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Elastocapillary self-folding: buckling, wrinkling, and
collapse of floating filaments

Arthur A. Evans,*a Saverio E. Spagnolie,*b Denis Bartolocd and Eric Laugae

When a flexible filament is confined to a fluid interface, the balance between capillary attraction, bending

resistance, and tension from an external source can lead to a self-buckling instability. We perform an

analysis of this instability and provide analytical formulae that compare favorably with the results of

detailed numerical computations. The stability and long-time dynamics of the filament are governed by

a single dimensionless elastocapillary number quantifying the ratio between capillary to bending

stresses. Complex, folded filament configurations such as loops, needles, and racquet shapes may be

reached at longer times, and long filaments can undergo a cascade of self-folding events.
I Introduction

A common strategy for assembling intricate structures at the
micro- and nano-scale is to exploit self-assembly. By intro-
ducing colloidal building blocks into so media such as uid
interfaces, nematic liquid crystals, or more complex meso-
phases,1–6 the resulting distortions of the medium can be used
to fabricate more elaborate colloidal objects. Over the last ten
years much effort has been devoted to achieving complex self-
assembly by tailoring the shape of the elementary colloidal
building blocks.5,7 Alternatively, the existence of mechanical
instabilities in elastic materials suggests a simple but elegant
method for guiding the creation of complex objects: a bottom-
up assembly driven by elastic instabilities in simple, exible
structures. Such a self-assembly might begin with simple
building block congurations, such as straight laments or at
sheets, which when coupled to another medium would fold or
wrinkle to minimize the total energy of the system.8–11 If the
system is well characterized theoretically, the dominant force
balance can be tuned to yield desirable shapes. Recent examples
include the use of adhesion and delamination,12–18 and swelling
and capillary interactions.19–21

When particles are conned to a uid interface, their inter-
actions are mediated through the surface deformations.2,22 The
deformations and thus the surface energy of the uid may be
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decreased by a rearrangement of the particles on the surface,
leading to effective capillary forces which can be attractive or
repulsive depending on the geometry, density differences, and
wetting properties of the particles. For two identical particles,
the forces are always attractive. This so-called “Cheerios effect,”
and similar surface-mediated aggregation have been investi-
gated in the context of vesiculation,23,24 colloidal occulation,2,6

and millimetric ecology.25,26 While there have been many
studies on laments and polymers that interact via short-range
forces and/or external ow elds,27–38 the impact of long-range
capillary forces on the shapes of exible laments lying on a
uid interface remains unexplored.

In this paper we consider the problem of elastocapillary self-
folding of a exible micro-lament. The model system, illus-
trated in Fig. 1, is that of a exible lament conned to a uid
interface. The balance between long-range capillary forces, which
are attractive between different parts of the lament, and
bending stresses resisting deformation can lead to a novel
buckling instability (as illustrated in Fig. 1b), and at longer times
to highly deformed folded patterns in the lament. Herein we
show how to harness the shape instability to fabricate folded
structures. The paper is organized as follows. In Section II we
introduce the setup and discuss the energetics of the system. In
Section III we pose the non-dimensional problem to solve for the
shape dynamics in a viscous uid. The linear stability analysis for
the shape is presented in Section IV, where we determine the
functional dependence of the most unstable wavelength on both
lament and uid properties, as well as the effect of external
tensile forces. We show that the threshold for self-buckling
depends on a single dimensionless parameter quantifying the
ratio between self-attraction and bending akin to the recently
introduced elastocapillary number.19 The complex, folded la-
ment congurations reached far from the threshold of instability
are explored by numerical simulations in Section V. We close
with a discussion of our main ndings in Section VI.
Soft Matter, 2013, 9, 1711–1720 | 1711



Fig. 1 Themodel system considered in the paper. (a) A flexible filament (of radius
a) floating at the interface between two fluids. Every part of the filament experi-
ences capillary attraction to every other part while bending resists deformation. The
competition between capillary forces and bending results in buckling and folding.
(b) The most unstable wavelength depends on a dimensionless strength of self-
attraction, U. The onset of this instability can be tuned with the introduction of an
added tension from an external source, F, which also decreases the most unstable
wavelength (the shapes shown are obtained using the numerical computations).
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II Energy and Scaling

Consider two identical particles of size a located at the interface
between two uids, for example air and water. Provided the
distance between the particles, R, is much smaller than the
capillary length, their effective capillary interactions are
described by the interaction energy Eint ¼ ga2ln(R/‘c), where g is
the interaction strength per unit area and the capillary length is
dened by ‘c ¼

ffiffiffiffiffiffiffiffiffiffi
s=rg

p
, with s the surface tension of the

interface, r the difference in density between the two uids, and
g the acceleration due to gravity (‘c z 2 mm for an air–water
interface).39 The strength of the interaction comes from the
competition between surface forces and an external force
monopole.2 This force can originate from gravity, as in the case
of the “Cheerios effect”,22 or from electro- or magneto-static
forces;4 note that g contains additional information such as the
particle geometry and wetting properties.

