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The locomotion of a body through an inviscid incompressible fluid, such that the flow
remains irrotational everywhere, is known to depend on inertial forces and on both the
shape and the mass distribution of the body. In this paper we consider the influence of
fluid viscosity on such inertial modes of locomotion. In particular we consider a free
body of variable shape and study the centre-of-mass and centre-of-volume variations
caused by a shifting mass distribution. We call this recoil locomotion. Numerical
solutions of a finite body indicate that the mechanism is ineffective in Stokes flow
but that viscosity can significantly increase the swimming speed above the inviscid
value once Reynolds numbers are in the intermediate range 50–300. To study the
problem analytically, a model which is an analogue of Taylor’s swimming sheet is
introduced. The model admits analysis at fixed, arbitrarily large Reynolds number
for deformations of sufficiently small amplitude. The analysis confirms the significant
increase of swimming velocity above the inviscid value at intermediate Reynolds
numbers.

Key words: propulsion, swimming/flying

1. Introduction
In the study of Newton’s concept of momentum, a classic problem concerns the

conservation of momentum when mass is redistributed on a floating body. We state
this here as a ‘bug on a raft’ problem. A bug of mass m moves on a small finite raft of
mass M , which floats on an incompressible fluid. The position of the centre of mass
of the raft is X(t), and the position of the bug is X(t) + x(t), assuming movement on
a line. If the fluid is inviscid, no fluid forces are applied to the raft, and we shall take
its virtual mass to be zero. By conservation of linear momentum, assuming no initial
movement of the raft, bug or fluid, we must have vanishing momentum at all times:

P (t) ≡ MẊ + m(Ẋ + ẋ) = 0. (1.1)

Thus

Ẋ = − m

M + m
ẋ. (1.2)

† Email address for correspondence: childress@cims.nyu.edu
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If the bug moves a distance L, the centre of the raft moves in the opposite direction a
distance −[m/(m + M)]L. Since the centre of mass is X(t) + [m/(M + m)]x(t), we see
by differentiation and use of (1.2) that it does not change in time. If, on the other
hand, we suppose the fluid to be very viscous and assume that the viscous force acting
on the raft is −λẊ, i.e. proportional to the velocity of the raft with constant λ, then
according to Newton’s second law

dP

dt
= −λẊ(t) (1.3)

so that

(M + m)Ẍ + mẍ = −λẊ. (1.4)

Suppose now that the bug moves a distance L in time T and then remains at rest.
After the movement the raft acquires a velocity, which for t > T decays according to

(M + m)Ẍ + λẊ = 0. (1.5)

This exponential decay ensures that (1.4) is integrable with respect to t from 0 to ∞,
yielding

(M + m)[Ẋ(∞) − Ẋ(0)] + m[ẋ(∞) − ẋ(0)] = −λ[X(∞) − X(0)] (1.6)

=⇒ λ[X(∞) − X(0)] = 0, (1.7)

so the net translation of the raft is zero. Meanwhile the centre of mass has moved a
distance [m/(M + m)]L.

This last conclusion is independent of the value of λ. Yet if λ vanishes, the raft
moves! The limit λ → 0 is therefore singular: the smaller the λ, the longer one has to
wait for decay to occur. For example, let the mass m be accelerated instantaneously
to velocity L/T for a time T and then brought to rest. For t > T we have

X(t) = −mL

λT

[
exp

(
λT

m + M

)
− 1

]
exp

(
− λt

m + M

)
. (1.8)

This example illustrates the peculiar role of viscosity in the dynamics of the bug–raft
system, and it is these observations which prompted the present investigation. In
this paper we shall examine the role of viscosity on locomotion in a related system
involving simultaneous changes of the shape and the distribution of mass of a body.
Saffman (1967) has studied the possibility of inertial locomotion of a finite body in
an inviscid fluid. If the system starts from rest, the fluid flow remains irrotational
by Kelvin’s theorem, and Saffman showed that the resulting potential flow could
involve locomotion of the body by varying in time the body’s virtual mass. The latter
term refers to the ‘added’ mass associated with the momentum created in the fluid
surrounding the body. Although no net momentum is produced in the process, the
centre of volume can be changed, and if the deformation is cyclic, these deformations
can advance the body by a fixed distance over each cycle. For periodic deformation
and motion along a line, for example, the centre of mass of the body will occupy the
same position relative to the centre of volume at the end of each cycle. However the
centre of mass of the body and the fluid, computed by a suitable limiting process in
the case of an infinite domain, will separate from the centre of volume of the body.
The resulting movement of the body will be termed recoil locomotion.

To see this in the simplest setting, imagine that a time-dependent virtual mass could
be associated with our raft, by altering the shape of its bottom for example. (We
shall introduce such a model in § 3.) With M a function of time we then have for an
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inviscid fluid

Ẋ = − m

M(t) + m
ẋ. (1.9)

If x leads M in phase by 90◦, this will lead to motion to the right. For example, if
x = L sin(ωt + θ), M = M0 + MV (t), MV = m0 cos ωt with 0 < m0 < M0 + m, we have

X = −mLω

∫
cos(ωt + θ) dt

M0 + m + m0 cos ωt
. (1.10)

The quadrature yields an advance of

�X = 2πL
m

m0

[
M0 + m√

(M0 + m)2 − m2
0

− 1

]
cos θ (1.11)

per cycle of period 2π/ω. The maximum speed is obtained by aligning the extrema
of the velocity of the mass m and that of M(t).

Let us again add a viscous resistance −λẊ and assume for simplicity that λ is a
constant which can be set independent of M(t). We then have

d

dt
([M(t) + m]Ẋ + mẋ) = −λẊ. (1.12)

From this we see that if X is a solution of (1.12) for some given periodic x(t) such
that M and Ẋ are periodic with the same period as x, then necessarily X(0) = X(T )
and no locomotion occurs. To prove this it suffices again to integrate both sides of
(1.12) from 0 to T and use the assumed periodicity.

To see the movement in a special case, suppose that the mass moves discontinuously
with velocities ±u and that the raft mass varies discontinuously between the values
M1 and M2. That is, first with M = M1 the bug accelerates instantaneously to velocity
+ u for a time T = L/u; then with M =M2 the bug accelerates instantaneously
to velocity −u for time T , and so on. Denote by U (0+) the velocity of the
raft after the first acceleration. Then at T − the velocity of the raft is U (T −) =
U (0+) exp[−λT/(m + M1)], and the total momentum is mu +(m +M1)U (0+)
exp[−λT/(m + M1)]. Thus by conservation of momentum

mu + (m + M1)U (0+) exp

(
− λT

m + M1

)
= −mu + (m + M2)U (T +). (1.13)

Solving for U (T +) and allowing for decay we obtain

U (2T −) =

[
2mu

m + M2

+
m + M1

m + M2

U (0+) exp

(
− λT

m + M1

)]
exp

(
− λT

m + M2

)
. (1.14)

Again by conservation of momentum,

−mu + (m + M2)U (2T −) = mu + (m + M1)U (2T +). (1.15)

Thus

U (2T +) =
2mu

m + M1

[
exp

(
− λT

m + M2

)
− 1

]
+ U (0+) exp

[
−λT

(
1

m + M1

+
1

m + M2

)]
.

(1.16)
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The fixed point U (0+) = U (2T +) ≡ U is given by

U =
2mu

m + M1

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− λT

m + M2

)
− 1

1 − exp −
[
λT

(
1

m + M1

+
1

m + M2

)]
⎫⎪⎪⎬
⎪⎪⎭ . (1.17)

We see from the recursion (1.16) that this fixed point is stable. Moreover the distance
covered in time T with velocity U (0+) exp[−λt/(m + M1)] is equal in length and
opposite in sign to that covered with velocity U (T +) exp[−λt/(m + M2)] in time T .
Thus there is no locomotion.

What if the λ values are also changed with the M values? In general we would
expect this to occur. All of our results for velocity look the same, with decay factors
replaced by exp[−λiT /(m + Mi)], i =1, 2. But in the final calculation of the distance
travelled in the two half-periods, the distances differ by a factor λ1/λ2. Thus there
is locomotion. Note that the translation in one cycle is O(λ−1), indicating that the
speed of recoil locomotion at small Reynolds numbers should be of order L2ω/ν for
a body of size L.

We could adopt (1.12) with λ= λ(t) as a model which combines viscous and virtual-
mass effects. However this equation combines the drag law for Stokes flow of a finite
body in three dimensions with the virtual momentum of a perfect fluid flow about
such a body. In reality the time-dependent viscous drag and the inertial effects do
not so easily separate at finite Reynolds number. Nor can we independently prescribe
drag and virtual mass. Nevertheless it is clear that by suitable variations of drag in
concert with the variation of virtual mass, it could be possible to enhance locomotion
in a viscous fluid, despite the implications of viscous dissipation. But the question
remains: how do these effects combine in general, and how well does a body move in
a viscous fluid, using recoil locomotion?

