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Hydrodynamics of the double-wave
structure of insect spermatozoa flagella

On Shun Pak, Saverio E. Spagnolie and Eric Lauga*

Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0411, USA

In addition to conventional planar and helical flagellar waves, insect sperm flagella have also
been observed to display a double-wave structure characterized by the presence of two super-
imposed helical waves. In this paper, we present a hydrodynamic investigation of the
locomotion of insect spermatozoa exhibiting the double-wave structure, idealized here as
superhelical waves. Resolving the hydrodynamic interactions with a non-local slender body
theory, we predict the swimming kinematics of these superhelical swimmers based on exper-
imentally collected geometric and kinematic data. Our consideration provides insight into the
relative contributions of the major and minor helical waves to swimming; namely, propulsion
is owing primarily to the minor wave, with negligible contribution from the major wave. We
also explore the dependence of the propulsion speed on geometric and kinematic parameters,
revealing counterintuitive results, particularly for the case when the minor and major helical
structures are of opposite chirality.

Keywords: swimming micro-organisms; flagellar hydrodynamics;
insect sperm motility
1. INTRODUCTION

Locomotion in fluids is ubiquitous in nature, with
examples spanning a wide range in size from bacterial
motility to the swimming of whales. It plays fundamen-
tal roles throughout the lives of animals in such
endeavours as predation and finding a mate for repro-
duction [1]. Lying along the interface between biology
and fluid dynamics, biological locomotion at small
scales has received substantial attention from biologists
and engineers in recent years [2,3].

The physics governing locomotion in fluids is very
different for microscopic organisms (e.g. bacteria, sper-
matozoa) and macroscopic organisms (e.g. fishes,
humans). The dramatic difference is because of the com-
petition between inertial and viscous effects in the fluid
medium. The Reynolds number, Re ¼ UL/n (with U
and L characteristic velocity and length scales, and n

the kinematic viscosity) is a dimensionless parameter
that measures the relative importance of the inertial
forces to viscous forces in a fluid. Locomotion of larger
animals in fluids takes place at moderate to large
Reynolds numbers, where inertial forces dominate. At
this scale, swimming and flying are generally accom-
plished by imparting momentum into the fluid opposite
to the direction of locomotion. Micro-organisms mean-
while inhabit in a world of low Reynolds numbers,
where inertia plays a negligible role and viscous damp-
ing is paramount. The Reynolds number ranges from
1026 for bacteria to 1022 for spermatozoa [4]. The
orrespondence (elauga@ucsd.edu).
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absence of inertia imposes stringent constraints on a
micro-organism’s locomotive capabilities.

Many micro-organisms propel themselves by propa-
gating travelling waves along one or many slender
flagella [4]. The motility features of these flagella
depend on the cell type, either prokaryotic (cells with-
out a nucleus) or eukaryotic (cells with nuclei). The
flagella of prokaryotic bacteria, such as those used by
Escherichia coli, are helical in shape and are passively
rotated at their base by a motor embedded in the cell
wall. The rotation propagates an apparent helical
wave from the sperm head to the distal end of the flagel-
lum, propelling the cell in the opposite direction.
Eukaryotic flagella exhibit a different internal struc-
ture, called an axoneme, which is composed of
microtubules, proteins and protein complexes such as
dynein molecular motors. The dynein arms convert
chemical energy contained in adenosine triphosphate
into mechanical energy, inducing active relative sliding
between the microtubules, which in turn leads to bend-
ing deformations that propagate along the flagellum.
A common structure of the axoneme has a ring of
nine microtubule doublets spaced around the circum-
ference and two additional central microtubules (the
so-called 9 þ 2 axoneme). Other variations of the
axonemal structure have also been observed [5].

Generally, three levels of complexity in undulatory
beat patterns are observed in eukaryotic flagella [5,6],
following a hierarchy in the structure of the axoneme:
(i) the lowest in the hierarchy is a simple planar beating
pattern, as in human and sea-urchin spermatozoa fla-
gella (figure 1a), with the common 9 þ 2 axoneme
structure; (ii) a more complicated three-dimensional
This journal is q 2012 The Royal Society
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Figure 1. A hierarchy of the complexity of flagellar beat-
ing pattern observed in eukaryotic cells. (a) Planar-wave
pattern in sea-urchin spermatozoa flagella [7]; (b) helical-
wave pattern in Gryllotalpa gryllotalpa [6]; and (c) double-
wave pattern in Haematopinus suis [6]. All images were
reproduced with permission: (a) from Rikmenspoel & Isles
[7]. Copyright 1985 Elsevier; (b,c) from Baccetti [6].
Copyright 1972 Elsevier.
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helical beating pattern is exhibited by some insect sper-
matozoa with a 9 þ 9 þ 2 axoneme, as in Gryllotalpa
gryllotalpa (figure 1b); and (iii) the highest level of com-
plexity is a double-wave pattern observed in some insect
spermatozoa with a 9 þ 9 þ 2 axoneme and accessory
bodies endowed with ATPase activity, as in Haematopi-
nus suis (figure 1c). A vast diversity in sperm structure
is found in insects [8], and the hierarchy described is
also observed even just within the realm of insect sper-
matozoa flagella [5,6]. Figure 2 shows a schematic of a
pterygote insect flagellosperm and its ultrastructure
(reproduced with permission from Werner & Simmons
[5]). Similar to the 9 þ 2 axoneme observed in cilia
and flagella of many plant and animal cells, the central
core of the insect sperm axoneme is composed of two
central microtubules surrounded by a ring of nine
microtubule doublets. However, the ring of nine micro-
tubule doublets is surrounded by another nine accessory
tubules, forming the characteristic 9 þ 9 þ 2 arrange-
ment of the insect sperm axoneme. In addition to the
more complicated microtubule arrangement, two pro-
minent features of inset spermatozoa flagella are the
mitochondrial derivatives and accessory bodies running
along the axoneme (see the study of Werner & Simmons
[5] for a thorough review of insect sperm structure).
J. R. Soc. Interface (2012)
Although the structure of many different spermatozoa
has been examined, the rapid and divergent evolution in
sperm morphology is not well understood [5,9]. Hydro-
dynamic considerations of the relationship between
flagellar morphology and functional parameters such
as the swimming speed may provide useful information
for explaining the evolutionary divergence. Because of
its intricate nature, the double-wave structure is less
well-explored than wave types sitting lower in the hierar-
chy. Relevant studies on the planar and helical wave
structures are abundant and well-developed (see the clas-
sical and recent reviews [2–4]), but we are not aware of
any hydrodynamic studies dedicated to the double-
wave structure. Here, we present a hydrodynamic study
on the motility of insect spermatozoa exhibiting a
double-wave beat pattern.

The double-wave pattern is characterized by the sim-
ultaneous presence of two kinds of waves—a minor
wave with small amplitude and high frequency superim-
posed on a major helical wave of large amplitude and
low frequency. The minor wave has also been observed
to be approximately helical [10], and the combined
activity of the two is described as a double-helical beat-
ing pattern [5]. The double-wave structure was first
observed in Tenebrio molitor and Bacillus rossius by
Baccetti et al. [11,12], and was also later found in
Lygaeus [13], Culicoides melleus [14], Aedes notoscrip-
tus [15], Ceratitis capitata [16], Drosophila obscura
[17], Megaselia scalaris [18], and more recently in Aleo-
chara curtula [10] and Drusilla canaliculata [19].
Figure 3 compiles a collection of images of spermatozoa
exhibiting the double-wave structure. Werner &
Simmons [5] have presented a thorough review of this
complex structure in insect spermatozoa.