For microscopic systems, the energetic contribution from
capillary monopoles are individually very weak.40,41 As a result,
most studies of these systems neglect monopoles from buoy-
ancy, and in the absence of external torques, the leading order
singular contribution comes from quadrupolar interactions.42,43

In the case of anisotropic particles, this quadrupolar interac-
tion, while relatively short ranged, can lead to remarkably
complex colloidal aggregation and directed assembly.44,45

However, there is some subtlety associated with the monopole
term, and it lies in the very long-ranged nature of the interaction
it produces. Although pairwise contributions are very weak, the
screening length for the interaction is much larger than the
system size itself, and thus the total energetic contribution from
monopoles can signicantly effect the behavior of the system.2

The model system considered in this paper is illustrated in
Fig. 1. We consider an inextensible elastic lament of length
L < ‘c and bending modulus B. The lament bending energy is
1712 | Soft Matter, 2013, 9, 1711–1720
Ebend ¼ B

2

ðL
0

jxssj2dsþ 1

2

ðL
0

TðsÞ
h
jxsj2�1

i
ds; (1)

where x(s,t) denotes the two-dimensional position vector of the
lament on the uid surface at time t. The arc-length coordinate
parameterizing the lament is denoted by s, subscripts denote
partial derivatives, and T(s) is a Lagrange multiplier enforcing
the inextensibility condition. For notational simplicity in the
following we will commonly assume an implicit dependence
upon time.

The contribution to the energy due to capillary monopole
interactions may be written as

Eint ¼
ðL
0

ð0
g ln

�
Rðs; s0Þ

‘c

�
ds0ds; (2)

where R(s,s0)¼ rx(s)� x(s0)r, g is now the energy per area of the
interaction between two points on the lament, and where we
have dened

Ð 0 ¼ Ð s�a
�a +

Ð L+a
s+a , with a the size of the short-length

cutoff (a is typically of the order of the lament radius). This
cut-off radius represents the region where our long-ranged
assumption of monopole interactions breaks down. In writing
eqn (2) we have assumed the pairwise additivity of the long-
range capillary interactions. This assumption is similar to the
approach used to derive the leading-order term in a slender-
body theory for Stokes ows where the hydrodynamics of a
continuous rod is approximated by that of a discrete super-
position of beads; this yields excellent predictions due to
the long-range nature of the underlying hydrodynamic
interactions.46

Scaling distances by the lament length, L, the tension T(s)
by B/L2, and energies by B/L, the total energy combining
bending and interaction takes the simple form:

E ¼
ð1
0

�
1

2
jxssj2þ 1

2
TðsÞ

h
jxsj2�1

i
þ U

ð0
ln Rðs; s0Þds0ds

�
: (3)

E depends on a single dimensionless parameter, U ¼ gL3/B,
which quanties the balance between capillary self-attraction
and bending, and is akin to the so-called elastocapillary
number.19

Next, we focus on deriving the equation of motion for a
lament relaxing to equilibrium, which we will then exploit to
analyze shape instabilities.

III Equations of motion

To perform detailed calculations of the lament dynamics, we
consider variations of the total energy, E, with respect to the
centerline position vector, x(s), and tension, T(s). The forces so
derived must balance with the forces generated by the motion
through the uid, which we model through a local drag coeffi-
cient, zxt, an appropriate approach for dynamics in a very
viscous uid. The ambient uid is assumed to be quiescent and
of innite extent. Scaling time upon the characteristic time
scale s ¼ Lz/B, we arrive at a dimensionless equation for the
motion of the lament,
This journal is ª The Royal Society of Chemistry 2013
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xt ¼ �xssss þ U

ð 0
xðs0Þ � xðsÞ
Rðs0; sÞ2 ds0 þ vsðTðsÞxsÞ: (4)

Anticipating our numerical approach, the local part of the
integration in eqn (4) may be handled analytically by adding
and subtracting the singular part of the integrand. In so doing,
we nd

ð0
xðs0Þ � xðsÞ
Rðs0; sÞ2 ds0 ¼ K ½xðs0Þ�ðsÞ þ cðsÞxsðsÞ þOðdlog dÞ; (5)

K ½xðs0Þ�ðsÞ ¼
ð1þd

�d

(
xðs0Þ � xðsÞ
Rðs0; sÞ2 � xsðsÞ

s0 � s

)
ds0; (6)

where c(s) h log[(1 + d � s)/(s + d)], with d ¼ a/L the dimen-
sionless short wavelength cut-off. Rewriting the dimensionless
lament position equation, we therefore have

xt ¼ �xssss + Uc(s)xs(s) + UK[x(s0)](s) + vs(T(s)xs). (7)

