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Publisher’s Editorial
Roots
Solomon A. Garfunkel
Executive Director
COMAP, Inc.
57 Bedford St., Suite 210
Lexington, MA 02420
s.garfunkel@mail.comap.com

In the beginning. . . Well, to be honest, I no longer remember the beginning
very well. But when COMAP began in late 1980, we had a rather simple
mission. We believed, then as now, in teaching mathematics through modeling
and applications. We believed, and continue to believe, that students and
teachers need to have persuasive answers to “What will we ever use this for?”

We set out to create a body of curriculum materials—in instructional mod-
ules, journals, newsletters and texts; in print, video, and electronic formats—
that embodied this approach, presenting mathematics through its contempo-
rary applications. And, over the years, we have worked at every educational
level, from elementary school to graduate school, because we believe that stu-
dents need to see mathematics as part of their personal experience from their
first encounters with number and pattern.

But in the beginning. . . In the beginning, we worked at the undergraduate
level. We—and here I include the first authors, field-testers, and users—were
college mathematics faculty. Many of us received our degrees in the late 1960s—
and we were legion. Remember, universities were granting approximately
1,400 doctorates per year in the mathematical sciences then (1,100 today), and
over 90% were U.S. citizens (about 50% today)—all looking for jobs at the
same 20 universities at the same time. Not surprisingly, we were flung far and
wide; and many found themselves at colleges without a legacy of mathematical
research and with consequently high teaching loads.

But we had the energy of youth and the idealism of the late 1960s. We
would change the way mathematics was taught where we worked in college
mathematics departments. And with a great deal of simplification, that is how
the UMAP Module series and this Journal were born.

As I’m sure you know, in the last several years we have had a number of
projects that focused on the high school level; readers of this Journal certainly
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don’t need a sermon on the importance of K–12 mathematics instruction. And,
importantly for COMAP, we have greatly expanded our experiences, and I
hope grown with these efforts. But in this editorial, I want to describe a new
project we are undertaking that takes us back to our undergraduate roots.

Mathmodels.org—the Mathematical Modeling Forum, or just the Modeling
Forum—is a new program recently funded by the National Science Founda-
tion. Its purpose is to help teachers and students learn and participate in the
modeling process. One of COMAP’s most successful endeavors has been the
Mathematical Contest in Modeling (MCM). But one failing of the contest for-
mat is that we cannot provide students with feedback on their papers. Were
they on the right track? Did they not take into account a crucial variable? Also,
contests are designed to select winning papers, not to promote cooperation
between teams. Mathmodels.org is designed to do better.

The idea is simple. Have a Web site where modeling problems are posted
and where students, individually and in teams, can present whole or partial
solutions. The student work will be monitored by experienced faculty, who will
give feedback at regular intervals as well as encourage cooperation with other
students/teams. Students and faculty will communicate through threaded
discussions. Prof. Pat Driscoll (U.S. Military Academy) is the project director,
and I’ll do some work on this as well. We see this project as a natural extension
of MCM—the forum can clearly help students prepare for the contest. But more
importantly, it can give them rich experiences with a wide variety of modeling
problems without time constraints. For the faculty, the forum will provide an
important source of problems and examples. We hope that you will join us as
site mentors, problem sources, or just enthusiastic members of our modeling
forum. We are very excited about the opportunity that this grant will afford us
to strengthen our ability to meet our core mission as we strengthen our roots
in the undergraduate mathematics community.

And speaking of the mathematics community, how many of each year’s
1,100 new Ph.D.’s in mathematics know about COMAP or about this ?

College mathematics faculty are the main readers and subscribers to this
Journal, which was founded for them and for their students. But COMAP
cannot be sustained into the future by the same college mathematics faculty
who contributed ideas, articles, and Modules 15, 20, or 25 years ago. We and
they will pass; before then, however, we must pass the torch.

Hence we ask you to

• show this and other issues of this Journal and other COMAP materials to
young members in your department,

• suggest that they consider joining COMAP (information is on the back side
of the title page of this issue), and

• urge them to contact myself, editor Paul Campbell, any of the associate
editors of this Journal, or any of the coaches of MCM teams listed in this
issue about how to become active as an author, a reviewer of manuscripts, a
book reviewer, or coach of an MCM or ICM team.
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Modeling Forum

Results of the 2002
Mathematical Contest in Modeling

Frank Giordano, MCM Director
COMAP, Inc.
57 Bedford St., Suite 210
Lexington, MA 02420
f.giordano@mail.comap.com

Introduction
A total of 525 teams of undergraduates, from 282 institutions in 11 coun-

tries, spent the second weekend in February working on applied mathematics
problems in the 18th Mathematical Contest in Modeling (MCM).

The 2002 MCM began at 8:00 p.m. EST on Thursday, Feb. 7 and officially
ended at 8:00 p.m. EST on Monday, Feb. 11. During that time, teams of up
to three undergraduates were to research and submit an optimal solution for
one of two open-ended modeling problems. Students registered, obtained con-
test materials, downloaded the problems at the appropriate time, and entered
completion data through COMAP’S MCM Web site.

Each team had to choose one of the two contest problems. After a weekend
of hard work, solution papers were sent to COMAP on Monday. Ten of the top
papers appear in this issue of The UMAP Journal.

Results and winning papers from the first sixteen contests were published
in special issues of Mathematical Modeling (1985–1987) and The UMAP Journal
(1985–2001). The 1994 volume of Tools for Teaching, commemorating the tenth
anniversary of the contest, contains all of the 20 problems used in the first ten
years of the contest and a winning paper for each. Limited quantities of that
volume and of the special MCM issues of the Journal for the last few years are
available from COMAP.

This year’s Problem A was about controlling the amount of spray hitting
passersby that is produced by wind acting on an ornamental fountain located in
the midst of a plaza surrounded by buildings. The water flow is controlled by
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a mechanism linked to an anemometer located on top of an adjacent building.
Students were asked to design a control algorithm that would provide a balance
between an attractive spectacle and a soaking.

Problem B focused on the challenge associated with airline practices over-
booking of flight reservations. Students were asked to determine an opti-
mal overbooking strategy in light of operational constraints evolving from the
events of September 11, 2001.

In additional to the MCM, COMAP also sponsors the Interdisciplinary Con-
test in Modeling (ICM) and the High School Mathematical Contest in Model-
ing (HiMCM). The ICM, which runs concurrently with MCM, offers a model-
ing problem involving concepts in mathematics, environmental science, envi-
ronmental engineering, and/or resource management. Results of this year’s
ICM are on the COMAP Web site at http://www.comap.com/undergraduate/
contests; results and Outstanding papers appeared in Vol. 23 (2002), No. 1.
The HiMCM offers high school students a modeling opportunity similar to
the MCM. Further details about the HiMCM are at http://www.comap.com/
highschool/contests .

Problem A: Wind and Waterspray
An ornamental fountain in a large open plaza surrounded by buildings

squirts water high into the air. On gusty days, the wind blows spray from
the fountain onto passersby. The water flow from the fountain is controlled
by a mechanism linked to an anemometer (which measures wind speed and
direction) located on top of an adjacent building. The objective of this control is
to provide passersby with an acceptable balance between an attractive spectacle
and a soaking: The harder the wind blows, the lower the water volume and
the height to which the water is squirted, hence the less spray falls outside the
pool area.

Your task is to devise an algorithm that uses data provided by the anemome-
ter to adjust the water-flow from the fountain as the wind conditions change.

Problem B: Airline Overbooking
You’re all packed and ready to go on a trip to visit your best friend in New York
City. After you check in at the ticket counter, the airline clerk announces that
your flight has been overbooked. Passengers need to check in immediately to
determine if they still have a seat.

Historically, airlines know that only a certain percentage of passengers who
have made reservations on a particular flight will actually take that flight.
Consequently, most airlines overbook—that is, they take more reservations
than the capacity of the aircraft. Occasionally, more passengers will want to take
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a flight than the capacity of the plane, leading to one or more passengers being
bumped and thus unable to take the flight for which they had reservations.

Airlines deal with bumped passengers in various ways. Some are given
nothing, some are booked on later flights on other airlines, and some are given
some kind of cash or airline ticket incentive.

Consider the overbooking issue in light of the current situation:

• fewer flights by airlines from point A to point B;

• heightened security at and around airports,

• passengers’ fear, and

• loss of billions of dollars in revenue by airlines to date.

Build a mathematical model that examines the effects that different over-
booking schemes have on the revenue received by an airline company, in order
to find an optimal overbooking strategy—that is, the number of people by
which an airline should overbook a particular flight so that the company’s
revenue is maximized. Ensure that your model reflects the issues above and
consider alternatives for handling “bumped” passengers. Additionally, write
a short memorandum to the airline’s CEO summarizing your findings and
analysis.

The Results
The solution papers were coded at COMAP headquarters so that names and

affiliations of the authors would be unknown to the judges. Each paper was
then read preliminarily by two “triage” judges at Southern Connecticut State
University (Problem A) or at the U.S. Military Academy (Problem B). At the
triage stage, the summary and overall organization are the basis for judging a
paper. If the judges’ scores diverged for a paper, the judges conferred; if they
still did not agree on a score, a third judge evaluated the paper.

Final judging took place at Harvey Mudd College, Claremont, California.
The judges classified the papers as follows:

Honorable Successful
Outstanding Meritorious Mention Participation Total

Wind and Waterspray 4 48 60 167 279
Airline Overbooking 6 38 61 138 246

10 86 121 305 525

The ten papers that the judges designated as Outstanding appear in this
special issue of The UMAP Journal, together with commentaries. We list those
teams and the Meritorious teams (and advisors) below; the list of all partici-
pating schools, advisors, and results is in the Appendix.
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Outstanding Teams
Institution and Advisor Team Members

Wind and Waterspray Papers

“Simulating a Fountain”
Maggie L. Walker Governor’s School
Richmond, VA
John A. Barnes

Lyric P. Doshi
Joseph E. Gonzalez
Philip B. Kidd

“The Fountain That Math Built”
North Carolina School of Science

and Mathematics
Durham, NC
Daniel J. Teague

Alex McCauley
Josh Michener
Jadrian Miles

“Wind and Waterspray”
U.S. Military Academy
West Point, NY
David Sanders

Tate Jarrow
Colin Landon
Mike Powell

“A Foul-Weather Fountain”
University of Washington
Seattle, WA
James Allen Morrow

Ryan K. Card
Ernie E. Esser
Jeffrey H. Giansiracusa

Airline Overbooking Papers

“Things That Go Bump in the Flight”
Bethel College
St. Paul, MN
William M. Kinney

“Optimal Overbooking”
Duke University
Durham, NC
David P. Kraines

Krista M. Dowdey
Nathan M. Gossett
Mark P. Leverentz

David Arthur
Sam Malone
Oaz Nir
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“Models for Evaluating Airline Overbooking”
Harvey Mudd College
Claremont, CA
Michael E. Moody

“Probabilistically Optimized Airline
Overbooking Strategies, or
‘Anyone Willing to Take a Later Flight?’”

University of Colorado at Boulder
Boulder, CO
Anne M. Dougherty

“ACE Is High”
Wake Forest University (Team 69)
Winston-Salem, NC
Edward E. Allen

“Bumping for Dollars:
The Airline Overbooking Problem”

Wake Forest University (Team 273)
Winston-Salem, NC
Frederick H. Chen

Michael B. Schubmehl
Wesley M. Turner
Daniel M. Boylan

Kevin Z. Leder
Saverio E. Spagnolie
Stefan M. Wild

Anthony C. Pecorella
Elizabeth A. Perez
Crystal T. Taylor

John D. Bowman
Corey R. Houmard
Adam S. Dickey

Meritorious Teams

Wind and Waterspray Papers (48 teams)
Asbury College, Wilmore, KY, USA (Kenneth P. Rietz)
Beijing Institute of Technology, Beijing, P.R. China (Yao Cui Zhen)
Beijing University of Chemical Technology, Beijing, P.R. China (Yuan WenYan)
Beijing University of Posts and Telecommunication, Beijing, P.R. China (He Zuguo)

(two teams)
Beijing University of Posts and Telecommunication, Beijing, P.R. China

(Sun Hongxiang)
Bethel College, St. Paul, MN (William M. Kinney)
Boston University, Boston, MA (Glen R. Hall)
California Polytechnic State University, San Luis Obispo, CA (Thomas O’Neil)
Central South University, Changsha, Hunan, P.R. China (Xuanyun Qin)
The College of Wooster, Wooster, OH (Charles R. Hampton)
East China University of Science and Technology, Shanghai, P.R. China (Lu Yuanhong)
Goshen College, Goshen, IN (David Housman)
Hangzhou University of Commerce, Hangzhou, Zhejiang, P.R. China (Zhao Heng)
Hangzhou University of Commerce, Hangzhou, Zhejiang, P.R. China (Zhu Ling)
Humboldt State University, Arcata, CA (Roland H. Lamberson)
Jacksonville University, Jacksonville, FL (Robert A. Hollister)
James Madison University, Harrisonburg, VA (Caroline Smith)
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Lafayette College, Easton, PA (Thomas Hill)
Lawrence Technological University, Southfield, MI (Scott D. Schneider)
Lawrence Technological University, Southfield, MI (Howard E. Whitston)
Luther College, Decorah, IA (Reginald, D. Laursen) (two teams)
Magdalen College, Oxford, Oxfordshire, United Kingdom (Byron W. Byrne)
Massachusetts Institute of Technology, Cambridge, MA (Daniel H. Rothman)
Nankai University, Tianjin, P.R. China (Huang Wuqun)
North China Electric Power University, Baoding, Hebei, P.R. China (Gu Gendai)
Northern Jiaotong University, Beijing, P.R. China (Wang Bingtuan)
Southern Oregon University, Ashland, OR (Kemble R. Yates)
State University of West Georgia, Carrollton, GA (Scott Gordon)
Trinity University, San Antonio, TX (Jeffrey K. Lawson)
Trinity University, San Antonio, TX (Hector C. Mireles)
University College Cork, Cork, Ireland (Donal J. Hurley)
University of Colorado at Boulder, Boulder, CO (Anne M. Dougherty)
University of Colorado at Boulder, Boulder, CO (Michael Ritzwoller) (two teams)
University of Elec. and Sci. Technology, Chengdu, Sichuan, P.R. China (Qin Siyi)
University of New South Wales, Sydney, NSW, Australia (James W. Franklin)
University of North Carolina, Chapel Hill, NC (Jon W. Tolle)
University of Washington, Seattle, WA (James Allen Morrow)
Wright State University, Dayton, OH (Thomas P. Svobodny)
Xavier University, Cincinnati, Ohio (Michael Goldweber)
Youngstown State University, Youngstown, OH (Angela Spalsbury)
Zhejiang University, Hangzhou, Zhejiang, P.R. China (Yang Qifan)

Airline Overbooking Papers (38 teams)
Albertson College of Idaho, Caldwell, ID (Mike P. Hitchman)
Asbury College, Wilmore, KY (Kenneth P. Rietz)
Beijing Institute of Technology, Beijing, Beijing, P.R. China (Zhang Bao Xue)
China University of Mining and Technology, Xuzhou, Jiangsu, P.R. China

(Zhu Kaiyong)
Chongqing University, Chongqing, Shapingba, P.R. China (Yang Xiaofan)
Colgate University, Hamilton, NY (Warren Weckesser)
College of Sciences of Northeastern University, Shenyang, Liaoning, P.R. China

(Han Tie-min)
Fudan University, Shanghai, P.R. China (Cai Zhijie)
Gettysburg College, Gettysburg, PA (James P. Fink)
Harbin Institute of Technology, Harbin, Heilongjiang, P.R. China (Wang Xuefeng)
Harvey Mudd College, Claremont, CA (Michael E. Moody)
Harvey Mudd College, Claremont, CA (Ran Libeskind-Hadas) (two teams)
Institut Teknologi Bandung, Bandung, Jabar, Indonesia (Edy Soewono)
Juniata College, Huntingdon, PA (John F. Bukowski)
Lipscomb University, Nashville, TN (Gary Clark Hall)
Maggie L. Walker Governor’s School, Richmond, VA (John A. Barnes)
Maggie L. Walker Governor’s School, Richmond, VA (Crista Hamilton)
Massachusetts Institute of Technology, Cambridge, MA (Martin Zdenek Bazant)
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Nankai University, Tianjin, Tianjin, P.R. China (Ruan Jishou)
North Carolina State University, Raleigh, NC (Dorothy Doyle)
Northern Jiaotong University, Beijing, P.R. China (Wang Xiaoxia)
NUI Galway, Galway, Ireland (Niall Madden)
Pacific Lutheran University, Tacoma, WA (Zhu Mei )
School of Mathematics and Computer Science, Nanjing Normal University, Nanjing,

Jiangsu, P.R. China (Zhu Qunsheng)
Shanghai Jiading No. 1 High School, Shanghai, P.R. China (Chen Li)
Shanghai Jiaotong University, Shanghai, P.R. China (Song Baorui)
South China University of Technology, Guangzhou, Guangdong, P.R. China

(Lin Jian Liang)
South China University of Technology, Guangzhou, Guangdong, P.R. China

(Zhuo Fu Hong)
Stetson University, DeLand, FL (Lisa O. Coulter)
Tianjin University, Tianjin, P.R. China (Rong Ximin)
Tsinghua University, Beijing, P.R. China (Hu Zhiming)
U.S. Military Academy, West Point, NY (Elizabeth Schott)
University of South Carolina, Columbia, SC (Ralph E. Howard)
University of Washington, Seattle, WA (Timothy P. Chartier)
Xidian University, Xi’an, Shaanxi, P.R. China (Zhang Zhuo-kui)
Youngstown State University, Youngstown, OH (Angela Spalsbury)
Youngstown State University, Youngstown, OH (Stephen Hanzely)

Awards and Contributions
Each participating MCM advisor and team member received a certificate

signed by the Contest Director and the appropriate Head Judge.
INFORMS, the Institute for Operations Research and the Management Sci-

ences, gave a cash prize and a three-year membership to each member of the
teams from North Carolina School of Science and Mathematics (Wind and Wa-
terspray Problem) and Wake Forest (Team 69) (Airline Overbooking Problem).
Also, INFORMS gave free one-year memberships to all members of Meritorious
and Honorable Mention teams.

The Society for Industrial and Applied Mathematics (SIAM) designated one
Outstanding team from each problem as a SIAM Winner. The teams were from
University of Washington (Wind and Waterspray Problem) and Duke Univer-
sity (Airline Overbooking Problem). Each of the team members was awarded a
$300 cash prize and the teams received partial expenses to present their results
at a special Minisymposium of the SIAM Annual Meeting in Philadelphia, PA
in July. Their schools were given a framed, hand-lettered certificate in gold
leaf.

The Mathematical Association of America (MAA) designated one Outstand-
ing team from each problem as an MAA Winner. The teams were from U.S.
Military Academy (Wind and Waterspray Problem) and Harvey Mudd College
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(Airline Overbooking Problem). With partial travel support from the MAA,
both teams presented their solutions at a special session of the MAA Mathfest
in Burlington, VT in August. Each team member was presented a certificate by
MAA President Ann E. Watkins.

Judging
Director
Frank R. Giordano, COMAP, Lexington, MA

Associate Directors
Robert L. Borrelli, Mathematics Dept., Harvey Mudd College,

Claremont, CA
Patrick Driscoll, Dept. of Mathematical Sciences, U.S. Military Academy,

West Point, NY

Contest Coordinator
Kevin Darcy, COMAP Inc., Lexington, MA

Wind and Waterspray Problem

Head Judge
Marvin S. Keener, Executive Vice-President, Oklahoma State University,

Stillwater, OK

Associate Judges
William C. Bauldry, Appalachian State University, Boone, NC
Kelly Black, Mathematics Dept., University of New Hampshire,

Durham, NH (SIAM)
Courtney Coleman, Mathematics Dept., Harvey Mudd College,

Claremont, CA
Gordon Erlebacher, School of Computational Science and Information Tech-

nology, Florida State University, Tallahassee, FL
J. Douglas Faires, Youngstown State University, Youngstown, OH (MAA)
Ben Fusaro, Mathematics Dept., Florida State University,

Tallahassee, FL
Mario Juncosa, RAND Corporation, Santa Monica, CA
John Kobza, Texas Tech University, Lubbock, TX (INFORMS)
Deborah Levinson, Compaq Computer Corp., Colorado Springs, CO
Veena Mendiratta, Lucent Technologies, Naperville, IL
Mark R. Parker, Mathematics Dept., Carroll College, Helena, MT
John L. Scharf, Carroll College, Helena, MT
Daniel Zwillinger, Newton, MA
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Airline Overbooking Problem

Head Judge
Maynard Thompson, Mathematics Dept., University of Indiana,

Bloomington, IN

Associate Judges
James Case, Baltimore, MD (SIAM)
Lisette De Pillis, Harvey Mudd College, Claremont, CA
William P. Fox, Francis Marion University, Florence, SC (MAA)
Jerry Griggs, University of South Carolina, Columbia, SC
Don Miller, Dept. of Mathematics, St. Mary’s College, Notre Dame, IN (SIAM)
Lee Seitelman, Glastonbury, CT (SIAM)
Dan Solow, Mathematics Dept., Case Western Reserve University,

Cleveland, OH (INFORMS)
Robert Tardiff, Salisbury State University, Salisbury, MD
Michael Tortorella, Lucent Technologies, Holmdel, NJ
Marie Vanisko, Carroll College, Helena, MT (MAA)
Larry Wargo, National Security Agency, Ft. Meade, MD (Triage)

Triage Sessions:

Wind and Waterspray Problem

Head Triage Judge
Patrick Driscoll, Dept. of Mathematical Sciences, U.S. Military Academy,

West Point, NY

Associate Judges
Steve Horton, Michael Jaye, and Doug Matty, all of the U.S. Military Academy,

West Point, NY

Airline Overbooking Problem

Head Triage Judge
Larry Wargo, National Security Agency, Ft. Meade, MD

Associate Judges
James Case, Baltimore, Maryland
Paul Boisen and 7 others from the National Security Agency, Ft. Meade, MD

Sources of the Problems
The Wind and Waterspray Problem was contributed by Tjalling Ypma,

Mathematics Dept., Western Washington University, Bellingham, WA. The Air-
line Overbooking Problem was contributed by William P. Fox and Richard D.
West, Mathematics Dept., Francis Marion University, Florence, SC.
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Cautions
To the reader of research journals:
Usually a published paper has been presented to an audience, shown to

colleagues, rewritten, checked by referees, revised, and edited by a journal
editor. Each of the student papers here is the result of undergraduates working
on a problem over a weekend; allowing substantial revision by the authors
could give a false impression of accomplishment. So these papers are essentially
au naturel. Editing (and sometimes substantial cutting) has taken place: minor
errors have been corrected, wording has been altered for clarity or economy,
and style has been adjusted to that of The UMAP Journal. Please peruse these
student efforts in that context.

To the potential MCM Advisor:
It might be overpowering to encounter such output from a weekend of

work by a small team of undergraduates, but these solution papers are highly
atypical. A team that prepares and participates will have an enriching learning
experience, independent of what any other team does.

COMAP’s Mathematical Contest in Modeling and Interdisciplinary Contest
in Modeling are the only international modeling contests in which students
work in teams. Centering its educational philosophy on mathematical model-
ing, COMAP uses mathematical tools to explore real-world problems. It serves
the educational community as well as the world of work by preparing students
to become better-informed and better-prepared citizens.
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Appendix: Successful Participants
KEY:
P = Successful Participation
H = Honorable Mention
M = Meritorious

A = Bicycle Wheel Control Problem
B = Hurricane Evacuation Problem

O = Outstanding (published in this special issue)

INSTITUTION CITY ADVISOR A B

ALABAMA
Huntingdon College Montgomery Vyacheslav V. Rykov P,P

ARKANSAS
Hendrix College Conway Duff Gordon Campbell H H

ARIZONA
McClintock High School Tempe Ivan Barkdoll P

CALIFORNIA
Calif. Institute of Technology Pasadena Darryl H. Yong H
Calif. Polytechnic State Univ. San Luis Obispo Thomas O’Neil M,P

Jennifer M. Switkes P
California State University

at Monterey Bay Seaside Hongde Hu P
California State University Bakersfield Maureen E. Rush P
Claremont McKenna College Claremont Mario U. Martelli P
Harvey Mudd College Claremont Michael E. Moody O,M

Ran Libeskind-Hadas M,M
Humboldt State University Arcata Roland H. Lamberson M
Pomona College Claremont Ami E. Radunskaya H
Sonoma State University Rohnert Park Elaine T. McDonald H P
University of San Diego San Diego Jeffrey H. Wright P
University of Southern Calif. Los Angeles Robert J. Sacker H

Geoffrey R. Spedding H

COLORADO
Colorado College Colorado Springs Peter L. Staab P
Colorado State University Fort Collins Michael J. Kirby P
Mesa State College Grand Junction Edward. K. Bonan-Hamada P
Regis University Denver Linda L. Duchrow P
U.S. Air Force Academy USAF Academy Gerald E. Sohan P

James S. Rolf H
J. Gerken H
James E. West P

University of Colorado Boulder Anne M. Dougherty M O
Michael Ritzwoller M,M

Univ. of Southern Colorado Pueblo Bruce N. Lundberg P
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INSTITUTION CITY ADVISOR A B

CONNECTICUT
Sacred Heart University Fairfield Peter Loth P,P
Southern Connecticut State Univ. New Haven Ross B. Gingrich P

Therese L. Bennett P

DELAWARE
University of Delaware Newark Louis F. Rossi P,P

FLORIDA
Embry-Riddle Aeronautical Univ. Daytona Beach Greg Scott Spradlin P
Florida Gulf Coast University Fort Myers Charles Lindsey P
Florida State University Tallahassee Mark M. Sussman P
Jacksonville University Jacksonville Robert A. Hollister M,P
Stetson University DeLand Lisa O. Coulter M
University of Central Florida Orlando Heath M. Martin P,P
Florida Institute of Technology Melbourne Michael O. Gonsalves P,P

GEORGIA
Georgia Southern University Statesboro Jacalyn M. Huband P

Laurene V. Fausett H
State University of West Georgia Carrollton Scott Gordon M,P

IDAHO
Albertson College of Idaho Caldwell Mike P. Hitchman M
Boise State University Boise Jodi L. Mead P
Idaho State University Pocatello Rob Van Kirk P

ILLINOIS
Greenville College Greenville Galen R. Peters P H
McKendree College Lebanon Raymond E. Robb P
Monmouth College Monmouth Christopher G. Fasano P
Wheaton College Wheaton Paul Isihara P

INDIANA
Earlham College Richmond Charlie Peck H
Goshen College Goshen David Housman M H
Indiana University Bloomington Michael S. Jolly H
Rose-Hulman Institute of Tech, Terre Haute David J. Rader P H
Saint Mary’s College Notre Dame Joanne R. Snow P,P

IOWA
Grinnell College Grinnell Mark Montgomery P H

Royce Wolf H.P
Iowa State University Ames Stephen J. Willson H
Luther College Decorah Reginald D. Laursen M,M
Mt. Mercy College Cedar Rapids K.R. Knopp P P
Simpson College Indianola Murphy Waggoner P P

Werner S. Kolln P H
Wartburg College Waverly Mariah Birgen P
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INSTITUTION CITY ADVISOR A B

KANSAS
Kansas State University Manhattan Korten N. Auckly P

KENTUCKY
Asbury College Wilmore Kenneth P. Rietz M M
Bellarmine University Louisville William J. Hardin P P
Northern Kentucky University Highland Heights Gail S. Mackin P

Shamanthi Marie Fernando P

MAINE
Colby College Waterville Jan Holly P

MARYLAND
Salisbury University Salisbury Michael J. Bardzell P
Goucher College Baltimore Robert Lewand P
Hood College Frederick Betty Mayfield P
Mt. Saint Mary’s College Emmitsburg John J. Dropp P

John E. August P P
Towson University Towson Mike P. O’Leary P
Washington College Chestertown Eugene P. Hamilton P

MASSACHUSETTS
Boston University Boston Glen R. Hall M
Greenfield Community College Greenfield Peter R. Letson P
Massachusetts Institute of Tech. Cambridge Daniel H. Rothman M,P

Martin Zdenek Bazant M
Olin College of Engineering Needham Burt S. Tilley P
Simon’s Rock College Great Barrington Allen B. Altman P H

Michael Bergman H H
University of Massachusets Amherst Edward A. Connors P
University of Massachusetts Lowell James Graham-Eagle H
Western New England College Springfield Lorna B. Hanes P
Worcester Arthur C. Heinricher P

MICHIGAN
Calvin College Grand Rapids Thomas L. Jager P
Eastern Michigan University Ypsilanti Christopher E. Hee H
Hillsdale College Hillsdale John P. Boardman P
Hope College Holland Aaron C. Cinzori P
Lake Superior State University Sault Sainte Marie John H. Jaroma H
Lawrence Technological Univ. Southfield Howard E. Whitston M

Ruth G. Favro H
Scott D. Schneider M
Valentina Tobos P

Siena Heights University Adrian Toni Carroll P,P
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INSTITUTION CITY ADVISOR A B

MINNESOTA
Augsburg College Minneapolis Rebekah N. Dupont H
Bemidji State University Bemidji Colleen G. Livingston H
Bethel College St. Paul William M. Kinney M O
College of Saint Benedict,

St. John’s University Collegeville Robert J. Hesse P,P
Gustavus Adolphus College St. Peter Thomas P. LoFaro P H
Macalester College St. Paul Daniel T. Kaplan P P

Elizabeth Shoop P
Winona State University Winona Barry A. Peratt P

MISSOURI
Missouri Southern State College Joplin Patrick Cassens P
Northwest Missouri State University Maryville Russell N. Euler P
Southeast Missouri State University Cape Girardeau Robert W. Sheets P
Truman State University Kirksville Steve J. Smith P
Washington University St. Louis Hiro Mukai P

MONTANTA
Carroll College Helena Holly S. Zullo H H

NEBRASKA
University of Nebraska-Lincoln Lincoln Glenn W. Ledder H

NEW JERSEY
Rowan University Glassboro Hieu D. Nguyen P

Paul J. Laumakis P
William Paterson University Wayne Donna J. Cedio-Fengya H

NEW MEXICO
New Mexico State University Las Cruces Caroline Sweezy P
Western New Mexico University Silver City Thomas P. Gruszka H

NEW YORK
Colgate University Hamilton Warren Weckesser M
Ithaca College Ithaca Jim Conklin P
Keuka College Keuka Park Catherine A Abbott P
Manhattan College Riverdale Kathryn Weld H
Rensselaer Polytechnic Institute Troy Peter R. Kramer P
Roberts Wesleyan College Rochester Gary L. Raduns H
St. Bonaventure University St. Bonaventure Albert G. White P
U.S. Military Academy West Point David Sanders O

Elizabeth Schott M
Gregory S. Parnell H
Ray Eason H

Wells College Aurora Thomas A. Stiadle P
Westchester Community College Valhalla Sheela L. Whelan P
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INSTITUTION CITY ADVISOR A B

NORTH CAROLINA
Appalachian State University Boone Alan T. Arnholt P P

Eric S. Marland P,P
Brevard College Brevard Clarke Wellborn P P
Duke University Durham David Kraines P O
Meredith College Raleigh Cammey E. Cole P
Mount Olive College Mount Olive Ollie J. Rose P P
North Carolina School of Science

and Mathematics Durham Daniel J. Teague O,P
John Kolena H

North Carolina State University Raleigh Thomas L. Honeycutt H,P
Dorothy Doyle M,P

University of North Carolina Chapel Hill Jon W. Tolle M
Wake Forest University Winston-Salem Frederick H. Chen O

Miaohua Jiang P
Edward E. Allen O

OHIO
Hiram College Hiram Brad Scott Gubser P
Malone College Canton David W. Hahn P P
Miami University Oxford Doug E. Ward P
College of Wooster Wooster Charles R. Hampton M P
Wright State University Dayton Thomas P. Svobodny M
Youngstown State University Youngstown Angela Spalsbury M M

Bob Kramer P
Stephen Hanzely M

University of Dayton Dayton Muhammad N. Islam P
Xavier University Cincinnati Michael Goldweber M

OKLAHOMA
Southeastern Oklahoma State University Durant Christopher Moretti P

OREGON
Eastern Oregon University La Grande Anthony A. Tovar P,P

Robert L. Brandon P
Lewis and Clark College Portland Robert W. Owens P H
Portland State University Portland Gerardo A. Lafferriere H
Southern Oregon University Ashland Kemble R. Yates M H
University of Portland Portland Michael W. Akerman P

PENNSYLVANIA
Bloomsburg University Bloomsburg Kevin K. Ferland P,P
Bucknell University Lewisburg Karl Knaub P

Sally Koutsoliotas H,P
Clarion University Clarion Karen D. Bolinger P

Richard M. Smaby P
John W. Heard P
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INSTITUTION CITY ADVISOR A B

Gettysburg College Gettysburg James P. Fink M
Indiana University of Penna Indiana Frederick A. Adkins P
Juniata College Huntingdon John F. Bukowski M
Lafayette College Easton Thomas Hill M P
Messiah College Grantham Lamarr C. Widmer P
Westminster College New Wilmington Barbara T. Faires P,P

SOUTH CAROLINA
Charleston Southern University Charleston Stan Perrine P
University of South Carolina Columbia Ralph E. Howard M

SOUTH DAKOTA
SD School of Mines and Tech. Rapid City Kyle Riley P P

TENNESSEE
Austin Peay State University Clarksville Nell K. Rayburn P P
Lipscomb University Nashville Gary Clark Hall M
University of the South Sewanee Catherine E. Cavagnaro P P

TEXAS
Abilene Christian University Abilene David Hendricks P
Angelo State University San Angelo Robert L. Hamilton P
Baylor University Waco Frank H. Mathis P
Southwestern University Georgetown Therese N. Shelton H,P
Texas Christian University Fort Worth George T. Gilbert P
Trinity University San Antonio Hector C. Mireles M