Most studies on insect spermatozoa focus on the
sperm ultrastructure, there are very few studies on
insect sperm motility [5]. Many important geometric
and kinematic data required for hydrodynamic model-
ling of the double-wave structure are unavailable. In
particular, we are not aware of any information about
the chirality of the minor helical structure relative to
the major helical structure. The generation and propa-
gation mechanism of the double-wave is also not yet
fully understood. Baccetti et al. [11,12] have suggested
that the accessory bodies and the axoneme are responsible
for the major and minor waves, respectively, whereas
Swan [15] has stated that the major wave may be owing
to the sliding of the accessory tubule against the axonemal
doublets. More recently, Werner et al. [10] have proposed
a completely different line of thought, suggesting that the
major wave is not in act a real wave but a static helical
structure formed owing to the coupling of static forces of
the axoneme, mitochondrial derivatives and plasma
membrane. The apparent propagation of the major
wave could be owing to the passive rolling of the entire
cell and might in fact be mistaken for an active, propagat-
ing wave under the microscope. It has therefore been
suggested that the sperm motility is caused solely by
the minor wave. The relative extent of the contribution
of the major and minor waves to propulsion is thus still
an open question [14]. With the hydrodynamic study pre-
sented in this paper, we hope to provide physical insights
on these unresolved problems.

http://rsif.royalsocietypublishing.org/
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Figure 2. Schematic of the ground plan of a pterygote insect flagellosperm and its ultrastructure. (a) A typical filiform insect
spermatozoon. Although not easily visible from the outside, it can be divided into five distinct parts: acrosome, nucleus, centriole
adjunct, flagellum, and tail end. (b) Cross section of the acrosome showing its trilayered arrangement of an inner acrosomal rod
(ar), an acrosomal vesicle (av) and an outer extra acrosomal layer (el). (c) Cross section of the nucleus (n) showing condensed
chromatin. (d) Cross section of the posterior centriole adjunct region. This part of the spermatozoon is characterized by the
electron-dense centriole adjunct material (ca), often surrounding the anterior part of the axoneme (ax) and the tip of one of
the mitochondrial derivatives (md). (e) Cross section through a representative segment of the flagellum. In addition to the axo-
neme, two accessory bodies (ab) and the two mitochondrial derivatives of often different size (md1, md2) can be seen. The
mitochondrial derivatives typically bear paracrystalline inclusions (pc). ( f ) Cross section through the tail end showing disso-
ciated axonemal tubules. (g) Cross-sectional representation of a typical 9 þ 9 þ 2 insect sperm axoneme. Nine microtubule
doublets (d) with associated dynein arms (da) and radial spokes (rs) are connected to two central microtubules (ct) via the cen-
tral sheath (cs). The doublets are in turn surrounded by nine accessory tubules (at). Accessory tubules and doublets are linked
together by intertubular material (itm). (h) Schematic cross-sectional drawing of an axonemal doublet showing the protofilament
arrangement of the A and B subtubules. The radial spoke (rs), the inner dynein arm (ia) and the outer dynein arm (oa) are
attached to the A subtubule. This figure and caption are reproduced with permission from Werner & Simmons [5]. Copyright
2008 John Wiley and Sons.
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The structure of this paper is as follows. We idealize
the double-wave structure as the propagation of super-
helical waves and model the hydrodynamics using
non-local slender body theory (SBT) in §2. In §3, we
present the computed hydrodynamic performance of
spermatozoa of different species and compare the pre-
dictions with the available experimental data (§3.1).
The features of superhelical swimming are illustrated
by a specific model organism, namely the spermatozoa
of Cu. melleus (§3.2). We then investigate the effects
of kinematic and geometric parameters on the propul-
sion performance of a superhelical swimmer (§3.3).
Finally, the limitations of the present study and direc-
tions for future work are discussed in §4.
2. MATERIAL AND METHODS

2.1. Idealized double-wave structure: superhelical
swimmers

The experimentally observed double-wave structure
of insect spermatozoa is mathematically idealized in
this paper as a superhelix (a small helix itself coiled
into a larger helix); we refer to the helical structure
with the larger wavelength as the major helix and
J. R. Soc. Interface (2012)
the other as the minor helix. To mathematically
describe a superhelix, we first construct the position
vector of a regular axial helix (the major helix)
to be Hðs0Þ ¼ ½AM cosðkMas0Þ;AM sinðkMas0Þ;as0�, with
a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

M k2
M

p
. Here kM is the wavenumber, AM

is the amplitude, and s0 [ ½0;L0� and L0 are the arc-
length parameter and the length of the major helix,
respectively. From this basic helix, the local unit tangent
t̂A, unit normal n̂A and unit binormal b̂A ¼ t̂A� n̂A vec-
tors are determined, and we take them to define a local
coordinate system upon which the minor helix is con-
structed [20]. The position vector of the combined
superhelical shape is then given by:

Xðs0Þ ¼ ½xðs0Þ; yðs0Þ; zðs0Þ�
¼ Hðs0Þ þ Am cosðkms0Þ n̂Aðs0Þ

ð2:1Þ

+ Am sinðkms0Þ b̂Aðs0Þ; ð2:2Þ

where Am and km are the amplitude and wavenumber of
the minor helix, respectively. Two different configur-
ations will be considered: the ‘ þ ’ (plus) sign leads to a
superhelical structure where both the major and minor
helices have the same chirality, whereas the ‘ 2 ’
(minus) sign represents the case of opposite chirality.

http://rsif.royalsocietypublishing.org/
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Figure 3. The double-wave beating pattern observed in insect spermatozoa flagella of different species: (a) Megaselia scalaris [18],
(b) Haematopinus suis [6], (c) Culicoides melleus [14], (d) Tenebrio molitor [11], (e) Drosophila obscura [17], ( f ) T. molitor [13],
(g) Aedes notoscriptus [15] and (h) Bacillus rossius [12]. All images were reproduced with permission: (a) from Curtis & Benner
[18]. Copyright q 1991 John Wiley and Sons; (b) from Baccetti [6]. Copyright q 1972 Elsevier; (c) from Linley [14]. Copyright q

1979 John Wiley and Sons; (d) from Baccetti et al. [11]. Copyright q 1973 Plenum Publishing Corporation, with kind permission
from Springer Science þ Business Media B.V; (e) from Bressac et al. [17]. Copyright q 1991 John Wiley and Sons; ( f ) from Philips
[13]. Copyright q 1974 John Wiley and Sons; (g) from Swan [15]. Copyright q 1981 John Wiley and Sons; (h) from Baccetti et al. [12].
Copyright q 1973 Elsevier.
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Note that s0 is no longer the natural arc-length par-
ameter, but merely a regular parameter for describing
the swimmer’s geometry. The arc-length of the complete
superhelix, denoted by s, as a function of the parameter s0

is determined by numerical integration, and the total
length of the superhelix is denoted by L.

The major and minor helices are free to propagate
waves at different wave speeds. Denoting cM and cm

as the major and minor wave speeds, respectively, the
position vector at time t, X(s0,t), may be written in
component form as:

xðs0; tÞ ¼ AM cos½kMðas0 � cMtÞ�
� Am cos½kmðs0 � cmtÞ� cos½kMðas0 � cMtÞ�
+ aAm sin½kmðs0 � cmtÞ� sin½kMðas0 � cMtÞ�;

ð2:3Þ
yðs0; tÞ ¼ AM sin½kMðas0 � cMtÞ�

� Am cos½kmðs0 � cmtÞ� sin½kMðas0 � cMtÞ�
+ aAm sin½kmðs0 � cmtÞ� cos½kMðas0 � cMtÞ�,

ð2:4Þ
J. R. Soc. Interface (2012)
and

zðs0; tÞ ¼+aAmAMkM sin½kmðs0 � cmtÞ� þ as0: ð2:5Þ

In addition to the long flagellum, insect spermatozoa
have cell bodies that are very slender and short when com-
pared with the flagellum size. We expect that the
hydrodynamic influence of the sperm head is negligible
and do not include such a body in our consideration.
A typical superhelical swimmer is shown in figure 4 using
the dimensionless parameters of Cu. melleus spermatozoa.
2.2. Hydrodynamic modelling

Flagellar swimming is a result of the interaction between
the actuating bodyand the surrounding fluid. A tractable
and accurate approach to studying such hydrodynamic
interactions exploit the slenderness of the flagellum, in
which the velocity along the flagellar centreline is related
to the fluid forces along the same curve. In previous
studies, the fluid–body interaction has been modelled
using a resistive force theory (RFT) [21–23], in which
local forces acting on the flagellum at any station along

http://rsif.royalsocietypublishing.org/
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Figure 4. Idealization of the double-wave structure as superhelices for the (a) same-chirality, and (b) opposite-chirality configurations,
using the dimensionless parameters of Culicoides melleus spermatozoa (table 2). (Online version in colour.)
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the filament are expressed in terms of the local velocity at
the same location. RFT takes only local effects into
account and neglects any hydrodynamic interactions
between different parts of the deforming body. The
local theory works well for simple geometries. However,
owing to the complexity of the superhelical structure in
the problem under consideration here, the local theory
is inadequate (see §3.4 for details), and we employ instead
the full non-local SBT [24] to study the hydrodynamics of
the superhelical swimmers. The non-local theory cap-
tures the hydrodynamic interactions between distant
parts of a curved filament, while still taking advantage
of the slenderness of flagellum to simplify the analysis.