Classically, the equation for the tension T(s) is derived using
the relation xs$xts ¼ 0, and also the identities

xs$xss ¼ 0, xs$xsss ¼ �xss$xss, (8)

xs$xssss ¼ �3xss$xsss, xs$xsssss ¼ �4xss$xssss � 3xsss$xsss, (9)

yielding the differential equation�
vss � jxssj2

�
TðsÞ ¼ �

h
4xss$xssss þ 3jxsssj2

i
� UcsðsÞ

� Uxs$
v

vs
K ½xðs0Þ�ðsÞ: (10)

Boundary conditions are derived by including terms to the
energy functional to account for the work done in forcing the
endpoints to move, namely, EF ¼ �F0$x(0) � F1$x(1), where F0
and F1 are (dimensionless) externally applied forces at the s ¼
0 and s ¼ 1 endpoints of the lament, respectively. Assuming
that the lament ends are free, hinged about a specied
(possibly moving) point, or pulled by the forces dened above,
the solvability conditions thus require

xss(0) ¼ xss(1) ¼ 0, (11)

�F0 + xsss(0) � T(0)xs(0) ¼ 0, (12)

�F1 � xsss(1) + T(1)xs(1) ¼ 0. (13)

The boundary conditions are then found to be

xsss(0) ¼ (I � xs(0)xs(0)
T)F0, (14)

xsss(1) ¼ �(I � xs(1)xs(1)
T)F1, (15)

T(0) ¼ �F0$xs(0), T(1) ¼ F1$xs(1). (16)

To summarize, the partial differential equation describing
the motion of a oating lament with either free or forced ends
is given by eqn (7) with the boundary conditions shown in eqn
This journal is ª The Royal Society of Chemistry 2013
(11), (14) and (15). It is coupled to the equation for the tension,
eqn (10), with boundary conditions shown in eqn (16). The
numerical method developed to solve this system of equations
is described in Appendix A. In the next section we exploit our
equations of motion to describe the linear stability of the
lament.
IV Linear stability analysis
A Numerical investigation of growth rates

Before we pursue an analytical description of lament insta-
bility, let us begin with a brief numerical investigation using the
framework described in Appendix A. In order to consider the
growth rate s (in time) of a given wavenumber k, we seed a
nearly straight lament with the perturbed dimensionless
shape x(s) ¼ (x(s), y(s)) ¼ (s, a0 sin(ks)), with a0 ¼ 10�4, and we
make the assumption that y(s, t)z a0 sin(ks)e

st for small time t.
Ten timesteps are then taken with a step-size Dt¼ 10�9, and the
growth rate is computed as s ¼ log(a10/a0)/(10Dt), where a10 ¼
2
Ð 1
0sin(ks)y(s,10Dt)ds. Fig. 2a shows (as symbols) the growth

rates computed for two different interaction strengths when the
lament ends are le free. ForU¼ 140, we nd that there are no
wavenumbers for which the growth rate is positive, indicating
that the lament is linearly stable to transverse perturbations.
Despite the attraction of every part of the lament to every other
part, the lament's stiffness prevents the buckling and subse-
quent collapse when the body is perturbed from a straight
conformation. Conversely, increasing the interaction strength
to U ¼ 2000, the capillary attraction overcomes the bending
elasticity and we observe that the lament is linearly unstable. A
wide range of wavenumbers corresponds to positive growth
rates. It is worth noting that the critical value of the interaction
strength above which capillary interactions destabilize the
lament is much larger than 1, suggesting that it could not have
been inferred solely from dimensional analysis. We also show in
Fig. 2b the growth rates computed for two different interaction
strengths, where an external pulling force has been introduced
at the lament ends. For a given interaction strength the
external force reduces the growth rate of every mode, and so
decreases the value of the largest unstable mode. Meanwhile,
setting F > 0 introduces a negative slope in s for small k, and
signicantly increases the value of the smallest unstable mode;
the range of wavenumbers k corresponding to the unstable
modes is reduced when an external tension is applied.
B Analytical predictions

Having gained intuition from the numerical simulations
described above, we now turn to an analytical investigation of
lament instability. Our goal is to establish the dispersion
relation governing the bending excitations of a oating elastic
lament.

One exact solution to the complete oating lament system
is the possibly unstable trivial solution, that of a straight la-
ment lying along a director, taken here to be x̂ without loss of
generality. While an imbalance of external forces can be
handled without difficulty, let us consider the case where the
Soft Matter, 2013, 9, 1711–1720 | 1713



Fig. 2 Instability of the filament shape: exponential growth rate, s, computed numerically (symbols) and predicted analytically (eqn (24), lines). (a) With no external
force, F ¼ 0, we consider two interaction strengths U ¼ 140 (just below the critical value Uc ¼ 144 for the instability), and U¼ 2000. (b) With an external force F ¼ 600,
we consider the values U ¼ 2500 and U ¼ 3200.
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endpoint forces are equal in magnitude and acting parallel to
the long axis of the lament, F0 ¼ �Fx̂, F1 ¼ Fx̂. The trivial
lament position is then given by x*(s) ¼ sx̂. Eqn (10) indicates
that the tension in this state satises vssT*(s) ¼ �Ucs(s), with
T(0) ¼ T(1) ¼ F, and hence

T*ðsÞ ¼ F þ U

0
@s

ð1
0

cðs0Þds0 �
ðs
0

cðs0Þds0
1
A: (17)

The tension along the straight lament is given by the force
applied at the lament endpoints, as well as a renormalized
contribution owing to the capillary self-attraction. This internal
compression is a consequence of the non-local deformation of
the uid surface.