To explore this problem, we first present in § 2 the results of numerical calculations
of a finite body in two spatial dimensions. Dimension two is permissible here, despite
the implications of the Stokes paradox of steady flow, because of the periodic flow
field developed during locomotion. The body is equipped with a moving internal
mass and changes shape as a time-dependent ellipse. We shall show that, over an
intermediate range of Reynolds numbers, the swimming speed may be increased above
the inviscid value by a factor of almost 3. At these Reynolds numbers, any hope of
an analysis of the locomotion requires a perturbative approach, and we introduce
such a model in § 3. Our model, which is again two-dimensional and periodic in space
and time, is similar in spirit to the seminal swimming sheet model of G. I. Taylor
(1951). The analysis of this model, in §§ 4 and 5, confirms the possibility of locomotive
enhancement by viscous effects by a factor ∼3 (cf. figure 12). In § 6 we compare, with
partial success, the results for the infinite model with the simulations of a finite body.
Our conclusions regarding the viscous effects in recoil locomotion are summarized in
the discussion in § 7.

2. Recoil locomotion of a finite body in two dimensions
We consider now a system consisting of an elliptic body of periodically varying

aspect ratio, containing within it a mass (our ‘bug’) of variable position. We shall
study the locomotion of the body by direct numerical simulation. The subscript f is
used to indicate the parameters appropriate to our finite body. Later (in § 7) we shall
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compare these calculations with results obtained analytically for a fluctuating sheet
of infinite extent.

The two-dimensional elliptic boundary of the body has prescribed semi-major and
semi-minor axis lengths Lf a(ωf t) and Lf c(ωf t) and undergoes periodic, area-
preserving shape deformations: Area = πL2

f a(ωf t)c(ωf t) = constant. The system is

made dimensionless by scaling on the length Lf =
√

Area/π, velocity Uf = Lf ωf

and time Lf /Uf . Then Rf = ρ ωf L2
f /µ is a frequency Reynolds number, with ρ

the fluid density and µ the dynamic viscosity. The length scale is chosen so that
a(τ )c(τ ) = 1.

To compute the fluid–body interaction, the vorticity/stream-function formulation
of the Navier–Stokes equations (3.10) is solved implicitly and with high accuracy on a
time-dependent body-conforming grid, using a mixed Fourier/finite-difference spatial
discretization. The fluid equations are coupled with an equation for the lateral body
acceleration. The numerical method is described in detail by Spagnolie & Shelley
(2009) and is a variation on a well-studied scheme described by E & Liu (1996) and
Alben (2008). The boundary conditions are no-slip on the body surface and decaying
fluid velocity in the far field.

Horizontal momentum balance gives (in dimensional variables)

MẌ + m(Ẍ + ẍ) = i · F(t), (2.1)

where i · F(t) is the horizontal fluid force acting on the body surface ∂D. A
convenient representation of the fluid force is achieved through a manipulation
of the velocity/pressure form of the Navier–Stokes equations, which can be written
as an integration against the vorticity −�ψ∗ and its normal derivative ∂n(−�ψ∗) on
the body surface, where (ψ∗

y , −ψ∗
x ) is the fluid velocity. Parameterizing the surface by

the azimuthal angle φ′ ∈ [0, 2π), we have

i · F(t) = πρ L2
f Ẍ + µ i ·

∫ 2π

0

(x⊥∂n(�ψ∗) − xθ �ψ∗)|∂D dφ′, (2.2)

with x⊥ = (−y, x). Upon non-dimensionalization and setting the mass’s position
relative to the centre of volume as x(t) = L sin(ωf t − θf ), the body’s centre-of-volume
acceleration may be written as

χττ =
αf

(1 − βf )
sin(τ − θf ) +

βf

π(1 − βf )Rf

∫ 2π

0

(x⊥∂n(�ψ) − xθ �ψ)|∂D dφ′, (2.3)

where

χ = L−1
f X, τ = ωf t, αf =

m L

Lf (M + m)
, βf =

πρ L2
f

M + m
. (2.4)

We have set ψ∗ = L2
f ωf ψ , and x is now understood to be dimensionless. The

parameter αf may be viewed as a measure of the momentum of the bug relative to
the momentum of the elliptic body and the bug, and the parameter βf measures the
virtual mass of the body relative to the actual mass of the body and the bug. It will
be informative to split the fluid force into two parts:

i · F(t) =
(M + m) U2

f

Lf

(Fp(t) + Fν(t)), (2.5)
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a ‘pressure drag’ term Fp(t) which tends to the virtual mass contribution in the
infinite-Reynolds-number limit,

Fp(t) = βf χττ +
βf

π Rf

∫ 2π

0

x⊥∂n(�ψ)|∂D dφ′, (2.6)

and a ‘viscous drag’ term Fν(t),

Fν(t) = − βf

π Rf

∫ 2π

0

xθ �ψ |∂D dφ′. (2.7)

In the inviscid theory, Fν(t) vanishes, and the second term of (2.6) contributes
another term proportional to χττ ; the χττ terms then combine to yield a virtual mass.
For flow past a circular cylinder at Reynolds number equal to 100, experiments and
simulations have shown that approximately 80 % of the total drag is due to the
pressure drag (see Roshko 1961; Braza, Chassaing & Ha Minh 1986).

Assuming a sinusoidally varying virtual mass, the inviscid theory gives

∂

∂t
[(1 + β̃(τ ))χτ + αf cos(τ − θf )] = 0, (2.8)

where

β̃(τ ) =
π ρ c(τ )2 L2

f

M + m
= β̃0 + β̃1 cos(τ ). (2.9)

After integrating (assuming zero initial total momentum), the swimming speed Uf is

Uf = 〈χτ 〉 =
αf

β̃1

⎛
⎝ 1 + β̃0√(

1 + β̃0

)2 − β̃2
1

− 1

⎞
⎠ cos θf . (2.10)

For the case θf = 0, (2.8) indicates that the centre of volume takes its largest negative
and positive velocities at times τ = 2πn and τ = 2πn+ π (n= 0, 1, 2, . . .) respectively.
The largest velocity variations about the mean in this case are therefore

max
τ

(χτ − 〈χτ 〉) =
αf

1 + β̃0 − β̃1

− 〈χτ 〉 = ‖χτ − 〈χτ 〉‖∞, (2.11)

min
τ

(χτ − 〈χτ 〉) = − αf

1 + β̃0 + β̃1

− 〈χτ 〉. (2.12)

The mean and maximal velocities achieved in the inviscid theory grow without bound
as β̃1 approaches 1 + β̃0. This corresponds to the case in which the body becomes
infinitely slender along its major axis during one stage of the recoil forcing, and since
there is no viscous drag, there is no resistance whatsoever during this part of the
cycle. With the inclusion of viscous dissipation, the question of optimal shape for
recoil locomotion remains, since there is in general an unbounded, increasing viscous
drag on a flat plate of increasing length. In the limit as β̃1 → 1 + β̃0 from below, the
maximal velocity amplitude grows as

‖χτ − 〈χτ 〉‖∞ ∼ αf (1 + β̃0 − β̃1)
−1, (2.13)

whereas the mean velocity grows at an asymptotically slower rate,

Uf = 〈χτ 〉 ∼ αf√
2(1 + β̃0)

(1 + β̃0 − β̃1)
−1/2. (2.14)
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Figure 1. The vorticity profiles generated by an oscillating cylinder for three different
Reynolds numbers are shown at four equally spaced times during the second period of
oscillation, with αf = 1 and βf =1/2. Red corresponds to positive (counterclockwise) vorticity
and blue to negative (clockwise) vorticity. The small arrows indicate the velocity of the mass,
while the large arrows indicate the velocity of the raft.

2.1. Fixed cylindrical body

Before studying the shape-changing body, we first consider the behaviour of a cylinder
of fixed shape, a(τ ) = c(τ ) = 1, and set θf = 0 without loss of generality. In the inviscid
theory, Fν(t) = 0 while Fp(t) = −β χττ . Hence, the dynamics is governed by

(1 + βf )χττ = αf sin τ, (2.15)

and therefore (with χτ (0) = 0),

χτ = − αf

1 + βf

(cos τ − 1). (2.16)

The body simply oscillates back and forth with zero net motion. In this case there is
no time lag between the oscillatory motion of the boundary and the motion of the
mass, and they move together in step (in opposite directions).

Figure 1 shows the vorticity profiles generated by the system, using αf = 1 and
βf = 1/2 (the body is massless, and the moving mass is twice that of the displaced
fluid). Red corresponds to positive (counterclockwise) vorticity and blue to negative
(clockwise) vorticity. The second period of motion is shown at four equally spaced
moments in time for a selection of Reynolds numbers. At Rf = 1 the body moves
promptly upon the application of the recoil force from within and slows rapidly
when the internal forcing is small and changing sign. When the raft is accelerating
to the right, as in the second column (from the left) of figure 1 (τ = 1.25), vorticity
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Figure 2. Vorticity profiles generated by recoil forcing for (a) a body of fixed shape
and (b) a shape-changing body at R = 256 after 20 periods of oscillation.

is developed in the boundary layer which extends well into the surrounding fluid.
As the body decelerates, vorticity of opposite sign is generated at the surface; the
previously developed vorticity detaches from the raft and decays rapidly because of
viscous dissipation.