The flagellum is modelled as a slender filament of
length L and circular cross section of radius eLrðsÞ,
where e� 1 is the small aspect ratio of the flagellum
(the maximum radius along the flagellum ar divided
by its total length L) and r(s) is the dimensionless
radius. The non-local SBT is algebraically accurate in
ratio of the slenderness e; namely, by setting the
radius profile to rðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sðL� sÞ

p
=L, the computed

fluid velocity is accurate to O(e2) [24].
For a given velocity distribution v(s,t) along the fila-

ment at time t, the corresponding fluid force per unit
length f(s,t) is given implicitly by the non-local relation

8pmvðs; tÞ ¼ �L½fðs; tÞ� �K½fðs; tÞ�; ð2:6Þ

where

L½f �ðs; tÞ ¼ ½c0ðIþ t̂t̂Þ þ 2ðI� t̂t̂Þ�fðs; tÞ, ð2:7Þ

and

K½f �ðs; tÞ ¼ ðIþ t̂t̂Þ
ðL

0

fð~s; tÞ � fðs; tÞ
j~s � sj d~s

þ
ðL

0

Iþ R̂R̂
jRð~s; s; tÞj �

Iþ t̂t̂
j~s � sj

 !
fð~s; tÞd~s;

ð2:8Þ
J. R. Soc. Interface (2012)
are the local and non-local operators, respectively, m is
the shear viscosity of the fluid, c0 ¼ �lnð12eÞ . 0,
Rð~s; s; tÞ ¼ Xð~s; tÞ �Xðs; tÞ, R̂ ¼ R=jRj and t̂ is the
local unit tangent vector at the point s.

The swimmers of interest deform their shapes in a pre-
scribed, time-varying fashion (the superhelical wave
pattern, equations (2.3)–(2.5)), and the velocity created
on its surface by this deformation is given by
vdeformðs; tÞ ¼ @Xðs; tÞ=@t. At every time instant t, the
swimmer can be seen as a solid body with unknown trans-
lational velocity U(t) and rotation rate V(t). The
velocity created on the swimmer’s surface owing to swim-
ming is then vswimðs; tÞ ¼ UþV� ½Xðs; tÞ�X0�, where
X0 is an arbitrary reference point (taken as the origin here
for simplicity). Therefore, the local velocity relative to the
fluid v(s,t) is given by the sum of the deformation and
swimming velocities: vðs; tÞ ¼ vdeform þ vswim ¼ Uþ
V� ½Xðs; tÞ �X0� þ @Xðs; tÞ=@t. In this work, the
wave propagation is towards the positive z-direction.
Therefore, a negative swimming velocity (U) means
that the propulsion occurs in a direction opposite to the
wave propagation, while a positive swimming velocity
means that both the propulsion and wave propagation
occur in the same direction.

Using a Galerkin method [25], we express the local
force f(s,t) as a finite sum of Legendre polynomials and
solve equation (2.6) for f(s) by requiring the equation
to hold under inner products against the same basis func-
tions. The first integral in the non-local operator K[f ] is
diagonalized in this space [26,27]. The system is closed
by requiring the entire swimmer to be force-free and
torque-free, ðL

0
fðsÞds ¼ 0; ð2:9Þ

and ðL

0
½XðsÞ �X0� � fðsÞds ¼ 0; ð2:10Þ

http://rsif.royalsocietypublishing.org/
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providing at each moment in time a system
of six equations to solve for the six unknowns U(t)
and V(t).

The swimming velocities determined in the manner
described above represent velocities in a reference
frame fixed on the swimmer. In order to study the full
three-dimensional swimming kinematics in the labora-
tory frame (in which the body moves with velocity
ŨðtÞ and rotation rate ṼðtÞ), we must include a trans-
formation between the two. We denote the Cartesian
coordinate system moving with the swimmer, the
body frame, as ½ex ; ey; ez � and the Cartesian coordinate
system in the laboratory frame as ½e1; e2; e3�. The evol-
ution of the body frame, with respect to the laboratory
frame, is then governed by:

dE
dt
¼ VðtÞ �E; ð2:11Þ

where E ¼ ½ex ; ey; ez �T, along with the initial condition
½ex ; ey; ez �ðt ¼ 0Þ ¼ ½e1; e2; e3�.
2.3. Non-dimensionalization

The process of non-dimensionalization is very useful in
science and engineering to identify the relevant dimen-
sionless parameters governing the physics of the
problem. In theoretical studies, it always allows a
more concise description of the system, while in exper-
imental studies, it reduces the number of independent
experiments required to fully explore the problem.
The present system is made dimensionless by scaling
lengths of the order of 1/km, velocities by cm and time
by their ratio, 1/cmkm. The dimensionless position
vector describing the kinematics of the superhelix is
thus given by:

x ¼ Rfcos½Kðas0 � ctÞ� � r cosðs0 � tÞ cos½Kðas0 � ctÞ�
þ ar sinðs0 � tÞ sin½Kðas0 � ctÞ�g; ð2:12Þ
y ¼ Rfsin½Kðas0 � ctÞ� � r cosðs0 � tÞ sin½Kðas0 � ctÞ�
� ar sinðs0 � tÞ cos½Kðas0 � ctÞ�g, ð2:13Þ

and z ¼ as0 þ arR2K sinðs0 � tÞ; ð2:14Þ

where all variables are now understood to be dimension-
less. Four dimensionless parameters characterizing the
kinematics are identified above: the dimensionless
amplitude of the major helix, R ¼ AMkm, the ratio of
the wavenumbers characterizing the major and minor
helices, K ¼ kM/km, the ratio of the minor helix ampli-
tude to the major helix amplitude, r ¼ Am/AM and the
ratio of the major wave speed to the minor wave speed
c ¼ cM/cm. In the double-wave pattern observed in
insect spermatozoa, the major wave amplitude is
always larger than the minor wave amplitude (r , 1;
although this need not be true for a general superhelix).
In addition, it is also observed that the minor
wave speed is always greater than the major wave speed
in the double-wave structure of insect spermatozoa
(c , 1).
J. R. Soc. Interface (2012)
2.4. Kinematic and geometric data

From the non-dimensionalization above, we have
identified four dimensionless parameters (r, R, K, c)
required to fully characterize the centreline motion of
a superhelical flagellum. Werner & Simmons [5] have
compiled a very useful table containing kinematic and
geometric data of the double-wave structure observed
in insect spermatozoa in previous studies. The table
reveals that experimental measurements of the necess-
ary quantities for hydrodynamic modelling are very
limited owing to the difficulties involved in inter-
preting three-dimensional data from two-dimensional
images [14].