From here, we are well-situated to perform a classical
stability analysis based on perturbations of both x(s) and T(s).
To begin, we write x(s,t)¼ sx̂ + 3~y(s,t)ŷ + O(32), and let T¼ T* + ~T,
with T* the equilibrium tension from eqn (17). By tracking
terms of size 3 and smaller, it may be shown that at leading
order, the non-local contribution to the capillary force only gives
rise to a transverse force contribution as

K ½xðs0Þ�ðsÞ ¼ O
	
32


x̂þ 3

ð1
0

"
~yðs0Þ � ~yðsÞ
ðs0 � sÞ2 � ~ys

s0 � s

#
ds0ŷ: (18)

Upon the insertion of
v

vs
K½xðs0Þ�ðsÞ ¼ Oð32Þx̂ þ Oð3Þŷ into

eqn (10), we deduce that T ¼ T* + O(32), such that we may
dispose of tension perturbations ~T for the linear stability
analysis. Similarly, we nd that x̂$xt¼ O(32) from eqn (7), so that
the linear stability consideration may focus solely on transverse
lament motions through the evolution of ~y(s,t).

In order to gain physical insight for the nonlocal operator K
given by eqn (18), we assume that s is sufficiently far removed
from the lament endpoints and look at its effect on plane
waves of wavenumber k. By doing so, we nd that the transverse
component of K[x(s0)](s) may be written as
1714 | Soft Matter, 2013, 9, 1711–1720
K[x(s0)](s)ŷz g(k)~y(s), (19)

where

g(k) ¼ 2[1 � cos(k) + g + log(k) � kSi(k) � Ci(k)], (20)

and with the sine and cosine integrals dened by

SiðkÞ ¼
ðk
0

sinðtÞ
t

dt;CiðkÞ ¼ �
ðN
k

cosðtÞ
t

dt: (21)

The mathematical details of this derivation are provided in
Appendix B. Combining the results above, the transverse
component of the lament position equation, eqn (7), gives a
linear relation for ~y(s),

~yt ¼ �~yssss + Ug(k)~y + [Uc(s) + T*
s]~ys + T*~yss + O(32). (22)

Upon inspection of T*, we are reminded that the local self-
attraction term c(s) could just as well have been absorbed into
the tension, and simplifying the above results in

~yt ¼ �~yssss + T*~yss + Ug(k)~y. (23)

We are thus le with the relatively simple over-damped
Euler–Bernoulli beam equation, with a non-uniform tension,
and with an additional term of magnitude U originating from
the non-local capillary attraction. In the following we discuss in
detail the impact of this novel effective elasticity term on the
dynamic response of the oating lament.

In order to explore the response of the lament shape to
small perturbations, we explicitly insert the ansatz ~y ¼ eiks+st.
While the nite-size effects must come into play for small
wavenumbers and for longer times (trigonometric functions do
not satisfy the boundary conditions on eqn (23), for example),
this ansatz is expected to be accurate far from the end points of
the lament. Upon insertion of the equilibrium tension T*(s),
an inner product of eqn (23) against e�iks reveals the dispersion
relation for the growth rate,
This journal is ª The Royal Society of Chemistry 2013



Fig. 3 (a) Growth rate of the instability, s, as a function of wavenumber, k, for three values of the interaction strength, U, with external force F ¼ 200 (the value of the
critical interaction strength is Uc ¼ 1138). (b) Critical interaction strength, Uc, below which there are no unstable modes as a function of the external force, F, from both
numerical simulations (symbols) and analytical prediction (line). (c) Map of the most unstable mode, k*/p, analytically predicted (from eqn (24)) as a function ofU and F.
(d) Setting F¼ 0 (free filament ends), the most unstable wavenumber, k*, is surrounded by an increasingly wide band of unstable modes asU increases (shaded region);
analytical estimates for the most unstable and the highest unstable mode are shown as dashed lines.
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s ¼ �k4 þ 1

2
k2ðU� 2FÞ þ UgðkÞ: (24)

How well does the analytical expression above capture the
results of the full numerical simulation? Returning to Fig. 2a
and b, the analytically predicted growth rates from eqn (24) are
shown as lines for each of the four cases considered. While
discrepancies are expected due to end effects, which are not
captured in our asymptotic consideration, in general we nd
good agreement between the numerical and analytical results.
Therefore, we can use eqn (24) with condence to demonstrate
the fundamental physics behind the elastocapillary instability,
which we do below.