At a larger Reynolds number Rf = 16, the vortex dipoles created in the wake of
the body on each half-period are more pronounced, and the boundary layer does
not extend as far vertically into the fluid. At Rf =256, the vortex dipoles created
on each half-period are still present when the body returns. The vortex-quadrupole
structure is maintained with the addition of vorticity on each passing visit. Unlike in
the previous two cases, the system has not yet approached a periodic steady state,
and the wake is only just beginning to develop. The vortical structure present after
20 periods of oscillation is shown in figure 2(a).

The flow generated by an oscillating cylinder in a quiescent fluid in two dimensions
with prescribed velocity has been investigated by Tatsuno & Bearman (1990) and
Elston, Blackburn & Sheridan (2006). At low to intermediate Reynolds numbers the
viscous dissipation is sufficient so that there are no persistent up/down asymmetries
which form in the wake, just as in the three cases shown here. For larger Reynolds
numbers this is not the case (see the references above).

Figure 3(a) shows the maximum velocity reached by the oscillating cylindrical
body. As Rf → 0 the motion ceases entirely, as indicated by (2.3): the exact solution
at Rf = 0 (assuming βf = O(1)) is simply a quiescent system, ψ = χτ = 0. However,
recoil swimming is still possible at zero Reynolds number as long as the internal
mass is very large, βf = O(Rf ) as Rf → 0. Meanwhile, as Rf → ∞, the maximum
body velocity tends to the inviscid theory result with apparent scaling ‖χτ ‖∞ ∼ R−1

f ,
as shown in the inset of figure 3(a).

Figure 3(b) shows a lead-time φ̃f as a function of the Reynolds number. For

sinusoidal motion, the lead-time is defined implicitly by χτ = −cos(τ + φ̃f ). Generally,
we compute the lead-time by subtracting the times corresponding to the body’s and
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Figure 3. Data for the body of fixed shape (an oscillating cylinder), as functions of the
Reynolds number Rf . (a) Maximal centre-of-volume velocity, and departure from the inviscid
theory limit on a logarithmic scale (inset). (b) Lead-time, and on a logarithmic scale (inset).
Approximate values using C = 1 are shown as the dashed line (see (2.19)). (c) Maximal
departure of the pressure drag from the inviscid theory limit, and the same on a logarithmic
scale (inset). (d ) Maximal viscous drag, and on a logarithmic scale (inset).

the internal mass’s zero velocity. When the internal mass is accelerating to the right,
it imparts a recoil force on the body to the left. However, when the mass has almost
reached its peak velocity, the recoil force is still to the left, but the fluid drag can
become dominant, setting the body into its own deceleration in advance of the mass’s
inflection point. Hence, we expect that the lead-time φ̃f tends to zero as Rf → ∞, and
since the body motion begins and ceases instantly upon the application or withdrawal
of force at Rf =0, we expect that φ̃f → π/2 as Rf → 0. Figure 3(b) confirms these
expectations, and we find a decay to zero as Rf → ∞ that scales as φ̃f ∼ R

−1/2
f .

Figures 3(c) and 3(d ) show the departures of the pressure and viscous drags from
their inviscid theory limits. As Rf → ∞ the viscous drag decays to zero as Fν ∼ R

−1/2
f ,

along with the size of the viscous boundary layer. Meanwhile, the departure of the
pressure drag from the inviscid limit (Fp(t) = −βf χττ ) is dramatic with decreasing Rf

in the low- to intermediate-Reynolds-number regime.
The simulations indicate that Fp(t) = −βf χττ + o(R−1/2

f ) and Fν = −C R
−1/2
f χτ +

o(R−1/2
f ) for a constant C ≈ 1. Inserting these expressions into (2.3) we have

(1 + βf )χττ = αf sin(τ ) − C√
Rf

χτ + O

(
1

Rf

)
, (2.17)
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which gives

χτ = − αf

(1 + βf )2 +
C2

Rf

cos(τ + φ̃f ) + O

(
1

Rf

)
, (2.18)

where

φ̃f = tan−1

(
C

(1 + βf )
√

Rf

)
. (2.19)

The lead-time φ̃f therefore decays to zero like φ̃f ∼ O(C R
−1/2
f /(1 + βf )) as Rf → ∞,

and the numerical results are consistent with this consideration. The lead-times using
C = 1 in (2.19) are shown as the dashed line in figure 3(b).

2.2. Shape-changing body

Having noted certain behaviours in the above case of the body of fixed shape,
we now proceed to reconsider recoil locomotion of a shape-changing body. The
shape-changing elliptic body now takes on prescribed axis lengths

a(τ ) =

√√√√√ 2(
1 +

1

2

)
+

(
1 − 1

2

)
cos(τ )

, c(τ ) =
1

a(τ )
, (2.20)

which are chosen so that the aspect ratio varies from a(τ )/c(τ ) = 1 to a(τ )/c(τ ) = 1/2
along a path such that the virtual mass in the inviscid theory (∝c(τ )2) varies
sinusoidally. The form above corresponds to (2.9) with β̃0 = 3/4 and β̃1 = 1/4, and
as in the previous consideration we choose αf = 1 and βf =1/2. Hence, the inviscid
theory (2.10) predicts a mean velocity of Uf = 〈χτ 〉 ≈ 0.0415 with variations about
the mean of maxτ (χτ − 〈χτ 〉) ≈ 0.625 and minτ (χτ − 〈χτ 〉) ≈ −0.541.

Figure 4 shows the vorticity profiles for the same Reynolds numbers considered
in figure 1. At Rf =1 a vortex quadrupole is generated as the body changes shape.
The left–right asymmetry in the fluid wake becomes increasingly visible at Rf = 16
and Rf =256. At Rf = 16 the boundary layer detaches at τ =1 (left-most column)
but stays pinned to the surface when the body is more streamlined at τ =1.5 (third
column from left). The corresponding decrease in fluid drag yields a larger velocity
to the right than to the left on each half-period, and the body swims towards right
on average.

At Rf = 256 there is a much stronger interaction with previously shed vortices,
as in the case of the corresponding fixed cylinder. However, unlike in the case of
the fixed cylinder, a leftward-moving fluid jet opposite the direction of net motion
now develops, owing to the time variation of the body’s presented surface area. At
τ = 1 (first column) the leftward-moving body generates a vortex dipole on the right
as the boundary layer detaches and drifts into the wake. Unlike at lower Reynolds
numbers, however, the vorticity does not quickly dissipate. Instead, as the recoil forcing
drives the body back towards right, and as the body becomes more streamlined, the
previously shed vorticity persists and advects to the left-hand side of the body, where
its orientation now corresponds to thrust. In the second half of the oscillation period
the body presents a larger surface area to the fluid and inhibits the passage of vorticity
to the right-hand side of the body. The conversion of vortex dipoles from drag-type
into thrust-type by means of surface area variation was also explored by Spagnolie &
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Figure 4. The vorticity profiles generated by recoil locomotion at finite Reynolds number are
shown at four equally spaced times during the second period of oscillation, again with αf = 1
and βf = 1/2 as in figure 1. The small arrows indicate the velocity of the mass, while the large
arrows indicate the velocity of the body (see also the supplementary movies 1 and 2, which
show the dynamics of a shape changing body at R = 16 and R = 256 respectively, available
at journals.cambridge.org/flm).

Shelley (2009), as generated by a shape-changing body in an oscillatory background
flow. The vortical wake after 20 periods is shown in figure 2(b). Movies of the recoil
motion of the present study at R = 16 (movie 1) and R = 256 (movie 2) are available
online as supplementary material at journals.cambridge.org/flm.

Figure 5(a) shows the mean velocity attained in the periodic steady state of the
shape-changing body. The values are taken once the velocity returns to within 0.1 %
of its value on the previous period. The number of periods required to reach this state
increases with the Reynolds number; at Rf =1 merely 3 periods are required, whereas
17 periods are required at Rf = 256. The small dashed line in figure 5(a) indicates the
mean velocity predicted by the inviscid theory, 〈χτ 〉 = 0.0415. The computed mean
velocity is increasing towards a value approximately 3 times larger than the inviscid
prediction. The inset of figure 5(a) shows the mean velocity normalized by

√
Rf ,

in order to facilitate comparison with F (R, β) in figure 9(a) later in the paper. We
observe a local maximum in this normalized mean velocity. The exploration of yet
higher Reynolds numbers is prohibitive so far. As Rf → 0, however, it appears that
the mean velocity is tending to zero as χτ ∼ Rf , as we have suggested previously. The
departure of the velocity from the mean is shown in figure 5(b). These departures are
also tending to values larger than those predicted by the inviscid theory, though not
as dramatically as the increase in the mean velocity over the predicted value.