Here, we follow the table compiled by Werner and
Simmons and estimate the missing information based
on images of insect spermatozoa reported in the litera-
ture. Table 1 contains reported and estimated data
on the double-wave structure, including the wave-
lengths, amplitudes, frequencies, major and minor
wave speeds, flagellum thickness, and the swimming
speed of different insect spermatozoa. Our estimated
quantities are marked with asterisks to distinguish
them from reported quantities by the original papers.
In some studies (e.g. for Lygaeus [13]), only relative
lengths can be given because of the lack of scale bars
in the reported images; these relative quantities are
square-bracketed in tables 1 and 2. Geometric and
kinematic data can display large variations even
within a species (T. molitor [11]). When the distribution
of the quantities are not given, arithmetic means of the
available measurements are used whenever appropriate
in the present study.

The measurements are presented in the corresponding
dimensionless quantities in table 2, using the scalings
defined in §2.3. We have not found any information in
the referenced literature about the chirality of the
major and minor helical structures. We therefore present
results below for both the same-chirality and opposite-
chirality configurations. In our measurements (collected
in table 1), the wavelength of the minor wave is taken
to be the two-dimensional distance between adjacent
minor wave peaks. A small correction factor is required
to convert these two-dimensional quantities to the appro-
priate wavelengths in describing the three-dimensional
superhelical structure. The correction factor depends
on whether the superhelical structure is in the same-
chirality (1=ð1� alm=lMÞ) or in the opposite-chirality
(1=ð1þ alm=lMÞ) configuration.
3. RESULTS

In this section, we first use the framework descri-
bed above to predict the swimming performance of
spermatozoa of different species, and compare our
hydrodynamic results with the available experimental
measurements. We then illustrate the basic features
of superhelical swimming by focusing on a model
organism, namely Cu. melleus, and proceed to perform
a parametric study investigating the effects of cer-
tain kinematic parameters (minor and major wave
speeds) and geometric parameters (minor and major
wave amplitudes).

http://rsif.royalsocietypublishing.org/


T
ab

le
2.

D
im

en
si

on
le

ss
pa

ra
m

et
er

s
of

su
pe

rh
el

ic
al

fla
ge

lla
:

K
¼

k M
/
k m

;
R
¼

A
M

k m
;

r
¼

A
m

/
A

M
;

c
¼

c M
/c

m
;

V
¼

V
sp

er
m

/c
m
;

a
¼

a r
k m

;
n

re
fe

rs
to

nu
m

be
r

of
la

rg
e

w
av

el
en

gt
hs

.
ð~ U
þ

an
d

~ U
�

ar
e

th
e

pr
ed

ic
te

d
av

er
ag

e
sw

im
m

in
g

ve
lo

ci
ti

es
fo

r
th

e
sa

m
e-

ch
ir
al

it
y

an
d

op
po

si
te

-c
hi

ra
lit

y
s

co
nfi

gu
ra

ti
on

s,
re

sp
ec

ti
ve

ly
.)

sp
ec

ie
s

K
R

r
c

N
a

V
~ U
þ
ð~ U
�
Þ

h
þ
ðh
�
Þð

%
Þ

j~ U
þ
�

V
j=

V
ðj

~ U
�
�

V
j=

V
Þ
ð%
Þ

A
ed

es
no

to
sc

ri
pt

us
0.

24
*

3.
4*

0.
5*

0.
41

*
1

0.
25

*
0.

21
(0

.1
6)

1.
2

(0
.3

4)
B

ac
ill

us
ro

ss
iu

s
0.

45
*

4.
2*

0.
09

2
0.

67
*

1.
5

0.
13

*
0.

03
1

(0
.0

33
)

0.
30

(0
.1

4)
C

er
at

it
is

ca
pi

ta
ta

0.
25

16
.8

0.
07

5
0.

8*
4
–
5a

0.
28

*
0.

11
*

0.
15

(0
.0

39
)c

0.
40

(0
.0

21
)

36
(6

5)
C

ul
ic

oi
de

s
m

el
le

us
0.

16
1.

5
0.

38
3

0.
28

*
0.

10
0.

05
1

(0
.1

5)
0.

30
(1

.5
)

49
(5

0)
D

ro
so

ph
ila

ob
sc

ur
a

0.
30

*
7.

6*
0.

03
*

1
0.

18
*

0.
01

2
(0

.0
09

6)
0.

10
(0

.0
36

)
L
yg

ae
us

0.
21

*
3*

0.
14

*
1
–
2b

0.
34

*
0.

03
3

(0
.0

81
)

0.
24

(0
.7

1)
M

eg
as

el
ia

sc
al

ar
is

0.
10

*
8.

3*
0.

05
*

1
0.

35
*

0.
03

5
(0

.0
65

)
0.

16
(0

.4
2)

T
en

eb
ri

o
m

ol
it
or

0.
36

8.
4

0.
29

0.
32

4
0.

28
*

0.
34

0.
40

(0
.4

1)
d

1.
2

(0
.8

6)
18

(2
1)

a A
va

lu
e

of
4

is
ad

op
te

d
in

th
e

si
m

ul
at

io
n.

b
A

va
lu

e
of

1
is

ad
op

te
d

in
th

e
si

m
ul

at
io

n.
c V

el
oc

it
y

in
th

e
z-

di
re

ct
io

n
oc

cu
rs

in
th

e
sa

m
e

di
re

ct
io

n
as

th
e

w
av

e
pr

op
ag

at
io

n.
d
V

el
oc

it
y

in
th

e
z-

di
re

ct
io

n
oc

cu
rs

in
th

e
sa

m
e

di
re

ct
io

n
as

th
e

w
av

e
pr

op
ag

at
io

n.

T
ab

le
1.

K
in

em
at

ic
an

d
ge

om
et

ri
c

da
ta

of
th

e
do

ub
le

-w
av

e
st

ru
ct

ur
e.

(W
e

fo
llo

w
th

e
ta

bl
e

by
W

er
ne

r
&

Si
m

m
on

s
[5

]
w

it
h

ou
r

es
ti

m
at

io
ns

(m
ar

ke
d

w
it

h
as

te
ri

sk
s)

of
th

e
m

is
si

ng
qu

an
ti

ti
es

ba
se

d
on

th
e

im
ag

es
of

th
e

sp
er

m
ce

ll
re

po
rt

ed
in

th
e

re
fe

re
nc

es
;
a r

re
fe

rs
to

th
e

ra
di

us
of

th
e

fla
ge

llu
m

.)

m
aj

or
w

av
e

m
in

or
w

av
e

sp
ec

ie
s

l
M

(m
m

)
A

M
(

m
)

f M
(H

z)
c M

(m
m

/S
)

l
b

(m
m

)
A

m
(m

m
)

f m
(H

z)
c m

(m
m

/s
)

2a
r
(m

m
)

V
sp

er
m

(m
m

)
re

fe
re

nc
es

A
ed

es
no

to
sc

ri
pt

us
28

*
3.

67
*

3.
4

95
.2

*
6.

8*
1.

83
*

34
23

1.
2*

0.
55

*
Sw

an
et

al
.[1

5]
B

ac
ill

us
R

os
si

us
40

*
12

12
48

0*
17

.9
*

1.
1

40
71

6*
0.

74
*

B
ac

ce
tt

i
et

al
.[

12
]

C
er

at
it
is

ca
pi

ta
ta

a
30

20
4

12
0*

7
–
8

1
–
2

20
15

0*
0.

68
*

16
B

ac
ce

tt
i
et

al
.[

16
]

C
ul

ic
oi

de
s

m
el

le
us

54
.1

2.
1

8.
7

0.
8

8.
2

80
0.

77
*

8.
3

L
in

le
y

[1
4]

D
ro

so
ph

ila
ob

sc
ur

ab
45

*
16

13
.3

*
0.

5*
20

.4
27

1
0.

76
*

B
re

ss
ac

et
al

.[
17

]
L
yg

ae
us

c
[1

]*
[0

.1
]*

[0
.2

1]
*

[0
.0

14
]*

13
0

[0
.0

24
]*

P
hi

lli
ps

[1
3]

M
eg

as
el

ia
sc

al
ar

is
68

*
9.

3*
3.

1
21

0.
8*

7*
0.

5*
0.

78
*

12
.7

C
ur

ti
s

&
B

en
ne

r
[1

8]
T

en
eb

ri
o

m
ol

it
or

d
20

–
30

(2
5)

9
–
15

(1
2)

0.
9
–
2.