Jeffrey K. Lawson M
Kenneth L. Nelson H

VERMONT
Johnson State College Johnson Christopher A. Aubuchon P

VIRGINIA
Chesterfield County Mathematics

and Science High School Midlothian Diane Leighty P
Godwin High School Science and

Mathematics Center Richmond Ann W. Sebrell P
James Madison Univ Harrisonburg Joseph W. Rudmin P

Caroline Smith M
Dorn W. Peterson P
Paul G. Warne P

Maggie L. Walker Governor’s
School Richmond Crista Hamilton M

John A. Barnes O M
Roanoke College Salem Jeffrey L. Spielman P
University of Richmond Richmond Kathy W. Hoke P
University of Virginia’s College

at Wise Wise George W. Moss P,P
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INSTITUTION CITY ADVISOR A B

Virginia Tech Blacksburg Catherine A. Stephens P
Laura J. Spielman H

Virginia Western Comm. College Roanoke Steven T. Hammer P
Ruth A. Sherman P

WASHINGTON
Central Washington University Ellensburg Stuart F. Boersma P,P
Pacific Lutheran University Tacoma Mei Zhu H M
University of Puget Sound Tacoma John Riegsecker P

Michael Scott Casey H,P
University of Washington Seattle Anne Greenbaum H

James Allen Morrow O,M
Timothy P. Chartier M

Western Washington University Bellingham Tjalling J. Ypma P P

WISCONSIN
Beloit College Beloit College Paul J. Campbell P
Ripon College Ripon David W. Scott P,P
University of Wisconsin River Falls Kathy A. Tomlinson P

AUSTRALIA
University of New South Wales Sydney James W. Franklin M,H

CANADA
Brandon University Brandon, Manitoba Doug A. Pickering H
Memorial Univ. of Newfoundland St. John’s NF Andy Foster H
Dalhousie University Halifax NS Dorothea A. Pronk H
University of Western Ontario London ON Peter H. Poole H
University of Saskatchewan Saskatoon SK James A. Brooke P

CHINA
Anhui University Hefei Cai Qian P

Yang Shangjun H
Baoding Teachers’ College Baoding Jing Shuangyan P,P

Wang Xinzhe P,P
Yuan Shaoqiang P P

Beijing Institute of Technology Beijing Chen Yi Hong P
Cui Xiao Di H
Zhen Yao Cui M
Zhang Bao Xue M

Beijing Polytechnic University Beijing Xue Yi P
Beijing Union University Beijing Zeng Qingli P P
Beijing Univ. of Aero. and Astro. Beijing Peng Linping H

Liu Hongying P
Wu Sanxing P
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INSTITUTION CITY ADVISOR A B

Beijing Univ. of Chemical Technology Beijing Jiang Guangfeng H
Weiguo Lin P
Jiang Dongqing P
Liu Damin P
Yuan WenYan M

Beijing Univ. of Posts & Telecomm. Beijing He Zuguo M,M
Luo Shoushan H,H
Sun Hongxiang M

Central South University Chang Sha Chen Xiaosong H
Qin Xuanyun M P

ChangChun University Changchun Yuan Shuai P
China University of Mining and Technology Xuzhou Wu Zongxiang H

Zhang Xingyong H
Zhou Shengwu P
Zhu Kaiyong M

Chongqing University Chongqing He Zhongshi H
Li Chuandong P
Wen Luosheng P
Yang Xiaofan M

Dalian Nationalities University Dalian Wang Jinzhi P,P
Dalian University Dalian Tan Xinxin H
Dalian University of Technology Dalian He Mingfeng P,P

Zhao Lizhong P P
Wang Yi P,P

Dong Hua University Shanghai Hu Liangjian P
Du Yugen H

East China University of Science and Techn. Shanghai Su Chunjie H,P
Lu Yuanhong M,H

Educational Adminstration Shenyang Zhang Shujun P,P
Fudan University Shanghai Hu Jinjin P

Cao Yuan P
Cai Zhijie M

Guangdong Commercial College Guangzhou Xiang Zigui P
Hangzhou University of Commerce Hangzhou Ding Zhengzhong H

Hua Jiu Kun H
Zhao Heng M
Zhu Ling M

Harbin Engineering University Harbin Gao Zhenbin P
Luo Yuesheng P
Shen Jihong P
Zhang Xiaowei P

Harbin Institute of Technology Harbin Shao Jiqun P
Shang Shouting P H
Wang Xuefeng P M
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INSTITUTION CITY ADVISOR A B

Harbin Uinversity of Science and Technology Harbin Chen Dongyan P
LiDongmei P
Tian Guangyue P
Ni Xiaoying P

Hefei University of Technology Hefei Su Huaming H
Du Xueqiao H
Zhou Yongwu P
Huang Youdu P

Huazhong University of Science & Technology Wuhan Wang Yizhi H
Hunan University Changsha Yi Kunnan P

Han Luo P H
Jiamusi University Jiamusi Wei Fan P

Zhi Gu Li P
Jiamusi University College of Sciences Jiamusi Shan Bai Feng P

Liv Tongfu P
Jiangxi Normal University NanChang Wu Gen Xiu P
Jilin Institute of Technology Changchun Chun Sun Chang P

Yue Xi Ting P
Jilin University Changchun Iv Xianrui P

Fang Peichen P
Song Lixin P
Zou Yongkui H

Jinan University Guangzhou Hu Daiqiang H
Fan Suohai P
Ye Shiqi P,P

Nanjing Normal University Nanjing Fu Shitai H,P,P
Nanjing Normal University

School of Mathematics and Computer Science Nanjing Zhu Qunsheng M,H
Nanjing University of Science and Technology Nanjing Zhang Zhengjun P

Xu Yuan H
Xu Chungen P
Huang Zhen You P

Nankai University Tianjin Huang Wuqun M
Ruan Jishou M,H

Nankai University School of Mathematics Tianjin Ruan Jishou H
Yang Qingzhi P

National Univ. of Defence Tech. Changsha Wu Mengda P
Duan XiaoLong P,P
Wu Mengda H

North China Electric Power University Baoding Gu Gendai M
Xie Hong H

North China Inst. of Technology Taiyuan Xue Ya-kui H
Lei Ying-jie H
Yong Bi P
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INSTITUTION CITY ADVISOR A B

Northeastern University
College of Sciences Shenyang Sun Ping P P

Han Tie-min M,P
Information Science and Engineering Shenyang Hao Peifeng P H
Inst. of Artificial Intelligence & Robotics Shenyang Cui Jianjiang P H

Northern Jiaotong University Wang Bingtuan M
Wu Faen P
Wang Bingtuan P
Wang Xiaoxia M

Northwest University Xi’an He Rui-chan B,B
Northwestern Polytechnical University Xi‘an Zhang Li Ning P

Hua Peng Guo H
Sun Hao P
Xu Wei H

Peking University Beijing Lian Guijun P P
Wang Ming P P
Zhang Mingquan P
Shu Yousheng P
Liu Yulong P P

Qufu Normal University Qufu Wang Feng P P
Shandong University Jinan Luan Junfeng P
Shanghai Foreign Language School Shanghai Wan Baihe P

Pan LiQun H,P
Shanghai Jiading No. 1 High School Shanghai Xie XiLin H

Chen Li M
Shanghai Jiaotong University Shanghai Song Baorui M,H

Huang Jianguo H,P
Shanghai Normal University Shanghai Zhu Detong P

Zhang Jizhou P
Guo Shenghuan P

Shanghai University Shanghai Wang Yuandi H
Shanghai Univ. of Finance and Economics Shanghai Yang Xiao Bin P P
Shanghai XiangMing Senior High School Shanghai Wang Daren P
Shanxi University Taiyuan Yang Aimin P

Li Jihong P
Zhao Aimin P P

South China Normal University Guangzhou Wang Limin H,P
South China Univ. of Tech. Guangzhou Zhuo Fu Hong M

Lin Jian Liang M
Tao Zhi Sui H
Feng Zhu Feng H

South-west Jiao Tong University Chengdu Zhao Lian Wen H,H
Han Yang P,P

Tianjin University Tianjin Rong Ximin M,H
Liu Zeyi H H

Tsinghua University Shanghai Hu Zhiming M,H
Ye Jun P,P
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INSTITUTION CITY ADVISOR A B

Univ. of Elec. Sci. Tech. Chengdu Du Hongfei P P
Qin Siyi M P

Univ. of Sci. & Tech. of China Hefei Dou Dou P
Sun Guangzhong H
Li Yu P
Yang Zhouwang H

Wuhan University of Tech. Wuhan Peng Sijun H P
Huang Zhangcan H,P

Xi’an Jiaotong University Xi’an Zhou Yicang P
Wu Xiang Zhong P
Dai Yonghong H

Xi’an University of Tech. Xi’an Cao Maosheng P
Xidian University Xi’an Chen Hui-chan H

Liu Hong-wei H
Ye Ji-min H
Zhang Zhuo-kui M

Zhejiang University Hangzhou Yang Qifan M H
Yong He P P

Zhongshan University Guangzhou Chen Zepeng P
Tang Mengxi P
Yuan Zhuojian H,H

FINLAND
Päivölä College Tarttila Merikki Lappi H

HONG KONG
Hong Kong Baptist Univ. Kowloon Tong Chong-sze H

Shiu Wai-chee P

INDONESIA
Institut Teknologi Bandung Bandungr Edy Soewono M

Kuntjoro Adji Sidarto H

IRELAND
National Univ. of Ireland Galway Niall Madden M,P
Trinity College Dublin Dublin Timothy G. Murphy P
University College Cork Cork Donal J. Hurley M

James J. Grannell H
University College Cork Cork Supratik Roy P
University College Dublin Belfield Ted Cox H,P

Maria G. Meehan P,P
University College Dublin Dublin Peter Duffy M

Maria G. Meehan P,P

LITHUANIA
Vilnius University Vilnius Ricardas Kudzma P

SINGAPORE
National Univ. of Singapore Singapore Victor Tan B
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INSTITUTION CITY ADVISOR A B

SOUTH AFRICA
University of Stellenbosch Matieland Jan H. Van Vuuren H P

UNITED KINGDOM
Magdalen College Oxford, England Byron W. Byrne M

Editor’s Note
For team advisors from China and Singapore, we have endeavored to list family
name first, with the help of Susanna Chang, Beloit College ’03.
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Simulating a Fountain

Lyric P. Doshi
Joseph Edgar Gonzalez
Philip B. Kidd
Maggie L. Walker Governor’s School

for Government and International Studies
Richmond, VA

Advisor: John A. Barnes

Introduction
We establish the mathematical behavior of water droplets emitted from a

fountain and apply this behavior in a computer model to predict the amount of
splash and spray produced by a fountain under given conditions. Our goal is
a control system that creates the tallest fountain possible while limiting water
spillage to a specified level.

We combine height and volume of the fountain spray, making both functions
of the speed at which water exits the fountain nozzle. We simulate water
droplets launched from the fountain, using basic physics to model the effects
of drag, wind, and gravity. The simulation tracks the flight of droplets in the
air and records their landing positions, for wind speeds from 0 to 15 m/s and
water speeds from 5 to 30 m/s. It calculates the amount of water spilled outside
of a pool around the fountain, for pool radii from 0 to 40 m.

We design an algorithm for a programmable logic controller, located inside
an anemometer, to do a table search to find allowable water speeds for given
pool radius, acceptable water spillage, and wind velocity. We test the control
system with simulation, subjecting a fountain with a 4-m pool radius to wind
speeds from 0 to 3 m/s with an allowable spillage of 5%. We also test the model
for accuracy and for sensitivity to changes in the base variables.

The UMAP Journal 23 (3) (2002) 209–219. c©Copyright 2002 by COMAP, Inc. All rights reserved.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice. Abstracting with credit is permitted, but copyrights
for components of this work owned by others than COMAP must be honored. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior permission from COMAP.
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Problem Analysis

Wind
The anemometer measures two main wind factors that affect the fountain:

speed, which affects the force exerted on the water, and direction.

Fountain
The main components of the fountain are the pool and the nozzle. The

factors associated with the pool are its radius, which remains constant within
a trial, and the acceptable level of spillage, which describes the percentage of
water that may acceptably fall outside of the fountain.

Nozzle
Major aspects of the nozzle are the radius of the opening, the angle relative

to the vertical axis (normal axis), and the spread and speed of the water passing
through it. The angle of the nozzle relative to the vertical axis determines the
initial trajectory of the water. The spread, described in standard deviations from
the angle of the nozzle, determines the extent to which the initial trajectory of
droplets differs from the angle of the nozzle. For a given water speed and
nozzle radius, the flow of water through the nozzle may be determined from

f = πr2v,

where f is flow, v is the water launch speed, and r is the radius of the nozzle.
The radius is constant, so the flow and consequent volume are functions of the
speed, the dominant controllable factor affecting the height of the stream.

Assumptions

. . . about Fountains
• The fountain is composed of a single nozzle located at the center of a circular

pool.

• The ledge of the pool is sufficiently high to collect the splatter produced by
particles impacting the surface of the water.

• Fountains with higher streams are more attractive than those with lower
streams.
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. . . about the Nozzle
• The nozzle has a fixed radius, but the speed of the water through it can be

controlled.

• The nozzle is perpendicular to the ground.

• The nozzle responds rapidly to input from the anemometer.

• The nozzle produces a normally distributed spread of droplets with a low
standard deviation.

. . . about Water Droplets
• Because the droplets are small and roughly spherical, they may be treated

as spherical.

• The radii of droplets are normally distributed.

• The density of water is unaffected by conditions and therefore remains con-
stant among and within droplets.

• The only outside forces exerted on a water droplet are gravity and the force
exerted by the surrounding air, including drag and wind.

• Acceleration due to gravity is the same for all droplets.

• The effect of air perturbations produced by droplets on other droplets is
insignificant.

• All droplets share the same constant drag coefficient.

• Droplet interactions and collisions do not increase the overall energy of the
system nor increase significantly the distance traveled by droplets.

. . . about the Anemometer and Control System
• The anemometer and control system can rapidly evaluate the wind speed,

apply a basic formula, and adjust the nozzle in changing wind conditions.

. . . about the Wind
• The wind speed is uniform regardless of altitude.

• Wind blows parallel to the ground without turbulence or irregularities.
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Basic Description of Model
Water droplets are emitted from the nozzle and follow trajectories affected

by wind and drag. The particles are tracked until they land, including recal-
culations of trajectories in case of changes in conditions, such as wind. The
landing distance from the center of the fountain is recorded. Since the fountain
pool is circular, only radial distance is important.

The model ignores wind direction (does not affect a circular fountain pool)
and turbulence (insignificant and too complicated to model accurately).

We tested droplet collisions and found that they do not greatly affect the
distance that droplets land from the center of the pool; so we ruled out incor-
porating complex interactions into the model. Further physical analysis sup-
ported that decision: Since energy and momentum are conserved, a droplet
could not travel significantly farther after a collision.

Finally, we combined fountain height and volume into speed of the water
out of the nozzle, because they are directly determined by the speed.

Our simulation tries all combinations of 11 different water speeds, from 5
to 30 m/s (at intervals of 2.5 m/s), with 16 wind speeds, from 0 to 15 m/s (at
intervals of 1 m/s). Each combination is run for five trials of 10,000 droplets.
Spillage is logged for radii from 0 to 40 m (at intervals of 0.1 m). The five trials
are then averaged to construct an entry in a three-dimensional reference table
with axes of radial distance from nozzle, wind speed, and water speed. The
control system functions by referring in the table to the current wind speed,
the fountain’s radius, and the acceptable level of spillage to identify the corre-
sponding maximum water speed.

The Underlying Mathematics
The simulation uses basic physics equations to model the flight of water

droplets through the air.
Each droplet is acted on by three forces: gravity, drag, and wind. Drag is

calculated from the following equation [Halliday et al. 1993]:

D = 1
2CρAv2,

where

D is the drag coefficient, an empirically-determined constant dependent mainly
on the shape of an object;

ρ is the density of the fluid through which the object is traveling, in this case
air;

A is the cross-sectional area of the object; and

v = |�v| is the speed of the object relative to the wind.
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The drag coefficient of a raindrop is 0.60 and the density of air is about
1.2 kg/m3 [Halliday et al. 1993]. Drag acts directly against velocity, so the
acceleration vector from drag can be found from Newton’s law �F = m�a as

�a =
−D

m

�v

|v| =
1
2CρA|�v|2

m

�v

|�v| =
1
2CρA|�v|

m
�v,

where �a is the acceleration vector and m is mass.
We factor in gravity by subtracting the acceleration g of gravity at Earth’s

surface, 9.8 m/s2, from the vertical component of the acceleration vector:

�az = −
1
2CρA|�v|

m
�vz − g.

Next, we use the acceleration to find velocity, beginning with the expression

d�v

dt
= −

1
2CρA|�v|

m
�v = �a.

To circumvent the difficulties of solving a differential equation for each compo-
nent of the velocity vector, we use Euler’s method to approximate the velocity
at a series of discrete points in time:

d�v

dt
= �a, ∆�v ≈ ∆t�a, �v1 ≈ �v0 + ∆t�a0.

We use a similar process to find the position of the droplet, resulting in

�x1 ≈ �x0 + ∆t�v0.

With ∆t = 0.001 s, error from the approximation is virtually zero.
Now that we have equations for describing the droplet in flight, we gener-

ate its initial position and velocity. First, we randomly select a value z from a
standard Gaussian (normal) distribution (mean 0, standard deviation 1). We
calculate the angle from a set mean µ and standard deviation σ of the distribu-
tion of possible angles as

φ = zσ + µ.

We randomly select another angle θ between 0 and 2π radians to be the
angle between the velocity vector and the x-axis.

Thus, the initial velocity vector of the droplet in spherical coordinates is
(ρ, θ, φ), where ρ is the magnitude of the velocity. Conversion to rectangular
coordinates yields (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ).

We also randomly select a starting location within the nozzle (whose diam-
eter is 1 cm) and create a radius for the droplet using a similar sampling from
a normal distribution. The mass of the droplet is then

m = 4
3πr3ρ,
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where ρ is the density of water, 998.2 kg/m3 at 20◦ C [Lide 1995]. In the basic
simulation, the φ distribution has a mean of 0 and a standard deviation of π/60
radians, and the radius distribution has a mean of 0.0015 m and a standard
deviation of 0.0001 m.

In the basic simulation, the nozzle points straight up; however, we also
test the effect of tilting the nozzle into the wind. The program first rotates the
nozzle a set angle away from the z-axis (π/18, π/9, or π/6 radians). The initial
position and velocity vectors are changed by the formula for rotating a point t
radians about the x-axis, from z towards negative y [Dollins 2001]:

x′

y′

z′


 =


1 0 0

0 cos t − sin t
0 sin t cos t




x

y
z


 .

Next, the program rotates the nozzle around the z-axis to point directly
away from the wind (in spherical coordinates, the θ of the nozzle is equal to
that of the wind vector). The formula to rotate a point t radians about the z-axis,
from x towards y [Dollins 2001] is

x′

y′

z′


 =


cos t − sin t 0

sin t cos t 0
1 0 0




x

y
z


 .

Design of Program
We developed a program to simulate the fountain. The program compo-

nent Simulator.class manages interactions among the other components of
the program. Particle.class describes a water droplet in terms of position,
velocity, radius, and mass. Vector3D.class creates and performs functions
with vectors, including setting vector components, adding and subtracting
vectors, multiplying vectors by scalars, finding the angle between vectors, and
finding the magnitude of a vector.

Emitter.class creates a fountain by spraying droplets. It considers the
nozzle radius, direction, and angle orientations and generates launch angle φ
and launch location on the nozzle according to the prescribed distributions.

Launch speed is determined by Anemometer.class, which takes the wind-
speed reading from the anemometer and sends that plus fountain radius and
tolerable spillage percentage to FindingVelocity.class. This latter class does
a table lookup and returns the maximum droplet speed for the spillage per-
centage. Anemometer.class then sets the droplet emission speed.

Once a droplet is emitted, its trajectory is updated every iteration using
Physics.class, which checks Wind.class (which contains a vector of the
current wind) in each iteration in calculating an updated trajectory. Then
Physics.class iterates through the entire collection of particles and computes
new velocities and positions based on the forces acting on them.
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The Analyzer.class checks to see if any particles have hit the ground; their
locations are recorded and they are removed from consideration. It then relays
this information back to Simulator.class, where it is written to disk.

Results
A program run takes 5 min to model 2 sec of spray (10,000 droplets).
Scatterplots showing where droplets land appear uniform and radially sym-

metric (Figure 1); a side profile of the points appears uniformly distributed
along a line and bilaterally symmetric (Figure 2).

Figure 1. Fountain from overhead:
launch speed 10 m/s, no wind.

Figure 2. Fountain from the side: launch
speed 10 m/s, no wind.

We then introduced wind in the positive x-direction. As expected, the
landing plot and the side profile plot are skewed horizontally (Figure 3).

Figure 3. Fountain from the side: launch speed 10 m/s, wind of 5 m/s

Figures 1–3 conform very well to the actual appearance of fountains, indi-
cating that our model creates an accurate portrait of a real fountain.
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We used a pool radius of 4 m and an acceptable spillage of 5% to generate a
table of water speeds. We then simulated control of the fountain by a theoretical
anemometer using the table. The anemometer was subjected to sinusoidal wind
ranging from 0 to 3 m/s. There was 7.6% spillage, a success since the extra loss
above 5% is from droplets carried farther by an increase of wind after launch.

Analysis of Results
We tested the model for accuracy and sensitivity. We did some useful analy-

sis of the physics of the model by creating a miniature version of the simulation
on an Excel spreadsheet to track the trajectory of a single particle.

Our first test was of the accuracy of the Euler’s method approximation. Con-
tinuous equations for the motion of a flying droplet can be easily developed if
drag and wind are ignored, so we chose this scenario to test our approximation.
We considered a particle with a speed of 10 m/s and a launch angle of π/60
radians. We calculated its trajectory using

x = (vi sin φ)t, y = (vi cos φ)t − 1
2gt2,

where

x is the position along the horizontal axis,

y is the position along the vertical axis,

vi is the magnitude of the initial velocity,

t is time,

g is the acceleration of gravity, and

φ is the launch angle, measured from the vertical axis towards the horizontal.

We compared that trajectory with the one calculated Euler’s method. The
two were indistinguishable, showing that the Euler’s method approximation
results in virtually no error.

We also used the spreadsheet model to examine the effects of wind and drag
on individual particle trajectories. Figure 4 compares trajectories of particles
with and without drag; and Figure 5 compares the trajectories of two droplets,
one with a 5 m/s wind and the other with no wind. Drag has a major effect
and cannot be ignored.

Sensitivity
We tested the effect of changing some base factors in the model, using an

initial water speed of 10 m/s. Fountain pool radii were chosen to highlight
general trends in the data, either stability or sensitivity.
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Figure 4. Droplet trajectories with and without drag.

Figure 5. Droplet trajectories with and without wind.



218 The UMAP Journal 23.3 (2002)

Nozzle angle
We ran the simulation at a wind speed of 5 m/s with the nozzle tilted 0,

π/18, π/9, or π/6 radians in the same direction as the wind vector. For a pool
with a radius of 6 m, no water fell outside when the nozzle was pointed straight
up and virtually none with a tilt of π/18 radians. With a tilt of π/9 radians, 47%
of the water fell outside; for π/6 radians, 99.9% fell outside. The data suggest
that tilting the nozzle into the wind could be used to prevent spillage.

Nozzle radius
With no wind and a pool radius of 2 m, virtually no water was spilled for

nozzle radii of 0.25, 0.5, or 1 cm. With a 5 m/s wind, virtually all of the water
was spilled at all three radii. The radius of the nozzle thus has virtually no
effect on the percentage spilled, supporting our decision to use a percentage
measure so as to allow the model to apply to fountains with different flow rates.

Water droplet size
In a fountain with a pool radius of 3.5 m, droplet radii of 0.75, 1.5, and 3 mm

resulted in 94%, 53%, and 6% percent spillage. The sensitivity to droplet radius
is a reflection of real-world behavior rather than a weakness of the model: Small
particles, because of their low mass, are greatly affected by wind and drag.

Variability of launch angle
With a 3.5 m pool, a 5 m/s wind produced 15%, 45%, and 49% spillage for

standard deviations ofπ/180, π/20, and π/12 radians. Thus, results are sensi-
tive to the launch angles of the droplets, dictating that the angle be measured
carefully before the model is used.

Strengths
As intended, the model controls the fountain height and volume according

to conditions. It creates the tallest and therefore most interesting fountain
possible while maintaining the set spillage level. At low spillage-level settings,
no passersby get drenched nor is much water wasted.

The model is easy to adapt by changing parameters, including nozzle size,
mean droplet size, mean launch angle and standard deviation, and mean
droplet size and standard deviation.

Graphs of the droplets in midair show that the programmed fountain accu-
rately depicts a real fountain.

Use of a table means that the radius or spill percentage can be changed
without requiring recalculations. Since the control system does not do any
calculation, it can respond almost instantaneously.
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Weaknesses
A major problem occurs when wind speed increases quickly: Water droplets

already emitted cannot be slowed down and will be carried away on the wind.
However, any fountain system will suffer from this dilemma. To give the
fountain a small buffer, the radius entered into the fountain control system can
be set lower than the actual radius of the pool.

We model the wind as moving parallel to the ground with uniform speed.
Real wind may vary with altitude and may blow from above or below the
droplets. We also neglect wind turbulence.

We ignore droplet collisions. Some droplets may combine and then separate,
causing slightly more splatter or mist; or the droplets’ collisions may cause more
of them to fall short of their expected trajectories, reducing spillage.
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Introduction
We are presented with a fountain in the center of a large plaza, which we

wish to be as attractive as possible but not to splash passersby on windy days.
Our task is to design an algorithm that controls the flow rate of the fountain,
given input from a nearby anemometer.

In calm weather, the fountain sprays out water at a steady rate. When the
wind picks up, the flow should be attenuated so as to keep the water within the
fountain’s pool; in this way, we strike a balance between esthetics and comfort.

We consider the water stream from the fountain as a collection of different-
sized droplets that initially leave the fountain nozzle in the shape of a perfect
cylinder. This cylinder is broken into its component droplets by the wind, with
smaller droplets carried farther. In the reference frame of the air, a droplet is
moving through stationary air and experiencing a drag force as a result; since
the air is moving with a constant velocity relative to the fountain, the force on
the droplet is the same in either frame of reference.

Modeling this interaction as laminar flow, we arrive at equations for the
drag forces. From these equations, we derive the acceleration of the droplet,
which we integrate to find the equations of motion for the droplet. These allow
us to find the time when the droplet hits the ground and—assuming that it
lands at the very edge of the pool—the time when it reaches its maximum
range from the horizontal position equation. Equating these and solving the
initial flow rate, we arrive at an equation for the optimal flow rate at a given
constant wind speed. Since the wind speeds are not constant, the algorithm
must make its best prediction of wind speed and use current and previous wind
speed measurements to damp out transient variations.
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Our final solution is an algorithm that takes as its input a series of wind
speed measurements and determines in real time the optimal flow rate to max-
imize the attractiveness of the fountain while avoiding splashing passersby
excessively. Each iteration, it adds an inputted wind speed to a buffer of pre-
vious measurements. If the wind speed is increasing sufficiently, the last 0.5 s
of the buffer are considered; otherwise, the last 1 s is. The algorithm computes
a weighted average of these wind speeds, weighting the most recent value
slightly more than the oldest value considered. It uses this weighted veloc-
ity average in the equation that predicts the optimal flow rate under constant
wind. The result is the optimal flow rate under variable wind, knowing only
current and previous wind speeds.

A list of relevant variables, constants, and parameters is in Table 1.

Table 1.

Relevant constants, variables, and parameters.

Physical constants Description Value

ηa Viscosity of air 1.849 × 10−5 kg/m·s
[Lide 1999]

ρw Density of water 1000 kg/m3

ρa Density of air 1.2 × 10−6 kg/m3

Situational constants Units

A Cross-sectional area of fountain nozzle m2

fmax Maximum flow rate of fountain’s pump m3/s
Rp Radius of fountain pool m
r Radius of smallest uncomfortable water m

droplet
dt Sampling interval of anemometer s
k k = 9ηa/2ρwr2

Situational variables

va Instantaneous wind speed m/s
f Instantaneous flow rate of water m3/s

from the fountain
n n = g/k + f/A m/s

Dynamic variables

x(t), y(t) Droplet’s horizontal and vertical positions m
vx(t), vy(t) Droplet’s horizontal and vertical speeds m/s
ax(t), ay(t) Droplet’s horizontal and vertical accelerations m/s2

Situational parameters

τd Default sample wind velocity buffer time s
τi Buffer time for quickly increasing sample s

wind velocities
K Weight constant dimensionless
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Assumptions
• Passersby find a higher spray more attractive.

• Avoiding discomfort is more important to passersby than the attractiveness
of the fountain.

• The water stream can be considered a collection of spherical droplets, each
of which has no initial horizontal component of velocity.

• Every possible size of sufficiently small water droplet is represented in the
water stream in significant numbers.

• Water droplets remain spherical.

• The interaction between the water droplets and wind can be described as
non-turbulent, or “laminar,” flow.

• There exists a minimum uncomfortable water droplet size; passersby find it
acceptable to be hit by any droplets below this size but by none above.

• When the wind enters the plaza, its velocity is entirely horizontal.

• The wind speed is the same throughout the plaza at any given time.

• The pool and the area around it are radially symmetric, so there is no pre-
ferred radial direction.

• We can neglect any buoyant force on the water due to the air, since the error
introduced by this approximation is equal to the ratio of densities of the
fluids involved, on the order of 10−3, which is negligible.

• The anemometer reports wind speeds at discrete time intervals dt.

Analysis of the Problem
For a water stream viewed as a collection of small water droplets blown

from a core stream, the interaction between the droplets and the air moving
past them can best be described in the inertial reference frame of the moving
air. In this frame, the air is stationary while the droplet moves horizontally
through the air with a speed equal to the relative speed of the droplet and
wind, vr = va − vx. In the vertical direction, vr = vy , since the wind blows
horizontally.

In the air’s frame of reference, the water droplet experiences a drag force
opposing vr. Assuming that the air moves at a constant velocity, this force
is the same in both frames of reference. In the frame of the fountain, then,
the droplet is being blown in the direction of the wind. The smaller water
droplets are carried farther, so we need only consider the motion of the smallest
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uncomfortable water droplets, knowing that bigger droplets do not travel as
far.

The water droplet initially has a vertical velocity vy(0) that is directly related
to the flow rate of water through the nozzle of the fountain. This initial vertical
velocity component can be controlled by changing the flow rate. The droplet’s
motion causes vertical air resistance, slowing the droplet and affecting how
long (tw) the droplet is in the air.

Since the vertical and horizontal components of a water droplet’s motion
are independent, tw is determined solely by the vertical motion. Knowing
this time allows us to find the horizontal distance traveled, which we wish to
constrain to the radius of the pool.

When the wind is variable, however, we cannot determine exactly the ideal
flow rate for any given time. We must instead act on the current reading but
also rely on previous measurements of wind speed in order to restrain the
model from reacting too severely to wind fluctuations. We need to react faster
to increases in wind speed, since they result in splashing which is weighted
more heavily.

Design of the Model
For our initial model, we assume that va is constant for time intervals on

the order of tw, so that any given droplet experiences a constant wind speed.
We model the water stream as a collection of droplets that are initially co-

hesive but are carried away at varying velocities by the wind. The distances
that they travel depend on the wind speed va and the initial vertical velocity of
the water stream through the nozzle, vy(0). Since the amount of water flowing
through the nozzle per unit time is f = vy(0)A, we have vy(0) = f/A. The
dynamics of the system, then, is fully determined by f and va. First, we find
the equations of motion for the droplet.

Equations of Motion for a Droplet
For laminar flow, a spherical particle of radius r traveling with speed v

through a fluid medium of viscosity η experiences a drag force FD such that

FD = (6πηr)v [Winters 2002].

Since a spherical water droplet has a mass given by

m = ρw

(
4
3 πr3

)
,

the acceleration felt by the droplet is given by Newton’s Second Law as the
total force over mass. Since there are no other forces acting in the horizontal
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direction, the horizontal acceleration ax is given by:

ax(t) =
d2x

dt2
=
(

9ηa

2ρwr2

)
vr = k(va − vx), (1)

where k = 9ηa/2ρwr2.
The droplet experiences both air drag and gravity in the vertical direction,

so the vertical acceleration is

ay(t) = −
[(

9ηa

2ρwr2

)
vy + g

]
= −k

(
vy +

g

k

)
.

With constant va, we use separation of variables and integrate to find vx(t) and
vy(t), using the facts that vx(0) = 0 and vy(0) = f/A. The results are

vx(t) = va

(
1 − e−kt

)
, vy(t) = ne−kt − g

k
,

where n = g/k + f/A.
Integrating again, and using x(0) = y(0) = 0, we have

x(t) =
va

k

(
kt + e−kt − 1

)
, y(t) =

1
k

(
n
(
1 − e−kt

)− gt

)
.

Determining the Flow Rate
Because f is the only parameter that the algorithm modifies, we wish to find

the flow rate that would restrict the smallest uncomfortable water droplets to
ranges within Rp, so that they would land in the fountain’s pool.

After a time tw, the droplet has fallen back to the ground. Thus, y(tw) = 0.
This equation is too difficult to solve exactly, so we use the series expansion for
e−kt and truncate after the quadratic term: e−kt ≈ 1 − kt + (kt)2/2. Solving
y(tw) = 0, we find

tw ≈ 2
k

(
1 − g

nk

)
.

We know that the maximum horizontal distance x(tw) must be less than or
equal to Rp, with equality holding for the smallest uncomfortable droplet. For
that case, using the same expansion for e−kt as above,

Rp = x(tw) ≈ va

k

(
ktw − 1 + 1 − ktw +

(ktw)2

2

)
=

vak

2
t2w.