The velocity profiles are shown as functions of time in figure 5(c) for the simulations
displayed in figure 4. In addition to the growing amplitude, we observe a phase shift
as the Reynolds number is increased. We define again a lead-time φ̃f by writing
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Figure 5. Centre-of-volume velocity from simulations of a finite body. (a) The mean velocity,
and the same normalized by

√
Rf (inset). The small dashed line indicates the mean velocity

predicted by the inviscid theory. (b) Velocity amplitudes about the mean. (c) Velocity profiles
for the same simulations as shown in figure 4. (d ) The lead-time behaves similarly to that in
the oscillating cylinder case, though decays here to zero at a faster rate as Rf → ∞.

χτ ≈ − cos(τ + φ̃f ). In practice, the first Fourier mode of the numerical data is used
to determine the phase shift. The lead-time behaves similarly as the oscillating cylinder
case, apparently tending to φ̃f = π/2 as Rf → 0 and to φ̃f = 0 as Rf → ∞. However,
whereas the lead-time has settled to a clear decay in the oscillating cylinder case with
scaling φ̃f ∼ R

−1/2
f for Rf � 1 (see figure 3b), for the same range of Reynolds numbers

in the present case the rate of decay is not yet clear and may be decaying faster
than R

−1/2
f . This is plausible, since the presented surface area is in this case decreased

for part of the cycle, and the inertial component from the virtual mass is smaller on
average than in the case of the fixed cylinder.

Plots of the normalized mean velocity as a function of the phase relation θf between
the body’s aspect ratio and the mass’s position are shown for three Reynolds numbers
in figure 6(a). We observe that when the shape change and the mass motion are in
phase (θf =0), the body generally does not reach its maximally achievable swimming
speed. However, at approximately Rf = 30 this in-phase motion does yield the peak
mean swimming velocity. A phase shift Θf (Rf ) is defined here by writing

〈χτ (τ ; θf , Rf )〉 ≈ ‖〈χτ (τ ; θf , Rf )〉‖∞ cos(θf + Θf (Rf )), (2.21)

where the average is over τ and the maximum norm is over θf . Once again, the first
Fourier mode of the numerical data is used to determine the phase shift Θf (Rf ),
which is shown in figure 6(b). There is a clear monotonic trend towards a larger
phase shift Θf as the Reynolds number is increased. Intuition dictates that Θf (Rf )
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the text.
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Figure 7. (a) Pressure drag through one cycle for the finite shape-changing body at three
different Reynolds numbers. (b) Normalized viscous drag through one cycle. (c) Extrema of
the pressure drag curves in (a). (d ) Extrema of the normalized viscous drag curves in (b).

must tend to a constant in the limit Rf → ∞, but this limit is not yet clear given the

Reynolds numbers considered here. The relationship between the lead-time φ̃f and
the phase shift Θf is discussed in a later section in which the finite body and the
infinite raft are compared.

Finally, figures 7(a)–7(d ) show the pressure and viscous drags as functions of time,
as well as plots of their maxima and minima over a periodic cycle. We observe that
the amplitude of the pressure drag tends to a constant value with an error O(R−1/2

f ) as
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Figure 8. Bugs on a deformable raft, symmetrized and periodic in x.

Rf → ∞, while the viscous drag once again decays to zero as Fν ∼ O(R−1/2
f ). The gap

between the maximum and minimum pressure drag magnitudes, due to the difference
in the presented surface area in the elongated and circular shapes, allows for a net
recoil locomotion.

3. An infinite-sheet model: the deformable raft
In order to formulate a model system which can be analysed mathematically at

finite and large Reynolds numbers, we consider a variant of the swimming sheet of
G. I. Taylor (1951). If we imagine a periodic array of deforming elliptical bodies in
two dimensions, with centres on the x-axis, their effect on the fluid above or below
is similar to that of two wavy sheets undergoing a standing wave, as depicted in
figure 8. The oscillating masses are similarly arrayed along the x-axis. Each sheet
may be thought of as an infinite extension of a raft with an oscillating wavy bottom
periodic in time.

We choose the spatial period to be 2π/k ≡ L, where k is the wavenumber. The
problem is again completely two-dimensional. We may restrict our attention to the
upper domain, where the equation of the raft ‘bottom’ is assumed to be given by

xB(x, t) = X(t), yB = Y (x, t) = b sin(ωt) sin k(x − X). (3.1)

Here, we are in a frame fixed with respect to the fluid at infinity so that the points
of the surface of the raft are displaced horizontally by X(t). It is important that
bk is assumed small. We will be dealing with a system periodic in time with period
T = 2π/ω. Thus it will be sufficient to consider the system for time T , where the
displacement X will remain small. Of course to establish a periodic solution may
require a long transient time.

The bugs will have mass 2m, per unit length in the ignorable direction, the factor 2
introduced so that a mass m is associated with each half of the system. The position
x(t) of the nth bug is given by x(t) − xn − X(t) = L sin 2(ωt − θ), where xn = 2πn/k,
n=0, ±1, ±2, . . . The excursion of the mass from left to right is now 2L, and we
assume that 2L < L (see figure 8). The period of the mass movement is half the
period of a point on the surface, since the sinusoidal shape means that modulo
translation the geometry has period π/ω. The phase angle θ is arbitrary. For the
upper half of the system the raft mass per unit length in the x-direction is assumed
to be M/L =M0/L + MV (t)/L, where M0 is physical mass and MV (t) is the virtual
mass of one spatial period of the raft. From the symmetry of the system the only
movement of the raft is in the x-direction.
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3.1. Recoil locomotion of the raft in an inviscid fluid

This special case is of interest for setting the orders of magnitude of our parameters.
The virtual mass MV , for a given instantaneous configuration of the raft boundary,
may be computed from the kinetic energy in the upper fluid, per spatial period, given
that the boundary moves with constant speed U relative to the fluid at infinity. Since
the slope of the raft boundary remains small, the potential in y >Y may be computed
by solving

∇2φ = 0, y > 0, φy |y=0 = U dY/dx = Ukb sin(ωt) cos kx. (3.2)

The solution is

φ = −Ub sin(ωt) e−ky cos kx, (3.3)

and the kinetic energy in one spatial period in the upper fluid region is

E = 1
2
πρU 2b2 sin2(ωt). (3.4)

Then

M = M0 + MV (t) = M0 + πρb2 sin2(ωt) (3.5)

so that

Ẋ = − mẋ

M + m
= − 2ωmL cos 2(ωt − θ)

M0 + m + 1
2
πρb2(1 − cos 2ωt)

· (3.6)

In preparation for considering the viscous problem and hence the no-slip condition
on the raft boundary, we want to make Ẋ of the order of the vertical velocity ∼b ω.
Thus we take M0 ∼ m ∼ ρ/k2, L ∼ b. This gives recoil swimming with advance of
order b3 over one temporal period of the motion of the bug and raft boundary. We
define the dimensionless variables

ε = kb, τ = ωt, χ = kX, α =
Lm

b(M0 + m)
, β =

πρ

k2(M0 + m)
. (3.7)

As in the finite-body calculation, the parameter α may be viewed as a measure of
the momentum of the bug relative to the momentum of the raft and the bug, and the
parameter β measures the virtual mass of the raft relative to the actual mass of the
raft and the bug. We obtain

χτ = − 2αε cos 2(τ − θ)

1 + 1
2
βε2(1 − cos 2τ )

· (3.8)

Then

〈χτ 〉 =
2α(−2 − βε2 + 2

√
1 + βε2) cos 2θ

βε
√

1 + βε2
∼ −1

2
αβε3 cos 2θ, (3.9)

giving a locomotion speed of order ε3.

3.2. Formulation of the viscous problem

We now consider the viscous problem in the upper fluid region, using the stream-
function formulation of the two-dimensional Navier–Stokes equations:

∂∇2ψ∗

∂t
+ ψ∗

y

∂∇2ψ∗

∂x
− ψ∗

x

∂∇2ψ∗

∂y
− µ

ρ
∇4ψ∗ = 0, (3.10)

once again with (ψ∗
y , −ψ∗

x ) the fluid velocity. We will look for a raft motion which is
periodic in time. Thus we may consider just one temporal period and try to calculate
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the drift of the raft over this period. Our coordinate system assumes the fluid to be
at rest at infinity.

To formulate the problem in dimensionless variables, we set ξ = kx, η = ky,
τ = ωt and ψ∗(x, y, t) =ωk−2ψ(ξ, η, τ ). If �ψ = ψξξ +ψηη, then (3.10) takes the
dimensionless form

∂�ψ

∂τ
+ ψη

∂�ψ

∂ξ
− ψξ

∂�ψ

∂η
− R−1�2ψ = 0, (3.11)

where

R =
ρ ω

k2µ
(3.12)

is a frequency Reynolds number. The boundary conditions to be satisfied are, with
X(t) = k−1χ(τ ) and ε = kb,

ψ∗
y = dxB/dt, or ψη = χτ , (3.13)

and

ψ∗
x = −dyB/dt, or ψξ = ε[−cosτ sin(ξ − χ) + sin τ χτ cos(ξ − χ)], (3.14)

when η = kY (x, t) ≡ Y(ξ, τ ) = ε sin τ sin(ξ − χ). We also require that ψ vanishes at
η = ∞.