8
(1

.8
5)

20
–
90

(5
5)

6
–
12

(9
)

3
–
4

(3
.5

)
7
–
28

(1
7.

5)
40

–
30

0
(1

70
)

0.
79

*
16

–
10

0
(5

8)
B

ac
ce

tt
i
et

al
.[

11
]

a O
nl

y
fo

rw
ar

d
m

od
e

is
co

ns
id

er
ed

[1
6]

.
b
O

nl
y

m
al

e
lo

ng
sp

er
m

is
co

ns
id

er
ed

he
re

[1
7]

.
c S

ca
le

ba
rs

w
er

e
no

t
pr

es
en

te
d

w
it

h
th

e
im

ag
es

in
th

e
re

fe
re

nc
e

an
d

on
ly

re
la

ti
ve

le
ng

th
s

(s
qu

ar
e-

br
ac

ke
te

d)
ca

n
be

es
ti

m
at

ed
.

d
R

ou
nd

br
ac

ke
ts

de
no

te
ar

it
hm

et
ic

m
ea

ns
.

1914 Hydrodynamics of insect spermatozoa O. S. Pak et al.

J. R. Soc. Interface (2012)

 on August 30, 2012rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


0

0.1

0.2

0.3

0.4

(a) (b)

A
ed

es

B
ac

il
lu

s

C
er

at
it

is

C
ul

ic
oi

de
s

D
ro

so
ph

il
a

L
yg

ae
us

M
eg

as
el

ia

T
en

eb
ri

o

Ũ
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Figure 5. Predicted swimming performance: (a) average swimming speed, Ũ+, of different species; (b) hydrodynamic efficiency,
h+, of different species. Open symbols (blue circles) represent the same-chirality configuration (þ); filled symbols (red squares
and diamonds) represent the opposite-chirality configuration (2); for blue open circles and red squares, swimming occurs in the
opposite direction as the wave propagation; on the contrary, red diamonds represent the cases of opposite-chirality configuration
where the velocity in the z-direction occurs in the same direction as the wave propagation; black crosses represent experimental
measurements of V ¼ Vsperm/cm (see tables 1 and 2). (Online version in colour.)
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3.1. Hydrodynamic performance

3.1.1. Propulsion speed
The propulsion speed is an important functional para-
meter characterizing the motility of a sperm cell.
There exist only very few measurements of the swim-
ming speed of insect spermatozoa exhibiting the
double-wave structure: Ce. capitata was observed to
swim at a speed, Vsperm ¼ 16 mm s�1 [16] and the
minor wave speed is estimated to be 150 mm s�1 (hence,
V ¼ Vsperm=cm ¼ 0:11); Cu. melleus [14] was observed
to swim at a speed of 8:3 mm s�1 and minor wave
speed of 80 mm s�1 (V ¼ 0.10). For the case of T. moli-
tor, a wide range of sperm speeds were reported (from
16 to 100 mm s�1) as well as minor wave speeds (40–
300 mm s�1) [11]. The distributions were not reported
however; so using the arithmetic means we obtain a
swimming speed to minor wave speed ratio of V ¼ 0.34.

For a superhelical swimmer in ourmodel, the swimming
kinematics are three-dimensional and unsteady in time,1

and the most relevant quantification of the propulsion
speed is an average swimming velocity in the laboratory
frame, denoted by ~U+, where the þ (plus) and 2

(minus) signs represent the same- and opposite-chiral-
ity configurations, respectively. The average swimming
speed is defined as ~U+ ¼ j½k ~Ux l; k ~Uy l; k ~Uz l�j, where j. . .j
denotes the magnitude of a vector, and k. . .l denotes
a time average.2 Since the chirality configuration
remains unknown, we present predictions for both
cases in figure 5a. Only the three sets of experimental
measurements of the swimming performance (V ¼
1The deformations (equations (2.3)–(2.5)) are higher frequency
oscillations modulated by lower frequency oscillation (a beat). There
does not exist a time period T, such that the deformation vector
repeats itself: R(s,t þ T ) = R(s,t), 8T.
2The time averaging is defined for a function f(t) as

Ð
0
t0 f(t) dt/t0,

where t0 is a sufficiently large time, such that the peak-to-peak
fluctuation in time is less than 1 per cent of the final average value.

J. R. Soc. Interface (2012)
Vsperm/cm) mentioned above are available for compari-
son and are superimposed on the same figure (figure 5).
Predictions as ratios of the swimming speed relative to
the minor wave speed (dimensionless speed) for species
with no measurement of V are also provided in
figure 5a.

In most of the cases considered, the propulsion in the
longitudinal direction (z-direction) of these superhelical
swimmers is opposite to the direction of wave propa-
gation (the major wave propagates in the positive
z-direction, and the minor wave propagates along the
curved major helix and distally towards the positive
z-direction), regardless of the chirality configuration.
This is not unlike the behaviour of swimmers propagat-
ing a planar sinusoidal or a regular helical wave, for
which the swimming direction is also opposite to the
direction of the wave propagation. In superhelical
swimming, however, we also find cases of the
opposite-chirality configuration, where the body swims
in the same direction as the wave propagation. Specifi-
cally, we note a qualitative difference between the
study of the same-chirality and opposite-chirality
configurations for Ce. capitata and T. molitor.
In these simulations, a superhelical wave is set to
propagate in the positive z-direction, and both the
opposite-chirality configurations of Ce. capitata and
T. molitor generate a positive Uz (swimming is in the
same direction as the wave propagation), while their
corresponding same-chirality configurations generate a
negative Uz (swimming is in the opposite direction as
the wave propagation). The speed and efficiency of
these peculiar swimmers are distinguished from other
cases by red diamonds as shown in figure 5. It remains
a question whether this phenomenon may be observed
in nature, as the chirality configuration and the swim-
ming direction (relative to the wave propagation) of
actual insect spermatozoa displaying the double-wave

http://rsif.royalsocietypublishing.org/
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structure are still unclear. Nevertheless, this phenom-
enon by itself is intriguing and will be further
explored in §3.3.1.

The swimming speed predictions lie at least within
the same order of magnitude of the experimental
measurements for both chirality configurations. The
same-chiralty results provide slightly better agreement
than the opposite-chiralty results (without taking the
swimming direction into account). For the same-
chirality configuration, the discrepancies, j ~Uþ �V j=V ,
between the predictions and the experimental measure-
ments read 36 per cent for Ce. capitata, 49 per cent for
Cu. melleus and 18 per cent for T. molitor. For the
opposite-chirality configuration, the discrepancy
between our predictions and the experimental measure-
ments, j ~U� �V j=V , are 65 per cent for Ce. capitata, 50
per cent for Cu. melleus and 21 per cent for T. molitor.
Given the primitive nature of the data employed (see
§2.4), we consider the agreements here to be reasonable.
However, we cannot draw definite conclusions on the
issue of chirality configuration; further experimental
observations are necessary.

It shall be remarked that the present study is largely
constrained by the unavailability of experimental
measurement data. Critical kinematic information,
such as the major and minor wave speeds, are often
not reported in the literature and are impossible to esti-
mate from the images available. The speed ratio c ¼
cM/cm is not available for simulations for most species.
The computations here are still possible because of the
independence of the swimming kinematics on the para-
meter c (verified numerically and will be explained in
§3.3.1). Therefore, the specific value of c is unimportant
for all cases considered here; we adopt c ¼ 0 in all
simulations hereafter unless otherwise stated.