Solving for tw and equating it to the earlier expression for tw, we get√
2Rp

vak
= tw =

2
k

(
1 − g

nk

)
.
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Recalling that in this equality only n is a function of f , we substitute for n and
solve for f . The result is

f(va) =
Ag√

2vak

Rp
− k

. (2)

As va → kRp/2, this equation becomes singular (see Figure 2). At lower values
of va, it gives a negative flow rate. These wind speeds are very small; at such
speeds, the droplets would not be deflected significantly by the wind. Since
(2) assumes that the flow rate can be made arbitrarily high, it is unrealistic and
invalid in application. To make the model more reasonable, we modify (2) to
include the maximum flow rate achievable by the pump, fmax:

F (va) =




min




Ag√
2vak

Rp
− k

, fmax


 , va > kRp/2;

fmax, va ≤ kRp/2.

(3)

An algorithm can use the given constants and a suitable minimal droplet
size to determine the appropriate flow rate for a measured va. However, (3)
assumes that the wind speed is constant over the time scale tw for any given
droplet. A more realistic model must take into account variable wind speed.

Variable Wind Speed
When wind speed varies with time, the physical reasoning used above be-

comes invalid, since the relative velocity of the reference frames is no longer con-
stant. Mathematically, this is manifested in the equation for velocity-dependent
horizontal acceleration; integrating is now not so simple, and we must resort to
numerical means to find the equations of motion. Additionally, the algorithm
can rely only on past and present wind data to find the appropriate flow rate.
Our model needs to incorporate these wind data to make a reasonable predic-
tion of the wind’s velocity over the next tw and determine an appropriate flow
rate using (3).

A gust is defined to be a sudden wind speed increase on the order 5 m/s
that lasts for no more than 20 s; a squall is a similarly sudden wind speed
increase that lasts longer [Weather Glossary 2002]. Our model should account
for gusts and squalls, as well as for “reverse” gusts and squalls, in which the
wind speed suddenly decreases. Since wind speeds can change drastically and
unpredictably over the flight time of a droplet, our model will behave badly
at times and there is no way to completely avoid this—only to minimize its
effects.
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The model’s reaction to wind speed is not fully manifested until the droplet
lands, after a time tw (approximately 2 s). By the time our model has reacted to a
gust or reverse gust, therefore, the wind speed has stopped changing. Without
some type of buffer, in a gust our model would react by suddenly dropping
flow rate as the wind peaked and then increasing it again as the wind decreased;
the fountain would virtually cut off for the duration of any gust, which would
release less water and thus seem very unattractive to passersby. Additionally,
the water released just before the onset of the gust would be airborne as the
wind speed picked up, splashing passersby regardless of any reaction by our
model.

We exhibit an algorithm for analyzing wind data that makes use of (3).
Because velocity now varies within times on the order of tw, we do not want to
directly input the current wind speed but rather a buffered value, so that the
model does not react too sharply to transient wind changes. The model should
react more quickly to sudden increases in wind than to decreases, because
increases cause splashing, which we weight more heavily than attractiveness.

The model, therefore, has two separate velocity buffer times: one, τd, the
default, and another, τi, for when the wind increases drastically. We also weight
more-recent values in the buffer more heavily, since we want the model to react
promptly to wind speed changes but not to overreact. We weight each value
in the velocity buffer with a constant value K plus a weight proportional to
its age: Less-recent velocities are considered but given less weight than more
recent ones. The weight of the oldest value in the buffer is K and that of the
most recent is K+1, with a linear increase between the two. With the constraint
that the weights are normalized (i.e., they sum to 1), the equation for the ith
weight factor is

wi =

(
K +

i

τ − dt

)
dt(

K +
1
2

)
τ

.

The speeds are multiplied by their respective normalized weights and summed.
This sum, v∗, is then used in (3) to find the appropriate flow rate for the fountain
at a given time. We use τi rather than τd when the wind speed increases suf-
ficiently over a recent interval, but not when it increases slightly or fluctuates
rapidly. We switch from τd to τi whenever the wind speed increases over two
successive 0.2 s intervals and by a total of at least 1 m/s over the entire 0.4 s
interval.

Our algorithm follows the flowchart in Figure 1 in computing the current
flow rate. We wrote a C++ program to implement this algorithm, the code for
which is included in an appendix. [EDITOR’S NOTE: We omit the code.]
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Figure 1. Flow chart for computing flow rate with variable wind speed.

Testing and Sensitivity Analysis

Sensitivity of Flow Equation
In our equation for flow rate, two variables can change: minimal droplet size

and wind speed. While the minimal droplet size will not change dynamically,
its value is a subjective choice that must be made by the owner of the fountain.
The wind speed, however, will change dynamically throughout the problem,
and the purpose of our model is to react to these changes.

We examined (3) for varying minimal drop sizes (Figure 2) and wind speeds
(Figure 3). We used a fountain with nozzle radius 1 cm, maximum flow rate
7.5 L/s, and pool radius 1.2 m. (This maximum flow rate is chosen for illustra-
tive purposes and is not reasonable for such a small fountain.)

Figure 2. Graphs of flow rate f vs. wind speed va for several values of radius r of smallest
uncomfortable droplet.
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At any wind speed, as the acceptable droplet radius decreases, the flow rate
decreases. At higher wind speeds, this difference is less pronounced; but at
lower speeds, acceptable size has a significant impact on the flow rate. At very
low wind speeds, the fountain cannot shoot the droplets high enough to allow
the wind to carry them outside the pool, regardless of drop size. Our cutoff,
fmax, reflects that the fountain pump cannot generate the extreme flow needed
to get the droplets to the edge of the pool in these conditions.

Figure 3. Graphs of flow rate f vs. radius r of smallest uncomfortable droplet for several values
of wind speed va.

For any droplet size, as the wind speed increases, the flow rate must decrease
to keep the droplets in the pool. For large r, a change in wind speed requires a
greater absolute change in flow rate than for small r. For very small droplets,
the drag force dominates the force of gravity, and an increase in flow also
increases the drag force to such an extent that the particle spends no more
time in the air. This behavior is readily apparent in (1) as r approaches zero.
These extremely small values of r, though, describe droplets that are unlikely
to discomfort passersby and thus are not significant to our model.

Sensitivity of Flow Algorithm
The results of the algorithm depend on the parameters τi, τd, and K, which

determine the size of the buffer and weights of the velocities in the buffer. To
test sensitivity to these parameters and to find reasonable values for them, we
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created the set of simulated wind speeds shown in Figure 4, including small
random variations, on which to test our algorithm. This data set does not reflect
typical wind patterns but includes a variety of extreme conditions.

Figure 4. Simulation of wind speed for 3 min.

We wish to create a quantitative estimate of the deviation of our flow al-
gorithm from ideal performance and then test the algorithm with different
combinations of parameters to find the set that produces the smallest deviation
under simulated wind conditions.

To measure how “bad” a set of flow choices is, we consider only the droplets
that fall outside the pool. The “badness” is the sum over the run of the distances
outside the pool at which droplets land.

To determine the distance, we need to know how droplets move through
the air in varying wind speeds. Describing this motion in closed form is math-
ematically impossible without continuous wind data, so we approximate the
equations of motion with an iterative process.

Since the time that a particle spends in the air, tw, is not affected by the wind
speed, we know tw for each particle. We step through the time tw in intervals
of dt, computing the particle’s acceleration, velocity, and position as

ai = k(va,i − vi), a0 = kva,0;
vi = vi−1 + ai−1dt, v0 = 0;
xi = xi−1 + vidt, x0 = 0.

When we reach tw, the droplet has hit the ground, and we compare its horizontal
position to the radius of the pool. We do this for each droplet, keeping track of
both the largest absolute difference and the average difference.

To test the flow algorithm, we ran our program on the flow data with each
combination of parameters. The parameter values that produced the least
deviation were τi = 0.5, τd = 1, and K = 10. These values imply that only
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fairly recent wind speed measurements should be held in the buffer, with most
recent velocity having a weight of (K + 1)/K = 1.1 relative to the oldest.
Lowering K beyond this value increases the deviation from the ideal, while
increasing it further makes no difference. Similarly, increasing τi or τd increases
the deviation, because the algorithm cannot respond quickly to changes in wind
speed. Decreasing τi below 0.5 makes no difference, while decreasing τd would
make the model too sensitive to short fluctuations in wind speed.

Figure 5. Range of droplets over the simulation overlaid with scaled wind speeds.

Justification

Validity of the Laminar Flow Assumption
Our model is based on a drag force proportional to vr, which is not nec-

essarily correct. For higher speeds or large droplet sizes, the drag becomes
proportional to v2

r . We thus need to determine whether reasonable physical
scenarios allow us to model the drag force as proportional to vr and not v2

r .
For a sphere of radius r moving through the air with speed vr, the Reynolds

number R is defined to be
R =

2ρavr

ηa
r [Winters 2002].

When R < 103, there is little turbulence and laminar flow dominates, so
air resistance is roughly proportional to vr. If R > 103, the flow is turbulent
and the drag force is proportional to v2

r [Winters 2002]. Using a physically
reasonable relative speed of 4.5 m/s (corresponding to a wind speed of roughly
10 mph), we obtain R = (5.8× 105)r, which gives predominantly laminar flow
when r < 1.7 mm. Because water droplets of diameter greater than 3 mm are
uncomfortable, these provide an upper limit on the droplet sizes to consider.
Because these smaller droplets bound the larger droplets in how far they go
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from the fountain (see below), all of our analysis is concerned with droplets
whose sizes are within the allowed range for laminar flow.

Bounding the Droplet Range
For either laminar or turbulent flow, the acceleration due to drag scales with

F/m ∝ r−n, where 1 ≤ n ≤ 2. Larger droplets therefore experience a lower
horizontal acceleration due to drag, while acceleration in the vertical direction
is dominated by gravity (k < 0.1g); so the time that a particle spends in the air
is roughly the same for droplets of varying radius. The heavier droplets have
less horizontal acceleration, so they travel a shorter horizontal distance in the
same amount of time than smaller droplets. The ranges are, therefore, shorter
for larger droplets, so we can bound all uncomfortably-sized droplets by the
range of the smallest such droplet.

Initial Shape of the Water Stream
We assume that the water coming out of the fountain nozzle has no initial

horizontal velocity; that is, the stream is a perfect cylinder with the same radius
as the nozzle. In fact, the stream is closer to the shape of a steep cone and the
droplets have some horizontal velocity. In the absence of wind, this assumption
has a significant impact on where the droplets land, since without wind the
algorithm predicts a horizontal range of zero. However, in these cases, the
flow rate is bounded by fmax regardless of initial velocity, so the natural spread
of the fountain is irrelevant. In higher wind, the initial horizontal velocity
is quickly dominated by the acceleration due to the wind and thus makes a
negligible contribution to the total range.

Exclusively Horizontal Wind
We assume that the wind is exclusively horizontal. Since the anemometer

measures only horizontal wind speed, that is the only component that we can
consider in our model. Additionally, the buildings around the plaza would
tend to act as a wind tunnel and channel the wind horizontally.

Quadratic Approximation of e−kt

Because the series for e−kt is alternating, the error from truncating after the
second term is no greater than the third term, which is (kt)3/6. The relative error
is (kt)3/6e−kt ≈ 0.001 for reasonable values of k and t, so our approximation
introduces very little error.
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Conclusions
Our final solution is an algorithm that takes as its input a series of wind

speed measurements and determines in real-time the optimal flow rate to max-
imize the attractiveness of the fountain while avoiding splashing passersby
excessively. It takes an inputted wind speed and adds it to a buffer of previous
measurements. If the wind speed is increasing sufficiently, the last 0.5 s of the
buffer are considered; otherwise, the last 1 s is. The algorithm computes a
weighted average of these wind speeds, weighting the most recent value 10%
more heavily than the oldest value considered. It then takes this weighted aver-
age and uses it in the equation that predicts the optimal flow rate under constant
wind. The result is the optimal flow rate under variable wind, knowing only
current and previous wind speeds.

Strengths and Weaknesses

Strengths
• Given reasonable values for the characteristics of the fountain and for wind

behavior, our model returns values that satisfy the goal of maintaining an
attractive fountain without excessively splashing passersby.

• The model can compute optimal flow rates in real time. Running one cycle
of the algorithm takes a time on the order of 0.001 s, so the fountain’s pump
could be adjusted as fast as physically possible.

• The values for the parameters that determine the behavior of the algorithm,
τd, τi, and K, are not arbitrary but instead are the values that perform best
under simulation.

• Our algorithm is very robust; it works well under extreme conditions and
can be readily modified for different situations or fountains.

Weaknesses
• A primary assumption is that the droplets coming from the fountain nozzle

have no horizontal velocity. In reality, the nozzle sprays a cone of water,
rather than a perfect cylinder; but this difference does not have a significant
impact on the results.

• Another important assumption is laminar flow. The water droplets are of a
size to experience a combination of laminar and turbulent flow, but describ-
ing such a combination of regimes is mathematically difficult and is known
only through experimentation. A more rigorous representation of the drag
force would increase the accuracy of our simulation, but doing so would
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markedly increase the complexity of the algorithm and thus make real-time
computation more difficult.

• We have ignored the abundances of droplet sizes in considering discom-
fort. If one droplet would spray passersby, we assume that enough droplets
would spray passersby to make them uncomfortable. In fact, it is only sig-
nificant numbers of droplets that discomfort passersby; but we do not know
how many droplets would be released nor how many would be needed to
be discomforting.
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Introduction
Given anemometer readings from a nearby building, the task is to devise

an algorithm that controls the height of a fountain in an open square. Our
mission is to keep passersby dry and yet have the fountain look as impressive
as possible. With ever-changing winds, we must devise a scheme to regulate
the flow of water through the fountain to ensure that the bulk of the water shot
into the air falls back to the ground within the fountain basin boundary.

Our model considers many factors and is divided into five basic parts:

• The conversion of wind speed on top of the building to wind speed at ground
level based on height and the force of drag.

• The determination of initial velocity, maximum height, and time of flight
from fountain nozzle characteristics, using Bernoulli’s equation and the rate
of flow equation of continuity.

• The assessment of the displacement effects of the wind on the water’s ascent.

• The assessment of the displacement effects of the wind on the water’s de-
scent.

• The calculation of the optimal flow rate by comparing the water’s total hor-
izontal displacement to the radius of the fountain basin.

After creating this model in a MathCAD worksheet, we solved every func-
tion involved in this model as a function of the water flow rate. This worksheet
takes the input from several variables such as the nozzle radius, the maximum
flow rate the fountain can handle, the dimensions of the building on which the
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anemometer is placed, and the dimensions of the fountain. From the inputs, the
model finds the maximum flow rate that keeps the water in the fountain basin.
As wind speed and direction vary, the model reacts to produce the optimal flow
rate.

Testing the model shows that while the results are reasonable, the main
source of error results from our drag calculations due to the interaction between
wind and the buildings. To solve this error, measurements should be taken at
both the building roof and the fountain itself. Although future work would
resolve this issue and improve the model, our current model still provides
realistic results.

We provide in Table 1 a list of symbols used.

Problem Approach
We break the overall problem down into several smaller pieces, solve the

pieces separately, and put the pieces together to find the overall solution.

• How the wind is affected as it flows around the buildings.

– How the wind varies with height off the ground.

– How the buildings slow the wind.

• How the wind affects the water from the fountain.

– How the wind affects the water on the way up.

– How the wind affects the water on the way down.

– How to contain that total displacement within the basin.

Assumptions

Overall Assumptions
• The plaza has a fountain in the center with four surrounding buildings.

Other arrangements can be handled with slight modifications.

• The buildings are rectangular and have the same dimensions. Most build-
ings are rectangular; for same-size buildings, we can use a single constant
drag coefficient.

• The distances from each building to the fountain are the same, so each
building has the same effect on the fountain water.

• The acceptable splash area is the radius of the fountain basin. A basin
surrounds the water jet, and people walking outside the fountain do not
want to get wet.
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Table 1.

Table of symbols.

Symbol Meaning (units)

R rate of flow of the fountain (m3/s)
Re Reynolds number
υ flow speed (m/s)
d a relevant dimension (m)
ν kinematic viscosity of the fluid

F�D
force of drag (N)

ρ density of the wind (kg/m3)
vbh speed of the wind before the building at height h (m/s)
Cd drag coefficient
A surface area interacting with the wind (m2)
vz wind speed measured by the anemometer at the height z (m)
h height above ground (variable) (m)
z height of the building (m)
α terrain constant number = 0.105

hmax maximum height that the water reaches, a function of R (m)
Ki kinetic energy of the wind-building system before the wind hits the building (J)
Kf kinetic energy of the wind-building system after the wind passes the building (J)

WNC work done by nonconservative forces, drag of the building times the length
over which it is applied (J)

�d distance over which drag acts, length and width of the building (m)
b width or half the length of one of the buildings (m)

vh speed of the wind after it passes the building at a height h (m/s)
m mass of the air that interacts with the building in 1 s if the speed vbh was

constant over the face of the building (kg)
θ angle at which the wind strikes the building (◦)

Ap cross-sectional area of the pipe at the nozzle tip (m2)
vf speed of the water as it leaves the nozzle (m/s)
rp radius of the pipe at the nozzle tip (m)
g acceleration due to gravity, 9.803 m/s2

rc radius of the column of water at a time t after leaving the nozzle with a rate of
flow R (m)

P pressure on the water caused by the wind (N/s2)
Ac surface area of the column of ascending water(m2)
ρ density of air (kg/m3)

mT total mass of the water in the air at a flow rate R (kg)
TTotal total time that the water spends in the air with a flow rate R (s)
ρwater density of water (kg/m3)

ac horizontal acceleration of the water in the column with a flow rate of R and a
wind of speed vh (m/s2)

Fc force on the column of water from the wind of speed vh (N)
xc horizontal displacement of the ascending column of water with a flow rate R and

wind speed vh at a time t (m)
PD pressure on a drop of water from wind of speed vh (N/m2)
Fd force on the drop from wind of speed vh (N))
Ad area of a drop (m2)
md mass of a drop of water (kg)
ad horizontal acceleration of the drop of water as a function of rate of flow R and time

in air t (m/s2)
aavg average horizontal acceleration of a drop during its descent at a rate of flow R

and wind of speed vh (m/s2)
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Figure 1. The fountain in the center of four buildings.

• The fountain does not squirt water higher than the buildings, although
shooting water over the roofs would indeed be spectacular.

• The fountain shoots water straight into the air. This is important for our
model so that we can predict how the water will flow up, how it will fall,
and where it will fall.

• The fountain nozzle creates a single sustained stream of water. This as-
sumption enables us to neglect drag as the water reaches its peak height.
Furthermore, most fountains have a continuous flow of water.

Wind

• The pertinent wind flow is around the sides of the buildings, not over
them. Since the fountain does not exceed the height of the buildings, it
does not interact with wind that passes over the tops of the buildings. This
assumption is important in calculating the drag caused by the buildings.

• The flow of the wind continues in the same direction across the entire
plaza. The wind flows through the plaza in a constant direction, goes around
obstacles, and resumes the same direction of motion. The wind does not get
stuck in the plaza nor react to cars, people, doors, or windows in the plaza.

• Wakes caused by buildings are not factors. The wake that results when
wind hits a building and goes around it does not change the velocity after
the wake, so the wake force does not influence the wind’s speed or direction.

• The fountain is not in the wake of the buildings. With this assumption,
there is no need to worry about wake in our model. This is important because
wake is too complex to be modeled.

• The change in wind velocity is due solely to drag. The reason that the
wind decreases before and after hitting the building is because of drag. This
assumption allows us to use the law of conservation of energy to predict the
change in velocity.
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• The anemometer measures wind speed and direction at the top of the
building before any effects of drag. The anemometer must be at the top of
the building on the windward side, elevated above the height of the building
so as not to measure any of the effects of the building. To simplify, we assume
that it is at the height of the building.

• The wind pattern is the same across the entire plaza as measured at the
anemometer. If the pattern changed, the anemometer reading would be
invalid.

• The fountain is in a city or urban area. This assumption allows us to
determine the effect of the ground on wind speed at a given height.

• The drag applied to wind at a certain height is equal to the average effect
of drag, that is, to the total drag caused by the building at the velocity at that
height divided by the height of the building. This is slightly inaccurate but
still produces a reasonable model.

Water Height
• Water has laminar flow. Water has a constant velocity at any fixed point,

regardless of the time. A fluid may actually have various internal flows that
complicate the model, but we consider the flow as the jet of water ascends
to be constant so that we can model it as an ideal fluid.

• Water has nonviscous flow. The water experiences no viscous drag force in
the pipe or in the air. The outer edge of the column of water actually interacts
with the air and loses some energy to due to the viscosity of both fluids; but
since air and water both have a low viscosity, this loss is negligible.

• Water is incompressible. The density of water is constant and does not
change as the water moves up into the air and back down again.

Water Movement Sideways
• The water jet upward flows as a cylinder. Since the surface tension of the

water holds it together unless it is acted upon by a force, the water should
retain the dimensions of the nozzle from which it emerges.

• The pressure of the wind is a force per area on the water column and on
water drops. Wind and water are both fluids, so the interaction between
them is a complex relationship of their viscosities; however, we also know
that wind creates a pressure difference that we can model. We model the force
on the water as the pressure caused by a certain velocity of wind multiplied
by the surface area of the body of water.
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• The largest particle of water that we want to contain is the size of average
drop of water 0.05 mL. The column of water breaks into smaller particles
at the peak of its ascent, and they descend individually. We estimate that
particles smaller than that size would be acceptable to bystanders hit by
them. Any larger particle would have more mass, hence a higher mass-to-
surface-area ratio, so the pressure could not push it as far.

• Water drop behaves as a rigid body. Since a drop is small, internal currents
have very little effect. Additionally, the pressure acts over the entire surface
area of the drop and should accelerate it as a single body.

Model Design

Effects of Buildings on Wind Velocity
Because buildings surround the fountain, the wind velocity at the anemome-

ter on top of a building is different from that at fountain level. Buildings disrupt
wind currents, slow the wind, and change its direction [Liu 1991, 62]. Buildings
create areas of increased turbulence, as well as a wake—an area of decreased
pressure—behind the building. Thus, the behavior of wind after it passes a
building is so complex as to be almost impossible to model. Hence, we assume
that the fountain is located outside of the wakes of the buildings.

Wind Speed Reduction
The wind inside a group of buildings is less than that outside of the group;

the interaction between the wind and the buildings causes a decrease in speed.
The drag between the building and the wind decreases the kinetic energy of
the wind and hence its speed.

Since the fountain is squirting water into the air in a symmetrical shape, the
wind affects where the water lands in the same way regardless of the wind’s
direction; so there is no need to find the wind direction after it hits the building.

Drag
Nevertheless, wind direction before the wind hits the building is an impor-

tant factor. The angle at which the wind hits the building changes the surface
area that the wind interacts with, and drag changes with area. The drag force
�Fd is given by

�Fd = 1
2ρv2

bhCdA,

where ρ is the density of air, vbh is the speed of wind at height h, Cd is the drag
coefficient, and A is the surface area interacting with the wind. Therefore, we
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must know from which angle the wind approaches the building and how this
affects the surface area perpendicular to the direction of the wind.

For a rectangular building with the narrow face to the wind, Cd = 1.4
[Macdonald 1975, 80].

Figure 2 diagrams the plaza and fountain. No matter which way the wind
blows, it interacts with a narrow edge of a building. Wind from due east or
west creates a problem for this model because of discontinuity in the the drag
coefficient. Instead, we assume that the coefficient remains constant.

Figure 2. The plaza.

Wind Speed at Differing Heights
The speed of wind changes with the height from the ground because there

is an additional force on the wind due to surface friction (dependent on the
surface characteristics of the ground). The effect of this friction decreases as
the wind speed is measured at a greater distance from the ground, creating
faster speeds at greater heights.

Wind speed also varies because the temperature varies with height and
location. However, if we assume that temperature and ground roughness are
constant, a mean speed at a certain height can be modeled by

vbh = vz

(
h

z

)α

[Macdonald 1975, 47], (1)

where vbh is the speed of the wind before it hits the building, vz is the wind
speed measured by the anemometer at the height z of the building, h is the
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variable height of the water, and α is the terrain constant number. We use
α = 0.105, the value for ground roughness of a city center [Macdonald 1975,
48].

We assume that the greatest height of the water that the fountain hits, hmax,
does not exceed the height of the building, so we can neglect the drag from the
building’s roof (since the wind that goes over the building does not interact
with or affect the water in the fountain).

Converting Drag to Work
We need to convert the drag force into a form that will enable us to deter-

mine the actual loss of speed. Since drag is a nonconservative force (energy
is lost during its application), we can use conservation of energy in the form
that says that the initial kinetic energy Ki minus the work WNC done by the
nonconservative force equals the final kinetic energy Kf , or

Ki = Kf + WNC. (2)

For the K terms, we use the kinetic energy equation K = 1
2mv2. For Ki, we

have vbh; for Kf , we have vh.
Work is the dot product of the force and the distance that the force is in

contact with the surface, or
WNC = �Fd · �d.

The work done is the drag force exerted by the building on the wind multiplied
by the distance that the wind travels along the sides of the building.

With substitution, we find

WNC = 1
2ρv2

bhCdAd. (3)

The drag coefficient Cd is for the entire building. However, we cannot have
the entire building’s drag force working on the speed at a specific height or
we will overestimate the influence of the drag. Instead, we find the average
drag per meter of the building. To do this, we divide (3) by the height z of the
building, then substitute the result into (2):

1
2mv2

bh = 1
2mv2

h +
1
2ρv2

bhCdAd

z
.

Using (1), we can find vbh at any height h; but the equation still has several
unknowns that stop us from solving for vh: the mass m, the area A, and the
distance d.

Mass of Air
The mass of wind that interacts with the building per second at height h is

m = vbhAρt.

It is reasonable for convenience to use the average mass over 1 s.
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Surface Area Interacting with Wind
As shown in Figure 3, the surface area as it relates to the drag due to wind

is the cross section of the building perpendicular to the wind.

Figure 3. Orientation of wind to building.

Therefore, the surface area of the building based on the angle θ at which the
wind strikes the building of width b is found using trigonometry and gives

A = (b| cos θ| + 2b| sin θ|)z,

where z is the height of the building. We take the absolute value of the cosine
and sine because we use the direction of the wind measured by the anemometer
in terms of a 360◦ compass.

Distance
The distance d that the wind goes over the building is 3b, the length of one

side plus the width of the building, because the wind will curve around the
building.

Combining the Equations
Combining, solving for vh, and using α = 0.105 gives the speed vh at

height h. [EDITOR’S NOTE: We do not reproduce the complicated expression.]

Height of the Fountain
We find a function for the maximum height hmax(R) of the fountain in terms

of the rate of flow R. We assume that the water acts as an ideal fluid and that
the fountain shoots water straight into the air in a single sustained stream.
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Volume Flow Rate and Bernoulli’s Equation
We have from Halliday et al. [2001, 334]

R = Apvf , or vf (R) =
R

Ap
=

R

πr2
p

,

where R is the rate of flow, vf is its speed, A is the cross-sectional area of the
pipe, and rp is the radius of the pipe.

Based on the effect that we want the fountain to have, we make the water
column (the radius of the pipe at the tip of the nozzle) have a 6-cm diameter,
hence a radius of 0.03 m.

We use Bernoulli’s equation [Halliday et al. 2001, 336], which relates forms
of energy in a fluid, to calculate the maximum height of the water as it shoots
into the air:

p1 + 1
2ρν2

1 + ρgy1 = p2 + 1
2ρν2

2 + ρgy2,

where p1 and p2 are the pressure of the water (both are zero since we are looking
only at the water in the air) and g is the acceleration due to gravity. At the initial
point, we consider the height of the nozzle as having zero gravitational potential
energy, so the pressure head ρgy1 equals zero. Additionally, the speed v1 is the
speed from (1). At the endpoint, the water has height hmax and the kinetic
energy is zero. Substituting and simplifying gives

hmax(R) =

(
R

πr2
p

)2

2g
.

With the radius rp constant, the height of the top of the water stream varies
directly with the square of the rate of flow R. Figure 4 shows the heights for
values of R between 0 and 0.04 m2/s of water. Whatever mechanism pumps
the water must be able to vary the flow rate by small amounts, particularly for
large R, to maintain the maximum height allowable for the wind conditions.

Figure 4. The effect of rate of flow on height of the fountain.
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The Effect of Wind on the Water Ascent
Radius Change in Ascent

Photos of fountains show that the water ascends as a slowly widening col-
umn until it reaches its maximum height, then falls back on itself and scatters.
We can derive an expression that shows the change in the radius as the cylinder
of water ascends; but since the change is very small, on the order of 1 mm, we
use the initial radius at the nozzle, rp, in our calculations.

Wind Effects in Ascent
The other contributor to the water’s horizontal movement is the wind,

whose force can be determined from pressure. Pressure is force exerted over
an area, so pressure multiplied by area gives the force:

P =
Fc

Ac
,

where P is pressure, Fc is force, and Ac is area. The cylinder of water has height
hmax and width twice the radius rp, so Ac = 2rphmax.

We find pressure in terms of wind speed using

P = 1
2ρv2

h,

where ρ is the density of air and vh is the speed of wind at height h. So we have

1
2ρv2

h =
Fc

Ac
=

Fc

2rphmax
.

Solving for Fc gives

Fc(R) = ρrphmaxv
2
h = ρrp

(
R2

πr2
p

)2

2g
v2

h.

Since we have the F from F = ma, finding mass should lead us to acceleration.
Discovering the mass equation is pleasantly simple. If you take the flow rate
and multiply it by the time that the water is in the air, then you know exactly
how much water is in the air. Multiplying that volume by water’s density gives
the total mass, mT :

mT (R) = R
ttotal(R)

2
ρwater,

where ρwater = 1000 kg/m3. We solve for the acceleration:

ac(R) =
Fc(R)
mT (R)

.



246 The UMAP Journal 23.3 (2002)

We use kinematics yet again to find how far the center of the water cylinder
shifts, xc, by the time it reaches the top of its ascent:

xc(R) = 1
2ac(R)

(
ttotal(R)

2

)2

.

The Effect of Wind on Water Descent
The water’s surface tension holds it in a very cylinder-like column during

its accent; but when the water reaches the top of its path, it runs out of kinetic
energy and begins falling. Modeling the erratic behavior of the fall is somewhat
difficult. At that point, turbulence caused by the competition between the
gravitational force and the momentum of the ascending water overcomes the
water’s surface tension and smaller bodies of water descend individually.

Since we are concerned about the bystanders level of dryness, we want
the fountain to shoot to a height that will keep within the fountain’s basin all
particles with potential to dampen the onlookers. Anything smaller than a drop
from a common eyedropper, about 0.05 mL, will not considerably moisten a
person. Therefore, we want to spray the fountain to a height that will not let
the wind carry this size drop outside the fountain’s basin.

Anything larger than such a drop has a greater mass-to-surface-area ratio,
so it does not accelerate as much nor travel as far. So, we need model the flight
of only such a drop.

We assume that the drop behaves as a rigid body. This assumption neglects
the forces that act internally in the fluid and thereby overestimates the effect of
the wind. Thus, this assumption may lower the maximum height of the water
but will not result in any excessive water hitting bystanders.

Since the drop behaves as a rigid body, Newton’s second law applies: The
sum of all the external forces equals the mass of the drop of water, md, times
the net acceleration: ∑

�Fd = md�ad.

The only significant forces are the the wind (parallel to the ground) and
gravity (vertical). The wind force Fd we know from P = Fd/Ad; we can cal-
culate the surface area of the drop, and we know the pressure of the wind at
height h. We can calculate the force on the drop as a function of height. Di-
viding that by the mass of the droplet gives its acceleration ad parallel to the
ground as a function of height h:

ad(h) =
P (h)ASd

md
.

Unfortunately this acceleration depends on height, which is a function of time
t in the air and the rate of flow R; so we cannot use the constant-acceleration
kinematics equations. Also, the nature of the equation for acceleration makes
integration with respect to time an unwieldy task. We can, however, get the
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average acceleration by integrating the acceleration from the time at the peak
to the total time in the air and dividing by half of the time in air:

aavg =

∫ ttotal

ttotal/2
ad

(
h(t, R)

)
dt

ttotal/2
.

Using aavg as a constant, we can find the displacement xd of the drop in the
horizontal direction. We know that

x − x0 = v0t + 1
2at2.

Applying this equation to the motion of the drop, we see that

xd(R, t) =
[

d

dt
r (R, ttotal/2) +

d

dt
xc (R, ttotal/2)

]
t +

1
2
aavg(R)

(
t

2

)2

+

xc (R, ttotal/2) + rp.

Combined with the y position of the droplet, we get the flight path of Figure 5.

Figure 5. Water path from the fountain due to wind.

The initial speed is the derivative of two position functions, rc(R, t) (the
radius of the column) and xc(R, t) (the displacement of the column due to the
wind). Taking the rate that those distances change when the drop separates
from the column gives the initial speed of the drop. In addition, the equation
shows that the initial displacement, x0, is the original width of the column plus
the distance that the wind pushes the center of the cylinder, xc(R, t) for the
time t that it takes for a particle of water to reach its peak, ttotal/2.

The displacement depends on the rate of flow. This is useful, since we must
moderate the rate of flow to control the amount of water that escapes the basin.
We can now set the displacement xd(R, t) equal to the maximum allowable
displacement—the radius of the basin—and solve for the rate of flow.
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The Optimal Rate of Flow
Our computer algebra system choked on solving for R exactly in terms

of the other parameters. Instead, we adapted an incremental approach with a
simple program in MathCAD. The maximum value for R could be anything; but
an available off-the-shelf industrial pump has a maximum value of 0.04 m3/s
[Fischer Process Industries 2002]. We set that as the upper limit for R. We set
R = 0.001 m3/s and increment it in steps of 0.001 m3/s until the displacement
is greater than the radius of the basin.