We observe that (3.13) and (3.14) imply

∂

∂ξ
ψ(ξ, Y(ξ, τ ), τ ) = ε[− cos τ sin(ξ − χ) + 2 χτ sin τ cos(ξ − χ)]. (3.15)

Thus

ψ(ξ, Y(ξ, τ ), τ ) = ε[cos τ cos(ξ − χ) + 2 χτ sin τ sin(ξ − χ)] + F (τ ) (3.16)

for some F (τ ).

3.3. Dynamical balance

In dimensional notation the constancy of the total x-momentum (raft and fluid) is
expressed by

(m + M0)Ẋ + mẋ +

∫ 2π/k

0

∫ ∞

Y (x,t)

ρu dy dx = C∗, (3.17)

where we assume that the solution periodic in time has been reached. If we start from
a state of rest the constant C∗ will be zero, but this assumes that the integration over
space is performed before passing to the limit of a periodic solution. The difficulty
can be seen most easily in a different problem, where the internal masses accelerate
instantaneously to a constant velocity and remain at this velocity. The raft must
correspondingly move with a velocity of opposite sign, constant if ε = 0. Owing to
viscous stress, the raft will however slow down, and in the limit of infinite time the
equilibrium solution will be reached, with the raft at rest. Still, the total momentum
is conserved in this limit: momentum diffuses to infinity, and the fluid velocity tends
to zero at any finite point in the limit, but the integrated momentum is fixed.

We shall take the limit first, to achieve a periodic solution before calculating the
momentum. Thus

(m + M0)Ẋ + mẋ = ρ

∫ 2π/k

0

ψ∗(x, Y (x, t), t) dx + C∗, (3.18)
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where C∗ is unknown but ψ vanishes at infinity. In dimensionless form

χτ + 2εα cos 2(τ − θ) =
β

π

∫ 2π

0

ψ(ξ, Y, τ ) dξ + C. (3.19)

We shall see presently how the leading non-vanishing term of the mean velocity 〈χτ 〉
may be calculated.

3.4. The special case b =0

The special case b = 0 corresponds to the trivial case of a flat-bottomed raft which
abuts an infinite expanse of viscous fluid, so the fluid dynamics reduces to a Rayleigh
problem generated by a moving mass. Using dimensionless variables,

ψτη − R−1ψηηη, η > 0, ψη(∞, τ ) = 0, ψη(0, τ ) = χτ (τ ). (3.20)

Any part of ψ independent of time must vanish by the boundary conditions at
infinity, so we have the dynamical balance

χτ + 2εα cos(2(τ − θ)) = 2βψ(0, τ ). (3.21)

Note that b cancels out of εα. Clearly 〈χτ 〉 =0. From the Fourier series for χ and
the solution of (3.20) we see that χ must have the form χ(τ ) = Re(Aε e2iτ ) for some
complex constant A. Therefore we must have ψ(η, τ ) = Re(P (η) e2iτ ), where

P = − 2iAε√
2iR

e−
√

2iRη. (3.22)

Then (3.21) implies

2iA + 2α e−2iθ = − 4iβ√
2iRA

, (3.23)

and therefore

A =
iα e−2iθ

1 +
2β√
2iR

=
iα e−2iθ

1 +
β(1 − i)√

R

· (3.24)

For fixed R, α and β , all assumed to be of order unity, we thus obtain an oscillation
of the raft of order εα. We shall retain this ordering when treating the corrugated
raft b > 0.

4. Expansion in ε for fixed R

The calculations of the present section elaborate the methods used by Tuck (1968)
in his analysis of the swimming sheet at finite Reynolds number. We introduce the
following expansions in ε for fixed R:

χ(τ ) = ε χ1(τ )+ε2χ2(τ )+ . . . , ψ = ε ψ1(ξ, η, τ )+ε2ψ2(ξ, η, τ )+ε3ψ3(ξ, η, τ )+ . . . .

(4.1)
Also

Y = ε sin τ sin(ξ − χ) = ε Y1 + ε2Y2 + . . . , (4.2)

where

Y1 = sin τ sin ξ, Y2 = −χ1 sin τ cos ξ. (4.3)
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4.1. First-order terms

The equation to be satisfied by ψ1 is

∂�ψ1

∂τ
− R−1�2ψ1 = 0, η > 0, (4.4)

with boundary conditions on η = 0:

−∂ψ1

∂ξ
(ξ, 0, τ ) = cos τ sin ξ,

∂ψ1

∂η
(ξ, 0, τ ) =

dχ1(τ )

dτ
. (4.5)

We write

ψ1 = ψ10(η, τ ) + cos ξ ψ11(η, τ ), (4.6)

where

ψ11(0, τ ) = cos τ,
∂ψ11

∂η
(0, τ ) = 0, (4.7)

∂ψ10

∂η
(0, τ ) =

dχ1(τ )

dτ
. (4.8)

The problem for the term ψ10 is identical to the b = 0 case treated above, so we have

ψ10 = Re(−A
√

2i/R e−
√

2iRη e2iτ ), χ1(τ ) = Re(A e2iτ ). (4.9)

The solution of the problem for ψ11 is straightforward, and we find

ψ11 = Re

[
K eiτ

K − 1
e−η +

eiτ

1 − K
e−Kη

]
, (4.10)

where K =
√

1 + iR.
This completely determines the leading terms of the expansions. No locomotion

occurs at this order.

4.2. Second-order terms

The equation satisfied by ψ2 is

∂�ψ2

∂τ
− R−1�2ψ2 = −∂ψ1

∂η

∂�ψ1

∂ξ
+

∂ψ1

∂ξ

∂�ψ1

∂η
, η > 0. (4.11)

The conditions at the boundary are[
ψ1ηηY1 + ψ2η

]
η=0

= χ̇2, (4.12)

[ψ1ξηY1 + ψ2ξ ]η=0 = χ1 cos τ cos ξ + χ1τ sin τ cos ξ. (4.13)

We note that ψ1ξη(ξ, 0, τ ) = 0 so that we have

ψ2 = ψ20(η, t) + sin ξ ψ21(η, t) + sin(2ξ ) ψ22(η, t). (4.14)

We now use these equations to prove that the time average 〈χ̇2〉 must vanish so that
locomotion does not occur at second order either. Let 〈〈·〉〉 denote the double average
with respect to τ and ξ . Applying this average to (4.11) and using (4.6), we obtain
d4〈〈ψ2〉〉/dη4 = 0. Thus in particular, given that ψ must decay as η → ∞, 〈〈ψ2η〉〉|η =0

must vanish. The other term in (4.12) has a vanishing ξ average, proving the claim.
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4.3. Third-order terms

At third order the equations are

∂�ψ3

∂τ
− R−1�2ψ3 = −∂ψ2

∂η

∂�ψ1

∂ξ
+

∂ψ2

∂ξ

∂�ψ1

∂η
,

− ∂ψ1

∂η

∂�ψ2

∂ξ
+

∂ψ1

∂ξ

∂�ψ2

∂η
, η > 0. (4.15)

The boundary conditions are

∂ψ3

∂η

∣∣∣∣
η=0

=

[
−∂2ψ2

∂η2
Y1 − ∂2ψ1

∂η2
Y2 − ∂3ψ1

∂η3
Y2

1/2

]
η=0

+ χ̇3, (4.16)

∂ψ3

∂ξ

∣∣∣∣
η=0

=

[
−∂ψ1

∂η
Y2 − ∂2ψ2

∂ξ∂η
Y1 − ∂2ψ1

∂ξ∂η
Y2 − ∂3ψ1

∂ξ∂η2
Y2

1/2

]
η=0

+ cos τ sin ξ χ2
1 /2 + cos τ cos ξ χ2 + sin τ cos ξ χ2τ + sin τ sin ξ χ1χ1τ . (4.17)

We put off further discussion of the second- and third-order terms in order to
determine the minimal calculations needed to extract the leading term in the swimming
speed, 〈χ̇〉. We shall show below that the first non-zero contribution is the third-order
term 〈χ̇3〉. An understanding of the terms needed to obtain this contribution will
determine the necessary higher-order calculations.

4.4. Calculation of the drift at third order

The drift at this order is given by

〈χ̇3〉 ≡ U3 =

〈〈[
∂3ψ1

∂η3
Y2

1/2 +
∂2ψ1

∂η2
Y2 +

∂2ψ2

∂η2
Y1 +

∂ψ3

∂η

]
η=0

〉〉
, (4.18)

= U
(1)
3 + U

(2)
3 + U

(3)
3 + U

(4)
3 . (4.19)

Two of these terms are easily calculated from the first-order results. We note first that〈〈[
∂3ψ1

∂η3

]
η=0

Y2
1/2

〉〉
=

1

4

〈[
∂3ψ10

∂η3

]
η=0

sin2 τ

〉

=
R

4
Re(A) ≡ U

(1)
3 . (4.20)

Also 〈〈[
∂2ψ1

∂η2

]
η=0

Y2

〉〉
= −1

2

〈[
∂2ψ11

∂η2

]
η=0

χ1 sin τ

〉

=
1

8
Re(iK∗A) ≡ U

(2)
3 , (4.21)

where K∗ =
√

1 − iR.