C Discussion of the elastocapillary instability

The quartic term and quadratic terms in eqn (24) are associated
with the canonical Euler buckling. However, as expected, the
capillary attraction leads to an additional compressive load (the
Uk2 term in eqn (24)). Any attractive short-range coupling along
the lament is expected to renormalize the tension term in a
similar fashion. We now discuss the consequence of the more
complex contribution, Ug(k), to the dispersion relation. We rst
stress that g(0) ¼ 0, and g(k) < 0 for all k > 0, which means that
This journal is ª The Royal Society of Chemistry 2013
the non-local part of the capillary coupling acts to stabilize
straight conformations.

In addition, given thatU$ 0 and F$ 0, the predicted growth
rate s goes to zero as k / 0, to �N as k / N, and may or may
not take on positive values for nite k, depending on the values
of U and F. For example, Fig. 3a shows the growth rate from eqn
(24) as a function of wavenumber k for three values of the
interaction strength, U, with an external pulling force F ¼ 200.
For U less than a critical value, Uc ¼ 1138 in this case, all modes
are predicted to decay in time, and the lament is predicted to
be stable. For U > Uc, we observe the appearance of a band of
unstable modes and the lament becomes unstable. The critical
interaction strength for instability, Uc, is shown as a function of
the value of F in Fig. 3b. It takes the value Uc ¼ 144 when F ¼
0 and increases with increasing F. Both the values predicted by
the analytical theory and those found by the full numerical
simulation are shown; here again we see that the analysis is
sufficient to capture the linear instability of the lament
dynamics.

To develop physical insight into this behavior, we look at at
the asymptotic form of s(k) in the limit of long wavelengths. We
nd that s � �Fk2 + (U/144 � 1)k4 for k� 1. In this regime, the
capillary-induced compressive load vanishes; the self-attraction
Soft Matter, 2013, 9, 1711–1720 | 1715
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does not renormalize the tension of the lament in the long
wavelength limit. Nevertheless, the capillary coupling soens
the lament by effectively reducing its bending stiffness: the
pre-factor of the quartic term decreases linearly with U, and
changes its sign at Uc ¼ 144. Above this critical value the
bending excitations along the lament are amplied. As noted
in the previous section, this unexpectedly high value ofUc could
not have been anticipated on the basis of dimensional argu-
ments alone. Furthermore, as vs/vk < 0 as k/ 0 for any F > 0 the
smallest unstable mode, if there is one, must take on a nite
value when an external pulling force is applied.

Beyond this prediction of the destabilization threshold, we
can also accurately predict the value of the most unstable mode,
which chiey sets the ultimate folded shape of the lament as
we will showmore precisely in the next section. For a given force
F and interaction strength U (such that U > Uc), the most
unstable mode k* is recovered upon setting vs/vk to zero and
solving for k. The resulting value is presented in Fig. 3c as a
function of both U and F. Predictably, the most unstable mode
increases with increasing self-attraction (increasing U), and
decreases as the lament ends are pulled upon with greater
intensity (increasing F). The introduction of an external force
renders the lament stable for small interaction strengths U,
and so intuitively prolongs the onset of buckling. Increasing U

and/or decreasing F is therefore expected to yield a more nely
folded lament shape once the instability fully develops.

In the specic case of a free lament, F¼ 0, Fig. 3d shows the
value of most unstable wavenumber as a function of U. The
shaded region indicates the band of unstable modes for a given
interaction strength U. Again, these variations can be qualita-
tively understood by inspecting the asymptotic behavior of s (k).
Indeed, for k[ 1 we nd s (k)��k4 +U[k2 � pk + 2(log(k) + g +
1)], with g the Euler–Mascheroni constant. This latter approxi-
mation of s (k) is accurate to within 2% of the exact value for
wavenumbers as small as k¼ p, and it can therefore replace s (k)
generally for all but the very longest perturbation wavelengths.
For k [ 1, the problem boils down to the canonical Euler
buckling induced by the longitudinal self-attraction. Hence,
balancing the cubic and linear terms in the equation vs/vk ¼
0 gives the usual approximation to the most unstable mode:47

k*z
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U� 2F

p
: (25)

The largest unstable mode may also be predicted, again
assuming k [ 1, by setting s z �k4 + (U/2 � F)k2 ¼ 0, yielding
kmaxz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U� 2F

p
=

ffiffiffi
2

p ¼ ffiffiffi
2

p
k*. These approximations are shown

as dashed lines in Fig. 3d. Both overestimate their true values in
the present study but capture the numerical results qualita-
tively. The reason for this discrepancy is due to the range of
relevant wavenumbers involved in the elastocapillary insta-
bility. Destabilization of the bending modes occurs at small or
intermediate values of the wavenumber k; the non-local
corrections to the Euler-buckling problem (Ug(k) terms in eqn
(24)) thus cannot be overlooked and strongly contribute to the
dynamic response of oating microlaments.