Results and Discussion
We discuss how well our model handles each of the six variables that affect

the solution:

• the fountain nozzle radius,

• the height of the building,

• the wind speed,

• the angle between the wind and the building,

• the building width, and

• the fountain radius.

Wind Speed
As the wind speed increases, the flow rate must decrease inside the fountain

basin. Since the flow rate decreases, the height should also decrease because
less water is forced through the nozzle, causing a lower initial speed. Does our
model reflect these phenomena? Yes, it does.

Angle Between Wind and Building
The angle has no apparent effect on the solution our model produces. How

is this possible? It is possible because our fountain is surrounded by buildings.
The way we calculated the buildings’ effect on the wind created similar effects
at any angle.

There were indeed variations present when we calculated how much the
wind was slowed down by the building depending on the angle; however,
these variations were too small to affect the fountain’s setting.
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Nozzle Radius
A smaller radius at a given flow rate means a higher speed. As the radius

increases, so does the flow rate until the maximum rate is reached.
What does this do to the height of the fountain? Height increases as the

radius increases (because the rate of flow increases as well) until the maximum
rate is reached. If the radius still keeps increasing, the flow remains constant
through a larger opening, causing a lower speed and therefore a lower height.

Height of Building
As the height of the building increases, the height of the fountain could

increase as well. Our model doesn’t accurately reflect this. The problem most
likely lies in our drag calculations, the only place where building height shows
up. Both the wind angle and the building height depend on the accuracy of
our drag assumptions, and both have produced questionable results.

Building Width
We finally find some data that suggest that our drag equation is at least

partially correct. As the width of the building increases, more surface area
is created for wind/building interaction. The increased surface area leads to
more drag, a lower wind speed by the time the wind reaches the fountain, and
therefore a higher flow rate and higher height of the fountain.

Fountain Radius
Our goal is to keep the water contained in the fountain basin. If the radius

increases, we can shoot the water higher up into the wind and still have it land
in the fountain basin. Both the rate of flow and the height produce an increased
basin radius.

Summary and Conclusions
Our task was to develop a model to take inputs of wind speed and direction

measured on a rooftop and use them to regulate flow through a nearby fountain.
By breaking the problem down into parts, we developed a model that pro-

duces believable results; and we have shown how our model responds to dif-
ferent inputs.

The effects of wake formation and wind interaction against a building are
the two biggest problems. We assumed that the wake has no effect, and we
dealt with the building interaction—but our findings raise questions. Clearly,
the best test would be a fountain in a wind tunnel.



250 The UMAP Journal 23.3 (2002)

It would make sense to install an anemometer into the fountain structure and
use wind-speed readings from the fountain itself. Direction and surroundings
would be insignificant; only the wind speed at the fountain would be important.

We assume that wind gusts do not occur. There must somehow be a warning
for the fountain that a gust is coming. Perhaps the rooftop anemometer could
gauge wind speed change and send a signal to the fountain to reduce flow until
the wind speed returns to normal.
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Introduction
We devise a fountain control algorithm to monitor wind conditions and

ensure that a fountain at the center of a plaza fires water high enough to be
dazzling while not drenching the pedestrian areas surrounding the fountain.

We construct a model of a fountain based on the physics of falling water
droplets considered as a particle system. We examine the behavior of a fountain
under various wind conditions through computer simulation. Using complex
analytic techniques, we model the wind flow through the plaza and estimate
how anemometer readings from a nearby rooftop relate to plaza conditions.

We construct four algorithms—two intelligent algorithms, a conservative
approach, and an enthusiastic system—to control the fountain.

We devise a measure of unacceptable spray levels outside the fountain and
use this criterion to compare performance. First, we examine the behavior of
these algorithms under general abstract wind conditions. Then we construct a
wind signal generator that simulates the conditions of several major cities from
meteorological database data, and we compare the performance of our control
systems in each city.

Simulations show that the Conservative and Enthusiastic algorithms both
perform unacceptably in realistic conditions. The Weighted Average Algorithm
works best in gusty cities such as Chicago, but the Averaging Algorithm is
superior in calmer cities such as Los Angeles and Seattle.

The control algorithm cannot possibly respond to changes in conditions at
anything below the 10 s scale, since wind is highly variable and the response
of the anemometer is somewhat slow [Industrial Weather Products 2002]. The
goal is therefore to design the algorithm to operate on a time scale of 10 s up
to a couple of hours and adapt the height of the fountain to a maximum safe
level.
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Model of the Water Jet
We model the spray from the fountain as a particle system. As water droplets

spew forth from the nozzle, they are subjected to forces (gravity, air drag,
turbulence, etc.). We formulate a simplified differential equation governing the
motion and then numerically integrate to find the trajectory for each droplet.
This equation is based on a physically realistic model of small droplets (around
1 mm radius) and we scale it up to an effective model for larger clumps of
water (up to 10 cm across) because the physics of turbulence and viscosity at
the larger scale cannot be computed accurately.

We need the following assumptions:

• The drag force is proportional to the square of the speed and to the square
of the radius [NASA 2002].

• Droplets break into smaller droplets when subjected to wind. Breakup rate
is proportional to relative wind speed and surface area [Nobauer 1999].

• When a droplet breaks, turbulence causes the new droplet fragments to move
slightly away from their initial trajectory.

Modeling a Single Droplet
We formulate the motion of a water droplet as

m
d�v

dt
= −mgẑ + η|w|2ŵr2,

where�v is the velocity, �w is the wind velocity relative to the motion of the droplet
(wind vector minus velocity vector), m and r are the droplet’s mass and radius,
and η is a constant of proportionality. According to the Virtual Science Center
Project Team [2002], a raindrop with radius 1 mm falls at a terminal velocity of
7 m/s; so we determine that η = 0.855 kg/m3. Large drops fall quickly; very
tiny drops fall very slowly, mimicking a fine mist that hangs in the air for a
long time.

We assume droplet breakup is a modified Poisson process, with rate

λbreakup = λ0|w|r2.

If the breakup rate did not depend on variable parameters |w|and r2, the process
would be a standard Poisson process. We determine λ0 by fitting the water
stream of our fountain to the streams of two real fountains: the Jet D’Eau of
Geneva, Switzerland, and the Five Rivers Fountain of Lights in Miami, Florida.

When a breakup occurs, we split the droplet into two new droplets and
divide the mass randomly, using a uniform distribution. Air turbulence tends
to impart to the two new droplets a small velocity component perpendicular to
the relative wind direction �w. This effect causes a tight stream of water to spread
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out as it travels, even under zero-wind conditions. We let this velocity nudge
have magnitude 2% of the particle’s speed relative to the air and a random
perpendicular direction. We give the two drops equal and opposite nudges.

Putting Water Drops Together to Make a Fountain
We define the water jet as a stream of large water drops. Their size is roughly

the size of the nozzle, and they leave with an initial velocity equal to the nozzle’s
output velocity (Figure 1).

Figure 1. A continuous water jet is approximated by a discrete stream of water blobs.

The water blobs leave at a rate such that the flux of water is equal to the flux
given by a nozzle-sized cylindrical stream moving at the same speed.

To model the turbulence in the jet as the water leaves the nozzle, we give
each water blob a normal distribution of radius and initial speed:

• The standard deviation of blob radii is 10% of the nozzle size.

• The standard deviation of initial speeds is 5% of the initial speed.

• The blobs leave with an angular spread of 3◦, consistent with industrial
high-pressure nozzles [Spray Nozzles 2002].

Wind drag in particle streams is significantly reduced for particles following
one another closely (NASCAR drivers and racing cyclists are intimately famil-
iar with this phenomenon). These effects are already incorporated into the
dynamics of large water blobs (which can be thought of as representing many
small drops moving together). We therefore consider this to be an effective
model for large drops rather than a realistic interaction model.
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Fitting the Fountain
The Five Rivers Fountain of Lights in Daytona, Florida, is one of the largest

fountains in the world. It consists of several water jets, and on low-wind days
each propels a water stream 60 m high and 120 m out. The Jet D’Eau in Geneva,
Switzerland, another impressive fountain, shoots a 30 cm-diameter stream of
water at 60 m/s straight up. The water reaches a height of 140 m and on an
average breezy day (wind speed 5 m/s) returns to earth approximately 35 m
downwind from the nozzle [Micheloud & Cie 2002] (Figure 2).

Figure 2. The Jet D’Eau and the Fountain of Lights.

To determine λ0, we first match our geometry to the Five Rivers Fountain of
Lights. We fix λ0 so that with an initial velocity such that the stream reaches a
height of 60 m, it returns to the ground at a distance of just over 100 m. Too large
a λ0 results in the water breaking up too quickly into tiny droplets, which have
a much lower terminal velocity and thus fail to reach the desired distance; if the
value is too small, then an unrealistically small amount of spray is produced
and the water blob travels too far. The results are summarized in Table 1.

We set λ0 = 5000. The results are highly insensitive to this parameter;
varying λ0 by a factor of 2 cause only a 15% changes in the distances. Therefore,
even though our method for determining this parameter is fairly rough, the
important behavior is much more strongly affected by other parameters.

Table 1.

Comparison between real fountains and our model.

Jet D’Eau Five Rivers Fountain

real model real model
Height (m) 140 121 60 62
Distance (m) 35 30 120 100

We conclude from this comparison that our model reproduces the spray
patterns of extreme fountains accurate to within about 15%. We expect that for
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a plaza-sized fountain, our model will be more accurate, since our formulas for
breakup and drag force are derived under less extreme conditions.

Wind Flow Through the Plaza
Buildings and other structures in an urban environment can cause signif-

icant disturbances to wind flow patterns; rooftop and street-level conditions
can often be quite different, so readings from a rooftop anemometer could be
biased. To model the plaza wind, we assume:

• There are no significant structures between the buildings beside of the plaza.

• The plaza is large, so effects caused when wind flow leaves the plaza are
negligible at the plaza center; the significant effects are entirely caused at the
inward boundary passage.

• The air flow is smooth enough so that turbulent vortices are negligible.

Formulation
We approximate the geometry of the plaza as in Figure 3 and use complex

analytic flow techniques [Fisher 1990, 225].

Figure 3. Schematic representation of the relevant features of the plaza.

With a Schwarz-Cristoffel mapping of a smooth horizontal flow from the
upper half of the complex plane onto the region above the plaza, we obtain a
flow function for the wind as it enters the plaza area:

Γc(t) =
h0

π

{[
(t + ic)2 − 1

]1/2
+ log

(
t + ic +

[
(t + ic)2 − 1

]1/2
)}

,

where t parametrizes a streamline for each value of c. These streamlines are
plotted in Figure 4, where the acceleration of the wind as it passes over the
building edge and the decreased velocity in the plaza are both clearly visible.

The flow velocity �v is inversely proportional to the streamline spacing, so
the horizontal component of it is

vx = Im
[
∂Γc

∂c

]
.
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Figure 4. Streamlines for wind flow entering the plaza; decreased wind speed at the plaza level is
apparent. Note the highly increased wind speed near the edge of the building.

The horizontal velocity profile for a streamline that passes about 3 m above
the building roof (corresponding to c = 0.6) is plotted in Figure 5; 3 m is a
reasonable height for an anemometer mounting. From these graphs, one can
see that the wind speed through the plaza center (at a distance of 30 to 40 m
from edge) is approximately half of the rooftop wind speed.

Figure 5. Horizontal velocity profile for the streamline corresponding to c = 0.6. This streamline
passes above the building’s roof at a height of 3 m, a reasonable anemometer mounting height.

This calculation is validated by its excellent agreement with the findings of
Santamouris and Dascalaki [2000], who report that in flows perpendicular to
a street the ground-level speeds are between zero and 55% of the free-stream
speeds.

Results
We conclude from this flow model:
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• Placement of the anemometer is important! It should be mounted near the
center of the rooftop to minimize disturbances from the roof’s edge.

• The anemometer reports a wind speed that is highly biased! Plaza-level
wind moves approximately half as fast as the roof-level wind.

• Wind speeds are spatially constant within the plaza airspace. If the foun-
tain is not significantly higher than the surrounding buildings, then spatial
wind variation can be safely ignored.

Modeling Wind Variation Over Time
The control system must be able to handle a range of weather conditions,

from calm up to strongly gusty. We abstract the wind patterns into three gen-
eralized types of increasing complexity:

• Type 1: A low intensity constant breeze of a few m/s, meant to test the
algorithm’s ability to judge the proper height for a given wind speed.

• Type 2: A breeze varying smoothly over a timescale of a couple of minutes.
We use a sinusoidal oscillation in magnitude and direction, with a constant
term to reflect the prevailing wind direction of the hour. This type tests the
algorithm’s ability to adapt to slowly changing conditions.

• Type 3: Sudden unexpected wind gusts, with a few seconds duration and
very high intensity. We model the occurrence of a gust as a Poisson process
and distribute the gust durations and intensities normally. The mean and
variance are chosen to produce reasonable results. This is perhaps the most
important test, since the gusty scenario can easily fool a naive algorithm.

Generating a Realistic Wind Signal
We parametrize the wind profile of a location by four numbers:

• The mean steady wind µsteady.

• The mean gust strength µgust, where a gust is defined to be variation on the
sub-15 s timescale.

• The mean gust duration tgust.

• The gust deviation σgust.

From WebMET data [2001], we estimate these characteristic numbers for
some major U.S. cities (Table 2).

We construct realistic wind signals from these characteristic numbers to
correspond to our types:
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Table 2.

Characteristic parametrization of several major U.S. cities. These parameters specify the plaza
wind conditions, which are slightly milder than the free-stream conditions.

µsteady µgust tgust σgust
(m/s) (m/s) (s) (m/s)

Seattle, WA 1.2 2.25 6.0 0.7
Chicago, IL 2.0 4.0 3.0 4.0
Boston, MA 2.3 4.2 4.0 2.2
Los Angeles, CA 1.7 2.0 3.0 0.7
Washington DC 1.3 3.4 3.0 1.0

• Type 1: constant wind of strength 2
3µsteady,

• Type 2: sinusoidal oscillations of amplitude 2
3µsteady, and

• Type 3: a gust signal with mean amplitude µgust, amplitude standard devi-
ation σgust, duration mean tgust, and deviation 1

2 tgust.

Figure 6 shows a comparison of wind signals for Seattle and Chicago; the
extreme gustiness of the “Windy City” is apparent.

We also create a “Hurricane Floyd” wind profile by multiplying a Chicago
wind signal by a factor that damps the wind to zero early on (the calm before
the storm) and then amplifies it to hurricane level over a period of 10 min.

Fountain Control Algorithms
The goal of the control algorithm is to respond to the anemometer data by

maximizing the height of the fountain while minimizing the probability of the
plaza area outside the fountain pool being drenched. The control algorithm
has access to anemometer readings and direct control over the nozzle speed.

The control system must have some knowledge of how the water spray
travel distance relates to nozzle speed and wind speed. We develop two com-
plementary measures of spray distance and tabulate the relationship between
them and nozzle/wind conditions. The algorithms that we develop combine
this table with an estimate of possible future wind speed (based on the current
wind and a stored recent history) to decide on a good nozzle speed.

Measures of Water Spray Distance
Our measures of spray distance are

• the radius within which 99% of sprayed water lands, and

• a threshold for acceptable water density outside the fountain that corre-
sponds roughly to a light rain: 1 cm in 10 h (2.8 × 10−4 mm/s).
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Figure 6. Horizontal velocity profile.

In simulations over a suitably long time period, we find that these two
measures agree to within 1%.

We evaluate the performance of our control algorithm by measuring how
the spray distance compares to the actual radius of the pool. If the spray radius
goes beyond the pool radius, then people might become unacceptably wet.
However, if this radius is significantly less than the pool radius, then we are
not getting as much height out of the fountain as we could.

Constructing the Control System
We begin with a few useful assumptions:

• Variation in wind direction can be safely ignored. We use the triangle in-
equality: If the wind pushes a drop first in one direction and then in another,
it will necessarily land nearer to the fountain than if it had been pushed in
one direction continuously.

• The algorithm has access to real-time anemometer data averaged over 10-s
intervals as well as at least a 10-min history of measurements. Even if the
anemometer responds faster than 10 s, it is nonsensical to vary the fountain
any faster than this, because the water requires approximately this much
time to complete its flight.



260 The UMAP Journal 23.3 (2002)

• For concreteness, we focus on the plaza configuration of Figure 7. Most
importantly, the fountain is at the center of a circular pool of radius 5 m.

Figure 7. The layout of our hypothetical model plaza.

We display the spray distance as a function of wind speed and nozzle speed
in Figure 8.

An estimate of how far a water droplet can travel starting at height z0, falling
at its terminal velocity vt, and moving at horizontal wind speed w is

distance ≈ z0w

vt
.

The smallest droplets that our simulations produce have radii of about 1 mm
with corresponding terminal velocity 7 m/s. For specific heights and winds, we
find that this rough estimate is usually within 30% of the corresponding min-
imum safe distance shown in Figure 8, a good indication that our simulations
produce reasonable results.

The Control Algorithms
We formulate four control algorithms:

• Averaging Algorithm: This algorithm considers an average of the previous
10 min of wind data and the sample variance. The worst-case scenario is
estimated to be a wind strength of one standard deviation above the average.
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Figure 8. Linearly interpolated table of spray distance as a function of wind speed and nozzle
speed. Each data point represents a burst of 5 nozzle-size water blobs.

• Weighted Average Algorithm: The key feature of this algorithm is that the
data of the last 10 min are weighted linearly according to recentness. The
current measurement gets the highest weight.

• Conservative Algorithm: This algorithm uses the maximum wind speed
measured over the last 10 min to predict the worst-case wind. This is the
most conservative approach—it will always err towards safety.

• Enthusiastic Algorithm: This algorithm ignores previous wind data history
and puts the fountain to the maximum safe height given immediate condi-
tions. No precaution is taken with regard to possible future wind behavior.

Results

Comparing the Algorithms
We test each algorithm against the following gamut of wind conditions:

• Type 1: constant wind

• Type 2: smoothly varying wind



262 The UMAP Journal 23.3 (2002)

• Type 3: highly variable gusty wind

• Real wind data from Seattle, Chicago, Boston, Los Angeles, and Washington
DC.

• Hurricane Floyd-type winds!

We run several simulations of the fountain, each for 3 min, under the control
of each algorithm—long enough to capture relevant wind features and give
statistical significance to the results. For consistency, we run each algorithm
under an identical wind signal (to remove random variation). We use the
following criteria for comparing the performance of the algorithms:

• The average height of the water spout over the time of the simulation.

• The percentage of the total water contained within the pool.

• The ratio of the highest density of water landing outside the pool area to the
maximum acceptable spray density (2.8 × 10−4 mm/s).

The results of our simulations (Table 3) indicates that the performance of
the algorithms depends significantly on the wind data provided.

Strengths and Weaknesses
All of the algorithms perform equally well under constant wind conditions,

but each has unique strengths and weaknesses.

• The Enthusiastic Algorithm consistently achieves the most spectacular foun-
tain heights but at a cost. Since it considers only the current wind reading, it
is always caught by surprise by sudden gusts or any increase in wind speed.
Except in the constant-wind case, the algorithm systematically results in too
much water being sprayed outside the fountain.

• The Conservative Algorithm always has the most paranoid estimate of how
bad the wind could get, and all the water is usually contained in the foun-
tain except in rare cases when sudden gusts greatly surpass the maximum
recorded wind speed before the next measurement is made. However, the
fountain height is often disappointingly low compared to the other algo-
rithms, especially when a large gust of wind was recorded in the wind speed
history.

• The Weighted Average Algorithm performs about as well as the Averaging Algo-
rithm. Both contain most of the water but are often surprisingly conservative.
In the Gusty Wind simulations, the Weighted Average Algorithm is even
more conservative than the Conservative Algorithm; since both averaging
algorithms consider the standard deviation of previous wind speed data,
they become more conservative when recent wind speeds are highly vari-
able. But if wind speeds change suddenly, as in the Hurricane Floyd case,
the Weighted Algorithm reacts slightly faster than the Averaging Algorithm.
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Table 3.

Comparisons of algorithm performance. When too much water spills out of the fountain, water
densities become too computationally intensive to compute (denoted by ∗), and the fountain is

operating well outside of acceptable parameters.

Weighted Average Average Conservative Enthusiastic

Type 1: Constant Wind

Average height 10.7 m 10.6 m 10.7 m 10.6 m
% contained 100% 100% 100% 100%
Density ratio 0 0 0 0

Type 2: Smooth Wind

Average height 12.0 m 12.4 m 12.1 m 20.2 m
% contained 100% 100% 100% 100%
Density ratio 0 .90 0 10321

Type 3: Gusty Wind

Average height 11.7 m 12.5 m 12.0 m 19.9 m
% contained 100% 100% 100% 99%
Density ratio 0 0 0 1357

Hurricane Floyd-type wind!

Average height 3.3 m 3.5 m 3.3 m 3.3 m
% contained 99% 98% 99% 98%
Density ratio 12 42 34 505

Seattle

Average height 10.4 m 10.6 m 5.0 m 20.7 m
% contained 99% 99% 100% 75.6%
Density ratio 61 25 0 ∗

Chicago

Average height 10.3 m 7.7 m 5.0 m 20.9 m
% contained 99% 99% 99% 62%
Density ratio 1357 2467 22 ∗

Boston

Average height 7.6 m 7.9 m 2.4 m 21.0 m
% contained 98% 97% 100% 95%
Density ratio 1964 11000 0 ∗

Los Angeles

Average height 7.6 m 10.5 m 5.9 m 10.2 m
% contained 99% 99% 100% 91%
Density ratio 2196 0.4 0 ∗

Washington, DC

Average height 8.7 m 10.2 m 7.7 m 20.8 m
% contained 99% 99% 100% 92%
Density ratio 3.36 18 0 ∗
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Possible Extensions

Tiltable Nozzles
Water jets with directional control exist (firefighters use them extensively!).

So, with a steady wind, aiming the fountain slightly into the wind may allow
for a higher water stream without additional water spraying outside the pool.

For a range of constant wind speeds, we simulate the fountain at various tilt
angles and find the angle that maximizes fountain height without unacceptable
spray landing outside the pool (Table 4). For each run, we fire enough blobs
(10) so that results are statistically significant.

Table 4.

Results of tilting the fountain into the wind.

Wind speed Maximum height (m)
(m/s) no tilt tilt angle

2 16.4 31.0 37.5◦
5 10.8 22.5 8.5◦
7 5.9 12.7 32.0◦

The fountain can be made nearly twice as high by directing the nozzle into
the wind. This would appear very encouraging indeed, were it not for two
important points:

• The spray distance is extremely sensitive to the tilt angle. Variations of a
single degree cause unacceptable amounts of water outside the pool area.

• Real wind is rarely so constant.

We therefore consider it infeasible to use tilting to increase the fountain
height.

Multiple Nozzles
Our model can be extended to handle multiple nozzles by superimposing,

provided that the stream-stream interaction is not significant.

Alternative Pool Geometries
We can handle fountains with noncircular pools, measuring the percentage

of water that lands outside of the pool and requiring that no region gets too wet.
If the fountain is in a city with wind predominantly in one direction, then an
elliptical pool with major axis parallel to the wind direction may work better,
though variation in wind direction can no longer be ignored by the model.
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Other Considerations
• There are parameters that we did not incorporate in our model that may

have effect in real life, such as temperature and barometric pressures.

• If a storm is approaching, the fountain should be turned off.

• At low temperature, we might set the algorithms to be more conservative,
because it is very unpleasant to be wet in cold weather and ice formation
can be dangerous.

• If the buildings around the plaza are significantly closer to the fountain than
the 40 m considered in our simulations, then the dynamics of the wind near
the fountain may be altered with the addition of eddies and other turbulence.

• For fountains that reach heights significantly higher than the nearby build-
ings, the magnitude of the wind will grow stronger farther above the plaza.

• A longer wind history could be incorporated into the algorithm.

Recommendations and Conclusions
If keeping the water spray contained in the pool is a much larger concern

than shooting the fountain high into the air, then the Conservative Algorithm
may be the best choice. Conversely, if water spray outside the fountain is not
an overriding concern, than the Enthusiastic Algorithm may be best.

For a reasonable balance between safety and dazzle, the Conservative Al-
gorithm and the Enthusiastic Algorithm are both totally inadequate:

Use either the Weighted Average Algorithm or the Averaging Algorithm.

The Weighted Average Algorithm responds faster to sharp changes in wind
speed and performs better in places like Chicago where wind gusts are more
frequent. However, if wind variations are fairly smooth, as in Los Angeles,
then the Averaging Algorithm is the best choice.

References
Fisher, Stephen D. 1990. Complex Variables. 2nd ed. New York: Dover.

WebMET: The Meteorological Resource Center. 2001. www.webmet.com . Ac-
cessed 11 February 2002.

Santamouris, Matheos, and Elena Dascalaki. 2000. Wind speed in the urban
environment. www.brunel.ac.uk/research/solvent/pdf/report3.pdf .
Accessed 10 February 2002.



266 The UMAP Journal 23.3 (2002)

Industrial Weather Products Catalog. 2002. www.scientificsales.com . Ac-
cessed 10 February 2002.

Micheloud & Cie. 2002. www.switzerland.isyours.com . Accessed 10 Febru-
ary 2002.

NASA. 2002. Re-Living the Wright Way. wright.wrc.nasa.gov . Accessed 11
February 2002.

National Climatic Data Center. 2002. www.ncdc.noaa.gov . Accessed 10 Febru-
ary 2002.

Nobauer, Gerhard Thomas. 1999. Droplet Motion and Break-up. Oxford, Eng-
land: University of Oxford Computing Laboratory-Mathematical Institute.

Spray Nozzles. 2002. www.mrpressurewasher.com/spraynozzles.html . Ac-
cessed 9 February 2002.

Virtual Science Center Project Team. 1997. ScienceNet. Accessed 9 February
2002.

Ross, Sheldon M. 2000. Introduction to Probability Models. 7th ed. New York:
Academic.



Judge’s Commentary 267

Judge’s Commentary:
The Outstanding Wind and
Waterspray Papers

Patrick J. Driscoll
Department of Systems Engineering
U.S. Military Academy
West Point, NY 10996
fp5543@exmail.usma.army.mil

Introduction
As so often is the case with events that iterate on an annual basis, many of the

same lessons learned carry on from year to year, never losing their relevancy.
Certainly, the MCM this year is no exception to the trend.

In an attempt to maintain some degree of economy in this commentary, I
will resist the temptation to reiterate many of these again herein and point the
interested reader to MCM commentaries previously appearing in this Journal.

However, there are several notable modeling issues that clearly surfaced
in consideration of the Wind and Waterspray Problem that had an impact on
the quality of the papers and are worth mentioning to assist teams in future
competitions. In this vein, the following comments represent a compendium
of observations during the final judging session and are taken in no particular
order of preference or priority.

Style and Economy
As to style and clarity of the papers, it is probably sufficient to state that

teams should bear in mind that they are writing to a population of modeling
experts from both academia and industry who will spend a limited amount of
time reading their paper. During this period, judges must assess the quality of a
team’s approach, the validity of their results, and the paper’s completeness with
regard to the modeling process. Contrast this with the hours and sometimes
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days available for a professor to grade a similar project of this type, and it is
apparent that teams must choose a writing style that maximizes clarity and
gets across their modeling work in the most effective manner possible. Using
concise and properly labeled tables and graphics to illustrate the trends and
results of experimental trials that are commented on in the body of the report
goes a long way towards achieving this goal.

The Specific Challenges of This Problem
The stated challenge of the Wind and Waterspray Problem was to develop

an algorithm that uses data provided by an anemometer to adjust the water
flow from a fountain as wind conditions change.

In a most general sense, an algorithm can be succinctly defined as a “method
for the solution of all problems of a given class . . . whose purpose is to describe
a process in such a way that afterwards [it] can be imitated or governed by
a machine” [Gellert et al. 1977, 340]. A basic characteristic of an algorithm is
that it transforms given quantities (input) into other quantities (output) on the
basis of a system of transformation rules. The input quantities (anemometer
data) and output quantities (water flow characteristics) for the problem were
clear from the problem description. The particular transformation rules for this
problem were unspecified and left up to the individual teams to decide upon.

Formulating these transformation rules constituted the heart of each ap-
proach used to model the water flow and spray patterns associated with the
fountain. The most predominant appeared to be Newton’s Second Law of
Motion, Bernoulli’s formula, continuity equations, fuzzy membership sets,
Poiseuille’s equation, or Navier-Stokes equations, largely dependent on the
assumptions that teams were willing to make.

The better papers walked the reader through the application of the approach
chosen, clearly explaining exactly how each variable and parameter applied to
the problem, and then used the known results of the specific approach directly.

How to Make Assumptions
Most technical report formats advise students to list and explain all their

assumptions in one concise location, typically in the front portion of the re-
port. While this advice is sound for constructing a technical report, it might be
helpful to note that it is in contrast with the pattern of how assumptions occur
chronologically during a modeling process. For the MCM, useful assumptions
typically arise in one of two settings:

• either a team needs specific information concerning the problem that they
do not have (and cannot get in the time allotted) and hence must make an
assumption in order to carry on; or
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• a team decides to make an assumption that simplifies some detail(s) of the
problem in order to use the mathematics they are familiar with or risk not
being able to complete their modeling effort in the time allotted.

Both of these situations arise naturally in the chronological flow of attacking a
problem, and not during a single brainstorming effort at the onset.

When a paper contains a long list of assumptions, many of which neither
get used nor justified in the modeling that follows, it is a clear indication that
the team does not quite understand the roles that the assumptions play in
the overall modeling effort. Such papers typically possess a very shallow or
missing “Strengths and Weaknesses” section, which is supposed to constitute
an analysis of one’s model and results in consideration of the assumptions that
were included by necessity. If a team does not know why they need a particular
assumption, chances are that they will do a poor task of explaining why they
made the assumption!

The lesson here is that teams should struggle mightily to make only the
assumptions they need when they need them, thereby minimizing the diluting
effect on model fidelity caused by an excessive number of assumptions.

The Importance of Model Validation
When all is said and done, a paper introducing a proposed algorithm must

resolve the question, “Does the author provide me with sufficient evidence that
it works?” While occasionally provided by way of convergence proofs, this type
of evidence more commonly appears in MCM papers by way of computational
testing. For the MCM, at least three categories of testing come to mind that
support model validation:

• Once the team is convinced that their base model produces reasonable re-
sults, special cases of interest (e.g., no wind, no spread angle, etc.) should
be tested.

• Recognizing that model parameters contain some amount of uncertainty,
high, most likely, and low values of important parameters used in the base
model should be examined by systematically altering these values and re-
running the model to see if the output results remain reasonable. For this
MCM problem, these parameters might be drag coefficients, shapes of water
droplets, wind speed and direction, and so on. This process essentially con-
stitutes what is commonly referred to as sensitivity analysis of the parameters.

• The effects of relaxing a select number of simplifying assumptions made
during the course of developing the model should be examined. How-
ever, it is fair to stress that this last category is safely performed only when
time permits, because it generally requires substantial model modifications
to examine the desired effects. A good example of this third category for
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the Wind and Waterspray problem would be adding the influence of sur-
rounding buildings on wind speed and direction after they were previously
assumed away. Such a change would be nontrivial and might consume more
time than what is available.

Teams must link their computational results back to the problem that they
are trying to solve. Tell the reader what to conclude from the results! This is
what is referred to as analyzing the results. Never, ever, ever leave this task to
the reader!

When the conclusions of these analyses remain the same despite changes
in parameters such as those noted, it is appropriate to conclude that the model
results are robust. These analyses also highlight any limitations of the model,
which then provide a basis for recommending ways the model could be en-
hanced or improved in the future.

The Summary
The summary that the MCM asks for is a standalone object that should not

be identical to the introduction to the paper. The summary should briefly

• state the problem,

• describe the approach taken to modeling the problem,

• state the most important results and conclusions the reader should remem-
ber, and

• mention any recommendations directly relevant to the problem.

The summary should not include a statement such as “read inside for results”
or its equivalent. A good test a team can use to assess the quality of their
summary is to ask, “If someone read only the summary without the rest of the
report available, would it clearly tell the big picture story of what the problem
was, what we did, what we concluded, and what we recommend?” As a note,
most equations, code, and derivations belong somewhere else as well.

Advance Planning
With regard to time management, something that teams can do ahead of

the contest is to decide

• what document-writing environment they intend to use;

• how equations will be entered and labeled;

• the outline format of the paper;
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• how tables, figures, and graphics are going to look;

• how captions are going to be stated for all tables, figures, and graphics; and

• who will be responsible for what task in the final write-up.

Human nature being what it is, a sloppy or haphazard paper that looks as if
it was put together 15 min before it had to be postmarked almost assuredly
will be downgraded in the mind of a judge, independent of the specific results
obtained.

Use of Sources
Finally, the observed trend continues that teams are becoming increasingly

selective with regard to the Web sites that they will trust for credible infor-
mation. I also encourage teams to maintain their effort to properly document
sources used to support their work. This practice explicitly recognizes the in-
tellectual property and work of others while strengthening the quality of their
paper at the same time.
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Introduction
We develop a risk assessment model that allows an airline to specify certain

parameters and receive recommendations for compensation policy for bumped
passengers and for how much to overbook each flight. The basis is the potential
cost of each bumped passenger compared to the potential revenue from booking
an extra passenger. Our model allows an airline to compare quickly the likely
results of different compensation and overbooking strategies.

To demonstrate how our model works, we apply it to Vanguard Airlines.
Publicly available data provide all of the needed parameters for our model. Our
software package reaches an overbooking policy by calculating and comparing
the expected revenues for all possible situations and compensation policies.

Terms and Definitions
We set out terminology, taking much of it from Delta Airlines [2002].

• Available seat miles (ASM): A measure of capacity which is calculated by
multiplying the total number of seats available for transporting passengers
by the total number of miles flown during a reporting period.

• Revenue passenger mile (RPM): One revenue-paying passenger transported
one mile. RPM is calculated by multiplying the number of revenue passen-
gers by the number of miles they are flown for the reporting period.