4.5. Contributions from the second-order terms

The remaining two terms require a partial knowledge of ψ2. In particular

〈〈[
∂2ψ2

∂η2

]
η=0

Y1

〉〉
=

1

2

〈[
∂2ψ21

∂η2

]
η=0

sin τ

〉
≡ U

(3)
3 . (4.22)
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Figure 9. (a) 10F (R, β) (solid line) and Θ(R, β) (dashed line) as functions of ln (R), for the
indicated values of β (see (4.27)). (b) The normalized work done by the upper surface of the
raft, per unit length, as a function of R for α = 1, β = 1/2 (see (4.34)).

Also 〈〈[
∂ψ3

∂η

]
η=0

〉〉
≡ U

(4)
3 (4.23)

must be evaluated from the averages of (4.15):

− 1

R

∂4〈〈ψ3〉〉
∂η4

=
1

2

〈
∂ψ21

∂η

∂2ψ11

∂η2
+ ψ21

∂3ψ11

∂η3
− ∂ψ11

∂η

∂2ψ21

∂η2
− ψ11

∂3ψ21

∂η3

〉
. (4.24)

Two integrations using the boundary condition on ψ at infinity yield

− 1

R

∂2〈〈ψ3〉〉
∂η2

=
1

2

〈
ψ21

∂ψ11

∂η
− ψ11

∂ψ21

∂η

〉
, (4.25)

from which

U
(4)
3 =

R

2

∫ ∞

0

〈
ψ21

∂ψ11

∂η
− ψ11

∂ψ21

∂η

〉
dη. (4.26)

The calculations needed to complete the evaluation of U
(3)
3 , U

(4)
3 are described in the

Appendix. The results of this calculation are shown in figure 9(a). Here we set

U = ε3U3 = αε3F (R, β)
√

R cos(2θ + Θ(R, β)), |Θ | � π, (4.27)

and plot 10F (R, β) and Θ(R, β) as functions of ln(R) for several β .
It can be shown that F (R) → 1/4 and Θ → π/4 as R → ∞. Note that there are

cancelling contributions of order R, as for example in U
(1)
3 . The correct interpretation

of this limit is discussed in the next section. As R → 0, the calculations indicate
that F has a positive limit, giving a swimming speed O(ε3

√
R). This is appropriate

to our infinite-sheet model but would presumably not be obtained for a finite body.
Locomotion in that case should result from the shape-dependent drag in Stokes flow,
which would give a speed of order R times a power of the amplitude of the shape
change.

4.6. Work

The work W done by the upper surface of the raft, per unit length, consists of two
parts, W = Ws + Wm. The first part Ws is the average work done by the stress tensor
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at the boundary:

Ws = −〈〈u(σ11n1 + σ12n2) + v(σ21n1 + σ22n2)〉〉y=yB
, (4.28)

where (n1, n2) is the outward unit vector normal to the boundary and

σ =

⎛
⎜⎝ −p + 2µ

∂u

∂x
µ

(
∂u

∂y
+

∂v

∂x

)

µ

(
∂u

∂y
+

∂v

∂x

)
−p + 2µ

∂v

∂y

⎞
⎟⎠ (4.29)

is the stress tensor. The second part Wm is the work per unit length done to move the
masses:

Wm =
mk

π
〈ẋ(ẍ + Ẍ)〉 =

mk

π
〈ẋẌ〉. (4.30)

Passing to dimensionless variables, we find that the dominant contributions come
from the products of the leading terms of our expansions in ε at fixed R for ψ and
χ . Using the fact that ∂ψ11(ξ, 0, τ ) = 0 we find that

Ws = −ω3ρε2

k3

〈
∂2ψ10

∂η2
χ̇1 +

1

2

∂3ψ11

∂η3
cos τ

〉
η=0

· (4.31)

Using (4.9) and (4.10) we obtain

Ws =
ω3ρε2

k3

(
4R−1/2|A|2 +

1

4
Re[K(K + 1)R−1]

)
. (4.32)

We also find

Wm = 4
ω3ρε2

k3

α

β
Im

⎡
⎢⎢⎣ iα

1 +
πβ(1 − i)√

R

⎤
⎥⎥⎦ . (4.33)

Thus we can write

W =
ω3ρε2

k3
G(α, β, R). (4.34)

The function G(1, 1/2, R) is shown in figure 9(b). At the asymptote the work is
entirely associated with moving the mass, and W = Wm =4α2/β as R → ∞. Note that
(4.34) is independent of the phase angle θ , as a result of the origin of the work from
the leading orders of our expansions.

4.7. The Stokes limit

We briefly consider the limit R → 0 of U3(R) and justify the observed behaviour. We
may disregard the nonlinear terms of the Navier–Stokes equations, which eliminates
U

(4)
3 . Also, clearly U

(1)
3 ∼ O(R3/2) as R → 0. For U

(3)
3 we have (the fi below being

coefficients in the eigenfunction expansion of ψ21; see the Appendix)

f1 = 3
4
+O(R1/2), f2 = − 1

2
+O(R1/2), f3 = iR−1+ 3

2
i(1+i)R−1/2− 3

2
+O(R1/2), (4.35)

f4 = −iR−1 − 3
2
i(1 + i)R−1/2 + 3

4
+ O(R1/2), (4.36)

as R → 0. Thus

M ∼ A
(

3
4

− 1
2

+ f3 + (1 + iR)f4

)
(4.37)
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as R → 0 so that

U
(3)
3 ∼ 1

8
Re(iA). (4.38)

Together with U
(2)
3 we therefore have

U3 =
α

8β
Re[(1 + i) e−2iθR1/2 + O(R)] ∼ α

4
√

2 β
R1/2 cos(2θ + 3π/4). (4.39)

We thus recover the behaviour shown for small R in figure 9(a).
We remark that the factor

√
R in the order ε3

√
R of the swimming speed shows

that the raft does not locomote in Stokes flow for R = 0. The square root arises from
the infinite geometry. The underlying oscillation of the raft comes from equating
the reaction force exerted by the moving mass, 4ω2mL sin 2(τ − θ), with the drag
computed as in § 2.4 for the Rayleigh problem. This gives A ∼ [(i − 1)α]/2β

√
R, in

agreement with (3.24) for small R.

5. Large R and the inviscid fluid
5.1. The large-R limit as a singular perturbation

The calculations of the previous section are for fixed R and small ε. The question
of the analysis of Taylor’s swimming sheet in the simultaneous limit of small ε and
large R was considered in Childress (2008), using the method of matched asymptotic
expansions. At issue was the correct interpretation of the large-R limit of the order
ε2 term in the expansion of the swimming speed at fixed R. The calculations were
performed in two cases: a sinusoidal progressive wave of deformation of amplitude
ε and a sinusoidal wave of stretching of amplitude ε of a horizontal sheet. Using
expansions in both ε and R−1/2, Childress (2008) found that in the former case the
appropriate expansion is for small δ ≡ ε

√
R and R−1/2. In the latter case the expansion

proceeds in the powers of ε and R−1/2, and the O(ε2), R = ∞ result of Tuck (1968)
is in this case acceptable. The difference can be understood by the need to avoid
separation of the boundary layer for the progressive wave. The assumption of small
δ ensures that the wave amplitude remains small compared with the boundary-layer
thickness: ε � R−1/2. For the wave of stretching, the unseparated horizontal boundary
layer exists in the limit R → ∞.

It turns out that the infinite-sheet model of the present paper is similar to Taylor’s
progressive wave of shape and that for large R the expansion of the swimming
velocity must take the form

〈χ̇〉 ∼
∑

m�1,n�1

δmR−n/2Umn, (5.1)

From the results of § 3 we see that the leading term of (5.1) is U32 = (α/4) cos(2θ + π/4).
We have carried out a boundary-layer analysis of the model and developed inner and
outer expansions in δ, R−1/2, to the extent needed to verify the vanishing of Umn up
to U32. We omit these results, which follow the general scheme laid out in Childress
(2008) and are useful primarily as a check for large R on the direct calculation of the
preceding section.

