Reversingl




But now we can say more! Pointwise traction on a sedimenting spheroid




Application: hydrodynamics ot self-propulsion near surfaces

h= 2 é.\\? %}‘?.

¢ (Simulation)
(@) |

e 1.0

Spagnolie & Lauga,  Fluid Mech., (2012).



Other directions: viscous erosion

0 A
ax(s, t) = —a|(I —nn) - (s, 1)

1.0

(6]
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0.8F ‘e, 1S
0 7 .. O
. B .. 1 =

(©)
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i o |t
ool )3

0 5 10 15 20
t

(Not Pironneau’s drag minimizing shape)

Moore et al.

time, ¢ (min)

0

PNAS ‘13
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In a shear flow without/with a wall...




"Thanks to collaborators:

Lei La Harishankar Manikantan David Saintillan Will Mitchell
UW-Madison UCSB UCGSD UW-Madison

The sedimentation of flexible filaments,
L. Li, H. Manikantan, D. Saintillan, and S.E. Spagnolie, 7. Fluid Mech., (2013).

The instability of a sedimenting suspension of weakly flexible fibres,

H. Manikantan, L. Li, S.E. Spagnolie, and D. Saintillan, 7. Fluid Mech., (2014).

Sedimentation of spheroidal particles near walls in viscous fluids:
glancing, reversing, tumbling, and sliding,

W.H. Mitchell and S.E. Spagnolie, % Fluid Mech., (2015).

Generalized traction integral equations for viscous flows with an application to erosion problems,

W.H. Mitchell and S.E. Spagnolie, (preprint).
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