• Load factor (LF):A measure of aircraft utilization for a reporting period, cal-
culated by dividing RPM by ASM.
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• Cost per available seat mile (CASM): Operating cost per available seat mile
during a reporting period; also referred to as unit cost.

• Revenue per available seat mile (RASM): Total revenue for a reporting period
divided by available seat miles; also referred to as unit revenue.

• “No-show”: A person who purchased a ticket but does not attempt to board
the intended flight.

• Bumping: The practice of denying boarding to a ticket holder due to lack of
sufficient seating on the flight.

• Voluntary bumping: When passengers who purchased ticket for a flight give
up their seats for some compensation offered by the airline.

• Involuntary bumping: When not enough passengers voluntarily give up their
seats, the airline chooses whom to bump against their will.

• Revenue: Money gained by the airline from a flight minus penalties paid to
bumped passengers. This isnot the standard definition of revenue (“inflow
of assets as result of sales of goods and/or services” [Porter 2001, 146]). We
use this different definition to highlight the effect of bumping practices.)

• Flight leg: A direct flight from one airport to another with no stops.

Assumptions
• Passenger airline traffic is returning to normal, so yearly industry statistics

can be used. Airline traffic trends are returning to the levels before the
terrorist attacks on September 11 [Airline Transport Association 2001], so
statistics from before that date are still valid.

• We model U.S. flights only. International flights have different policies.

• The “no-show” rate is about 10%. [“More airline passengers . . . ” 1999].

• Ticket prices may be represented by calculated averages.

• The number of passengers on the plane does not affect the cost of the flight
to the airline. The most significant part of the operating costs for a flight
are fixed costs that are not be affected by the number of passengers.

• The flight schedule is static. The schedule of flights is outside of the scope
of our problem statement. Thus, we make recommendations only about the
overbooking strategy, not about changes to the schedule.

• Airlines must follow the DOT “Fly-Rights” regulations. These regula-
tions outline the minimal compensation required to passengers when bump-
ing occurs [U.S. Department of Transportation 1994].
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• Compounded overbooking takes care of itself (i.e., goes away naturally).
Consistent industry-wide statistics establish a 60% to 80% load factor [Airline
Transport Association 2002], resulting in naturally combating the waterfall
effect of one overbooked flight causing another to be even more overbooked.

• There is sufficient demand for at least some flights to warrant overbooking.

• No-shows do not generate revenue. No-shows are given a refund or (if
original ticket was nonrefundable) a ticket voucher.

• Taxes paid by a passenger are nonrefundable.

Statement of Purpose
• Our first priority is to maximize revenue for the airline.

• Our second priority is to maximize customer service in the form of providing
as much compensation to bumped passengers as is financially feasible.

Naive Model
The naive approach is to assume that since not all ticket buyers show up

for the flight, we simply overbook the flight so that on average the plane fills
to capacity. If on average 90% show up, we book to 100/90 capacity.

However, the 90% is only an average; for some flights, more than 90% will
show up, resulting in bumped passengers and a penalty for the airline paid to
bumped passengers. Since the penalty is often more than the potential revenue
for one more passenger, the airline could pay more in penalties than the extra
revenue received. We need a way to factor the risk of penalties into our model.

Risk Assessment Model
We maximize revenue on each individual flight leg, which we regard as

independent of other flight legs. Thus, optimizing the revenue of one flight
does not adversely affect potential revenue from other flights.

Since an airline incurs an increased penalty the longer that a bumped passen-
ger is delayed, an airline minimizes the penalty by transporting the passenger
to their destination as quickly as possible. Therefore, bumped passengers are
usually booked on the next flight or series of flights to their destination.
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Expected Revenue of a Flight
Let a flight have capacity of c and we book b passengers. Let r be the poten-

tial revenue from a passenger and p the potential penalty cost of a passenger
bumped . Finally, let x be the percentage of ticket holders who show up for the
flight. The revenue generated by the flight is

revenue(x, b) =
{

xbr, if xb ≤ c;
cr − (xb − c)p, if xb > c.

The percentage x of passengers who show up follows some probability distri-
bution with density function f(x) and an appropriate mean (in our case, 0.9).
We find the value of b that maximizes the expected revenue for b passengers:

expected revenue(b) =
∫ 1

0

f(x) · revenue(x, b) dx

Repeat this process for all flights and you have a complete recommendation
for an overbooking policy.

Examining Compensation Policies
We can adjust our model even further by examining the effects of different

compensation policies. Airlines have several forms of compensation at their
disposal, from food to hotel stays to vouchers. The cost of the compensation
policy is the penalty paid to a bumped passenger (p in our formulas above).
By rerunning our expected revenue calculations for each compensation policy,
we can see how each policy affects the maximum expected revenue of a flight.

Key Overbooking Flights
An airline can determine from historical data the “key” overbooking flights,

the ones most likely to require overbooking. It can then use a compensation
policy that concentrates on maximizing expected revenue for those flights.

From Theory to Reality: Vanguard Airlines
We illustrate our ideas by a case study of Vanguard Airlines, using publicly

available information below [Vanguard Airlines 2001]. We assume that the
January 2001 through September 2001 statistics provide an accurate picture of
the airline:

• RASM = $ 0.073/seat-mile.

• RPM = 817,330 passenger-miles.
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• ASM = 1,225,942 seat-miles.

• Operating expenses per ASM = $ 0.090/seat-mile.

• A full flight (Boeing 737-200 or MD-80 aircraft) holds c = 130 passengers.

• 95% of bumped passengers are volunteers [U.S. Department of Transporta-
tion 2001].

Applying the Model
We created a software package parameterized for adaptation to any airline.
Vanguard’s Web site [2002] gives a list of flight legs, along with source cities,

destination cities, departure times, and arrival times. All flight legs are flown
daily, except for four; to keep our example simple, we ignore these exceptions
and treat all flights as daily.

The potential revenue r per passenger is the average ticket price for the flight
leg; we calculate it as flight-leg distance times revenue earned per passenger
mile. The latter is total revenue (RASM × ASM) divided by passenger-miles
flown (RPM). So we have

r =
(distance)(RASM)(ASM)

RPM
.

We could not locate good data on the distribution of how many ticket buyers
show up for the flight. In lieu of a real distribution, we use a truncated normal
distribution with mean 0.9 and appropriately small standard deviation (0.05):

f(x) =
1.023

0.05
√

2π
e200(x−0.9)2 .

Penalty costs depend on how long the passenger is delayed, so we search
the flight schedule for the quickest alternative route for each flight leg. We
require at least 30 min between connecting flights.

Compensation Policies
There are three main forms of compensating bumped passengers:

• Cash Payment vs. Ticket Voucher

– Bumped passengers who arrive at their destination within one hour of
their originally scheduled arrival receive no compensation.

– Those who arrive between one and two hours after their originally sched-
uled arrival are eligible for compensation in the amount of their full ticket
cost up to $200.
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– A passenger who arrives two or more hours late is eligible for compen-
sation in the amount of double their ticket cost up to $400.

Compensation is required only for passengers involuntarily bumped, but
common practice is to offer similar amounts to attract volunteers for bump-
ing. We assume that 95% of all “bumped” passengers are voluntary and we
offer them vouchers in place of cash. We calculate that a $1.00 voucher costs
the airline $0.82. Incorporating that 5% of bumped passengers receive cash,
this plan costs (voucher value) × 0.831 per bumped passenger.

• Meal Compensation In our software, a passenger sitting in an airport through
particular intervals gets compensation for a meal: 6 a.m. to 9 a.m., break-
fast ($10); 11 a.m. to 1 p.m., lunch ($10); 5 p.m. to 8 p.m., dinner ($15). This
compensation is not mandated, so it serves only as customer service.

• Providing Lodging A quick survey of airport motels in Kansas City (the hub
for Vanguard) showed that $50 is reasonable to cover a motel room along
with transportation to and from the motel. Our plan offers overnight accom-
modation to a passenger stranded in an airport for at least 6 hrs including
midnight who has a flight leaving after 4 a.m. This compensation is not
mandated, so it serves only as customer service.

Choosing a Compensation Policy
We compare the impacts of the following policies:

• Meal compensation, hotel compensation, and cash

• Hotel compensation and cash

• Meal compensation, hotel compensation, and voucher

• Hotel compensation and voucher

• Meal compensation and cash

• Meal compensation and voucher

We tabulate penalties for each flight leg and each compensation policy and
calculate an optimal number of passengers to book on each flight leg depending
on the compensation policy. To ensure that bumping is no more likely than not
needing to bump, we impose a maximum booking level of 10/9. We then
calculate the expected revenue for each flight leg at the optimal booking level
for each policy and rank the policies for each flight leg by expected revenue.
[EDITOR’S NOTE: We omit the authors’ extensive tables giving results for specific
flights.]

An important consideration in choosing a compensation package is cus-
tomer service. While there is little short-term impact on revenue from good
or bad customer service, there can be significant long-term impact. We should
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give some preference to policies that offer greater customer satisfaction. When
two or more policies produce the same revenue, our model chooses one that
maximizes customer service.

The Best Compensation Policy for Vanguard
To determine its best compensation policy, Vanguard would need to exam-

ine historical data to determine flights most likely to require overbooking.

Responding to the Current Situation
We turn to issues currently facing the airline industry. Here we demonstrate

how our model deals with unexpected circumstances.

Fewer Flights
The airline sets its schedule; our model adapts to it. In any case, flight traffic

is increasing back to the level before September 11 (Figure 1).

Figure 1. Domestic available seat miles (ASM) by month [Airline Transport Association 2002].

Heightened Security
Since the change in security policies at airports nationwide, both the check-

ing in for a flight and layover gate changes could slow down passengers. Our
model adjusts for that by factoring in 30 min for a layover.
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Passengers’ Fear
Passengers’ fear could reduce no-shows (because those who purchase tick-

ets are more serious about needing to fly) or increase them; there are no statis-
tics to verify either effect. In either case, any effect of passengers’ fear of flying
seems to be declining [Airline Transport Association 2002].

Airlines’ Losses
Revenue losses will likely make airlines cautious about taking on too much

risk yet anxious to maximize revenue. Our model takes both goals into account,
including enhancing revenue by dropping some customer service aspects.

Revenue loss also could cause an airline to schedule fewer flights to reduce
costs. Our model gives an optimal recommendation adapted to the schedule.

Other Recommendations
• If two compensation packages have the same revenue benefits, choose the

package that benefits the customer the most.

• Use vouchers instead of cash for compensation, because it costs less yet
carries comparable perceived value for the customer.

• Give gate attendants some power to negotiate with angry customers, possi-
bly including additional food vouchers.

• Upgrade bumped passengers to first class on their next flight when possible.
This has no added cost in the case of an empty first class seat, yet has high
value to the customer.

• Whenever possible, bump volunteers first, followed by passengers flying
only one flight leg. This reduces the risk of further complicating a passen-
ger’s schedule.

• Ensure that the compensation policy is comparable to other airlines’.

Analysis of our Model

Strengths
The fundamental strengths of our model are its robustness and flexibility.

All of the data is fully parameterized, so the model can be be applied to any
airline. An airline can easily create probability distributions that accurately
reflect not only average no-show percentages but also historical or per-flight
trends. Although the industry may face constantly changing situations, our
model adjusts to give the best recommendation possible.
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Opportunities for Further Development
• The Vanguard implementation of our model ignores exceptions in flight

schedules, assuming that all flights are daily. The incorporation of flight
schedule exceptions into our implementation would be straightforward.

• Proprietary data would improve the accuracy of our Vanguard example,
including the probability distribution of no-shows, average ticket prices,
the current cost of various forms of compensation, and which flights are
high-demand flights.
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Introduction
We construct several models to examine the effect of overbooking policies on

airline revenue and costs in light of the current state of the industry, including
fewer flights, increased security, passengers’ fear, and billions in losses.

Using a plausible average ticket price, we model the waiting-time distribu-
tion for flights and estimate the average cost per involuntarily bumped pas-
senger.

For ticketholders bumped voluntarily, the interaction between the airline
and ticketholders takes the form of a least-bid auction in which winners receive
compensation for foregoing their flights. We discuss the precedent for this type
of auction and introduce a highly similar continuous auction model that allows
us to calculate a novel formula for the expected compensation required.

Our One-Plane Model models expected revenue as a function of overbook-
ing policy for a single plane. Using this framework, we examined the relation-
ship between the optimal (revenue-maximizing) overbooking strategy and the
arrival probability for ticketholders. We extend the model to consider multiple
fare classes; doing so does not significantly alter optimal overbooking policy.

Our Interactive Simulation Model takes into account estimates for average
compensation costs. It simulates the interaction between 10 major U.S. airlines
with a market base of 10,000 people, factoring in passenger arrival probability,
flight frequency, compensation for bumping, and the behavior of rival airlines.
Thus, we estimate optimal booking policy in a competitive environment. Simu-
lations of this model with likely parameter values before and after September 11
gives robust results that corroborate the conclusions of the One-Plane Model
and the compensation-cost formula.
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Overall, we conclude that airlines should maintain or decrease their current
levels of overbooking.

Terms
• Ticketholders: People who purchased a ticket.

• Contenders: Ticketholders who arrive in time to board their flight.

• Boarded passengers: Contenders who board successfully.

• Bumped passengers: Contenders who are not given seating on their flight.

• Voluntarily bumped passengers: Bumped passengers who opt out of their
seating in exchange for compensation.

• Involuntarily bumped passengers: Bumped passengers who are denied
boarding against their will.

• Compensation costs: The total value of money and other incentives given
to bumped passengers.

• Flight Capacity: The number of seats on a flight.

• Overbooking: The practice of selling more tickets that flight capacity.

• Waiting time: The time that a bumped passenger would have to wait for
the next flight to the destination.

• Load factor: The ratio of the number of seats filled to the capacity.

Assumptions and Hypotheses
• Flights are domestic, direct, and one-way.

• The waiting time between flights is the amount of time until the scheduled
departure time of the next available flight to a given destination.

• The ticket price is $140 [Airline Transport Association 2002], independent of
when the ticket is bought, except when we consider multiple fares.

• Pre-September 11, the average probability of a ticketholder checking in for
the flight (and thus becoming a contender) was 85% [Smith et al. 1992, 9].

• The pre-September 11 average load factor was 72% [Bureau of Transportation
Statistics 2000].
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Complicating Factors
Each of our models attempts to take into account the current situation facing

airlines:

• The Traffic Factor
On average, there are fewer flights by airlines between any given locations.

• The Security Factor
Security in and around airports has been heightened.

• The Fear Factor
Passengers are more wary of the dangers of air travel, such as possible ter-
rorist attacks, plane crashes, and security breaches at airports.

• The Financial Loss Factor
Airlines have lost billions of dollars in revenue due to decreased demand
for air travel, increased security costs, and increased industry risks.

The Traffic Factor
Because there are fewer flights, it is likely that the demand for any given

flight will increase. Flights are likely to be fuller; the average waiting time
between flights to a destination is likely to increase, so bumped passengers
will demand higher compensation.

The Security Factor
The increase in security will likely lead to an increase in the number of

ticketholders who arrive at the airport but—due to security delays—do not
arrive at their departure gates in time.

Successful implementation of security measures may lead to an improve-
ment in the public perception of the airline industry and an increase in demand
for air travel.

The Fear Factor
Increased fear of flying decreases demand for air travel, so security delays

may not be as serious.
On the other hand, if a higher percentage of ticketholders are flying out

of necessity, then the probability that a ticketholder becomes a contender may
increase because of decreased cancellations and no-shows. However, fewer
ticketholders are likely to agree to be bumped voluntarily at any price, so the
percentage of involuntarily bumped passengers may increase.
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The Financial Loss Factor
Because companies may seek to increase short-term profits in the face of re-

cent losses, some airlines may implement more aggressive overbooking, which
could induce an overbooking war between airlines [Suzuki 2002, 148]. The
likely increase in the number of bumped passengers would lead to a rise in
compensation costs that would partially offset increased revenue.

Decreasing the number of bumped passengers would improve the airlines’
image and might spur demand, which would bolster future revenue.

One-Plane Model

Introduction and Motivation
We first consider the optimal overbooking strategy for a single flight, in-

dependent of all other flights. We will see later that its results are a good
approximation to the results of the full-fledged Interaction Simulation Model.

Development
Let the plane have a capacity ofC identical seats and let a ticket costT = $140

independent of when it is bought. Let the airline’s overbooking strategy be to
sell up to B tickets, if possible (B > C). We analyze this strategy in the case
when all B tickets are sold.

We model the number of contenders for the flight with a binomial distribu-
tion, where a ticketholder becomes a contender with probability p. The average
p for flights from the ten leading U.S. carriers is p = 0.85 [Smith et al. 1992].
The value of p for a particular flight depends on a host of factors—flight time,
length, destination, whether it is a holiday season—so we carry out our analysis
for a range of possible p values.

With our binomial model, the probability of exactly i contenders among the
B ticket-holders is

(
B
i

)
pi(1 − p)B−i.

We assume that each bumped passenger is paid compensation (1 + k)T =
140(1 + k), for some constant k. Translated into everyday terms, this means
that a bumped passenger receives compensation equal to the ticket price T
plus some additional compensation kT > 0. Later, we relax the assumption
that compensation cost is the same for each passenger, when we consider in-
voluntary vs. voluntary bumping.

We define the compensation cost function F (i, C) to be the total compen-
sation the airline must pay if there are exactly i contenders for a flight with
seating capacity C:

F (i, C) =
{

0, i ≤ C;
(k + 1)T (i − C), i > C.
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We calculate expected revenue R as a function of B:

R(B) =
B∑

i=1

(
B

i

)
pi(1 − p)B−i(BT − F (i, C))

= 140B − 140(k + 1)
B∑

i=C+1

(
B

i

)
pi(1 − p)B−i(i − C)

We use a computer program to determine, for given C, p, and k, the over-
booking strategy Bopt that maximizes R(B). However, it is also possible to
produce a close analytic approximation, which we now derive.

The revenue for a bumped passenger, T −(k+1)T = −kT , has magnitude k
times that for a boarded passenger, T . Thus, the optimal overbooking strategy
is such that the distribution of contenders is in some sense “balanced,” with
1/(k + 1) of its area corresponding to bumped passengers and the remaining
k/(k + 1) corresponding to boarded passengers.

We approximate the binomial distribution of contenders with a normal dis-
tribution:

C − Bp√
Bp(1 − p)

≈ Φ−1

(
k

k + 1

)
,

where Φ is the cumulative distribution function of the standard normal dis-
tribution. Clearing denominators and solving the resulting quadratic in

√
B

gives

B′
opt =


−Φ−1

(
k

k+1

)√
p(1 − p) +

√
Φ−1( k

k+1 )2p(1 − p) + 4pC

2p




2

(1)

as an analytic approximation to Bopt. For k = 1, we get B′
opt = C/p.

This analytic approximation is always within 1 of the optimal overbooking
strategy for .80 ≤ p ≤ .90 and 1 ≤ k ≤ 3.

Results and Interpretation
The airline should be able to obtain good approximations to p and k empir-

ically. Thus, it can take our computer program, insert its data for C, T , p, and
k, and obtain the optimal overbooking strategy Bopt. Figure 1 plots expected
revenue R(B) vs. B C = 150, k = 1, p = 0.85, and T = 140.

At B = 177, the airline can expect revenue R(177) = $24, 200, which is more
than 15% in excess of the expected revenue R(150) = $21, 000 from a policy of
no overbooking.

Operating at a less-than-optimal overbooking strategy can have serious
consequences. For example, American Airlines has an annual revenue of $20
billion [AMR Corporation 2000]. An overbooking policy B outside the range of
[173, 183] implies an expected loss of more than $1 billion over a 5-year period
compared with the expected revenue at Bopt = 177.
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Revenue vs. Tickets Sold
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Figure 1. Revenue R vs. overbooking strategy B for C = 150, k = 1, p = 0.85, and T = $140.

Limitations
The single-plane model

• fails to account for bumped passengers’ general dissatisfaction and propen-
sity to switch airlines;

• assumes a simple constant-cost compensation function for bumped passen-
gers;

• ignores the distinction between voluntary and involuntary bumping;

• assumes that all tickets are identical—that is, everyone flies coach;

• assumes that all B tickets that the airline is willing to sell are actually sold.

Even so, the model successfully analyzes revenue as a function of over-
booking strategy, plane capacity, the probability that ticket-holders become
contenders, and compensation cost. Later, we develop a more complete model.

The Complicating Factors
First, though, we use the basic model to make preliminary predictions for

the optimal overbooking strategy in light of market changes due to the com-
plicating factors post-September 11.
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Of the four complicating factors, only two are directly relevant to this model:
the security factor and the fear factor. The primary effect of the security factor
is to decrease the probability p of a ticketholder reaching the gate on time and
becoming a contender. On the other hand, the primary effect of the fear factor
is that a greater proportion of those who fly do so out of necessity; since such
passengers are more likely to arrive for their flights than more casual flyers, the
fear factor tends to increase p.

Figure 2 plots the optimal overbooking strategy Bopt vs. p for fixed k = 1
and C = 150.

Optimal Ticket Sales vs. Show-up Probability
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Figure 2. Optimal overbooking strategy vs. arrival probability p.

It is difficult to assess the precise change in p resulting from the security
and fear factors. However, airlines can determine this empirically by gathering
statistics on their flights, then use our graph or computer program to determine
a new optimal overbooking strategy.

One-Plane Model: Multifare Extension

Introduction and Motivation
Most airlines sell tickets in different fare classes (most commonly first class

and coach). We extend the basic One-Plane Model to account for multiple fare
classes.

Development
For simplicity, we consider a two-fare system, with C1 first-class seats and

C2 coach seats. We assume that a first-class ticket costs T1 = $280 and that a
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coach ticket costs T2 = $140. We consider an overbooking strategy of selling
up to B1 first class tickets and up to B2 coach tickets, where the two types of
sales are made independently of one another.

We assume that a first-class ticketholder becomes a first-class contender
with probability p1 and that a coach ticketholder becomes a coach contender
with probability p2. We use two independent binomial distributions as our
model. First-class ticketholders are more likely to become contenders than
coach passengers, since they have made a larger monetary investment in their
tickets; that is, p1 > p2. Thus, the probabilities of exactly i first-class contenders
and exactly j coach contenders are(

B1

i

)
pi
1(1 − p1)B1−i,

(
B2

j

)
pj
2(1 − p2)B2−j .

We model compensation costs as constant per bumped passenger but de-
pendent on fare class, with (k1 +1)T1 as compensation for a bumped first-class
passenger and (k2 + 1)T2 for a bumped coach passenger. We define the com-
pensation cost function:

F (i, j, C1, C2) =




0, i ≤ C1, j ≤ C2;
T1(k1 + 1)(i − C1), i > C1, j ≤ C2;
max{T2(k2 + 1)((j − C2) − (i − C1)), 0}, i ≤ C1, j > C2;
T1(k1 + 1)(i − C1) + T2(k2 + 1)(j − C2), i > C1, j > C2.

The justification for the third case is that an excess of coach contenders is
allowed to spill over into any available first-class seats. On the other hand,
excess first-class contenders cannot be seated in any available coach seats; this
fact is reflected in the second case.

We model expected revenue R as a function of the overbooking strategy
(B1, B2):

R(B1, B2) =
B1∑
i=1

B2∑
j=1

(
B1

i

)(
B2

j

)
pi
1(1 − p1)B1−ipj

2(1 − p2)B2−j ·

(B1T1 + B2T2 − F (i, j, C1, C2))

Results and Interpretation
For fixed Ci, Ti, pi, and ki (i = 1, 2), we can find (B1,opt, B2,opt) for which

R(B1, B2) is maximal by adapting the computer program used to solve the
one-fare case.

For example, for a plane with C1 = 20 first class seats, C2 = 130 coach
seats, ticket costs of T1 = $280 and T2 = $140, and compensation constants
k1 = k2 = 1, we obtain the optimal overbooking strategies listed in Table 2.

The optimal strategy involves relatively little overbooking of first-class pas-
sengers, since there is a much higher compensation cost. However, the total
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Table 2.

Two-fare optimal overbooking strategies for selected arrival probabilities.

p1 p2 B1,opt B2,opt

0.85 0.80 23 165
0.90 0.80 22 165
0.95 0.80 20 166

0.85 0.85 23 155
0.90 0.85 22 155
0.95 0.85 20 155

0.90 0.90 22 146
0.95 0.90 21 145

number of passengers (coach plus first-class) overbooked in an optimal two-fare
situation is virtually the same as the total number overbooked in the one-fare
situation. The upshot is that the effect of multiple fare classes on the optimal
overbooking strategy is not very significant; so, when we construct our more
general model, we do not take into account multiple fares.

Compensation Costs
The key element that separates different schemes for compensating bumped

ticketholders is the degree of choice for the passenger. Airlines often hold
auctions for contenders in which the lowest bids are first to be bought off of a
flight.

We construct a model for involuntary bumping costs that is based on DOT
regulations and takes into account the waiting time distribution for flights.
Then we discuss auction methods for voluntary bumping and derive novel
results for expected compensation cost for a continuous auction that matches
actual ticket auctions fairly well.

Involuntary Bumping: DOT Regulations
The Department of Transportation (DOT) requires each airline to give all

passengers who are bumped involuntarily a written statement describing their
rights and explaining how the airline decides who gets on an overbooked flight
and who does not [Department of Transportation 2002]. Travelers who do not
get to fly are usually entitled to an “on-the-spot” payment of denied boarding
compensation. The amount depends on the price of their ticket and the length
of the delay:

• Passengers bumped involuntarily for whom the airline arranges substitute
transportation scheduled to get to their final destination within one hour of
their original scheduled arrival time receive no compensation.
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• If the airline arranges substitute transportation scheduled to arrive at the
destination between one and two hours after the original arrival time, the
airline must pay bumped passengers an amount equal to their one-way fare,
with a $200 maximum.

• If the substitute transportation is scheduled to get to the destination more
than two hours later, or if the airline does not make any substitute travel
arrangements for the bumped passenger, the airline must pay an amount
equal to the lesser of 200% of the fare price and $400.

• Bumped passengers always get to keep their tickets and use them on another
flight. If they choose to make their own arrangements, they are entitled to
an “involuntary refund” for their original ticket.

These conditions apply only to domestic flights and not to planes that hold
60 or fewer passengers.

The function for the compensation cost for an involuntarily bumped pas-
senger is

C(T, F ) =




0, if 0 < T ≤ 1;
min (2F, F + 200), if 1 < T ≤ 2;
min (3F, F + 400), if 2 < T,

where T is waiting time and F is the fare price. We assume that all flights to a
given location are direct and have the same flight duration. Thus, the waiting
time between flights equals the difference in departure times, and the waiting
time T is the time until the next flight to the destination departs. We assume
that involuntarily bumped passengers always ask for a refund of their fare.

Involuntary Bumping: The Waiting Time Model
To use the compensation cost function to determine the average compensa-

tion (per involuntarily bumped passenger), we would need to know the joint
distribution of fare prices and waiting times. Because this information would
be extremely difficult to obtain, we opt instead for practical compromises:

• We restrict our attention to determining the expected compensation cost for
the average ticket price, $140 [Airline Transport Association 2000].

• We specify a workable model for the distribution of waiting times that allows
us to calculate this cost directly.

Our model for the distribution of waiting times is the exponential distri-
bution, a common distribution for waiting times. Let T be a random variable
representing waiting time between flights; then

Pr(T ≤ t) = 1 − e−λt
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and E(T ) = τ = 1/λ, where τ is the mean waiting time for the next available
flight.

The expected cost of compensating an involuntarily bumped passenger who
purchased a ticket of price P can be evaluated directly and is

min(2P, P + 200)
[
e−λ − e−2λ

]
+ min(3P, P + 400)

[
e−2λ

]
.

From examining airline booking sites, we estimate the average daytime
waiting time τ to be 2.6 h, not including the time between the last flight of
the day and the first flight of the next day. If we include these night-next-day
waiting times in our calculations, we obtain τ ≈ 4.8 h; this value corresponds
to five flights per 24-hour period, which is fairly typical. Using the smaller,
strictly daytime value τ = 2.6 h, we obtain an expected compensation cost of
$255.

Voluntary Bumping: Auction Methods
In 1968, J.L. Simon proposed an auction among ticketed passengers. Each

ticketed passenger contending for a seat on a flight would submit a sealed enve-
lope bid of the smallest amount of money for which the contender would give
up the seat and wait until the next available one. The airline would compen-
sate the passengers who required the least money and require that they give
up their seats. Passengers would never get bumped without suitable com-
pensation, and airlines could raise their overbooking level much higher than
they could otherwise. After Ralph Nader successfully sued Allegheny Airlines
for bumping him, variants on this scheme have gradually become standard
throughout the industry.

There are two reasonable ways to attempt an auction.

• Per Simon, force every contender to choose a priori a price for which they
would give up their ticket. The airline could arrange all bumpings immedi-
ately.

• The actual practice by most airlines is to announce possible compensation
prices in discrete time intervals. Customers can then accept any offer they
wish to.

The first is attractive to the airlines because it is instant and minimizes com-
pensation. The second, however, can be started well before a flight departs; and
if intervals are increased gradually enough, the difference in cost is negligible.
The methods should generate similar results, so for simplicity we concentrate
on the second, though with continuous compensation offerings.

Voluntary Bumping: Continuous-Time Auction
In the literature, it is common to assume that if m passengers are compen-

sated through an auction, the total cost for the airline should be linear in m,
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although some authors (such as Smith et al. [1992]) recognize that the function
should be nonlinear and convex but do not analyze it further. In fact, we can
say a great deal more with only a few basic assumptions. Indeed, suppose that

• n ticketholders check in for a flight with capacity C, with n > C.

• Each contender has a limit price, the smallest compensation to be willing to
give up the seat.

• An airline can always rebook a ticketholder on one of its own later flights at
no cost (i.e., it does not have to pay for a ticket on a rival airline).

In an ideal auction, the airline offers successively higher compensation
prices; whenever the offer exceeds a contender’s limit price, the contender
gives up the ticket voluntarily. Suppose that ticketholders (Γ1,Γ2, . . .Γn) are
ordered so that Γi’s limit price is less than Γj ’s limit price for i < j. Define:

• D(x) = the probability that a randomly selected ticketholder gives up the
seat for a price x.

• Ym = the compensation that the airline must pay Γm to give up the ticket.

• Xm = the total compensation that the airline must pay for m contenders give
up their seats.

We have Xm =
∑m

i=1 Yi. To determine E[Xm], we determine E[Yi] for
i ≤ m. To do this, we need the following result:

E[Ym] =
m−1∑
i=0

(
n

i

)∫ ∞

0

(
D(x)

)m(
1 − D(x)

)n−m

dx.

[EDITOR’S NOTE: We omit the authors’ proof.]
Very little can be done beyond this point without further knowledge about

the nature of D(x). There is not much recent data on this; but when airlines were
first considering moving to an auction-based system, K.V. Nagarajan [1978]
polled airline passengers on their limit price. Although he performed little
analysis, we find that the cumulative distribution function of this limit price
fits very closely exponential curves of the form 1−e−Ax for a fixed A (Figure 3).

With D(x) = 1 − e−Ax for some constant A, then

E[Xm] =
1
A

[
m − (n − m)

(
1
n

+
1

n − 1
+

1
n − 2

+ . . . +
1

n − m + 1

)]
.

[EDITOR’S NOTE: We omit the authors’ proof.]
Using the approximation

1
1

+
1
2

+ . . . +
1
n
≈ lnn,
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Figure 3. Polled distribution of ticketholder limit price, with best fit graphs 1− e0.046x for 2-hour
wait and 1 − e0.0175x for 6-hour wait (data from [Nagarajan 1978, 113]).
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this becomes

E[Xm] ≈ 1
A

[
m − (n − m) ln

(
n

n − m

)]
.

There is no reason to believe that the value of A is constant across all scenarios.
For example, contenders will certainly accept a smaller compensation if the
next flight is departing soon. For our purposes, however, we assume that A
is constant over all situations; and we estimate that on a flight with capacity
C = 150 and only a small number of overbooked passengers, Γ1 has a limit
price of $100. Then we have 1

A · 1
150 ≈ $100, so A ≈ $1/15, 000.

Hence, the expected compensation required to bump m out of n tickethold-
ers via auction is approximately

$1
15, 000

[
m − (n − m) ln

(
n

n − m

)]
,

compared to a cost of $255m (plus ill will) for involuntary bumping the same
number of ticketholders.

Effects of Overbooking on Market Share

Constructing the Model
We focus on the 10 largest U.S. airlines (Alaska, America West, Ameri-

can, Continental, Delta, Northwest, Southwest, Trans World, United, US Air),
which comprise 90% of the market. We use 1997–1998 statistics on their flight
frequency and market share. [EDITOR’S NOTE: We omit the data table.]

Flights are modeled as identical in all respects except for market interest.
The market is simulated as a group of initially 10,000 people, each loyal to
one airline, who independently buy tickets on their airline with a fixed prob-
ability and meet reservations with a fixed probability. Each member of the
market independently chooses to stay with an airline or change airline based
on treatment regarding each flight.

Each company choose a number r, which specifies its overbooking strategy:
On a flight of capacity C, the company will sell up to B = Cr tickets.

In each time period, precisely one flight is offered. The chance that a given
airline will offer that flight is proportional to the number of flights that it offers
per year. We also determine a constant k that indicates the level of interest in
this flight. Each flight has capacity C = 150 seats each sold at $140.

The exact size of the market should have little effect on the result. We
assume that the total market is initially made up of 10,000 independent people,
each loyal to one carrier. The relative sizes of the company market shares are
initialized according to 1997–98 industry data. We assume each person in the
market flies on average the same number of times in a year.

We assume that each person in a company’s market has probability k of
wanting to buy a ticket for a flight by the company. We have k follow a normal
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distribution with mean fixed so that the average load factor on all flights is the
industry average of 0.72 [Bureau of Transportation Statistics 2002].