6. Recoil locomotion reconsidered
We study the inviscid problem again, using the perturbation approach. From

the well-known expression for linear momentum in potential flow we have the
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dimensionless dynamical balance

χ̇ + 2εα cos 2(τ − θ) − β

π

∫ 2π

0

φ n · i dξ = 0, (6.1)

where (u, v) = (φξ , φη), φ = εφ1 + ε2φ2 + · · · and n is the outward unit vector normal
to the upper surface. Now we have

−
∫ 2π

0

φ n · i dξ =

∫ 2π

0

[ε2φ1(ξ, 0, τ )Y′
1

+ ε3(φ2(ξ, 0, τ )Y′
1 + φ1(ξ, 0, τ )Y′

2 + v1(ξ, 0, τ )Y′
1Y1)] dξ. (6.2)

We recall that

Y1 = sin τ sin ξ, Y2 = −χ1 sin τ cos ξ (6.3)

and compute φi from expansion of the kinematic equation

v = Yτ + uYξ , y = Y. (6.4)

Thus

v1|η=0 = ∂τ Y1 = cos τ sin ξ, φ1 = − cos τ sin ξ e−η. (6.5)

Also

v2 = [−(dv1/dη)Y1 + ∂τ Y1 + u1∂ξ Y1]η=0. (6.6)

Thus

φ2 = 1
4
sin 2τ cos 2ξ e−2η + (χ1 sin τ )τ cos ξ. (6.7)

We may then evaluate the right-hand side of (6.2) to obtain

−
∫ 2π

0

φ n · i dξ = −πε3χ1 sin 2τ + π
∂

∂τ
(sin2 τχ1) + o(ε3). (6.8)

Thus the dynamical balance becomes

χ̇ + 2εα cos 2(τ − θ) − πε3χ1(t) sin 2τ + π
∂

∂τ
(sin2 τχ1) = 0. (6.9)

Therefore,

χ(t) = εχ1 + ε3χ3 + o(ε3), χ̇1 = −2α cos 2(τ − θ) (6.10)

and

χ̇3 = −1

2
αβ [cos 2θ(1− cos 4τ ) − sin 2θ sin 4τ ] − β

∂

∂τ
(sin2 τχ1). (6.11)

= −1

2
αβ[cos 2θ(1− cos 2τ + cos 4τ ) + sin 2θ(− sin 2τ + sin 4τ )]. (6.12)

This derives again the average locomotion speed 〈χ̇〉 given by (3.9). We remark that
a similar calculation can be carried out using the stream function.

7. Comparison of the raft and the shape-changing finite body
We now transform the parameters of the infinite raft to make it conform to our

numerical experiments with the shape-changing elliptical body. One section of the
raft of length π/k may be regarded as one of a sequence of finite shape-changing
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Figure 10. Comparison between (a) the infinite raft and (b) a finite shape-changing body.

The upper and lower raft boundaries are taken to be separated by a distance H = 2Lf /
√

2,
and we choose 2Lf = π/k and H + 2b = π/k =⇒ b = π/(2k)(1 − 1/

√
2).

bodies. Because of the invariance of the infinite-raft boundary under simultaneous
shifts of τ and ξ by π/ω and π/k respectively, we have

ωf = 2 ω. (7.1)

(Recall that the subscript f corresponds to parameters associated with the finite
body.) Figure 10 illustrates the parameter choices used in order to simulate the
shape-changing finite body, using the infinite-sheet model. The upper and lower
boundaries of the infinite raft may be separated by an arbitrary mean distance
H without consequence on the fluid interactions considered in the earlier sections.
In order to approximate the dynamics of the finite body, we choose Lf = π/(2k),

H = 2Lf /
√

2 = π/(
√

2k), and (setting H + 2b = π/k) we take the wave amplitude to
be

b = (1 − 1/
√

2)Lf =
π

2k
(1 − 1/

√
2) (7.2)

so that ε = 0.46.
The relationship between Reynolds numbers is therefore

Rf = ρ ωf L2
f /µ =

π2ρ ω

2 k2

/
µ =

π2

2

ρ ω

k2µ
=

π2

2
R. (7.3)

In addition, we have

αf =
mL

Lf (M0 + m)
=

(1 − 1/
√

2)mL

b (M0 + m)
=

(
1 − 1√

2

)
α (7.4)

and

βf =
πρL2

f

M0 + m
=

π3ρ

4 k2(M0 + m)
=

π2

4
β. (7.5)

Finally, if Us is the dimensional swimming speed, then the dimensionless swimming
speeds Uf and U are related via

Uf =
Us

Lf ωf

=
k Us

π ω
=

1

π
U. (7.6)
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Figure 11. (a) Modelling a finite shape-changing body by the results for the infinite raft;
maxθf

(Uf /
√

Rf ) as a function of Rf for several values of βf with αf = 1. (b) Comparison of
the phase shift Θf as a function of Reynolds number, for αf = 1 and βf = 1/2.

Using these parameters, the infinite-raft analysis predicts through (4.27) a
dimensionless swimming velocity in the finite-body case of

max
θf

Uf√
Rf

= max
θ

√
2U

π2
√

R
=

√
2

π2
α ε3F (R, β)

=

√
2 π

8

(
1 − 1√

2

)2

αf F (2Rf /π2, 4βf /π2) (7.7)

(recall that ε = kb). Figure 11(a) shows the predicted values of maxθf
(Uf /

√
Rf ) as a

function of Rf for αf =1 and several values of βf . The computed values of Uf /
√

Rf

with θf = 0 are also included for comparison (from the inset of figure 5a). Given
the difference of geometries and the probable interactions of neighbouring bodies,
the discrepancy is not unexpected. For instance, the finite elliptic body undergoes
area-preserving motions, while each half-wavelength of the infinite raft does not,
though both are subject to the same recoil forcing. From this we expect the raft to
locomote with a larger velocity at low Reynolds numbers (where the viscous drag
is more important), which is what we observe. For larger Reynolds numbers, the
pressure drag is dominant, and both models (from figure 10) are chosen to present
the same extremal surface areas to the fluid; this may explain why the infinite-raft
model better approximates the finite-body model as the Reynolds number increases.

Now consider a comparison of the phase shifts Θ and Θf . At τ =0 we see from
(2.20) and the sin(ωt) variation of Y (x, t) that with ω halved the raft achieves maximal
vertical deformation at τ = π/2, while the finite body has its maximum at τ = 0. Thus
the only difference between the two models comes from the origin of the cycle of
deformation chosen in each case. We should therefore have

Θf = Θ − π/2. (7.8)

We show the predicted phase shift from the infinite-raft calculation (as in figure 9a,
shifted by π/2) as Θf versus Rf in figure 11(b) for αf = 1 and βf = 1/2. This prediction
is not close to the numerical results found for the finite body, as shown in figure 6(b).

We can discuss this discrepancy, using simple models. Consider first the finite body.
We will try to model the system in the intermediate-Reynolds-number range by simply
taking the viscous drag of the body to vary linearly with the vertical deformation.
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Thus we take the position χ(τ ) of the centre of volume to satisfy

d

dτ
(1 + βf + af ε2 cos τ )

dχ

dτ
+ f (R)(1 + bf ε2 cos τ )

dχ

dτ
= ε αf sin(τ − θf ). (7.9)

We have introduced the small-amplitude ε to allow an O(ε) underlying oscillation
χ0(τ ) which satisfies the equation if the terms involving the positive constants af , bf

are neglected:

χ0(τ ) = − ε αf

1 + βf

(
1

1 + F 2
sin(τ − θf ) +

F

1 + F 2
cos(τ − θf )

)
, (7.10)

where F = f/(1 + βf ), and therefore, with θf = 0,

dχ0

dτ
= − ε αf

1 + βf

1√
1 + F 2

cos(τ + φ̃f ), φ̃f = tan−1 F. (7.11)

Comparing this last expression with (2.19), we see that f = C/
√

Rf .
To compute the resulting locomotion, we return to the full (7.9), to obtain upon

averaging the approximate result

Uf = 〈χτ 〉 ∼ ε3 bf αf

1 + βf

1√
1 + F 2

〈cos τ cos(τ − θf + φ̃f )〉

=
1

2

1√
1 + F 2

ε3 bf αf

1 + βf

cos(θ − φ̃f ), (7.12)

from which we have Θf = − φ̃f . This yields Θf = − π/2 for small R and Θf ∼ 0 for
large R. The small-Rf behaviour is what is observed in figure 6(b). For large Rf , Θf

rises above zero, a discrepancy which is not captured by our simple model.
For the infinite raft, on the other hand, the underlying oscillation has a velocity

ε dχ1/dτ = ε Re(2iAe2iτ ), where A is given by (3.24). To construct a simple model
for the drift we assume that it is a response to differential drag associated with the
bumps on the raft, which can be taken as proportional to the raft velocity times
1 + ε2 sin2 τ = −(1/2)ε2 cos(2τ )+ constant. Thus

〈χτ 〉 ∼ −1

2
Cε3〈cos(2τ )Re(2iA e2iτ )〉 =

1

2
Cε3Re

⎡
⎢⎢⎣ α e−2iθ

1 +
β(1 − i)√

R

⎤
⎥⎥⎦ , (7.13)

where C is the constant of proportionality. For small R we get

〈χτ 〉 ∼ bε3α
√

R

2
√

2β
cos(2θ + 3π/4), (7.14)

which agrees with our asymptotic result (4.39) if C = 1/2. On the other hand as
R → ∞, it is seen from (7.14) that Θ rotates counterclockwise to π, and |〈χτ 〉|
increases modestly to a finite asymptote. Thus the model does not at all capture the
intermediate- and large-R behaviour. This is not surprising, since the large-R limit
for the raft is simultaneous with the limit of small ε. It is likely to be difficult to
capture with a simple model the nonlinear drag differentials experienced by small
wall deformation within a thicker Rayleigh boundary layer. We also emphasize that
for large R the finite body should be viewed as at fixed ε, representing a distinctly
different limit. Indeed the rough compatibility of the raft and finite-body calculations
is restricted to very moderate Reynolds numbers.
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Figure 12. (a) Ratio of swimming speeds in the viscous and inviscid cases for the finite body
(from figure 5a), with θf = 0, αf =1 and βf = 1/2. (b) Ratio of maximum swimming speeds
in the viscous (4.27) and inviscid (3.9) cases for the infinite raft, with β = 1/2, 1, 5.