In summary, we have shown in this section through a linear
stability analysis that a self-attracting lament displays a novel
1716 | Soft Matter, 2013, 9, 1711–1720
mechanical instability. We have explored the structure of this
instability, and its dependence on both the strength of the self-
attraction and the stabilizing external force.
V Beyond linear-stability: self-folding of a
floating filament

The linear stability analysis of the previous section yields some
insight into how folding will begin. In this section we investi-
gate long-term, large-amplitude folding behavior. The path that
a lament takes towards any nal conguration depends on the
initial conditions, the material parameters of the system
(specied completely by U), and the external tension on the
lament (F). In this section we compute the dynamics from the
equations of motion described in Section III using the numer-
ical method described in Appendix A.

For large values of the interaction parameter the capillary
attraction overcomes the relatively weak bending resistance,
and the lament displays a tendency to “accordion”: it collapses
with a short wavelength relative to the lament length. The
dynamics of such lament self-folding are shown in Fig. 4a,
where we plot the value of the total energy E (eqn (3)) as a
function of time, xing U ¼ 2500 and F ¼ 0 for two different
initial lament shapes. The topmost curve (blue online) shows
the path taken of a lament that is seeded with an initial
transverse position y(s,0) ¼ 0.05 sin(ps) as it travels down to a
state of lower energy. At short times the shape is predominately
composed of a number of anti-nodes corresponding to the
fastest growing wavenumber, predicted by maximizing eqn (24)
to be k* ¼ 7.4p. These anti-nodes grow to form loops, and
eventually the lament approaches a regime of near-contact. In
this vicinity there is a slight discontinuity in the slope of the
energy, as a result of introducing near-eld repulsive physics
required to regularize the diverging capillary interactions (see
Appendix A). The lower curve in Fig. 4a (red online) shows the
path taken by an identical lament seeded with a different initial
condition, y(s,0) ¼ 0.05sin(7ps). Here the lament eventually
achieves the same conformation as in the previously considered
case, dictated by the fastest growing linear mode. However, due
to its initial shape being closer to the fastest growing linearly
unstable mode at the outset, this lament begins its descent into
lower energy conformations earlier. Interestingly, this result
suggests that the elastocapillary buckling provides a robust
means to achieve complex foldings of microlaments. Indeed,
the gross features of the ultimate shapes can be anticipated from
a simple linear stability analysis.

By introducing an external tension, F > 0, the possibilities for
folding become more versatile but more complex. In Fig. 4b we
show three different laments, all with initial positions given by
y(s,0) ¼ 0.05sin(ps + 0.01s) (a shape with a slight le-right
asymmetry), but pulled upon with three different magnitudes of
external forcing (F ¼ 0, 500, and 800). With the addition of this
external tension the most unstable mode structure is changed,
and a different nal state is selected. With no external tension
(F ¼ 0), the lament accordions tightly as in Fig. 4a. In the
second case, with F ¼ 500, the fastest growing unstable wave-
number is shied to a smaller value, as predicted by the linear
This journal is ª The Royal Society of Chemistry 2013



Fig. 4 Long-time dynamics of filament shape. (a) With U ¼ 2500 and F ¼ 0, two initial perturbations with different initial wavenumbers (k ¼ p, top and k ¼ 7p,
bottom) fold into similar structures but at different times. (b) Adding an external force, F, modifies the folding shape of the filament; with U ¼ 2500 and F ¼ 500, the
final folded shape has fewer loops than in the F ¼ 0 case due to the straightening influence of the added tension. Meanwhile, for F ¼ 800 a secondary instability
develops along the axial direction, leading to a final left-right asymmetric shape. (c) WithU¼ 3500, a highly deformed initial hairpin configuration undergoes a cascade
of self-folding events. (d) Folding and unfolding of a floating filament is shown forU¼ 3500; the filament self-folds with F¼ 0 until t¼ 9� 10�3 at which time a pulling
force F ¼ 3500 is introduced and the filament unzips, albeit through a different path through shape space.
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theory, leading to a smaller number of loops in an equilibrium
conformation. Finally, with F ¼ 800 we observe a secondary
instability growing along the axial direction, perpendicular to
the transverse instability at the center of the previous section.

In fact, when a lament is sufficiently long relative to the
structures generated by the initial instability, it can undergo a
cascade of instabilities. This is illustrated in Fig. 4c, where we
seed the lament initially with the shape of a hairpin. In the
absence of external forcing, the hairpin shape is seen to rst
“zip up” into a racquet shape, reminiscent of the ones
observed in wetted bers,19 and in semi-exible polymer
systems.27,28 Over time it displays a cascade of buckling and
folding. By pulling on the lament ends with an external force,
F ¼ 500, similar multiply folded states are obtained, yet the
nal shape is markedly different from the one observed in the
force-free case.