3.1.2 Hydrodynamic efficiency
Another important functional parameter is the hydro-
dynamic efficiency of the swimmer. In the microscopic
world, the hydrodynamic efficiency is typically very
low. For a rigid helix, Lighthill [28] calculated theoreti-
cally the maximum efficiency attainable to be about 8.5
per cent, while the typical efficiency of biological cells is
around 1–2% [3,28–32]. For low Reynolds number
swimming, a common measure of the hydrodynamic
efficiency, h, is the ratio of the rate of work required
to drag the straightened flagellum through the fluid to
the rate of work done on the fluid by the flagellum
during swimming [28],

h+ ¼
jkL ~U

2
+

k
Ð L
0 v � f dsl

; ð3:1Þ

where jk ¼ 4p=c0 is the drag coefficient for a straight,
slender rod, and the brackets indicate a time average.
We calculate the hydrodynamic efficiencies for both
the same- and opposite-chirality configurations
(figure 5b) for spermatozoa of different species. For
the same-chirality configuration, the efficiency ranges
from 0.16 per cent (M. scalaris) to 1.2 per cent
(Ae. notoscriptus and T. molitor); for the opposite-chir-
ality configuration, the efficiency ranges from 0.036 per
cent (Dro. obscura) to 1.5 per cent (Cu. melleus). The
J. R. Soc. Interface (2012)
efficiencies of these swimmers are comparable with typi-
cal biological cells.

3.2. Model organism: Cu. melleus

In this section, we illustrate the features of superhelical
swimming by singling out a superhelical swimmer defined
using the geometric data of the sperm cell of Cu. melleus
(table 2). See figure 4 for the swimmer geometry.

3.2.1. Swimming kinematics
The swimming velocities computed for motion in the
body frame [Ux, Uy, Uz] and in the laboratory frame
½ ~Ux ; ~Uy; ~Uz � of the superhelical swimmer with data
from the sperm cell of Cu. melleus are plotted in
figure 6 for the same-chirality (figure 6a) and opposite-
chirality (figure 6b) configurations. We include in these
figures the results for the ratio of the major and minor
wave speeds c ¼ 0 (solid lines) and c ¼ 0.4 (dotted
lines). When c ¼ 0, the deformation (equations (2.12)–
(2.14) is 2p-periodic, therefore the swimming kinematics
in the body frame are also 2p-periodic. However, when
observed in the laboratory frame, the coupling between
the translational and rotational kinematics renders the
swimming velocities no longer 2p-periodic, and the
motion is unsteady in time (figure 6c,d). We observe a
pattern consisting of higher frequency oscillations modu-
lated by a lower frequency envelope. For the case of c ¼
0.4, when observed in the body frame, we see modulated
waveforms. However, when transformed to the labora-
tory frame, the cases of c ¼ 0 and c ¼ 0.4 have identical
swimming kinematics (see the overlapped solid and
dotted lines in figure 6c,d), implying that the swimming
kinematics in the laboratory frame are independent of the
major propagating wave speed. The value of c affects only
the kinematics in the body frame; why the relative wave
speed is unimportant is described in greater detail in
§3.3.1.

The three-dimensional swimming velocities give rise
to a doubly-helicated trajectory (the presence of a
minor structure on top of a major helical structure).
However, this could be difficult to observe experimen-
tally as the major amplitude of the doubly-helicated
trajectory is usually much smaller than that of the
superhelical swimmer; the swimmer would apparently
move with a straight trajectory (with very small oscil-
lations in the transverse direction). Recall that for
regular helical swimming (r ¼ 0), the trajectory of the
helical swimmer reduces to a regular helix.

3.2.2. Head-less swimming
The shape and size of the sperm head vary among
spermatozoa of different species: human and bull
spermatozoa have relatively large, paddle-shaped heads,
whereas insect spermatozoa have elongated heads which
are almost indistinguishable from the mid-piece. The
additional hydrodynamic resistance from the presence of
a head would seemingly degrade the swimming perform-
ance of the sperm cell. However, Chwang & Wu [33]
showed that a sperm head is actually necessary for helical
swimming; without one, the motion is that of a rotating
rigid body, which cannot be realized in the absence of
an external force or torque [34]. To satisfy the zero

http://rsif.royalsocietypublishing.org/
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net-torque condition, a sperm head is required to balance
the reaction torque acting on the flagellum. This con-
straint does not apply for planar, sinusoidal wave
motion, which can swim without an anchor or load.

We pause to point out a subtle but important differ-
ence between a rotating prokaryotic helical tail and a
eukaryotic tail propagating a bending helical wave.
For a eukaryotic tail propagating a bending wave, the
fluid forces act to rotate the flagellum opposite to the
direction of the apparent helical rotation. The rotation
owing to the fluid reaction creates torques owing to
local spinning (rotation of the flagellum about its cen-
treline), which balance the opposing torque generated
by the helical wave propagation. Therefore, a eukary-
otic cell could theoretically swim without a sperm
head, albeit very slowly because the flagellum is very
slender and the local torques are correspondingly
small. Quantitatively, using a local drag model [33], it
can be shown that the head-less swimming speed
scales as U=c � 2mk2=jkð1þ k2A2Þb2 þ Oðb4Þ, where b
is the radius of a cross section of the flagellum, and k
and A are the wavenumber and helical radius, respect-
ively. Using the geometrical data of flagella of
Euglena viridis summarized by Brennen & Winet [4],
and assuming a flagellar diameter of 2b � 0.25 mm
[35,36], we find U/c � 1023. For a prokaryotic tail, how-
ever, the helix rotates as a rigid body. In this case, the
local spinning torques generated by the active helical
rotation and the passive rotation owing to the fluid
reaction are identical in magnitude but opposite in
sign. The torque-free condition therefore requires that
the fluid reaction counter-rotates the helix at precisely
the rotation rate of the helical wave propagation. Hence,
there can be no effective helical rotation, and the
body cannot swim. Although head-less swimming is
J. R. Soc. Interface (2012)
theoretically possible for eukaryotic tails, the swimming
speed would be exceptionally small as shown by the esti-
mation above. The subtle difference between the two
types of helical waves just described is often therefore neg-
lected, and it is generally reasonable to state that head-
less swimming is not possible using helical wave
propagation.

In superhelical swimming, a sperm head is not required
for self-propulsion (indeed, all cases reported in this paper
were studied with the absence of a sperm head) as a super-
helical wave motion is in general not a rigid body motion.
Furthermore, as actual insect spermatozoa heads are very
slender and short when compared with the entire length
of the flagellum, the contribution of its hydrodynamic
resistance and the hydrodynamic interactions with
the flagellum should be negligible. Therefore, we do not
expect the presence of a slender and short sperm head
to introduce qualitative differences in the results.

3.3. Parametric study

Next, we explore the effects of certain kinematic (wave
speeds) and geometric parameters (wave amplitudes)
on the swimming velocities of a superhelical swimmer.

3.3.1. The effect of the major/minor wave speed ratio
In this problem we have scaled the velocities upon the
minor wave speed cm, which implies that the dimen-
sionless swimming velocities scale linearly with the
minor wave speed. Here, we examine the effect of
the major wave speed on the swimming performance
of a superhelical swimmer and answer the question: to
what relative extent do the two waves contribute
to the propulsion of the superhelical swimmer
[14]? Specifically, we study the effect of the parameter
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c ¼ cM/cm, which is the ratio of the major wave speed to
the minor wave speed. For every species shown in
table 2, we fix all parameters but vary the value of c
from zero to unity (c , 1, as cM , cm). It is found
that the swimming velocities in the laboratory frame
is independent of the value of c. We have already
shown in figure 6 the results for two values of c for illus-
tration. While the resulting swimming motions in these
two cases differ significantly in the body frame, they
are identical when observed in a laboratory frame of
reference. The numerical results imply that the major
wave speed does not contribute to propulsion.

These findings may be understood by noting an
ambiguity in definition. First consider a single helical
filament (without a sperm head) placed in a fluid.
Such a body cannot swim on its own, for there is no
load or cell to counterbalance the torque it would
exert on the surrounding fluid during rotation, so it
must be motionless as seen in a fixed, laboratory
frame. However, this body may be represented as an
active helical body propagating a wave with velocity c
plus a rigid body rotation that contributes a wave
with speed 2c. That the body frame may be chosen
arbitrarily allows for such an ambiguity in the defi-
nition of the swimming speed, but in the laboratory
frame this ambiguity disappears.