Industry data prior to September 11 indicate a probability of .85 that a tick-
etholder will check in for the flight.

If necessary, each airline bumps some passengers voluntarily and some
involuntarily, according to its strategy. The immediate cost of bumpings is
set to the values that we derived in the previous section. We surmise that
voluntarily bumped passengers are relatively happy and thus leave the airline
with probability only .05, whereas involuntarily bumped passengers are furious
and leave with probability .8.

A person who leaves an airline stays within the market with probability
.9 (0.95 if bumped voluntarily) and simply switches to another airline; other-
wise, the person leaves the market altogether. People trickle into the market
fast enough to compensate for the loss of people due to dissatisfaction, thus
allowing the market to grow slowly.

Simulation Results, Pre-September 11
We investigate the effect of different overbooking rates on profit. For each

overbooking rate, we calculate net profit over 500 time periods (ensuring that
the same random events occur regardless of the strategy tested). The strategy
that maximizes profit for that time period is then determined and tabulated.
We repeat this 40 times for each airline.

This leaves open the question of what strategies the companies not being
tested should use. To determine this, we initially assume that each company
would overbook by 1.17 (as computed in the single-plane model), run the pro-
gram to get a first estimate of a good strategy, and use the optimal results from
that preliminary run to set the default overbooking rates of each company in a
final run. Finally, we use the industry figure that 5% of all bumped passengers
are bumped involuntarily to set the company compensation strategies.

The optimal overbooking rate for all companies other than Alaska is be-
tween 1.165 and 1.176, close to but a little less than the results from the One-
Plane Model. This is reasonable, since the most significant improvement that
this simulation makes over the One-Plane Model is the consideration of lost
customers, whose effect should slightly reduce the optimal overbooking rate.

The program generates very consistent answers on each run for every airline
except Alaska. Alaska has far fewer passengers per flight than its competitors
and rarely fills any plane entirely, so its overbooking policy has a negligible
effect on its overall profit. Thus, the simulation is almost certainly too coarse
to generate useful data on Alaska.
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Adjusting the Model Due to September 11
We estimate the effects of the complicating factors after September 11 have

on the simulation parameters:

• Arrival probability p increases from 0.85 to 0.90.

• Flight frequency decreases by 20% [Parker 2002].

• Total arket size decreases by 15%. Fourth quarter data from 2001 are not yet
available, so we make an estimate. Our own experience is that flights are
more crowded now, which suggests that the percentage of market size de-
crease is smaller than the percentage of flight frequency decrease. Thus, we
estimate that market size has decreased by 15%.

• Market return rate doubles. The market size has decreased due to the fear fac-
tor, but Parker [2002] anticipates that demand will return to pre-September
11 levels by mid-2002. Moreover, public perception of airline safety is im-
proving due to the security factor. Thus, the market return rate should be
substantially higher than its pre-September 11 level.

• Market exit rate decreases by 50%. The market composition is now more heav-
ily weighted towards those who fly only out of necessity; such fliers are
much less likely than casual fliers to leave the market.

• Percentage of bumps that are voluntary decreases from 95% to 90%. There are
fewer flights, hence the waiting time between flights is greater. Since pas-
sengers are more likely to be flying of necessity, they are much less interested
in giving up a seat for compensation.

• Compensation cost of voluntary bumping increases by 20%.

• Compensation cost of involuntary bumping increases by 20%. Bumped passen-
gers face longer waiting times; because of DOT regulations, average invol-
untary compensation costs must rise.

• Competitors increase their overbooking levels from r to r + 0.02. Due to financial
losses, an airline can expect its competitors to focus more heavily on short-
term profits than previously.

Simulation Results, Post-September 11
Using the parameter changes outlined, we ran the simulation again to esti-

mate the effect of the events of September 11 on optimal overbooking strategies.
The results are shown in Table 3.

There is again a strong correlation between the simulation results for these
parameters and the corresponding results from the One-Plane Model.

From Table 3, it is clear that the events of September 11 have indeed had
a significant effect on optimal overbooking rates. Indeed, for a company the
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Table 3.

Optimal overbooking rates, from simulation results.

Airline Pre-September 11 Post-September 11

Alaska 1.319 1.260
America West 1.169 1.094
American 1.171 1.094
Continental 1.170 1.096
Delta 1.173 1.095
Northwest 1.174 1.095
Southwest 1.173 1.095
Trans World 1.176 1.096
United 1.168 1.094
US Air 1.165 1.092

size of American Airlines, the 7% change in these rates could easily lead to a
difference in profits on the order of $1 billion.

Thus, if our estimates of parameter changes due to September 11 are rea-
sonable, all major airlines should significantly decrease their overbooking rates.
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Memorandum
Attn: Don Carty, CEO American Airlines
From: MCM Team 180
Subject: Overbooking Policy Assessment Results

We completed the preliminary assessment of overbooking policies that you
requested. There is a great deal of money at stake here, both from ticket sales and
also from compensation that must be given to bumped passengers. Moreover,
if too many passengers are bumped, there will be a loss of good will and many
regular customers could be lost to rival airlines. In fact, we found that the profit
difference for American Airlines between a good policy and a bad policy could
easily be on the order of $1 billion a year.

Using a combination of mathematical models and computer simulations, we
considered a wide variety of possible strategies that could be tried to confront
this problem. We naturally considered different levels of overbooking, but
we also looked at different ways in which airlines could compensate bumped
passengers. In terms of the second question, we find that the current scheme
of auctioning off compensations for tickets, combined with certain calculated
forced bumpings, is still ideal, regardless of changes to the market state.

Although we were forced to work without much recent data, we were also
able to achieve reliable and consistent results for the optimal overbooking rate.
In particular, we found that prior to September 11, American Airlines stood to
maximize profits by selling approximately 1.171 times as many tickets as seats
available.

We next considered how this number would likely be affected by the current
state of the market. In particular, we focused on four consequences of the events
on September 11: all airlines are offering fewer flights, there is heightened
security in and around airports, passengers are afraid to fly, and the industry has
already lost billions of dollars. Analyzing each of these in turn, we found that
they did indeed have a significant effect on the market. In particular, American
Airlines should lower its overbooking rate to 1.094 tickets per available seat.

In conclusion, we found that there is indeed a tremendous need to re-
evaluate the current overbooking policy. According to our current data, we
believe that the rate should be dropped significantly. It would be valuable,
however, to supplement our calculations with some of the confidential data
that American Airlines has access to, but that we do not.
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Introduction
We develop two models to evaluate overbooking policies.
The first model predicts the effectiveness of a proposed overbooking scheme,

using the concept of expected marginal seat revenue (EMSR). This model solves
the discount seat allocation problem in the presence of overbooking factors for
each fare class and evaluates an overbooking policy stochastically.

The second model takes in historical flight data and reconstructs what the
optimal seat allocation should have been. The percentage of overbooking rev-
enue obtained in practice serves as a measure of the policy’s value.

Finally, we examine the overbooking problem in light of the recent drastic
changes to airline industry and conclude that increased overbooking would
bring short-term profits to most carriers. However, the long-term ill effects
that have traditionally caused airlines to shun such a policy would be even
more pronounced in a post-tragedy climate.

Literature Review
There are two major ways that airlines try to maximize revenues: over-

booking (selling more seats than available on a given flight) and seat allocation
(price discrimination). These measures are believed to save major airlines as
much as half a billion dollars each year, in an industry with a typical yearly
profit of about $1 billion dollars [Belobaba 1989].
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Beckman [1958] models booking and no-shows in an effort to find an optimal
overbooking strategy. He ignores advance cancellations, assuming that all can-
cellations are no-shows [Rothstein 1985]. A method that is easy to implement
but sophisticated enough to allow for cancellations and group reservations was
developed by Taylor [1962]. Versions of this model were implemented at Iberia
Airlines [Shlifer and Vardi 1975], British Overseas Airways Corporation, and
El Al Airlines [Rothstein 1985].

None of these approaches considers multiple fare classes. Littlewood [1972]
offers a simple two-fare allocation rule: A discount fare should be sold only if
the discount fare is greater than or equal to the expected marginal return from
selling the seat at full-fare. This idea was generalized by Belobaba [1989] to in-
clude any number of fare classes and allow the integration of overbooking. We
use expected marginal seat revenue in predicting about overbooking schemes.

There is a multitude of work on the subject [McGill 1999]—according to
Weatherford and Bodily [1992], there are more than 124,416 classes of models
for variations of the yield management problem, though research has settled
into just a few of these. Several authors tried to better Belobaba’s [1987] heuristic
in the presence of three or more fare classes (for which it is demonstrably sub-
optimal) [Weatherford and Bodily 1992]; generally, these adaptive methods for
obtaining optimal booking limits for single-leg flights are done by dynamic
programming [Mcgill 1999].

After deregulation in 1978, airlines were no longer required to maintain a
direct-route system to major cities. Many shifted to a hub-and-spoke system,
and network effects began to grow more important. To maximize revenue, an
airline may want to consider a passenger’s full itinerary before accepting or
denying their ticket request for a particular leg. For example, an airline might
prefer to book a discount fare rather than one at full price if the passenger is
continuing on to another destination (and thus paying an additional fare).

The first implementations of the origin-destination control problem consid-
ered segments of flights. The advantage to this was that a segment could be
blacked out to a particular fare class, lowering the overall complexity of a book-
ing scheme. Another method, virtual nesting, combines fare classes and flight
schedules into distinct buckets [Mcgill 1999]. Inventory control on these buck-
ets would then give revenue-increasing results. Finally, the bid-price method
deterministically assigns a value to different seats on a flight leg. The legs in
an itinerary are then summed to establish a bid-price for that itinerary; a ticket
request is accepted only if the fare exceeds the bid-price [Mcgill 1999]

The most realistic yield management problem takes into account five price
classes. The ticket demands for different fare classes are randomized and corre-
lated with one other to allow for sell-ups and the recapture of rejected customers
on later flights. Passengers can no-show or cancel at any time. Group reser-
vations are treated separately from individuals—their cancellation probability
distribution is likely different. Currently, most work assumes that passengers
who pay full fare would not first check for availability of a lower-class ticket;
a more realistic model would allow buyers of a higher-class ticket to be di-
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verted by a lower fare. A full accounting of network effects would consider
the relative value of what Weatherford and Bodily [1992] terms displacement—
denying a discount passenger’s ticket request to fly a multileg itinerary in favor
of leaving one of the legs open to a full-fare passenger.

Unfortunately, while the algorithms for allocating seats and setting over-
booking levels are highly developed, there has been little work done on the
problem of evaluating how effective these measures actually are. Our solution
applies industry-standard methods to find optimal booking levels, then exam-
ines the actual booking requests for a given flight to determine how close to an
optimal revenue level the scheme actually comes.

Factors Affecting Overbooking Policy

General Concerns
The reason that overbooking is so important is because of multiple fare

classes. With only one fare class, it would be easier for airlines to penalize
customers for no-shows. However, while most airlines offer nonrefundable
discount tickets, they prefer not to penalize those who pay full fare, like business
travelers, because these passengers account for most of the profits.

The overbooking level of a plane is dictated by the likelihood of cancellations
and of no-shows. An overbooking model compares the revenue generated by
accepting additional reservations with the costs associated with the risk of
overselling and decides whether additional sales are advisable. In addition,
the “recapture” possibility can be considered, which is the probability that a
passenger denied a ticket will simply buy a ticket for one of the airline’s other
flights. Since a passenger is more valuable to the airline buying a ticket on a
flight that has empty seats to fill than on one that is already overbooked, a high
recapture probability reduces the optimal overbooking level [Smith et al. 1992].

No major airline overbooks at profit-maximizing levels, because it could
not realistically handle the problems associated with all the overloaded flights.
This gives the overbooking optimization problem some important constraints.
The total flight revenue is to be maximized, subject to the conditions that only
a certain portion of flights have even one passenger denied boarding (one
oversale), and that a bound is placed on the expected total number of oversales.
Dealing with even one oversale is a hassle for the airline’s staff, and they are
not equipped to handle such problems on a large scale. Additionally, some
research indicates that increased overbooking levels would most likely trigger
an “overbooking war” [Suzuki 2002], which would increase short-term profits
but would probably engender enough consumer resentment that the industry
as a whole would lose business.

While the overbooking problem sets a limit for sales on a flight as a whole,
proper seat allocation sets an optimal point at which to stop selling tickets
for individual fare levels. For example, a perfectly overbooked plane, loaded
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exactly to capacity, could be flying at far below its optimal revenue level if
too many discount tickets were sold. The more expensive tickets are not for
first-class seats and involve no additional luxuries above the discount tickets,
apart from more lenient cancellation policies and the ability to buy the tickets
a shorter time before the flight’s departure.

September 11, 2001
Since the September 11 terrorist attacks, there have been significant changes

in the airline business. In addition to the forced cancellation of many flights in
the immediate aftermath of the attacks and the extreme levels of cancellations
and no-shows by passengers after that, passenger traffic has dropped sharply
in general. The huge downturn in passenger levels has led to large reductions
in service by most carriers.

In terms of the booking problem, there are fewer flights for passengers
to spill over onto, which could increase the loss by an airline if it bumps a
passenger from a flight. On the other hand, since passenger levels have fallen
so far, it is less likely that an airline will overfill any given flight. The heightened
security at airports will likely increase the passenger no-show rate somewhat,
as passengers get delayed at security checkpoints. At the very least, it should
almost completely remove the problem of “go-shows,” passengers who show
up for a flight but are not in the airline’s records.

On the whole, optimal booking strategies have become even more vital as
airlines have already lost billions of dollars, and some teeter on the brink of
failure. Some overbooking tactics previously dismissed as too harmful in the
long run might be worthwhile for companies in trouble. For example, an airline
near failure might increase the overbooking rate to the level that maximizes
revenue, without regard to the inconvenience and possible future resentment
of its customers.

Constructing the Model

Objectives
A scheme for evaluating overbooking policies needs to answer two ques-

tions: how well should a new overbooking method perform, and how well is a
current overbooking scheme already working? The first is best addressed by a
simple model of an airline’s booking procedures; given some setup for allocat-
ing seats to fare classes, candidate overbooking schemes can be laid on top and
tested by simulation. This approach has the advantage that it provides insight
into why an overbooking scheme is or is not effective and helps to illuminate
the characteristics of an optimal overbooking approach.

The second question is, in some respects, a simpler one to answer. Given the
actual (over)booking limits that were imposed on each fare class, and all avail-
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able information on the actual requests for reservations, how much revenue
might have been gained from overbooking, compared to how much actually
was? This provides a very tangible measure of overbooking performance but
very little insight into the reasons for results.

The enormous number of factors affecting the design and evaluation of
an overbooking policy force us to make simplifying assumptions to construct
models that meet both of these goals.

Assumptions
• Fleet-wide revenues can be near-optimized one leg at a time.

Maximizing revenue involves complicated interactions between flights. For
instance, a passenger purchasing a cheap ticket on a flight into a major hub
might actually be worth more to the airline than a business-class passenger,
on account of connecting flights. We assume that such effects can be compen-
sated for by placing passengers into fare classes based on revenue potential
rather than on the fare for any given leg. This assumption effectively reduces
the network problem to a single-leg optimization problem.

• Airlines set fares optimally.

Revenue maximization depends strongly on the prices of various classes
of tickets. To avoid getting into the economics of price competition and
supply/demand, we assume that airlines set prices optimally. This reduces
revenue maximization to setting optimal fare-class (over)booking limits.

• Historical demand data are available and applicable.

The model needs to estimate future demand for tickets on any given flight.
We assume that historical data are available on the number of tickets sold
any given number of days t before a flight’s departure. In some respects, this
assumption is unrealistic because of the problem of data censorship—that is,
the failure of airlines to record requests beyond the booking limit for a fare
class [Belobaba 1989]. On the other hand, statistical methods can be used
to reconstruct this information [Boeing Commercial Airline Company 1982,
7–16; Swan 1990].

• Low-fare passengers tend to book before high-fare ones.

Discount tickets are often sold under advance purchase restrictions, for the
precise reason that it enables price discrimination. Because of restrictions
like these, and because travelers who plan ahead search for cheap tickets,
low-fare passengers tend to book before high-fare ones.

Predicting Overbooking Effectiveness
Disentangling the effects of overbooking, seat allocation, pricing schemes,

and external factors on revenues of an airline is extremely complicated. To
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isolate the effects of overbooking as much as possible, we want a simple, well-
understood seat allocation model that provides an easy way to incorporate
various overbooking schemes. In light of this objective, we pass up several
methods for finding optimal booking limits on single-leg flights detailed in, for
example, Curry [1990] and Brumelle [1993], in favor of the simpler expected
marginal seat revenue (EMSR) method [Belobaba 1989].

EMSR was developed as an extension of the well-known rule of thumb,
popularized by Littlewood [1972], that revenues are maximized in a two-fare
system by capping sales of the lower-class ticket when the revenue from selling
an additional lower-class ticket is balanced by the expected revenue from selling
the same seat as an upper-class ticket. In the EMSR formulation, any number of
fare classes are permitted and the goal is “to determine how many seats not to
sell in the lowest fare classes and to retain for possible sale in higher fare classes
closer to departure day” [Belobaba 1989].

The only information required to calculate booking levels in the EMSR
model is a probability density function for the number of requests that will
arrive before the flight departs, in each fare class and as a function of time.
For simplicity, this distribution can be assumed to be normal, with a mean and
standard deviation that change as a function of the time remaining. Thus, the
only information an airline would need is a historical average and standard
deviation of demand in each class as a function of time. Ideally, the informa-
tion would reflect previous instances of the particular flight in question. Let
the mean and standard deviations in question be denoted by µi(t) and σi(t) for
each fare class i = 1, 2, . . . , k. Then the probability that demand is greater than
some specified level Si is given by

P̄i(Si, t) ≡ 1√
2π σi(t)

∫ ∞

Si

e(r−µi(t))
2/σi(t)

2
dr.

This spill probability is the likelihood that the Sith ticket would be sold if offered
in the ith category. If we further allow fi(t) to denote the expected revenue
resulting from a sale to class i at a time t days prior to departure, we can define

EMSRi(Si, t) = fi(t) · P̄i(Si, t),

or simply the revenue for a ticket in class i times the probability that the Sith
seat will be sold. The problem, however, is to find the number of tickets Si

j that
should be protected from the lower class j for sale to the upper class i (ignoring
other classes for the moment). The optimal value for Si

j satisfies

EMSRi(Si
j , t) = fj(t), (1)

so that the expected marginal revenue from holding the Si
jth seat for class i is

exactly equal to (in practice, slightly greater than) the revenue from selling it
immediately to someone in the lower class j. The booking limits that should
be enforced can be derived easily from the optimal Si

j values by letting the
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booking limit Bj for class j be

Bj(t) = C − Sj+1
j −

∑
i<j

bi(t), (2)

that is, the capacity C of the plane, less the protection level of the class above j
from class j and less the total number of seats already reserved. Sample EMSR
curves, with booking limits calculated in this fashion, are shown in Figure 1.
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Figure 1. Expected marginal seat revenue (EMSR) curves for three class levels, with the high-
est-revenue class at the top. Each curve represents the revenue expected from protecting a par-
ticular seat to sell to that class. Also shown are the resulting booking limits for each of the lower
classes—that is, the levels at which sales to the lower class should stop to save seats for higher
fares.

This formulation does not account for overbooking; if we allow each fare
class i to be overbooked by some factor OVi, the optimality condition (1) be-
comes

EMSRi(Si
j , t) = fj(t) · OVi

OVj
. (3)

This can be understood in terms of an adjustment to fi and fj ; the overbooking
factors are essentially cancellation probabilities, so we use each OVi to deflate
the expected revenue from fare class i. Then

P̄i(Si
j , t) ·

fi(t)
OVi

= fj(t) · fj(t)
OVj

,
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which is equivalent to (3). Note that the use of a single overbooking factor for
the entire cabin (that is, OVi = OV ) causes the OVi and OVj in (3) to cancel.
Nonetheless, the boarding limits for each class are affected, because the capacity
of the plane C must be adjusted to account for the extra reservations, so now

C∗ = C · OV

and the booking limits in (2) are adjusted upward by replacing C with C∗.
The EMSR formalism gives us the power to evaluate an overbooking scheme

theoretically by plugging its recommendations into a well-understood stable
model and evaluating them. Given the EMSR boarding limits, which can be
updated dynamically as booking progresses, and the prescribed overbooking
factors, a simulated string of requests can be handled. Since the EMSR model
involves only periodic updates to establish limits that are fixed over the course
of a day or so, a set of n requests can be handled with two lookups each (booking
limit and current booking level), one subtraction, and one comparison; so all
n requests can be processed on O(n) time. An EMSR-based approach would
thus be practical in a real-world real-time airline reservations system, which
often handles as many as 5,000 requests per second. Indeed, systems derived
from EMSR have been adopted by many airlines [Mcgill 1999].

Evaluating Past Overbookings
The problem of evaluating an overbooking scheme that has already been

implemented is somewhat less well studied than the problem of theoretically
evaluating an overbooking policy. One simple approach, developed by Ameri-
can Airlines in 1992, measures the optimality of overbooking and seat allocation
separately [Smith et al. 1992]. Their overbooking evaluation process assumes
optimal seat allocation and, conversely, their seat allocation evaluation scheme
assumes optimal overbooking. Under this assumption, an overbooking scheme
is evaluated by estimating the revenue under optimal overbooking in two ways:

• If a flight is fully loaded and no passenger is denied boarding, the flight
is considered to be optimally overbooked and to have achieved maximum
revenue.

• If n passengers are denied boarding, the money lost due to bumping these
passengers is added back in and the n lowest fares paid by passengers for
the flight are subtracted from revenue.

• On the other hand, if there are n empty seats on the plane, the n highest-fare
tickets that were requested but not sold are added to create the maximum
revenue figure.

Their seat-allocation model estimates the demand for each flight by calcu-
lating a theoretical demand for each fare class and then setting the minimum
flight revenue (by filling the seats lowest-class first) and the maximum flight
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revenue (by filling the seats highest-class first). To estimate demand, we use
the information on the flight’s sales up to the point where each class closed. By
assuming that demand is increasing for each class, we can project the number
of requests that would have occurred had the booking limits been disregarded.

Given these projected additional requests and the actual requests received
before closing, it is straightforward to compute the best- and worst-case over-
booking scenarios. The worst-case revenue R− is determined by using no
booking limits and taking reservations as they come, and the best-case rev-
enue R+ is determined by accommodating high-fare passengers first, giving
the leftovers to the lower classes. The difference between these two figures is
the revenue to be gained by the use of booking limits. Thus, the performance
of a booking scheme that generates revenue R is

p =
R − R−
R+ − R−

· 100%, (4)

representing the percentage of the possible booking revenue actually achieved.
We select this method for evaluating booking schemes after the fact.

Analysis of the Models

Tests and Simulations
The EMSR method requires information on demand as a function of time.

Although readily available to an airline, it is not widely published in a detailed
form. Li [2001] provides enough data to construct a rough piecewise-linear
picture of demand remaining as a function of time, shown in Figure 2.

This information can be inputted into the EMSR model to produce optimal
booking limits that evolve in time. A typical situation near the beginning of
ticket sales was shown in Figure 1, while the evolution of the limits themselves
is plotted in Figure 3.

The demand information in Figure 2 can also be used to simulate requests
for reservations. By taking the difference between the demand remaining at
day t and at day (t− 1) before departure, the expected demand on day t can be
determined. The actual number of requests generated on that day is then given
by a Poisson random variable with parameter λ equal to the expected number
of sales [Rothstein 1971]. The requests generated in this manner can be passed
to a request-handling simulation that looks at the most current booking limits
and then accepts or denies ticket requests based on the number of reservations
already confirmed and the reservations limit. An example of this booking
process is illustrated in Figure 4.

The results of the booking process provide an ideal testbed for the revenue
opportunity model employed to evaluate overbooking performance. The sim-
ulation conducted for Figure 4 had demand values of {11, 41, 57}, for classes 1,
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Expected Remaining Demand as Flight Time Approaches
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Figure 2. Demand remaining as a function of time for each of three fare classes, with the highest
fare class on top. The curves represent the fraction of tickets that have yet to be purchased. Note
that, for example, demand for high fare tickets kicks in much later than low-fare demand. ( Data
interpolated from Li [2001].)

2, and 3 respectively, before ticket sales were capped. A linear forward projec-
tion of these sales rates indicates that they would have reached {18, 49, 69} had
the classes remained open. Given fare classes {$250, $150, $100}, the minimum
revenue would be

R− = $100(69) + $150(40) + $250(0) = $12, 900

and the maximum revenue would be

R+ = $250(18) + $150(49) + $100(42) = $16, 050.

The actual revenue according to the EMSR formalism was

R = $100(57) + $150(41) + $250(11) = $14, 600,

so the efficiency is

p =
R − R−
R+ − R−

· 100% =
$14, 600 − $12, 900
$16, 050 − $12, 900

· 100% = 54%,

without the use of a complicated overbooking scheme. This is not close to the
efficiencies reported in Smith et al. [1992], which cluster around 92%. This rela-
tive inefficiency is to be expected, however, from a simplified booking scheme
given incomplete booking request data.
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Evolution of Booking Limits by the EMSR Method
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Figure 3. Booking limits for each class are dynamically adjusted to account for tickets already sold.
For illustrative purposes, the number of tickets already sold is replaced here with the number
of tickets that should have been sold according to expectations. In this case, the booking limits
estimated at the beginning of the process are fairly accurate and require relatively little updating.

Total Bookings by Fare Class: First Sale to Flight Time
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Figure 4. The EMSR-based booking limits are used to decide whether to accept or reject a sequence
of ticket requests. These requests follow a Poisson distribution where the parameter λ varies with
time to match the expected demand. Each fare class reaches its booking limit, as desired, so the
flight is exactly full. Incorporating overbooking factors shifts the limits up accordingly.
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Strengths and Weaknesses
Strengths
• Applies widely accepted, industry-standard techniques.

Although more advanced (and optimal) algorithms are available and are
used, EMSR and its descendants are still widely used in industry and can
come close to optimality. The EMSR scheme, tested as-is on a real airline,
caused revenue gains as much as 15% [Belobaba 1989].

Our method for determining the optimality of a scheme after the fact is also
based on tried and true methods developed by American Airlines [Smith et
al. 1992].

• Simplicity

Since it does not take into account as many factors as other booking models,
EMSR is easier to deal with computationally. While a simple model may not
be able to model a major airline with complete accuracy, an optimal pricing
scheme can be made using only three fare classes [Li 2001].

Weaknesses
• Neglects network effects

We treat the problem of optimizing each flight as if it were an independent
problem although it is not.

• Ignores sell-ups

In considering the discount seat allocation problem, we treat the demands
for the fare classes as constants, independent of one other. This is not the
case, because of the possibility of sell-ups. If the number of tickets sold in a
lower fare class is restricted, then there is some probability that a customer
requesting a ticket in that class will buy a ticket at a more expensive fare.
This means it is possible to convert low-fare demand into high-fare demand,
which would suggest protecting a higher number of seats for high fares than
calculated by the model that we use. Sell-ups would be straightforward to
incorporate into EMSR, but doing so would require additional information
[Belobaba 1989].

• Discounts possibility of recapture

Similar to sell-ups, the recapture probability is the probability that a passen-
ger unable to buy a ticket at a certain price on a given flight will buy a ticket
on a different flight. Depending on the recapture probability for each fare
class, more or fewer seats might be allocated to discount fares.
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Recommendations on Bumping Policy
In 1999, an average of only 0.88 passengers per 10,000 boardings were in-

voluntarily bumped. Airlines are not required to keep records of the number
of voluntary bumps, so it is impossible to determine a general bump rate.

Before bumping passengers involuntarily, the airline is required to ask for
volunteers. Because there are no regulations on compensation for voluntary
bumps, this is often a cheaper and more attractive method for airlines anyway.
If too few people volunteer, the airline must pay those denied boarding 200%
of the sum of the values of the passengers’ remaining flight coupons, with a
maximum of $400. This maximum is decreased to $200 if the airline arranges
for a flight that will arrive less than 2 hours after the original flight. The air-
line may also substitute the offer of free or reduced fare transportation in the
future, provided that the value of the offer is greater than the cash payment
otherwise required. Alternatively, the airline may simply arrange alternative
transportation if it is scheduled to arrive less than an hour after the original
flight.

Auctions in which the airline offers progressively higher compensation for
passengers who give up their seats are both the cheapest and the most com-
mon practice. As long as the airline does not engage in so much overbooking
that it cannot find suitable reroutes for passengers bumped from their original
itineraries, no alternatives to this policy need to be considered.

Conclusions
The two models presented in this paper work together to evaluate over-

booking schemes by simulating their effects in advance and by quantifying
their effects after implementation.

The expected marginal seat revenue (EMSR) model predicts overbooking
scheme effectiveness. It determines the correct levels of protection for each fare
class above the lowest—that is, how many seats should be reserved for possible
sale at later dates and higher fares. Overbooking factors can be specified sepa-
rately for each fare class, so the model effectively takes in overbooking factors
and produces booking limits that can be used to handle ticket requests.

The revenue opportunity model attempts to estimate the maximum revenue
from a flight under perfect overbooking and discount allocation. This is accom-
plished by estimating the actual demand for seats, then calculating the revenue
that these seats would generate if sold to the highest-paying customers. Sim-
ple calculations produce the ideal overbooking cap and the optimal discount
allocation for the flight. Thus, this model effectively represents how the airline
would sell tickets if they had perfect advance knowledge of demand.

After the September terrorist attacks and their subsequent catastrophic ef-
fects on the airline industry, heightened airport security and fearful passengers
will increase no-show and cancellation rates, seeming to dictate increasing
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overbooking levels to reclaim lost profits.
Airlines considering such action should be cautioned, however, that the

negative effects of increased overbooking could outweigh the benefits. With
reduced airline service, finding alternative transportation for displaced passen-
gers could be more difficult. The effect of denying boarding to more passen-
gers, along with the greater inconvenience of being bumped, could seriously
shake consumers’ already-diminished faith in the airline industry. With air-
lines already losing huge numbers of customers, it would be a mistake to risk
permanently losing them to alternatives like rail and auto travel by alienating
them with frequent overselling.
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Letter to the CEO of a Major Airline
Airline overbooking is just one facet of a revenue management problem that

has been studied extensively in operations research literature. Airlines have
been practicing overbooking since the 1940’s, but early models of overbooking
considered only the most rudimentary cases. Most importantly, they did not
take into account the revenue maximizing potential of price discrimination—
charging different fares for identical seats. In order to maximize yield, it is
particularly critical to price discriminate between business and leisure travelers.
That is, when filling the plane, book as many full fare passengers and as few
discount fare passengers as possible.

The implementation of a method of yield management can have dramatic
effects on an airline’s revenue. American Airlines managed its seat inventory
to a $1.4 billion increase in revenue from 1989 to 1992—about 50% more than
its net profit for the same period. Controlling the mix of fare products can
translate into revenue increases of $200 million to $500 million for carriers with
total revenues of $1 billion to $5 billion.

Though several decision models of airline booking have been developed
over the years, comparing one scheme to another remains a difficult task. We
have taken a two-pronged approach to this problem, both simulating and mea-
suring a booking scheme’s profitability.

In order to simulate a booking scheme’s effect, we used the expected marginal
seat revenue (EMSR) model proposed by Belobaba [1989] to generate near-
optimal decisions on whether to accept or deny a ticket request in a given fare
class. The EMSR model accepts as input overbooking levels for each of the fare
classes that compose a flight, so different policies can be plugged in for testing.

Our approach to measuring a current scheme’s profitability is similar to one
used at American Airlines [Smith et al. 1992]. We compare the actual revenue
generated by a flight with an ideal level calculated with the benefit of hindsight,
as well as with a baseline level that would have been generated had no yield
management been used. By calculating the percentage of this spread earned by
a flight employing a particular scheme, we are able to gauge the effectiveness
of different booking schemes.

It is our hope that these models will prove useful in evaluating your airline’s
overbooking policies. Simulations should provide insight into the properties of
an effective scheme, and measurements after the fact will help to provide perfor-
mance benchmarks. Finally, while it may be tempting to increase overbooking
levels in order to compensate for lost revenues in the post-tragedy climate, our
results indicate this will probably hurt long-term profits more than they will
help.

Cordially,

Michael P. Schubmehl, Wesley M. Turner, and Daniel M. Boylan
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Introduction
We develop a series of mathematical models to investigate relationships

between overbooking strategies and revenue.
Our first models are static, in the sense that passenger behavior is pre-

dominantly time-independent; we use a binomial random variable to model
consumer behavior. We construct an auction-style model for passenger com-
pensation.

Our second set of models is more dynamic, employing Poisson processes
for continuous time-dependence on ticket purchasing/cancelling information.

Finally, we consider the effects of the post-September 11 market on the in-
dustry. We consider a particular company and flight: Frontier Airlines Flight
502. Applying the models to revenue optimization leads to an optimal book-
ing limit of 15% over flight capacity and potentially nets Frontier Airlines an
additional $2.7 million/year on Flight 502, given sufficient ticket demand.

Frontier Airlines: Company Overview
Frontier Airlines, a discount airline and the second largest airline operating

out of Denver International Airport (DIA), serves 25 cities in 18 states. Frontier
offers two flights daily from DIA to LaGuardia Airport in New York. We focus
on Flight 502.
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Technical Considerations and Details
We discuss regulations for handling bumped passengers, airplane specifi-

cations, and financial interests.

Overbooking Regulations
When overbooking results in overflow, the Department of Transportation

(DOT) requires airlines to ask for volunteers willing to be bumped in exchange
for compensation. However, the DOT does not specify how much compen-
sation the airlines must give to volunteers; in other words, negotiations and
auctions may be held at the gate until the flight’s departure. A passenger who
is bumped involuntarily is entitled to the following compensation:

• If the airline arranges substitute transportation such that the passenger will
reach his/her destination within one hour of the original flight’s arrival time,
there is no obligatory compensation.