Finally, in Fig. 4d we illustrate the unfolding of a self-
folded structure. The lament is set initially with the shape
y(s,0) ¼ 0.05sin(7ps), and we x U¼ 3500 and F¼ 0. The shape
This journal is ª The Royal Society of Chemistry 2013
evolves in a similar fashion as in the previously described
examples (blue solid line). At t ¼ 9 � 10�3, we introduce
external forcing on the lament ends with magnitude F¼ 3500
to unfold (black dashed line). We observe an unzipping of the
folded structure, with jumps in the lament energy indicative
of each loop being pulled apart in succession. Rather than a
reversible shape change we clearly observe unfolding along a
different path.
VI Conclusion

In this paper we have described the elastocapillary instability of
exible laments conned to a uid surface. Buckling and
folding result from the interplay between self-attraction
through long-range capillary forces and elastic bending rigidity.
As a result of the competition between these mechanical forces,
the instability only appears beyond a large, critical ratio of
the capillary self-attraction to the lament's bending modulus.
The most unstable wavenumbers are typically located at an
Soft Matter, 2013, 9, 1711–1720 | 1717
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intermediate range, thereby yielding the spontaneous forma-
tion of accordions folds. Due to the long-range nature of the
capillary interactions, both the wavelength and the growth rate
of this instability differ from the conventional Euler-buckling
results, which would be observed for short-range self-attraction.

Aer having analyzed the onset of lament shape instability
through a linear theory, numerical simulation was used to show
a number of possible conformational transitions for the self-
folding lament. In particular, introducing an external pulling
force at the lament ends changes the unstable linear modes,
and modies signicantly the long-time behavior. For a la-
ment sufficiently long relative to the shapes driven by self-
attraction there can be a cascade of folding instabilities, each
acting perpendicularly to the previous fold. While the linear
analysis is only valid for short times and nearly straight la-
ments, our simulations demonstrate a wide variety of accessible
conformations, from rackets and sewing needles to accordion
shapes.

The numerical method described here could be augmented
to study many related problems. Future work might include
computing the relative energy scales for each equilibrium
shape; with sufficient statistics, the ensemble of different
shapes that could be expected should our system be coupled to
a thermal bath might be elucidated. The deterministic simu-
lations could also be used to determine the statistical signi-
cance of certain shapes in crumpled thin sheets or bers.48,49

Our original experimental motivation was provided by
buoyant particle interactions, where the dominant competition
is between elasticity and the density of the particles. In which
practical experimental setup could the buckling instability be
observed? We recall that the critical elastocapillary number is
given by U ¼ gL3/B. The instability is expected to be observable
for laments both so (small value of B) and dense (large value
of g). Consider a lament composed of microns-sized spherical
colloids linked by double-stranded DNAs as in ref. 50. From
capillary interactions we expect g� F2/s where F is the force per
unit length acting on the lament and s the surface tension of
the uid interface. From gravity we get F � Dra2g and thus g �
Dr2a4g2/s. For colloids of radius a¼ 10 mm and Dr¼ 103 kg m�3

and an interface with s � 10�2 N m�1 we would get g � 10�10 N
m�1. Using laments of length L � 1 mm, right below the
capillary length, and with a DNA linker exibility of B � 10�22 J
m�1,50 we would obtain an elastocapillary number or order U �
103, and thus the instability could be observable. Obviously,
beyond the case of gravitational forcing, any external force
acting on the lament can serve to deform the interface and
drive similar elastocapillary self-folding. Electric or magnetic
elds acting on self-assembled laments of metallic nano-
particles or super-paramagnetic nano laments could be two
experimental examples.
Fig. 5 A near-contact situation; s* denotes the point on the filament closest to
the station s.
Appendix A: numerical solution

The numerical approach taken in this manuscript is a variation
on that described by Tornberg and Shelley.51 The complications
present here are the stiffness introduced by the elastic restor-
ative term f xssss, and the nonlocal integral operator K[x(s0)].
1718 | Soft Matter, 2013, 9, 1711–1720
The approach will be to treat the stiffest terms implicitly in
time, while treating the remaining terms explicitly for a fast but
stable scheme.

Time is discretized uniformly, with the nth timestep denoted
by tn, and writing (for instance) the tension at the nth timestep in
shorthand as T(s, tn) ¼ Tn(s). At each time tn the tension is rst
solved via

ðvss � jxn
ssj2ÞTnðsÞ ¼ �

h
4xn

ss$x
n
ssss þ 3jxn

sssj2
i

� UcsðsÞ

� Uxn
s$

v

vs
K ½xnðs0Þ�ðsÞ þ bð1� xs$xsÞ: (A1)

We have included a correction term to remove numerical
errors in the determination of the arc-length, again following
Tornberg and Shelley. To solve this equation we dene a
uniform grid s ¼ i/M, for i ¼ 0,1,.,M. Spatial derivatives
computed using second-order accurate nite difference
formulae. Since the position xn at time tn is known, the equation
above is inverted to recover Tn(s) without difficulty.