A similar argument can be used to show that c has
no bearing on the swimming speed of a superhelical flagel-
lum in the laboratory frame. For a superhelical flagellum,
the propagation of the major wave can be defined as a
rigid body rotation of the entire superhelical structure
about the longitudinal axis (z-axis) in the body frame.
The apparent rotation rate is the sum of the rotation
caused by the active propagation of the major wave and
the rotation caused by fluid reaction to maintain the
force-free and torque-free conditions. For swimming with-
out a head, only the apparent rotation rate is important
because the fluid forces and torques are functions of the
apparent rotation rate alone (not the absolute value of
the rotation rate owing to the active major wave propa-
gation). Any alternation of the major wave speed is
accompanied by a corresponding change in the rotation
rate caused by the fluid reaction, resulting in the same
apparent rotation rate and the same force and torque bal-
ances. Therefore, the kinematics and dynamics do not
depend on the absolute value of the major wave speed c
(or cm). In other words, the major wave speed does not
contribute to swimming.

For the case of swimming with a head, the fluid reac-
tion will not only rotate the flagellum but also the
sperm head, which creates extra torques and perturbs
the original force and torque balances. Altering the
absolute value of the major wave speed in this case
theoretically will affect the swimming velocities even
in the laboratory frame, because it changes the relative
portion of the rotation rate caused by the fluid reaction
and hence the value of the extra torque from the sperm
head. However, as the sperm head is slender and short
when compared with the overall length of the flagellum
of actual insect spermatozoa, the extra-resistant forces
and torques created should be insignificant. Therefore,
we suggest that the propagation of the major wave con-
tributes very little to the propulsion (none in the case of
J. R. Soc. Interface (2012)
head-less swimming), and that it is the minor wave
speed that is primarily responsible for the propulsion.
Note also that the hydrodynamic efficiencies in §3.1.2
are independent of the value of c. Therefore, from a
hydrodynamic efficiency point of view, there is no
advantage or disadvantage to actively propagate a
major wave. However, there are other energy costs not
taken into account here (for example, work done to pro-
duce the sliding of microtubules within the flagellum) in
actively propagating a major wave. Therefore, we
speculate that it might be energetically more favourable
for a doubly helicated organism to propagate only a
minor wave.
3.3.2. The effects of the parameters R and r
We now examine the effect of geometrical dimensionless
parameters R and r, keeping all other parameters of
Cu. melleus spermatozoa fixed. R is the dimensionless
major wave amplitude and r is the ratio of minor to
major wave amplitude, hence the minor wave amplitude
is given by rR (see the schematic in figure 7). In general,
one expects the propulsion speed to increase with
the wave amplitude for simple geometries. However,
for a superhelical structure, the dependence of the
average swimming speed on the minor wave amplitude
displays interesting behaviour. Physically, both the
propulsive force and the bulkiness of the structure are
varied upon changing the major or minor wave ampli-
tudes. The competition between these factors and the
coupling between kinematics in different directions
create interesting geometric dependencies of the
average swimming speed. We illustrate this by observ-
ing the average swimming speed under different
frames of reference.

First, we look at the time-averaged swimming velocity
in the body frame Ub ¼ j½kUxðtÞl; kUyðtÞl; kUzðtÞl�j.
As shown in figure 7a(i), for the same-chirality con-
figuration, the average swimming velocity grows
monotonically with R and r. Note that, keeping other
parameters fixed, increasing the value of R ¼ AMkm for
a fixed r ¼ Am/AM geometrically means that both the
major AM and minor Am amplitudes are increased simul-
taneously by the same proportion. There is a competition
between the increase in the overall hydrodynamic resist-
ance owing to the increased bulkiness (correlated with
increases in AM and Am) and an enhanced propulsive
force (correlated with an increase in Am). In the case of
the same-chirality configuration, the latter effect domi-
nates. However, for the opposite-chirality configuration,
as shown in figure 7a(ii), non-monotonic variations in
the swimming speed with the major amplitude R are
observed for certain values of r, the ratio of the minor
to major wave amplitudes.

Since the swimming kinematics are three-dimensional,
variations of the geometric parameters affect swimming
velocities and rotational rates in all directions. In parti-
cular, a large propulsion speed in the body frame does
not necessarily imply a large net propulsion speed in
the laboratory frame. The mean swimming speeds
in the laboratory frame for both chirality configura-
tions are shown in figure 7b(i–ii). The coupling
between the swimming kinematics in all directions
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produces more complicated variations in the propul-
sion speed as a function of R and r. Non-monotonic
behaviours are observed in both cases.

We have already noted that some superhelical swim-
mers propel themselves surprisingly in the same
direction as the wave propagation, unlike for planar or
single helical wave propulsion. For the range of para-
meters explored in this paper, this direction reversal is
found to occur only in the opposite-chirality configur-
ation for sufficiently large R and r (figure 7c(ii)),
while the average propagation velocity kUzl is always
J. R. Soc. Interface (2012)
negative for the same-chirality configuration (i.e. the
swimming direction is always opposite to the direction
of the propagating wave; figure 7c(i)). In figure 8, we
show the detailed swimming velocities of two oppo-
site-chirality superhelical swimmers, where one of
them has its longitudinal propulsion in the opposite
direction relative to the wave propagation (R ¼ 7, r ¼
0.4; figure 8a), and the other in the same direction as
the wave propagation (R ¼ 9, r ¼ 0.4; figure 8b). It is
intriguing that a small change in the geometry (see
the corresponding superhelices in figure 8a(ii),b(ii))
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Ũx Ũy Ũz Ũx Ũy Ũz
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can lead to a swimming direction reversal. We argue in
the next section (§3.4) that this transition is related
to the hydrodynamic interaction between distinct
parts of the superhelical flagellum.
3.4. Comparison between slender body theory
and resistive force theory

In order to consider the relative importance of non-local
hydrodynamic interactions in the swimming of super-
helices, we now compare our results with those
obtained using the more commonly used local drag
model (equation (2.6), but neglecting the non-local
term K). The local drag model (so-called RFT) ignores
hydrodynamic interactions between distinct parts of the
curved flagellum, and is expected to work well [21–23]
for simple geometries, where different parts of the
body are sufficiently well separated. However, for
more complicated geometries, the local drag model
may not capture even the correct qualitative features.
Recently, Jung et al. [20] studied the rotational
dynamics of opposite-chirality superhelices and found
a qualitative discrepancy (the rotational direction of
the superhelix when being towed in a viscous flow)
between the experimental results and the predictions
from the RFT. Other recent works have also shown
the inadequacy of the local drag model [32,37].

Figure 9 shows the swimming speeds computed with
both non-local SBT and RFT using two sets of geo-
metrical data: Cu. melleus (figure 9a (same-chirality)
and figure 9b (opposite-chirality)), and T. molitor
(figure 9c (same-chirality) and figure 9d (opposite-chir-
ality)). In these two cases, all other parameters are fixed
but the amplitude ratio r is varied from 0 to 0.5.
Increasing r complicates the swimmer geometry, and
the hydrodynamic interactions are expected to be
more significant for large r. For the case of Cu. melleus
(figure 9a,b), we see good (even quantitative) agreement
between the results form the SBT (solid lines) and the
RFT (dashed lines). However, for the case of T. molitor
(figure 9c,d), which has larger values of R and K, the
deviation between the two models becomes significant
for the same-chirality configuration (figure 9c) as r
J. R. Soc. Interface (2012)
increases. There are even qualitative discrepancies: in
the opposite-chirality configuration (figure 9c) for large
values of r, the RFT fails to capture the transition in
the sign of kUzl predicted by the SBT. As no such tran-
sition is found when the hydrodynamic interactions are
ignored, this transition may be attributed to non-local
hydrodynamic interactions of the body with itself. In gen-
eral, and perhaps unsurprisingly, we have shown that the
local drag model breaks down when the geometry of the
structure is sufficiently intricate.
3.5. Asymptotic analysis