• If the airline arranges substitute transportation such that the passenger will
reach his/her destination between one and two hours after the original
flight’s arrival time, the airline must pay the passenger an amount equal
to the one-way fare for flight to the final destination.

• If the substitute transportation is scheduled to arrive any later than two
hours after the original flight’s arrival time, or if the airline does not make
any substitute travel arrangements, the airline must pay an amount equal to
twice the cost of the fare to the final destination.

Aircraft Information
Frontier offers only one class of service to all passengers. Thus, we base our

overbooking models on single-class aircraft.

Financial Considerations
Airline booking considerations are frequently based on the break-even load-

factor, a percentage of airplane seat capacity that must be filled to acquire neither
loss or profit on a particular flight. The break-even load-factor for Flight 502 in
2001 was 57.8%.

Assumptions
• We need concern ourselves only with the sale of restricted tickets. Fron-

tier’s are nonrefundable, save for the ability to transfer to another Frontier
flight for $60 [Frontier 2001]. Restricted tickets represent all but a very small
percentage of all tickets, and many ticket brokers, such as Priceline.com, sell
only restricted tickets.
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• Ticketholders who don’t show up at the gate spend $60 to transfer to an-
other flight.

• Bumped passengers from morning Flight 502 are placed, at the latest, 4 h
35 min later on Frontier’s afternoon Flight 513 to the same destination.
Frontier Airlines first attempts to place bumped passengers on other air-
lines’ flights to the same destination. If it can’t do so, Frontier bumps other
passengers from the later Frontier flight to make room for the originally
bumped passengers.

• The annual effects/costs associated with bumping involuntary passengers
is negligible in comparison to the annual effects/costs of bumping volun-
tary passengers. According to statistics provided by the Department of
Transportation, 4% of all airline passengers are bumped voluntarily, while
only 1.06 passengers in 10,000 are bumped involuntarily. With a maximum
delay for bumped passengers of 4 h 35 min, the average annual cost to
Frontier of bumping involuntary passengers is on the order of $100,000—
negligible compared to costs of bumping voluntary passengers.

The Static Model
Our first model for optimizing revenues is static, in the sense that passenger

behavior is predominantly time-independent: All passengers (save no-shows)
arrive at the departure gate independently. This model does not account for
when passengers purchase their tickets. This system may be modeled by the
following steps:

• Introduce a binomial random variable for the number of passengers who
show up for the flight.

• Define a total profit function dependent upon this random variable.

• Apply this function to various consumer behavior patterns.

• Compute (for each behavioral pattern) an optimal number of passengers to
overbook.

A Binomial Random Variable Approach
We let the binomial random variable X be the number of ticketholders who

arrive at the gate after B tickets have been sold; thus, X ∼ Binomial(B, p).
Numerous airlines consistently report that approximately 12% of all booked
passengers do not show up to the gate (due to cancellations and no-shows)
[Lufthansa 2000], so we take p = .88.

Pr{i passengers arrive at the gate} = Pr{X = i} =
(

B

i

)
pi(1 − p)B−i.
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Modeling Revenue
We define the following per-flight total profit function and subsequently

present a detailed explanation.

Tp(X) =(B − X)R +


Airfare × X − CostFlight, X ≤ C$̄;
Airfare − CostAdd × (X − C$̄), C$̄ < X ≤ C;
Airfare − CostAdd × (X − C$̄) − Bump(X − C), X > C,

where

R = transfer fee for no-shows and cancellations,

B = total number of passengers booked,

Airfare = a constant

CostFlight = total operating cost of flying the plane

CostAdd = cost to place one passenger on the flight

Bump = the Bump function (to be defined)

C$̄ = number of passengers required to break even on the flight

C = the full capacity of the plane (number of seats)

For Airfare, we use the average cost of restricted-ticket fare over a one-week
period in 2002: $316. CostFlight is based on the break-even load-factor of 57.8%;
for Flight 502, we take CostFlight = $24,648 [Frontier Airlines 2001]. The average
cost associated with placing one passenger on the plane is CostAdd ≈ $16. The
break-even occupancy is determined from the break-even load-factor; since
Flight 502 uses an Airbus A319 with 134 seats, we take C = 134 and C$̄ = 78.

The Bump Function
We consider various overbooking strategies, the last three of which translate

directly into various Bump functions.

• No Overbooking

• Bump Threshold Model We assign a “Bump Threshold” (BT) to each flight,
a probability of having to bump one or more customers from a flight given
B and p:

Pr{X > flight capacity} < BT.



Probabilistically Optimized Airline Overbooking Strategies 321

We take BT = 5% of flight capacity. The probability that more than N ticket-
holders arrive at the gate, given B tickets sold, is

Pr{X > N} = 1 − Pr{X ≤ N} = 1 −
N∑

i=1

(
B

i

)
pi(1 − p)B−i.

This simplistic model is independent of revenue and produces (through
simple iteration) an optimal number of ticket sales (B) for expecting bumping
to occur on less than 5% of flights.

• Linear Compensation Plan This plan assumes that there is a fixed cost asso-
ciated with bumping a passenger, the same for each passenger. The related
Bump function is

Bump(X − C) = B$ × (X − C),

where (X − C) is the number of bumped passengers and B$ is the cost of
handling each.

• Nonlinear Compensation Plan Steeper penalties must be considered, since
there is a chain reaction of expenses incurred when bumping passengers
from one flight causes future bumps on later flights. Here we assume that
the Bump function is exponential. Assuming that flight vouchers are still
adequate compensation at an average cost of 2∗Airfare+$100 = $732 when
there are 20 bumped passengers, we apply the cost equation

BumpNL(X − C) = B$(X − C)er(X−C),

where B$ is the ompensation constant and r = r(B$) is the exponential rate,
chosen to fit the curve to the points (0, 316) and (20, 732).

• Time-Dependent Compensation Plan (Auction) The primary shortcoming
of the nonlinear compensation plan is that it does not deal with flights with
too few voluntarily bumped passengers, where the airline must increase its
compensation offering. We now approximate the costs of an auction-type
compensation plan.

This plan assumes that the airline knows the number of no-shows and can-
cellations one-half hour prior to departure. The following auction system is
employed. At 30 min before departure, the airline offers flight vouchers to
volunteers willing to be bumped, equivalent in cost to the original airfare.
This offer stands for 15 min, at which time the offer increases exponentially
up to the equivalent of $948 by departure time. We chose this number as
twice the original airfare (which is the maximum obligatory compensation
for involuntary passengers if they are forced to wait more than 2 h), plus
one more airfare costin the hope that treating the customers so favorably
will result in future business from the same customers. These specifications
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are enough to determine the corresponding time-dependent Compensation
function,plotted in Figure 1.

Compensation(t) =

{
316, 0 ≤ t ≤ 15 min;
105.33e0.07324 t, 15 min < t ≤ 30 min.
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Figure 1. Auction offering (compensation)

Consideration of passenger behavior suggests that we use a Chebyshev
weighting distribution for this effort (shown in Figure 2). A significant num-
ber of passengers will take flight vouchers as soon as they become available.

We simulate this random variable, which has probability density function

f(s) =
1

π
√

1 − s2
, s ∈ [−1, 1],

and cumulative distribution function

F (τ) =
∫ τ

−1

1

π
√

1 − η2
dη =

1
2

+ sin−1(τ),

where η is a dummy variable. Inverting the cumulative distribution function
results in a method for generating random variables with the Chebyshev
distribution [Ross 1990]:

F−1(τ) = sin
[
π(U − 1

2 )
]
,
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Figure 2. Chebyshev weighting function for offer acceptance

where U is a random uniform variable on [0, 1].

With a linear transformation from the Chebyshev domain [−1, 1] to the
time interval [0, 30] via t = 15τ + 15, we find a random variable t that takes
on values from 0 to 30 according to the density function f(s). Figure 3 shows
the results of using this process to generate 100,000 time values. We use this
random variable to assign times for compensation offer acceptance under
the auction plan.

The total cost of bumping (X−C)passengers is
∑X−C

i=1 Compensation(ti).

Optimizing Overbooking Strategies
Our goal is to maximize the expected value of the total profit function,

E[TP (X)], given the variability of the bump function and the probabilistic
passenger arrival model.

There are competing dynamic effects at work in the total profit function.
Ticket sales are desirable, but there is a point at which the cost of bumping
becomes too great. Also, the variability of the number of passengers who show
up affects the dynamics. The expected value of the total profit function is

E[TP (X)] =
B∑

i=1

TP (i)
(

B

i

)
pi(1 − p)B−i.
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Figure 3. Histogram of 100,000 draws from the Chebyshev distribution.

We optimize the revenue by finding the most appropriate booking limit (B)
for any bump function. Solving such a problem analytically is unrealistic; any
solution would require the inversion of a sum of factorial functions. Therefore,
we turn to computation for our results. We wrote and tested MatLAB programs
that solve for B over a range of trivial bump Functions.

Results of Static Model Analysis

No Overbooking
If Frontier Airlines does not overbook its flights, it suffers a significant cost

in terms of loss of opportunity. If the number of people that booked (B) equals
plane capacity (C), the expected value of X (number of passengers who arrive
at the gate) is pB = pC = .88×134 ≈ 118 passengers. Assuming (as in the total
profit function) that each passenger beyond the 78th is worth $300 in profit, the
expected profit is nearly

(134 − 118) × $60 + $300 × (118 − 78) = $12,960

per flight.This is only an estimate, since a smaller or larger proportion than
57.8% of ticket-holding passengers may arrive at the gate. The profit is sizeable
but there are still (on average) 16 empty seats! The approximate lost opportu-
nity cost is $300 × 16 = $4,800! Thus, not overbooking sends Flight 502 on its
way with only 63% of its potential profitability.
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Bump Threshold Model
Using a 0.05 bump threshold, we compute an optimal number of passengers

to book on Flight 502. Given the Airbus A319 capacity of 134 passengers and
a passenger arrival probability of p = .88, the optimal number of tickets to sell
to guarantee that bumping occurs less than 5% of the time is B = 145, or 107%
of flight capacity.

Linear Compensation Plan
Table 1 shows the expected profit for various linear bump functions.

Table 1.

Linear bump functions compared.

Bump cost Optimal # Expected profit
per passenger to book per flight

200 ∞ ∞
316 162 $17,817
400 156 $17,394
500 153 $17,121
600 152 $16,940
700 151 $16,799
800 151 $16,692
900 150 $16,601

1000 150 $16,526

If Frontier were to compensate bumped passengers less than the cost of
airfare, bumping passengers would always cost less than revenue gained from
ticket sales. Thus, assuming it could sell as many tickets as it wanted, Frontier
would realize an unbounded profit on each flight! Obviously, the linear com-
pensation plan is not realistic in this regime, and we must wait for subsequent
models to see increased real-world applicability. These results agree with the
result of using a simple bump threshold above and indicate an average profit
of approximately $17,000. In comparison with using no overbooking strategy
at all, Frontier gains additional profit of $4,000 per flight!

The actual dynamics of the problem may be seen in Figure 4, where compet-
ing effects form an optimal number of tickets to sell (B) when Frontier assumes
a sizeable enough compensation average. We can also see the unbounded profit
available in the unrealistic regime.

Nonlinear Compensation Plan
Numerical results for the more realistic nonlinear model paint a more rea-

sonable picture.
Table 2 recommends booking limmits similar to (though slightly higher

than) previous models. The dynamics may be seen in the Figure 5.
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Figure 4. Per-flight profit vs. booking limit (B) for different bump costs (Linear Compensation
Plan)

Table 2.

Nonlinear bump functions compared.

Bump function Optimal number Profit
to book per flight

50e0.134(X−C)(X − C) 160 $18,700
100e0.100(X−C)(X − C) 158 $18,240
200e0.065(X−C)(X − C) 156 $17,722
316e0.042(X−C)(X − C) 154 $17,363

All nonlinear bump functions that we investigated result in a maximum
realizable profit, as expected.

Time-Dependent Compensation Plan
The histogram of 1,000 runs using the time-dependent compensation plan

in Figure 6 shows that the optimal booking limit is most frequently B = 154.
Figure 7 is a graph of expected total profit versus the optimal booking limit
for 15 trials, displaying the randomness due to the Chebyshev draws at higher
values of B. If B is too low, then all models have the same profit behavior,
because the randomness from the overbooking scheme is not introduced un-
til customers are bumped. This graph also shows that regardless of random
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Figure 5. Per-flight profit vs. booking limit (B) for different bump functions (Nonlinear Compen-
sation Plan).

effects, profitability is maximized around B = 160.

The Dynamic Model
Many of the assumptions in the binomial-based models are loosened in this

dynamic setting. Continuous time allows for more detailed analysis of the
order of events in the airline booking problem. Keeping track of the order of
reservation requests, ticket bookings, and cancellations results in a model that
attempts to recommend what ticketing agents should do at a certain time. In
the “Firesale Model,” we attempt to increase revenue by selling the tickets of
cancellations to customers who would otherwise be denied tickets due to a
fixed booking limit.

Reservation Process
We simulate the booking/reservations process, which often begins weeks

before departure and continues right up until departure (due, for example, to
other airlines booking their bumped customers into Frontiers’ empty seats).

To model the stream of reservation requests, we employ a Poisson process
{N(t), t ≥ 0}—a counting process that begins at zero (N(0) = 0) and has
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Figure 6. Time-dependent compensation plan simulated 1,000 times
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independent increments, with the number of events in any interval of length
t Poisson-distributed with mean λt [Ross 2000]. The interarrival times of a
Poisson process are distributed according to an exponential distribution with
rate parameter λ. Each reservation request comes with a variable number
of tickets requested for that reservation. The number of tickets requested is
generated from some specified batch distribution, BatchD, that we introduce
later.

This arrangement results in a compound Poisson process (in this case,
a“stuttering” process [McGill and Garrett 1999]), which provides a more rea-
sonable fit to real-world reservation request data than simpler processes.

Simulating the first T time units of a Poisson process using the method
in Ross [1990] results in a vector at of arrival times for the A = length(at)
reservation requests received.

Another vector, Bnum, the number of tickets requested in each of the A
reservations, is also generated according to the batch distribution. The density
BatchD is shown in Figure 9; it states that callers reserve anywhere from 1 to 4
tickets at a time, with varying probabilities for each number. The total number
of tickets (potential fares) requested is then

∑
i(Bnum(i)).

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of tickets in Batch

P
ro

ba
bi

lit
y 

of
 O

cc
ur

re
nc

e

Figure 9. Density function for number of tickets in a batch of reservations.

The arrival rates for these reservation requests are derived by setting the
expected value of the Poisson process over an interval of length T equal to the
average ticket demand AD that we expect. Then a rate of λ = AD/EBT , where
EB is the expected value of BatchD (1.9 in this case), will on average generate AD

tickets. The histogram in Figure 10 shows the results of a simulation of 10,000
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Poisson processes outputting the number of reservations requested when the
average demand for tickets was 134 (AD = C).
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Figure 10. Histogram of number of reservation requests for 10,000 flights with an average demand
of 134 tickets.

Cancellations and No-Shows
The binomial-based static models do not distinguish between cancellations

(tickets voided before the flight departs) and no-shows (tickets not used or
voided by flight departure); however, the dynamic model is well-suited for
monitoring these events. We assume that 75% of unused tickets are cancella-
tions and 25% are no-shows. Additionally, we assume that the time of cancel-
lation for a set of tickets reserved together is uniformly distributed from the
time that the tickets are granted to the time that the flight departs. This means
that some cancellations occur almost immediately after the ticket(s) are granted
(e.g., due to a typo on an online ticket service form), while some occur just be-
fore a plane is scheduled to depart (e.g., a last-minute change of plans). Lastly,
we assume that multiple tickets in a single reservation behave equivalently (i.e.,
families act as unbreakable groups!).

To simulate this process, for each requested reservation a biased coin is
flipped to determine with probability p if the group will keep their tickets. If
not, another biased coin is flipped to determine whether the unused tickets are
cancellations or no-shows. If a cancellation occurs, a cancellation time is drawn
uniformly between that batch’s arrival time and the flight departure time.
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Dynamic Booking
Dynamic Test Model

We use the dynamic model to make the binomial-based models more re-
alistic by eliminating some assumptions and introducing randomness. The
Dynamic Test allows for “group tickets” (for both reservations and cancella-
tions). The Dynamic Test requires that average ticket demand AD be specified,
so as to confirm the expected effects of less demand for tickets.

Firesale Model
The Firesale Model uses cancellation times to sell all possible tickets. If the

number of tickets requested (at time t) for a particular reservation plus Tix (the
number of tickets approved and still held at time t) is less than the predeter-
mined booking limit (B), then a reservation request is approved. Conversely, if
Tix(t) is equal to the booking limit or if the sale of the multiple tickets requested
in a reservation batch would push Tix(t) over the booking limit, the request is
rejected. Thus, for a process with no cancellations, reservation requests total-
ing less than the booking limit would be approved while subsequent requests
would be rejected. The Fireside Model is highly dependent on the average
demand (i.e., if demand is high enough, the airline would end up with an over-
whelming majority of no-shows, as opposed to cancellations). The Firesale
Model is the most realistic model developed in this paper.

Results of Dynamic Model Analysis
The Fireside Model attempts to capture a scenario where all tickets of can-

cellations are sold as long as there are customers willing to buy them. If demand
for tickets is high enough, we expect to sell all tickets of cancellations, resulting
in a large number of bumped passengers. However, because the airline profits
$60 from each cancellation or no-show and because the numbers of both cancel-
lations and no-shows continue to increase as more tickets are sold, reasonable
results are expected for reasonable ticket demand.

Figure 11 plots expected profit as a function of bumping limit as determined
from 1,000 Fireside Model simulations. An average demand twice that of ca-
pacity (AD = 268) is used and a maximum profit is realized at a booking limit
of 163. Most importantly, this figure displays how a small variation in book-
ing limit could significantly alter profit. A change in either direction of 3 in
corresponds to a loss of more than $1,000 profit.
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Figure 11. 1,000 simulations of the Fireside Model.

Dynamic Testing of the Static Model
The dynamic model allows us to test the results from the static (binomial-

based) models in a more realistic setting. The Dynamic Test allows tickets to be
reserved in batches and introduces the randomness experienced in real-world
airline booking.

In all testing, 10,000 simulations are performed for each booking limit (B)
and then expected profits are computed. Booking limit vs. Profit ($) is plotted
for appropriate booking limit values. The average demand (AD) used in this
test is kept constant at twice the capacity of the airplane (so AD = 268), to
simulate a very large pool of customers so that the overbooking process could
be tested.

Linear Compensation Plan
We tested two Bump costs (B$ = $316 and B$ = $600) with different be-

haviors (as predicted by the static model).
Figure 12 shows that for this compensation plan, an optimal booking limit is

B = 155, an increase of 3 from the optimal value for the static model. However,
profit drops off steeply for booking limits over 155, indicating that a more
conservative strategy might be to lower the bumping limit to ensure that this
steep decline is rarely reached.
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Figure 12. 10,000 simulations of the linear compensation plan with B$ = $600.

Figure 13 corresponds to a bump cost of 316; the optimal booking limit is
now 166, again an increase (from 162).

Nonlinear Compensation Plan
We tested two nonlinear bump coefficients (B$ = 316 and B$ = 100) with

different behaviors (as predicted by the static model).
Figures 14 and 15 demonstrate the negative effect of too high a booking limit.

For nonlinear bump coefficients B$ = 316 and B$ = 100, optimal booking limits
from the static model are 154 and 160, with Dynamic Test result values of 154
and 158.

Time-Dependent Compensation Plan
Figure 16 shows that the optimal booking limit for the time-dependent

compensation plan is B = 155, an increase of 1 from the static model. Profit
appears to rise relatively steeply until the optimal booking limit is reached and
then falls steeply. Thus, in our most realistic static model, a careful overbooking
plan matters the most! If the booking limit were altered by 3, the profit would
shrink by more than $1,000, similar to the result detailed in the Fireside Model.



334 The UMAP Journal 23.3 (2002)

150 155 160 165 170 175 180
1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78
x 10

4

Booking Limit (B)

P
ro

fit
 (

$)

Figure 13. 10,000 simulations of the linear compensation plan with B$ = $316.
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Figure 14. 10,000 simulations of the nonlinear compensation plan with B$=316.
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Figure 15. 10,000 simulations of the nonlinear compensation plan with B$=100.
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Figure 16. 10,000 simulations of the time-dependent compensation plan.
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Post-September 11 Effects
Security checks (at Denver International Airport) add only 10 min to check-

in [“Frontier operating at 80%” 2001], which may be considered negligible.
The most significant post-September 11 effect that the airlines must consider

is the consumer fear. The individual probability of passenger arrival p should
not change drastically, since ticket-purchasing customers after September 11
are fully aware of the risks involved. A consequence of September 11 that is
difficult to model is the decrease in average demand for flight reservations.

Model Strengths and Weaknesses

Strengths
• Time-dependent auction model for pre-flight compensation: When Frontier

begins to offer compensation to voluntarily bumped passengers one-half
hour before departure, our model allows consumer behavior to influence
the financial results.

• Time-dependent decision process in the dynamic model: The dynamic model
allows ticketing agents to decide whether or not to accept reservation re-
quests based on the number of tickets sold by then and based on time until
departure.

• Multiple considerations of consumer behavior via bump functions: The
implementation of multiple bump functions allow for testing alternative
strategies for compensation. Profit and customer satisfaction may then be
balanced depending upon the company’s short-term or long-term interests.

• Varying degrees of model complexity: Our early models are simple, making
sizeable simplifying assumptions to exhibit the most basic dynamics inher-
ent in the problem. We take small steps of increasing complexity towards a
more realistic model. The intuitive relationships between the results from
each step lead to increased confidence in the stability and applicability of
the most involved models.

Weaknesses
• Absence of a stability analysis: We lack an adequate mathematical under-

standing of the stability of our models. Varying parameters like p could
potentially alter our results.

• Infinite customer pool in the static model: In our static model, we assume
that for any booking limit we set, all tickets will be sold.
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• Insufficient data: The only operational data that we could get from Fron-
tier Airlines was its quarterly report, which contains general information on
how many people flew, operating costs, revenues, number of flights flown,
and occupancy rates. However, our model lacks information regarding can-
cellation rates, no-show rates, cost per flight, rates of reservation requests,
and ratio of restricted tickets sold to unrestricted tickets sold. The lack of
this information limits us because our parameters are not based on historical
data, and therefore we cannot be confident in the accuracy of our rates.

Conclusion and Recommendations
Our models are quite consistent in recommending similar booking limits:

154 passengers on 134-seat Flight 502, 115% of capacity. This limit results in an
average of $17,000 per flight; so this one flight alone, by employing one of our
overbooking strategies, nets the company an extra $2.7 million profit per year,
under the limiting assumption of an infinite demand pool.
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Introduction
We design a model that allows an airline to substitute its own values for

ticket prices, no-show rates and fees, compensation for bumped passengers,
and capacities to determine its optimal overbooking level.

Our model is based on an equation that combines the two cases involved
in overbooking: The first sums all cases in which the airline doesn’t fill all
seats with passengers, and the second sums all cases in which there is an over-
flow of passengers due to overbooking. The model includes the possibility of
upgrading passengers from coach to first-class when there is overflow in coach.

Furthermore, we use a binomial distribution of the probabilities of bumping
passengers, given different overbooking percentages, to supply the airlines
with useful information pertaining to customer relations.

We apply our model with different values of the parameters to determine
optimal overbooking levels in different situations.

By using our model, an individual airline can find an optimal overbooking
level that maximizes its revenue. A joint optimal overbooking strategy for all
airlines is to agree to allow bumped passengers to fly at a discounted fare on a
different airline.

Analysis of the Problem
From January to September 2001, 0.19% of passengers were bumped from

flights due to overbooking. This seems like an inconsequential percentage, but
it actually amounts to 730,000 people. Additionally, 4.4% of those bumped,
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or 32,000 people, were denied their flights involuntarily [U.S. Department of
Transportation 2002].

Since 10% to 15% of passengers who reserve a seat don’t show up, airlines
have little chance to fill their planes if they book only as many passengers as
seats available. Overbooking by American Airlines helped save the airline $1.4
billion between 1989 and 1992.

We examine a fictional company to determine an optimal overbooking strat-
egy that maximizes revenue. The goal is a model to increase revenue while
maintaining favorable customer relations.

Our main model, the Expected Gain Model, provides a clear formula for
what percentage of the seats to overbook. Based on sample no-show rates,
ticket prices, and seat numbers, our Expected Gain Model shows that a 16%
overbooking rate is the most effective choice.

Our other model, the Binomial Distribution Model, calculates, for various
overbooking levels, the probability that a passenger will be bumped.

Assumptions
• There is no overbooking in first class (to maintain good relations with wealthy

and influential passengers).

• Anyone bumped (voluntarily or involuntarily) is compensated with refund
of ticket price plus an additional 100% of the ticket price.

• There are only two flight classes, coach and first-class.

• The fare is constant regardless of how far in advance the ticket is purchased.
Overbooked passengers are given seats on a first-come-first-served basis,
as is often the case. Therefore, ticket prices will average out for both those
bumped and those seated.

• Each passenger’s likelihood of showing up is independent of every other
passenger.

• First-class ticket-holders have unrestricted tickets, which allow a full refund
in case of no-show; coach passengers have restricted tickets, which allow
only a 75% refund in case of no-show.

• There are no walk-ons.

• There are no flight delays or cancellations.

• The marginal cost of adding a passenger to the plane is negligible.
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The Model

Equations

prob(x, y, r) =
(

x

y

)
ry(1 − r)x−y

P1(y) =
Sf∑

k=Sf +1−y

prob(Sf , k, Rf )
[
(−Bc)

(
(y − (Sf − k)

)
+ Fc(Sf − k)

]

P2(y) =
Sf−y∑
k=0

prob(Sf , k, Rf )Fcy

M1(x) =
Sf−y∑
i=0

prob(x, i, Rc)
(
FCi + Nc(x − i)

)

M2(x) =
x∑

j=Sc+1

prob(x, j, Rc)
[
ScFc + Nc(x − j) + P1(j − Sc) + P2(j − Sc)

]
M(x) = M1(x) + M2(x)

Parameters
Sf = seating available for first-class

Sc = seating available for coach

Rf = show-up rate for first-class reservations

Rc = show-up rate for coach reservations

Fc = coach fare

Nc = no-show fee for coach

Bc = coach bump cost to airline

Variables
x = number of reservations

Functions
M(x) = expected gain with x reservations

prob(x, y, r) = probability of y events happening in x trials where r is the
chance of a single event happening

P1[y], P2[y]: to be described later
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Binomial Distribution Model
We create ACE Airlines, a fictional firm, to understand better how to handle

overbooking. We examine binomial distributions of ticket sales, so we call this
the Binomial Distribution Model.

ACE features planes with 20 first-class seats and 100 coach seats. The no-
show rate is 10% for coach and 20% for first-class. Figure 1 compares various
overbooking levels with the chance that there will be enough available seats in
first-class to accommodate the overflow. The functions are

y =
100+x∑
j=0

(
C

j

)
(0.9)j(0.1)C−j (coach),

y =
20−x∑
j=0

(
C

j

)
(0.8)j(0.2)20−j (first class),

where C reservations are made for coach and 20 are always made for first class.

Where the first-class line passes below the various overbooking lines indi-
cates the probability at which we must start bumping passengers.

This simplistic model doesn’t account for ticket prices, no-show fees, or re-
funds to bumped passengers and doesn’t specifically deal with revenue either.
Thus, it can act as a good reference for verifying the customer-relations aspect
of any solution but can’t give a good solution on its own. To be sure that ACE
is receiving the most revenue it can, we must create a more in-depth model.

ACE coach fare is $200. We refund $150 on no-show coach tickets, thus
gaining $50 on each. To keep good customer relations, when we are forced to
bump a passenger from a flight, we refund the ticket price with an additional
bonus of 100% of the ticket price (thus, we suffer a $200 loss).

We define prob(x, y, r) as the binomial probability of y independent events
happening in x trials, with a probability r of each event happening:

prob(x, y, r) =
(

x

y

)
ry(1 − r)x−y.

Model for Coach
We first ignore first class and maximize profit based solely on overbooking

the coach section, via the Simple Expected Gain Model. This model is defined
in two parts. The first looks at the chances of the cabin not filling—i < 100
people showing up. ACE gets $200 for each of the i passengers who arrive
and fly and $50 from each of the (x− i) no-shows. We multiply the probability
of each outcome (determined by the binomial distribution) by the resulting
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Figure 1. Probability of enough seats vs. overbooking level. The graph below is a close-up of the
upper left corner of the graph above.
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revenue and sum over all of these values of i to find the expected gain, M1:

M1(x) =
100∑
i=0

prob(x, i, 0.9)
(
200i + 50(x − i)

)
.

The second part of the model focuses on overflow in the coach section, when
j > 100. In this case, ACE is limited to $200 fare revenue on 100 passengers, plus
$50 for each of the (x− i) no-shows. However, for the (j−100) passengers who
arrive but have no seats, ACE bumps them and thus loses $200 in compensation
per passenger. We again multiply by the probability of each outcome and sum:

M2(x) =
x∑

j=101

prob(x, j, 0.9)
[
200(100) + 50(x − j) − 200(j − 100)

]
.

We add M1 and M2 to arrive at an expression M for revenue. From the graph
for M , we discover that (independent of first class) for maximum revenue, ACE
should overbook by about 11 people, expecting a net revenue from the coach
section of $20,055 (Figure 2).

Figure 2. Simple Expected Gain Model: Revenue M vs. number of coach reservations.

Coach Plus First Class
When we add in consideration of first-class openings, ACE can overbook by

even more while still increasing revenue, since it can upgrade coach overflow
into first-class openings. The first part of the previous formula, M1 can still be
used, since it deals with the cases in which the coach section isn’t filled anyway.
Since ACE will not overbook first-class, ACE should always book it fully. Thus,
fare for first-class is unimportant when considering how to maximize revenue.
We further assume that ACE sells only unrestricted first-class tickets (there is
no penalty to first-class no-shows).
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The second part of the equation needs only a minor modification to adjust
for seats made available by first-class no-shows. ACE still gets $200 for each
of the 100 passengers who show up and gets $50 for each of the (x − j) no-
shows. The difference now is that instead of simply multiplying by −$200 for
each passenger over 100, we check for first-class openings and multiply −$200
by just the number who end up bumped. Those upgraded to first-class still
pay coach fare (thus, more than 100 coach passengers can pay that $200). This
function, P1(y), with y = j − 100 the number of overflow coach passengers,
gives the expected net revenue expected for that much overflow. Similarly,
P2(y) gives the expected net revenue when ACE can seat all of the overflow.
Thus, the new version of the second part of the formula reads:

M2(x) =
x∑

j=101

prob(x, j, 0.9)
[
200(100)+50(x− j)+P1(j − 100)+P2(j − 100)

]
.

The form of the Pi functions is similar to the two parts of the model already
discussed. The probability of there being few enough first-class passengers is
multiplied by $200 (coach fare) times the number of extra coach passengers
who can be seated (j − 100). Recall that the show rate for first-class is 0.8:

P2(y) =
20−y∑
k=0

prob(20, k, 0.8)(200)y.

The other case is when ACE can’t seat all of the coach overflow. This time,
we multiply by the loss of revenue from the coach spillover y, $200 for each
of the y − (20 − k) bumped customers, offset by $200 for each of the (20 − k)
passengers upgraded to first-class. The result is

P1(y) =
20∑

k=21−y

prob(20, k, 0.8)
[
(−200)

(
(y − (20 − k)

)
+ 200(20 − k)

]
At this point, we have all of the pieces of the expected gain model. We plot

the equation M = M1 + M2 in Figure 3 and find the maximum for x ≥ 100.
The ideal overbooking level lies at 115 or 116 reservations, with a negligible

difference in profit ($0.07) between them.

Applying the Model
We implemented our model in a computer program in which the parameters

can be varied, including seating capacities, ticket price, and no-show fees.
In the case of our example, the optimum is very broad around 116. When de-

ciding optimal overbooking levels, the airlines must balance revenue is against
the chance of bumping. If ACE books 113 passengers instead, the revenue de-
creases by $105 per flight but the probability of no bumping rises to 73% from
53%. Similarly, if it books 114 passengers, it loses $35 per flight but there is a
67% probability that no one will be bumped.
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Figure 3. Expected Gain Model: Revenue M vs. number of coach reservations.

Fewer Flights
The decrease in air traffic by 20% since September 11 means fewer flights.

Due to more-detailed security checks, it is necessary for planes to have longer
turnaround times between flights. Adding 15 extra minutes at each turnaround
would cause an airline such as Southwest to need almost 100 additional planes
to maintain its previous air traffic flow. Therefore, there are fewer flights.

How does this circumstance affect our model?
Federal regulations do not require compensating a bumped passenger sched-

uled to reach the destination within an hour of the original arrival time. But now
the probability of accomplishing that is much smaller than before September
11th; we do not consider it likely and do not include it in the model.

Can bumped passengers be put onto a later flight to arrive within two hours
of their original scheduled time? If this happens, federal regulations require an
airline to compensate them for a ticket, essentially flying them for free. There
is no loss or gain from this transaction, which is certainly more desirable than
paying every bumped passenger $200 on top of refunding ticket price.

If people are put onto later flights, ACE pays fewer passengers an extra
$200. However, our Expected Gain Model attempts to maximize the number
of people on the flight. Thus, the probability of a passenger being able to take
a later flight is very low and the optimal overbooking level changes negligibly.
For example, disregarding first class, our Expected Gain Model shows only a
7% chance of a coach seat available on the next flight. We conclude that the
Expected Gain Model is just as effective and much simpler if we disregard
the possibility of bumped passengers obtaining a seat on a later flight, so we
assume that all bumped passengers are compensated with a refund of their
ticket price and $200.
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Heightened Security and Passengers’ Fear
Demand for flying is down, despite funding for additional security, which—

while well-justified—causes problems for airlines and passengers.
ACE is concerned about passengers who miss flights because of security

checks. These, along with passengers’ fear, can increase the no-show rate,
which ACE must consider in its overbooking strategy. Passengers may reserve
a seat but then decide that in light of events they are too frightened to get on
the plane. With higher no-show rates, a higher overbooking rate may become
optimal. In our expected gain model with no-show rates of 20% and 30% for
coach and first-class, the optimal overbooking level jumps to 130 or 135 seats.