Solving the lament position equation is the next step, where
we update via

1

2Dt

	
3xnþ1 � 4xn þ xn�1


 ¼ �xnþ1
ssss þ UcðsÞð2xn

s � xn�1
s Þ

þ UK
�
2xnðs0Þ � xn�1ðs0Þ�ðsÞ

þ vs
	
2Tnxn

s � Tn�1xn�1
s



:

For the rst time step the above is replaced by a rst order
Euler step. In this case, we need only build the following matrix
operator and to invert it once: M ¼ 3/(2Dt)I + Ds

4 (along with
boundary conditions). The inverted operator may be applied to
known quantities at every subsequent time step, providing for a
very efficient numerical scheme. We have subtracted off the
singular part inside the integrand of the interaction forcing so
that the remainder of the expression is nite, as described in
the main text.

A challenging numerical problem is introduced when the
lament comes into near contact with itself. Or worse, when
the lament exhibits a large number of loops so that there
are many near-contact interactions. The situation is illus-
trated in Fig. 5, where two different parts of the lament are
shown nearing each other; the centerline is denoted by dotted
lines, and the blue solid lines indicate the thickness of the
lament.
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Our intention is to prevent lament crossing, but to allow for
tangential motions in the near-contact state. For each station in
arc-length on the lament s, we rst determine the closest point
on the lament s* that is at least a distance 43 from s (so as to
neglect neighboring points on the lament),

s*ðsÞ ¼ min
s
0
f|xðs0Þ � xðsÞ|; |s0 � s|. 43g: (A2)

A local coordinate system is then dened by n̂(s,s*)¼ (x(s*)�
x(s))/|x(s*) � x(s)| and ĥ ¼ n̂t. The forces in the lament
equation are then decomposed locally into their n̂ and ĥ

components. The tangential component of the lament force
balance is le unchanged, but the normal component is
adjusted as follows

n̂ðs; s*Þ$ðxt þ xssssÞ ¼ min

�
n̂ðs; s*Þ$G ; n̂ðs; s*Þ$

G

�
1�



23

jxðsÞ � xðs*Þj
�p��

(A3)

where G denotes the right hand side of eqn (7) (minus the
stiffest term, xssss), and p > 0 (we use p ¼ 12 for all the results
presented here). The multiplication factor is such that there
is no normal component of force (outside of the elastic part)
when the lament centerline is 23 away from the closest point
on the other part of the lament centerline. The minimum of
the two quantities is chosen so that if the uid and tension
forces wish to separate the laments from each other they
can, but if the uid and tension forces are pushing the la-
ments to an overlapped state the sign of this force is reversed.
This treatment of the near-contact physics appears to allow
the lament to fold up tightly without numerical difficulties,
without signicantly impacting the underlying physics of
capillary attraction. When the lament comes into near-
contact, the timestep size is decreased and the spatial reso-
lution is increased adaptively.

For the linear stability analysis we set M ¼ 2000, Dt ¼ 10�9,
b ¼ 5 � 106. For the long-time dynamics and equilibrium
shapes it was sufficient to set M ¼ 600, Dt ¼ 10�8, b ¼ 5 � 106,
and p¼ 12, with adaptive renement of the grid and decrease in
timestep size as necessary when the lament approached itself
as described.

Appendix B: nonlocal integration

We begin by showing, for k [ 1 and s sufficiently far removed
from the lament endpoints, that

K
h
~yðsÞ

i
¼

ð1
0

(
~yðs0Þ � ~yðsÞ
ðs0 � sÞ2 � ~ysðsÞ

s0 � s

)
ds0z� pk~yðsÞ; (B1)

for ~y(s) f sin(ks). For k [ 1, we are led to write the integration
over a new inner variable s0 ¼ s + x/k, so that

K
h
~yðsÞ

i
¼ k

ðkð1�sÞ

�ks

�
sinðks0Þ � sinðksÞ

x2
� cosðksÞ

x

�
dx; (B2)

and for s well distanced from both endpoints, we may approx-
imate the above as
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K
h
~yðsÞ

i
zk

ðN
�N

�
sinðksþ xÞ � sinðksÞ

x2
� cosðksÞ

x

�
dx

¼ ksinðksÞ
ðN

�N

ðcosðxÞ � 1Þ
x2

dxþ kcosðksÞ
ðN

�N

sinðxÞ � x

x2
dx

¼ �pksinðksÞ ¼ �pk~yðsÞ:

(B3)

Though we do not reproduce it here, a complicated analytical
expression for K[~y(s)] in eqn (B1) may in fact be derived for
arbitrary wavenumber k. While it is not generally the case that K
[~y(s)] is diagonalized using a trigonometric basis (as it is in the k
[ 1 approximation above), we still note that

ð1
0

e�iksK
�
eiks

0�
ds ¼ gðkÞ; (B4)

g(k) ¼ 2[1 � cos(k) + g + log(k) � k Si(k) � Ci(k)], (B5)

with the sin and cosine integrals dened in eqn (21). For k � 1
we have g(k) � �k2/2, while for k [ 1 we have g(k) � �pk +
2(log(k) + g + 1), with g the Euler–Mascheroni constant. This
latter approximation of g(k) is accurate to within 2% for wave-
numbers as small as k ¼ p.
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