To make the above comparisons we have applied a small-ε theory outside of its
expected region of validity. The flow about the finite body involves well-defined vortex
shedding in a region close to the body. While we have not made a study of the flow
field of the infinite raft, the nonlinear interactions leading to the O(ε3) swimming
speed should also involve moderate shedding of vorticity, and we feel what agreement
there is in the predicted and measured values Uf (Rf ) indicates that the role of this
vortex shedding on both virtual mass and drag is not dissimilar in the two problems.

8. Discussion
Recoil locomotion was introduced in Saffman (1967) as a mechanism for swimming

of a finite body in a perfect fluid. Locomotion arises from the simultaneous variation
of the centre of mass of the body and its shape. The momentum associated with
shape change is usually (but not necessarily) accompanied by variation of the virtual
mass of the body. In the examples studied in the present paper, the centre of mass
was altered by an internal moving mass, and the shape change was explicitly chosen
to vary the virtual mass.

The purpose of the present paper has been to explore the mechanism of recoil
swimming in a viscous fluid, over a range of Reynolds numbers including the so-
called intermediate range R = 50–300 as well as larger values R ∼ 1000. A numerical
exploration of recoil movements of a finite body of elliptical shape has been carried
out. These calculations have been complemented by an analysis of a sheet model
undergoing small oscillations of shape.

The principal new result of our investigation is the observed enhancement in both
models of the maximum swimming velocity in a viscous fluid. For the finite body we
found approximately 2–3 times the inviscid value in the examples studied, as shown
in figure 12(a). Although we must there base our conclusions on a small-amplitude
theory, the results for the infinite raft are consistent. We show in figure 12(b) the
ratio of maximum viscous to maximum inviscid swimming speeds as a function of
the Reynolds number for the raft. Note that to obtain the maximum the phase θ

must equal −Θ(R) modulo π in the viscous case.
The effect of viscosity, interpreted as the introduction of dissipation, might be

expected to reduce recoil locomotion, if not eliminate the mechanism entirely, and
indeed this reduction is observed here at small Reynolds numbers. But at intermediate
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Reynolds numbers, our observations show that the field of shed vorticity interacts
with the body to augment the recoil force driving the underlying oscillation and
thereby increases the swimming velocity. This raises the question of how one might
maximize recoil swimming in a viscous fluid by departing from the mechanisms
suggested by the inviscid case. Swimming in an irrotational fluid should be viewed as
a quite distinct case.

We have studied recoil locomotion in a regime such that the motion ceases as the
Reynolds number decreases to zero. However some recoil swimming is still possible in
the Stokes limit if the recoil forcing scales appropriately with the Reynolds number.
As long as the recoil force is large enough to move the body in an inertia-less system,
the drag anisotropy at R = 0 is sufficient to yield locomotion. Many of the familiar
means of locomotion in nature, through flagellar undulations, for example, or from
flapping of wings, are of course effective only in certain Reynolds number regimes
(see e.g. Childress 1981). Recoil locomotion, in contrast, is not so limited and can be
an effective means of moving a body at all Reynolds numbers.

Another aspect deserving mention is the limited extent of the wake which is
produced in some instances. Of course recoil locomotion can be achieved with no
vorticity at all and typically with the decay of velocity at infinity of a potential dipole,
although mechanisms for reducing this to a quadrupole may exist (Lighthill 1991).
This far-field decay is sufficiently fast so that the so-called Stokes paradox in two
dimensions does not play a role, and our results should extend to three-dimensional
considerations without dramatic variation. In the viscous case at intermediate R the
oscillatory nature of the ‘ratcheting’ mechanism keeps the boundary layer relatively
close to the body. It would be interesting to explore the decay of fluid disturbances for
these locomotors, to see to what degree one can achieve what we might call ‘stealth
swimming’.

We are not aware of any obvious use in natural locomotion of the mechanisms
studied in this paper. To be sure, Newton’s laws apply to all organisms, and recoil
plays some role in all locomotion at sufficiently large Reynolds numbers. Changes
of the centre of mass can be a natural accompaniment of changes of shape, and
it is possible that recoil locomotion in nature exists in systems quite different from
those studied in this paper. We have suggested in Childress (2010) that water-walking
insects, which propel themselves by abrupt movements of their feet across the air–
water interface (Bush & Hu 2006), might be viewed as using recoil locomotion. The
viscous effects are evidenced there by the generation of vortex dipoles beneath the
water surface. Kanso et al. (2005) have studied a three-link swimmer in an inviscid
fluid which utilizes variations in the centre of mass in conjunction with variations
in virtual mass, a motion which may involve elements of the recoil locomotion. The
same swimmer in a viscous fluid was studied by Eldredge (2006), who showed that in
this undulatory swimming motion, viscous dissipation acts to reduce the swimming
speed even at higher Reynolds numbers. Shape-changing locomotion of jellyfish may
also be related to the present considerations (see Daniel 1983, 1984). The expulsion
of fluid and the formation of a vortex wake do not seem to have any counterpart
in the present models, however. Finally, a recent study by Simon et al. (2010) has
shown that the gut of a crawling caterpillar slides forward in advance of surrounding
tissues so that the animal’s centre of mass is decoupled from visible translations of the
body. Perhaps, then, such internal-mass oscillations are also exploited by swimming
organisms of a related evolutionary path, though this remains to be seen.

In the light of these results we may thus summarize ‘the peculiar role of viscosity’,
alluded to in the Introduction, as follows. At low Reynolds numbers, recoil swimming
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is greatly diminished unless a large mass redistribution is available. At intermediate
Reynolds numbers, recoil swimming is significantly enhanced. And the limit of large
Reynolds number is quite distinct from the inviscid theory.

The research reported in this paper was supported by the National Science
Foundation under grant no. 0507615 at New York University.

Supplementary movies of recoil swimming by the finite body are available at
journals.cambridge.org/flm.

Appendix. The calculation of U
(3)
3 and U

(4)
3

We indicate, omitting some details, the calculation of the final two contributions
to U3, which involve the second-order terms in ψ . The first task is to calculate the
needed parts of ψ21. This term has components proportional to sin τ , cos τ , sin 3τ

and cos 3τ , but only the former two are needed in (4.22) and (4.26) (see (4.9)–(4.11)).
We thus set

ψ21 = Re[ψ211 eiτ + ψ213 e3iτ ], ψ10 = Re[ψ102 e2iτ ], ψ11 = Re[ψ111 eiτ ] (A 1)

and consider now only ψ211. The equation for this term is seen to be

∂τ (∂
2
η − 1)ψ211 − 1

R
(∂2

η − 1)2ψ211 =
1

2

[
∂ηψ102

(
∂2

η − 1
)
ψ∗

111 − ψ∗
111∂

3
ηψ102

]
≡ F211. (A 2)

Using (4.9) and (4.10) we have

F211 =A

[
exp[(

√
2iR + K∗)η]

(
−i(1 + K∗) +

2R

1 − K∗

)
+

2RK∗

K∗ − 1
exp[−(1 +

√
2iR)η]

]
.

(A 3)
Integrating, and using the boundary conditions at infinity, we obtain

ψ211 = A[f1 exp[(
√

2iR + K∗)η] + f2 exp[−(1 +
√

2iR)η] + f3 exp(−η) + f4 exp(−Kη)],
(A 4)

where

f1 =
3R

(K∗ − 1)[8(i + R) + 2i
√

2iRK∗]
, f2 =

2RK∗

(K∗ − 1)(2R − 8i − 6i
√

2iR)
. (A 5)

The multipliers f3, f4 are determined by the boundary conditions on ψ211 at η = 0.
These are obtained from

∂ξψ2|η=0 = ∂τ (χ1 sin τ ) cos ξ, χ1 = Re(A e2iτ ), (A 6)

∂ηψ2|η=0 = −Y10∂
2
ηψ1|η=0. (A 7)

From these there results

ψ211|η=0 = −A/2, ∂ηψ211|η=0 − (1 + i)A
√

R. (A 8)

With the fi now determined, we have from (4.22)

U
(3)
3 = 1

4
Re(iM), (A 9)

where

M = A[f1(
√

2iR + K∗)2 + f2(1 +
√

2iR)2 + f3 + K2f4]. (A 10)
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Turning finally to U
(4)
3 , we have from (4.26)

− 1

R
∂2

η〈〈ψ3〉〉 =
1

4
Re[ψ211∂ηψ

∗
111 − ψ∗

111∂ηψ211]. (A 11)

Thus

U
(4)
3 =

R

4

∫ ∞

0

Re[ψ211∂ηψ
∗
111 − ψ∗

111∂ηψ211] dη. (A 12)

The integral may be evaluated explicitly, since the integrand is a sum of exponentials.
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