In the locomotion of some species of spermatozoa, the
minor wave amplitude is much smaller than the major
wave amplitude (tables 1 and 2), which motivates us
to perform an asymptotic analysis for r� 1. Such an
asymptotic analysis linearizes the problem geometri-
cally and allows the nonlinear effects to be taken into
account order by order, making the problem more
amenable to mathematical analysis. However, even in
the asymptotic consideration, three-dimensional force
and torque balances do not yield tractable analytical
results. Hence, in the spirit of Chwang & Wu [33], we
perform the force and torque balances only in the longi-
tudinal (z-) direction using the RFT, which is expected
to be at least qualitatively correct in the asymptotic
limit r� 1. The local force fz and torque mz may be
expressed as:

fz ¼ cUzFz ðt; sÞUz þ cVzFz ðt; sÞVz þ cFz ðt; sÞ, ð3:2Þ

and

mz ¼ cUzMz ðt; sÞUz þ cVzMz ðt; sÞVz þ cMz ðt; sÞ; ð3:3Þ

where the coefficients are determined analytically from
equation (2.6) (without the non-local operator) and the
geometry of the swimmer (equations (2.12)–(2.14)).
We consider regular perturbation expansions in r for
every term in equations (3.2) and (3.3), and enforce
the force-free and torque-free conditions order by
order. A non-zero time-averaged swimming velocity
enters at O(r2). The leading order mean swimming vel-
ocities for the cases of same- and opposite-chirality
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configurations read

~U+ � R2r2

2L2ð1þ R2K 2Þ3=2
� fð2� 2L2Þðj� 1Þ

þ R2K 2½2ðj� 1 + KÞ � L2ð2j� 2 + KÞ�

� 2½j� 1þ R2K2ðj� 1 + KÞ� cos Lg;
ð3:4Þ

where j ¼ j?=jk is the ratio of the drag coefficients
in the normal direction to the longitudinal direction
(jk ¼ 4p=c0; j? ¼ 8p=ð2þ c0Þ). For very slender fila-
ments, j � 2. We note that the substitution K! 2K
in equation (3.4) converts the same-chirality speed ~Uþ
to the opposite-chirality speed ~U�. The propulsion
speed has a quadratic dependence on the minor wave
amplitude for small r, which is also found in planar
[38] and helical [39] geometries.

These asymptotic results (equation (3.4)) are com-
pared with the finite-amplitude simulations (both the
RFT and the SBT predictions) in figure 10, for a very
small amplitude ratio of r ¼ 0.01 and a slenderness
ratio of e ¼ 1/1000. There is excellent agreement
between the asymptotic results and the finite amplitude
RFT simulations. The discrepancy between the non-
local SBT and the local drag model highlights the
importance of non-local hydrodynamic interactions for
such organisms.

We conclude by pointing out an intriguing theoreti-
cal curiosity, that drag anisotropy ( j = 1) is not
J. R. Soc. Interface (2012)
required for superhelical swimming: setting j ¼ 1 in
equation (3.4), non-zero mean propulsion velocities (of
equal magnitude but opposite signs) are obtained for
both chirality configurations,

~U+ðj ¼ 1Þ ¼+
R4K 3ðL2 � 2þ 2 cos LÞ

2Lð1þ R2K2Þ3=2
r2: ð3:5Þ

Note that Becker et al.’s [40] argument of the require-
ment of drag anisotropy for locomotion is only true for
inextensible swimmers and does not apply here. The
superhelical kinematics described (equations (2.12)–
(2.14)) are possible only when extensibility is allowed;
the minor helix is built upon another curved structure
(the major helix) and local extension and contraction
is implied in the wave kinematics. When extensibility
is permitted, the relaxation of the drag anisotropy
requirement has been recently shown [41]. That the
swimming speed is non-zero is owing to intrinsic vari-
ations in length (and hence drag) embedded in the
curved geometry of the superhelices. A minor helix
built upon a major helix has relatively shorter lengths
in the regions closer to the longitudinal axis, creating
an overall imbalance of hydrodynamic drag even in
the isotropic drag case ( j ¼ 1). A similar example is a
toroidal helix (a helix built upon a circle), which is an
idealized model studied recently for dinoflagellates
[42]. We expect that the propagation of a wave along
a toroidal helix should also require extensibility, and
that propulsion is still possible even without drag
anisotropy [41].
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4. DISCUSSION

In this paper, we have studied a morphologically interest-
ing double-wave structure exhibited by various insect
spermatozoa. The construction of such spermatozoa is
considerably more complex than those for flagella
which exhibit simpler planar or helical waves: the flagel-
lum does not only have a more complicated 9 þ 9 þ 2
arrangement of microtubules but also mitochondrial
derivatives and accessory bodies running along the axo-
neme [5]. We have mathematically idealized the
double-wave structure as a superhelical structure and
presented a hydrodynamic study on superhelical swim-
ming. The available data are primitive and sparse;
nevertheless, we consider the agreement between exper-
imental measurements and the theory explored herein
to be quite reasonable. Through numerical experiments,
we have found that the major wave speed has little contri-
bution to propulsion when the sperm head is small, as is
the case for insect spermatozoa. When there is no sperm
head, the propulsion speed is independent of the major
wave speed and depends entirely upon the minor wave
speed. We have also explored the dependence of the
propulsion speed on the dimensionless major wave ampli-
tude R and the ratio of the minor to major wave
amplitudes r (figure 7), and counterintuitive behaviours
have been found for the opposite-chirality configuration.
In particular, we have found that propulsion and
wave propagation can occur in the same direction for
superhelices in the opposite-chirality configuration.

The present study suggests that the major wave has
negligible influence on the motility of a superhelical
swimmer. This finding favours the recent hypothesis
by Werner et al. [10] that the major helical wave is a
static (non-propagating) structure; the minor wave
structure is solely responsible for the motility, and the
apparent major wave propagation is simply owing to
the passive rotation of the entire geometry (see §1).
However, in the study by Baccetti et al. [16] on the
motility of Ce. capitata, they have adopted the same
J. R. Soc. Interface (2012)
experimental techniques as in Gibbons et al. [43],
which distinguished the rolling frequency from the
apparent beat frequency. In their work, the rolling fre-
quency was measured by stroboscopic observation of
the eccentrically attached sperm head, and the flagellar
beat frequency was measured by the same means with
the sperm head adhered to the bottom of the obser-
vation dish. Using this method, the major wave speed
measured should be taken as an active propagation
speed. We are not in a position to provide a definite
answer on whether or not the major wave propagates
actively in actual insect spermatozoa. However, accord-
ing to the present study, we suspect that there might be
some biological reasons, other than motility, for the
major wave to propagate actively. We also do not know
if the propagation of the major wave is a biological prere-
quisite for the propagation of the minor wave. Further
biological studies are required to answer these questions.

It is illuminating to compare the superhelical swim-
ming studied here with regular helical swimming. The
swimming trajectories are qualitatively different in the
two cases: in regular helical swimming, the trajectory
is a regular helix, whereas in superhelical swimming
the trajectory is doubly helicated. In addition, a regular
helical flagellum cannot swim on its own; a sperm head
is required to swim (as the absence of a sperm head ren-
ders the deformation of the regular helix a rigid body
motion). By contrast, the propagation of superhelical
waves along a flagellum is in general not equivalent to
rigid body motion, and hence ‘head-less’ swimming is
possible. This might help explain the presence of only
a small slender sperm head in insect spermatozoa. In
other words, superhelical swimming can be viewed as
an alternative mechanism to the regular helical
swimming when only a small sperm head is available.

Finally, a non-local SBT was used in this work and
compared with a simpler and widely used local drag
model. We showed that the RFT failed to capture
even the qualitative features of the swimmer when the
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geometry becomes complicated. The results suggest
that further hydrodynamic studies on superhelical
structures require more advanced models than the
local RFT, such as the SBT employed here. Optimiz-
ation with respect to the efficiency of the swimmer
taking into account the viscous dissipation, and other
energy costs owing to bending and internal sliding of
filaments [31], which have been neglected in this
work, will be interesting for future work.
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