Dealing with Bumped Passengers
While most ways that airlines have dealt with bumping passengers are

subtle and good business practice, some border on the absurd. For example,
until 1978, United Airlines trained employees to bump people less likely to
complain: the elderly and armed services personnel—two groups that perhaps
instead should have priority in seating!

A strategy other than current compensations could be optimal for the air-
lines, but it depends on cooperation. If ACE could convince other airlines that
they all should give bumped passengers discount tickets (usable on any of the
airlines), then each airline would lose less money from compensating bumped
passengers. This would create a mutually profitable situation for all airlines
involved: The airline accepting bumped passengers would fill seats that would
otherwise be empty; the airline bumping the passengers would cut the amount
of compensation to the price of a discounted ticket.

Suppose that the amount of compensation is decreased by one-half. The
optimal level of overbooking rises, as does revenue; but we cannot be sure that
every bumped passenger can be placed on another flight.

Strengths and Weaknesses of the Model

Strengths
• Our model involves only basic combinatorics and elementary statistics.

• Because it is parametrized, the model can continue to be used as rates, seating
capacities, and compensation amounts change.

• The model considers more than one class.

• An airline can attempt to find the balance between maximizing revenue and
pleasing customers, depending on how much risk the airline chooses to take.



348 The UMAP Journal 23.3 (2002)

Weaknesses
• We do not consider business class; including it would have risked the model

being too complicated. Business class should not have a large effect on rev-
enue maximization, because no-show rates are lower and business people
are more concerned with reaching their destination on time than surrender-
ing their seats for compensation.

• Our model does not take into consideration how multiple flights affect each
other. If putting passengers onto later flights were an option, revenue would
increase slightly but doing so would also further complicate optimal over-
booking levels on other flights.

• Because ACE is not bumping passengers to later flights, bumped passengers
are left out in the cold with no flight and just a little bit of extra money—a
resolution that does not provide positive customer relations.

• We allow no overbooking in first class. If ACE is willing to take the risk of
downgrading or bumping first-class passengers, then revenue could increase
slightly by overbooking first-class seats.

• In reality, anyone can buy a restricted or unrestricted ticket in either class.
Therefore, a more complicated model would include the possibility of some
coach no-shows receiving full-refund and some first-class no-shows paying
a no-show fee.

• Our binomial distribution for showing up assumes independence among
passengers. However, many people fly and show up in groups.
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Memorandum
Date: 02/11/2002
To: CEO of ACE Airlines
From: Aviophobia University
RE: Your Troubles Solved

Today is your lucky day!! We know that airlines have been going through
especially hard times recently and so we have come up with something that
will solve your problems.

You and I both know that overbooking occurs not because you cannot count
the number of seats on your plane, but rather because it is a brilliant business
strategy that can increase revenue. We have created a model that allows you
to find your optimal overbooking strategy.

Our model can consider your specific situation because it can account for
different no-show rates and fees, seat capacities, ticket prices, and bumped pas-
senger compensations. We have designed an easy-to-use computer program
that allows you to quickly find your optimal overbooking strategy based on
your figures. This program saves you time in a business where time is money.
In addition, using our model will allow you to maximize your revenue without
bringing in an expensive consultant.

When designing our model, we even used data concerning your airline, so
half of the work is done for you! For your planes, fares, and policies, our model
shows that 16% overbooking is optimal for maximizing revenue. However, we
find that to reduce the probability of bumping too many passengers and still
maintain a high revenue rate, 14% or 15% is ideal.

We hope that this information leads you to a profitable quarter and stock
increase, which we would both find profitable.



350 The UMAP Journal 23.3 (2002)



Bumping for Dollars: The Airline Overbooking Problem 351

Bumping for Dollars:
The Airline Overbooking Problem

John D. Bowman
Corey R. Houmard
Adam S. Dickey
Wake Forest University
Winston-Salem, NC

Advisor: Frederick H. Chen

Introduction
We construct a model that expresses the expected revenue for a flight in

terms of the number of reservations, the capacity of the plane, the price of a
ticket, the value of a voucher, and the probability of a person showing up for the
flight. When values are supplied for every variable but the first, the function can
be maximized to yield an optimal booking that maximizes expected revenue.

We apply the model to three situations: a single flight, two flights in a chain
of flights, and multiple flights in a chain of flights. We conclude that fewer
flights will increase the value of the penalty or voucher and thus decrease the
optimal number of reservations. Heightened security also lowers the optimal
number of reservations. An increase in passengers’ fear decreases the prob-
ability that a person will show up for a flight and thus increases the optimal
number of reservations. Finally, the loss of billions of dollar in revenue has no
effect on the optimal value of reservations.

We model the probability of a given number of people showing up as a
binomial distribution. We express the average expected revenue of a flight in
terms of the number of bookings made.

Starting with the Single-Flight case, we derive a model and revenue function
for a flight unaffected by previous flights. From this situation, we expand the
model to the Two-Flight case, in which the earlier flight affects the number of
people who show up for the later flight. We generalize the model even further
to the number of people showing up depending on many previous flights.

The UMAP Journal 351–364. c©Copyright 2002 by COMAP, Inc. All rights reserved.
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The Model
In each of the three situations modeled, we derive two formulas. The first,

P (k), describes the probability that k people show up for a flight. The second,
Revenue(b, c, r, x, p), describes the expected revenue for a flight as a function
of the number of reservations. We verified these theoretical equations by a
Monte-Carlo simulation.

For the Single-Flight Model:

P (k) =
(

n

k

)
pk(1 − p)n−k,

Revenue(b, c, r, x, p) =
c+(b−c)∑

k=0

P (k)
[
r min(k, c)

)− xmax(k − c, 0)
]
.

For the Two-Flight Model:

P2(k) = P1(k)

[
1 −

b∑
i=c+1

P1(i)

]
+

b−c∑
j=1

P1(k − j)P1(c + j),

Revenue2(b, c, r, x, p) =
c+2(b−c)∑

k=0

P (k)
[
r min(k, c)

)− xmax(k − c, 0)
]
.

For the n-Flight Model:

Pn(k) = P1(k)


1 −

c+(n−1)(b−c)∑
i=c+1

Pn−1(i)




+
(n−1)(b−c)∑

j=1

P1(k − j)Pn−1(c + j),

Revenuen(b, c, r, x, p) =
c+n(b−c)∑

k=0

Pn(k)
[
r min(k, c)

)− xmax(k − c, 0)
]
.

The variables are:

b = number of reservations (or bookings) per flight

c = plane capacity

r = price of a ticket

x = value of a voucher

p = probability that a booked passenger shows up for a flight

Given p, c, r, and x, the method finds the b that maximizes revenue.
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Derivation of the Single-Flight Model
The binomial distribution applies to calculating the probability that a num-

ber of passengers shows up for a flight:

• The probability involves repeated events (each trial calculates the probability
of one person showing up) with only two possible outcomes (either the
person is a show or no-show).

• We assume that people’s actions do not influence one another; each person’s
chance of showing up is independent of another person’s chance. This is
not true in reality, as people often travel in groups; but this a necessary and
appropriate simplification.

• We assume that the probability of a person arriving remains constant for
each person.

We use the binomial distribution to calculate expected revenue. Airlines
overbook their flights, knowing that some people will not take the flight. Given
a certain overbooking strategy b (i.e., the maximum number of reservations
taken for a particular flight, with b > c, the capacity of the plane), the expected
revenue is

Revenue(b, r, p) =
c+(b−c)∑

k=0

P (k)r min(k, c).

The function is incomplete, however, because it does not penalize the air-
line for the consequences of overbooking. The airline usually provides bumped
passengers with either an airline ticket voucher or a cash reimbursement, val-
ued at x per bumped person:

Revenue(b, r, p) =
c+(b−c)∑

k=0

P (k) [r min(k, c) − xmax(k − c, 0)] .

When k ≤ c, the x term is zero; when k > c, the airlines is penalized for having
to bump people.

The booking decision b and the capacity c of the plane are fixed before the
model begins. This model considers just one flight in a complex network of
flights; it does not allow for the possibility that passengers are bumped from a
previous flight, since it assumes that the only passengers are those who made a
reservation for this particular flight. The model also applies to just one flight: If
the number of passengers who show up is greater than the capacity of the plane,
those bumped passengers receive a voucher and—with a wave of the magic
wand of assumption—disappear. Finally, regardless of the flight’s destination
(Hawaii or Death Valley), we assume that there is enough demand to fill the
predetermined number of bookings.

Since p is constant throughout our model, the Revenue function is really
dependent only on the number of bookings, the capacity of the plane, the cost
of a ticket, and the cost of the penalty.
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Application of the Single-Flight Model
We set p = .9. Since b must be an integer, the revenue function is not con-

tinuous. Thus, the analytic method of maximizing of the function (namely,
differentiating and setting the derivative equal to zero) cannot be applied. In-
stead, we use Maple 6.

After setting values for the probability, plane capacity, and ticket and voucher
values, we evaluate the function at b = c, then increment b until a maximum
for Revenue is found.

We used three plane capacities: 10, 30, and 100. The values of the ticket
price r, the voucher x, and the arrival probability p are held constant at $300,
$300, and .9 for the examples in Table 1.

Table 1.

Results for the Single-Flight Model.

Capacity Optimal overbooking Revenue Bump probability

10 11 $2,782 31%
30 33 $8,598 35%

100 111 $29,250 44%

The probabilities of bumping are larger than the industry frequency of about
20%. Worse, the model ignores all the problems created by these bumped pas-
sengers. The model is further weakened in light of the post-September 11 issues
proposed by the problem. Among the four issues—fewer flights, heightened se-
curity, passengers’ fear, and losses—this model can account only for increased
passenger fear (indicated by a change in probability that a passenger shows
up). Clearly this Single-Flight Model is not a proper solution to the airline-
overbooking problem.

Derivation of the Two-Flight Model
The Two-Flight Model begins with updating both the probability and rev-

enue functions. Unlike the Single-Flight Model, the new functions reflect the
possibility that passengers bumped from one flight fill seats on the next. By this
assumption, the probability function for the second flight, P2(k), changes, be-
cause k may now also be expressed as a combination of people ticketed for the
second flight and bumped passengers from the first flight. Since the revenue
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function depends on the probability function, it too must change.

P2(k) = Pr(k people show up for flight 2)
= Pr(k regular passengers arrive)Pr(no one bumped from flight 1)

+ Pr(k − 1 passengers arrive)Pr(1 passenger bumped) + · · ·
+ Pr(k − j arrive)Pr(j passengers bumped) + · · ·
+ Pr(k − (b − c) arrive)Pr(b − c passengers bumped)

= P1(k)

[
1 −

b∑
i=c+1

P1(i)

]
+

b−c∑
j=1

P1(k − j)P1(c + j).

A maximum of b − c people can be bumped from flight 1, since at most b
people show up for it and we assume that no passengers are carried over
from any previous flight. The probability that 1 passenger is bumped from
flight 1 is exactly the probability that c + 1 people are present for it. Thus we
have Pr(j passengers bumped) = P1(c + j). As long as b, p, and c remain the
same, the probability that new (prebooked, non-bumped) passengers arrive
never changes; it is independent of the number of bumped passengers from
a previous flight. (We assume that there is no way for a passenger to know
how many people have been bumped onto his or her flight from a previous
one.) Thus, Pr(k − j regular passengers arrive) will always be computed by
P1(k − j), our original probability function for the Single-Flight Model.

In the second summation of P2(k), the term k−j could be negative for small
k. If so, we define the probability of a negative number of people showing
up from a previous flight to be 0 (empty seats on a flight cannot be filled by
passengers from later flights!).

We now express the second revenue function in terms of the second proba-
bility function:

Revenue2(b, c, r, x, p) =
c+2(b−c)∑

k=0

P (k)
[
r min(k, c − xmax(k − c, 0)

]
.

A passenger bumped from one flight is automatically booked on the next
flight and seated before regular passengers, so as to have almost no chance
of being bumped again. For the second flight, we assume that the number of
people who show up is affected only by that flight and the previous flight, and
that there is enough demand to fill the predetermined number of bookings.

The summation now has c+2(b−c) as it maximum value. The second flight
must not only account for b passengers but must also account for the number
of people possibly bumped from the first flight.

Application of the Two-Flight Model
By introducing a second flight, we more accurately model the situation. The

optimal overbooking strategy and maximum revenue should either remain the
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same or slightly decrease.
Using the Revenue function for the Two-Flight Model, we now calculate

maximum revenue and the associated overbooking strategy for the same plane
capacities as for the Single-Flight Model. Again, the values of the ticket price
r, the voucher x, and the arrival probability p are held constant at 300, 300, and
.9. The results are in Table 2.

Table 2.

Results for the Two-Flight Model.

Capacity Optimal overbooking Revenue Bump probability

10 11 $2,745 34%
30 33 $8,551 42%

100 111 $29,107 57%

In each case, the optimal booking strategy is the same as the Single-Flight
Model, but the maximum revenues is lower, and bump probability is higher.
Since both flights are overbooked, the probability that someone is bumped
should only increase.

The n-Flight Model
We generalize to n flights. We allow each flight to be influenced by the

(n − 1) flights before it. We still assume that a passenger bumped from one
flight is given preferential seating on the next. However, giving seats to bumped
passengers who are already at the airport decreases the number of seats for pre-
booked passengers. The n-flight model allows this domino effect of bumping
to ripple through n−1 successive flights. As n gets large, our model becomes a
better and better approximation of the real case, in which every flight is affected
by many previous flights. Our probability function becomes recursive:

Pn(k) = P1(k)


1 −

c+(n−1)(b−c)∑
i=c+1

Pn−1(i)




+
(n−1)(b−c)∑

j=1

P1(k − j)Pn−1(c + j),

Revenuen(b, c, r, x, p) =
c+n(b−c)∑

k=0

Pn(k)
[
r min(k, c)

)− xmax(k − c, 0)
]
.

For the first summation, zero people show up from the previous flight,
meaning that there are enough seats for everyone on that flight and anyone
bumped from a previous flight. If the total possible number of people who can
show up to the current flight is b + (n− 1)(b− c) (as is explained in a moment),
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then the total number of people who can show up for the previous flight must
be b + (n − 2)(b − c), which we use as the upper limit of the summation.

For the second summation, we use (n−1)(b−c) instead of (b−c), since now
there can be at most (n − 1)(b − c) passengers bumped from flight n − 1. This
upper bound for bumped passengers can be proved by mathematical induction.
[EDITOR’S NOTE: We omit the authors’ proof.]

The revenue function for the 2-flight model can also be extended to n flights
in a straightforward way. Note that at most n(b − c) people can be bumped
from the nth flight. We have:

Revenuen(b) =
c+n(b−c)∑

k=0

Pn(k)
[
r min(k, c) − cmax(k − c, 0)

]
.

We now consider booking strategies to optimize revenue.

Computation of the n-Flight Model
The Recursive Method

We can create documents in Maple to compute the probability and revenue
functions. To compute Revenuen(b), we must evaluate Pn(k) a total of b+(n−
1)(b− c) times. In turn, Pn(k) must evaluate Pn−1(k) at total of (2n− 1)(b− c)
times, Pn−1(k) must evaluate Pn−2(k) a total of [2(n − 1) − 1](b − c) = (2n −
3)(b−c) times, and so on. Thus, without even accounting for all the evaluations
of P1(k) in each iteration, we make

[b+(n−1)(b−c)](2n−1)(b−c)(2n−3)(b−c) · · · [2n−(2k+1)](b−c) · · · (1)(b−c)

= [b + (n − 1)(b − c)
(2n − 1)!
2(n − 1)!

(b − c)n−1

function calls. With b = 105 and c = 100, Revenue2(k) requires 1650 function
calls, Revenue3(k) requires 86,250 calls, and Revenue4(k) requires more than
6.3 million function calls. The computation time is proportional to the number
of function calls: Revenue2(105) takes less than 1 s, Revenue3(105) takes 13 s,
and Revenue4(105) takes 483 s.

Of course, this is a very inefficient method. A more efficient method would
be to store all probability values in an array, beginning with the values for P1(k)
and working upwards to Pn(k). However, Maple makes array manipulation
difficult. Instead, we turn to another method.

[EDITOR’S NOTE: Mathematica (and perhaps Maple too) provides an easy-to-use capability
for computation of such probabilities via dynamic programming. For an example of its use, see
“Farmer Klaus and the Mouse,” by Paul J. Campbell, The UMAP Journal 23 (2) (2002) 121–134.
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Monte Carlo Simulation
We develop a Monte Carlo computer simulation coded in Pascal that runs

the n-flight model numerous times and determines the average revenue for
a large number of trials. Instead of obtaining precise probabilities using the
functions developed above, we flip a (electronic) weighted coin to determine
whether each individual passenger shows up for the flight. We tell the program
how many trials to run, give it values for n, p, c, r, and x and tell it the largest
value of b to check. The program begins with b = c. It flips numerous weighted
coins to determine how many passengers show up for the first flight. It bumps
any excess passengers to the second flight and flips coins again to see how
many prebooked passengers arrive. The excess is bumped to the third flight
and the process continues until the nth flight. Revenue is evaluated by adding
an amount equal to the ticket price for each passenger who flies and deducting a
penalty for each passenger who is bumped. The program iterates for successive
values of b until it reaches the preassigned upper bound.

The output includes, for each b value, the mean revenue over all trials and
the corresponding percentage standard error. Percentage standard error was
usually less than 2% and often less than 1%.

Optimization Strategies for the n-Flight Model
We will never earn more than the ticket price (r) times the number of seats

(c), so the gain from overbooking is limited—but the possible costs are not. At
some point, the costs of overbooking outweigh the benefits; there should be a
unique maximum for revenue.

To find the maximum revenue, we evaluate the revenue function at different
booking values, beginning with b = c, until we find a b with Revenue(b− 1) <
Revenue(b) and Revenue(b + 1) < Revenue(b). This will be our bopt.

The obvious booking strategy is to book every flight with bopt passengers.
While this method maximizes flight revenue, it yields a high percentage of
flights with bumped passengers. For a plane with 100 seats, the maximum rev-
enue occurs at b = 108, with 34% of flights bumping passengers. Because our
model does not account for changes in demand due to the airlines’ behavior, this
might not be the truly optimal value of b in the long run. Bumping large num-
bers of passengers will drive customers away; decreased demand will depress
the price that we can charge and we reduce revenue in the long term. Similarly,
an especially low percentage of bumped flights may increase demand, allow
us to raise prices, and increase revenue. Thus, our model accounts only for
short-term effects, not long-term ones.

Moving away from maximum revenue lowers expected revenue by a small
amount but decreases the bump probability by a large amount. For conve-
nience, we set both the price and penalty to $1, to avoid large numbers. While
$1 is unrealistic, the value does not change the optimal booking strategy from
the case where both price an penalty are both $300, because it is the ratio of
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price to penalty—and not their actual values—that changes the optimal book-
ing. Our example considers a 50-flight sequence of planes with capacity 100
each; if everyone showed up and there was no overbooking, the revenue would
be $5,000. At the optimal b = 108 for p = .9, the expected revenue is $4,806
with bump probability of 33%. If we move down just 1 to b = 107, the revenue
is $4,791 and the bump probability drops to 21%.

Table 3.

Results of simulation: for each number for bookings, 100 trials with 50 flights per trial.

Bookings Revenue % Bump Delta(%Bump) Delta(%Rev) D(Bmp/D(Rev)

100 $4,501 0.00% 0.00% 0.02% 0.00
101 $4,539 0.02% 0.02% 0.84% 0.02
102 $4,589 0.04% 0.02% 1.09% 0.02
103 $4,631 0.04% 0.58% 0.92% 0.63
104 $4,677 0.62% 2.24% 0.97% 2.30
105 $4,722 2.86% 5.66% 0.97% 5.82
106 $4,758 8.52% 12.50% 0.76% 16.45
107 $4,791 21.02% 12.64% 0.68% 18.64
108 $4,807 33.66% 22.10% 0.34% 65.67
109 $4,800 55.76% 17.04% −0.15% −115.28

We adopt as a criterion to compare two values of b the ratio of the relative
change in the bump probability and the relative change in revenue:

∆Pbump

Pbump

∆Revenue
Revenue

=
∆(%Bump)

∆(%Revenue)
.

The process goes: A maximum revenue is found, along with its high bump
probability. The optimizer now considers a lower value of b and looks at the
ratio of the change in the bump probability to the change in revenue. If this
ratio is above a certain value k, the optimizer accepts the lower b. The optimizer
continues to do this until the ratio is no longer greater than the constant. In
Table 3, with k = 20, the new optimum b would be 107, because the ratio 18.64
is not greater than k = 20.

Table 4 shows three different optimization values for different plane capac-
ities.

Application of the n-Flight Model
The problem specifically mentions four issues to be addressed by our model:

fewer flights, heightened security, passengers’ fear, and revenue losses.
Why are airlines offering fewer flights? If the airlines had kept offering

the same number of flights, the question of an optimal overbooking strategy
would be moot, because the planes would not fill. The huge drop in demand
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Table 4.

Optimal bookings using different criteria (p = .9, r = 1, x = 1). For each number for bookings,
100 trials with 50 flights per trial.

c Maximum revenue k = 20 k = 1

b Rev Pbump(%) b Rev Pbump(%) b Rev Pbump(%)

10 10 450 0 10 450 0 10 450 0
30 32 1390 45 31 1385 12 30 1350 0
50 54 2360 50 53 2360 25 51 2290 0.8

100 109 4810 50 107 4790 19 104 4670 0.7
150 163 7270 37 161 7220 14 157 7070 0.3
200 219 9740 47 215 9660 9 211 9490 0.4
280 307 13690 46 303 13610 13 299 13450 1.3

has reduced supply but could also result in slashed prices. Since the value
of the compensation involuntarily bumped ticket-holders is tied to the ticket
price (though with a ceiling), changes in ticket prices should affect the optimum
booking level little if at all.

However, the fewer flights, the longer people who are denied boarding
must wait for the next flight; being denied boarding is less convenient. Since
compensation is usually offered in a kind of auction to induce voluntary relin-
quishing of seats, the airline will have to offer more. Therefore, longer delays
between flights will increase the ratio of compensation amount to ticket price,
tending to decreasing the optimal booking level.

How do heightened security measures affect our model? They mean more
security checks, longer lines, longer waits, and an increased chance of missing
a flight, particularly a connecting flight. Unfortunately, people who miss their
connecting flight and thus are guaranteed a spot on the next flight are not
included in our model explicitly; but they do have an implicit effect. If more
people miss connecting flights, they put additional stress on the system: They
increase the chance that the next and subsequent flights will have too many
people. Therefore, in our booking strategy, we want a low bump probability.
To attain it, we should decrease the ratio k, which decreases optimal booking
level b.

Passenger fear leads not only to decreased demand (which we have already
considered above) but also to a decreased probability p of a passenger showing
up, which in turn increases the optimal booking level b.

However, the hardest to deal with is the huge revenue loss. Less profitable
airlines may fold; but presumably if there is excess demand, other airlines will
either add flights or raise the price. Hence, though the huge financial loss may
change the industry as a whole, it doesn’t affect the optimal booking strategy.
It merely leads to fewer flights (already addressed) and may change prices
(which we argued would have no effect).

We summarize these effects in Table 5.
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Table 5.

Effects of post-September 11 factors.

Factor Direct Effect on optimal
effect booking level

Fewer flights g ↑ bopt ↓
Heightened security measures ∆Pbump/∆Revenue ↓ bopt ↓
Passenger fear p ↓ bopt ↑
Financial losses — —

Verification and Sensitivity of the Model
Since at least 100 trials were used per calculation, the Central Limit Theorem

assures us that the distribution of the sample mean approximates well a normal
curve and we can be 95% confident that the true value we are approximating
is within two standard errors of the sample mean. Often this means we cannot
be completely sure of the optimal b, because the maximum revenue is within
two standard errors of the revenues of the values for b immediately above and
below.

Convincing for us is that for small n and small c, the simulation provides
values very close to those from the exact solutions processed in Maple. Because
of the agreement, we are confident that our simulation is coded correctly and
that the simulations are accurate, even for higher n and c.

That the simulation may be off by 1 for the optimal value of b is not much
of a problem. For large c, though Maple may be too slow to calculate over a
large range of values for b, Maple can be used to spot-check the value of b from
the simulation, along with the ones immediately above and below.

In fact, we need not be much concerned about n ≥ 5. A bumped per-
son affects a second flight and may also affect a third and possibly a fourth
flight. But the effect diminishes, so while the effect on flights close by cannot
be discounted, ignoring her effect on a tenth flight does no great damage.

One might expect that changes in both booking level b and capacity c would
significantly change the behavior of the model. But around bopt, the revenue
curve is fairly flat. For example, for n = 50, c = 100, and r = x, using
bopt + 1 instead of bopt decreases revenue by only 0.12%, whereas adopting
bopt−1 instead decreases revenue by only 0.21%. This insensitivity is important
because one of our more limiting assumptions is constant p. Since slightly
changing b only slightly changes revenue, the effect of varying p should not be
too detrimental.

What is sensitive to changes in b is the bump probability. Using the same
example as before, moving to bopt + 1 increases the bump probability by 15
percentage points, while moving to bopt − 1 decreases it 11 percentage points.
While the smallest percentage changes in revenue are grouped around bopt, the
largest percentage changes in bump probability are grouped there.
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Strengths, Weaknesses, and Extensions

Strengths
• The strong correspondence between the Maple calculations and the data

from the simulation is quite heartening.

• Around bopt, the revenue is insensitive compared to the bump probability.
Variations on the n-flight mode provide a small range of near-optimal bs
with similar results for revenue and a fairly wide range bump probability.
The range allows an airline a choice.

Weaknesses
• The most obvious defect of our model is that many overbooking strategies are

in use—and none of the them is ours! Our model is very restrictive because
it assumes a constant booking strategy, as well as constant levels of p and
c. In reality, most airlines use a dynamic system in which the overbooking
level is not constant but instead is varied based on conditions that change
from day to day and flight to flight.

• We replace the nation’s vastly complicated network of intermeshing flights
with a single flight path.

• We simplify the oligopoly of airlines to a single airline.

• We do not account for no-shows such as missed connections that are the fault
of the airline or due to circumstances beyond its control (e.g., weather). In
such circumstances, a flight’s chance of being full is influenced by previous
flights even if there is no overbooking.

• In assuming a binomial distribution, we assume people do not travel in
groups, and thus their showing up are independent events.

Potential Extensions
• The bump probability could affect revenue in a way that we have not allowed

for, namely, in terms of price. An airline that consistently offers better service
should be able to charge a higher price. A way to incorporate this effect is to
make price a function of bump probability, perhaps inversely proportional
to it.

• It might be desirable to make the compensation x a function of the percentage
of people that must be excluded from the plane. If 50% of the ticket-holders
had to be excluded, then the incentives would have to be greater than if only
5% had to be excluded. At some point the airline would stop raising the
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incentive and resort to involuntary denied boarding, but these would also
have costs resulting from customer satisfaction. One could experiment with
setting x equal to some constant times the ratio of those to be bumped, m−c,
to the total number of people m.

• The probability function could easily be generalized to variable p; in that
case, P (k) would become P (k, pn). The equation could be generalized to
the planes having different values of c and b by changing the upper limit of
the summations from (n − 1)(b − c) to

∑n−1
i=1 (bi − ci).
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Memo
To: CEO, TopFlight Airways
From: Models R Us
Re: Optimal Overbooking Strategy

Dear Sir/Madam:

We have heard of your company’s financial hardships in the wake of Septem-
ber 11. We offer you our assistance. We are a team of students who have
dedicated four intense days to understand the problem of airline overbooking.
While many have been working on this problem for years, we feel our approach
will give your company the extra edge you are seeking.

Because only 90% of passengers arrive for their scheduled flights, an over-
booking strategy is necessary to maximize revenue. However, there is a penalty
for overbooking. As you know, airlines offer vouchers and other incentives to



364 The UMAP Journal 23.3 (2002)

passengers to entice them to give up their seats. The airline is also responsible
for finding bumped passengers a later flight.

Our model incorporates these features. We consider the effect on a given
flight of any number of preceding flights. If too many passengers arrive from
a previous flight, they can set off a domino effect; when these passengers are
rescheduled on a later flight, they increase the chance that this flight, too, will
be overbooked.

Our model allows you to combat this effect by finding the optimal booking
level for a plane of a given capacity. We did computations for the model in
two different ways: once using the mathematical software package Maple and
again using a Monte Carlo simulation developed in Pascal. We found the values
for these two computational approaches to be in very close agreement.

We also allow for the fact that maximizing revenue is not enough. If you
maximize your revenue now but bump too many passengers, you could find
demand for your services decreasing. You could be forced to charge a lower
price, and your revenue might decrease in the long run. We offer you a way to
establish a trade-off between revenue and percentage of flights with bumped
passengers. You tell us how important it is to you to have few bumped flights,
and we can tell you how many passengers to book.

Even using three different optimization strategies to account for the effects
of fluctuating demand, we find that optimal values fall in a very narrow range.
For a 100-seat plane, this range is 104 to 108.

We also evaluated the effect of the September 11th crisis on the airline indus-
try. Our model predicts that, with a decreased number of flights, you should
decrease the level of overbooking. If security delays many passengers from
reaching their flights on time, you should also decrease the number of book-
ings. Increased passenger fear will decrease the probability that passengers
show up for their flights, so in this case you should increase your booking
number.

We have given you only a taste of what our model can do. We hope you
will agree that contracting for our services will be of the highest benefit to your
esteemed company.

Sincerely,

Models R Us
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Author-Judge’s Commentary:
The Outstanding Airline
Overbooking Papers

William P. Fox
Dept. of Mathematics
Francis Marion University
Florence, SC 29501
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Introduction
Once again, Problem B proved to be a bigger challenge than originally

considered, both for the students and the judges.
The students had a wealth of information for the basic model from the

Web and from other resources. Students could consider and refine the basic
information to fit the proposed post-9-11 scenario.

The judges had to read and evaluate many diverse (yet sometimes similar)
approaches in order to find the “best” papers. Judges found mistakes—errors
in modeling, assumptions, mathematics, and/or analysis—even in these “best”
papers; so it is important to note that “best” does not mean perfect. The judges
must read and apply their own subjective analysis to evaluate critically both
the technical and expository solutions presented by the teams.

No paper analyzed every element nor applied critical validation and sen-
sitivity analysis to all aspects of their model. Judges found many papers with
the exact same model (down to the exact same letters used for the variables) and none
of these clearly cited the universal source anywhere in the submission. The failure to
properly credit the original source critically hurt these papers; it was obvious
their basic model was not theirs but came from a published source.

Advice
At the conclusion of the judging, the judges offered the following comments:
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• Follow the instructions

– Clearly answer all parts.

– List all assumptions that affect the model and justify your use of those
assumptions.

– Make sure that your conclusions and results are clearly stated.

– In the summary, put the “bottom line and managerial recommendation”
results—not a chronological description of what you did.

– Restate the problem in your words.

• A CEO memorandum

– Be succinct.

– Include “bottom line and managerial results” answers.

– Do not include methods used or equations.

• Clarity and Style

– Use a clear style and do not ramble.

– A table of contents is very helpful to the judges.

– Pictures, tables, and graphs are helpful; but you must explain them
clearly.

– Do not include a picture, table, or graph that is extraneous to your model
or analysis.

– Do not be verbose, since judges have only limited time to read and
evaluate your paper.

• The Model

– Develop your model—do not just provide a laundry list of possible mod-
els.

– Start with a simple model and then refine it.

• Computer Programs

– If a program is included, clearly define all parameters.

– Always include an algorithm in the body of the paper for any code used.

– If running a Monte Carlo simulation, be sure to run it enough times to
have a statistically significant output.

• Validation

– Check your model against some known baseline.

– Check sensitivity of parameters to your results.

– Check to see if your recommendation/conclusions make common sense.
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– Use real data.

– The model should represent human behavior and be plausible.

• Resources

– All work needs to be original or referenced; a reference list at the end is
not sufficient!

– Teams can only use inanimate resources—no real people or people con-
sulted over the Internet.

– Surf the Web but document sites where obtained information is used.

– This problem lent itself to a literature search, but few teams did one.

• Summary

– This is the first piece of information read by a judge. It should be well
written and contain the bottom-line answer or result.

– This summary should motivate the judge to read your paper to see how
you obtained your results.

Judging
The judging is accomplished in two phases. Phase I, at a different site, is

“triage judging.” These are generally only 10-minute reads with a subjective
scoring from 1 (worst) to 7 (best). Approximately the top 50% of papers are
sent on the final judging.

Phase II is done with different judges and consists of a calibration round
and another subjection round based on the 1–7 scoring system. Then the judges
collaborate to develop a 100-point scale to enable them to “bubble up” the better
papers. Four or more longer rounds are accomplished using this scale, followed
by a lengthy discussion of the last final group of papers.

Reflections of Triage
• Lots of good papers made it to the final judging.

• The initial summary made a significant difference in the papers (results
versus an explanation).

• Report to the CEO also made a significant difference in papers.
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Triage and Final Judges’ Pet Peeves
• Tables with columns headed with Greek letters or acronyms that are not

immediately understood.

• Definition and variable lists that are imbedded in a paragraph.

• Equations used without explaining terms and what the equation accom-
plished.

• Copying derivations from other sources; cite the reference and briefly explain
is a better approach.

Approaches by the Outstanding Papers
Six papers were selected as Outstanding submissions because they:

• developed a workable, realistic model from their assumptions that could
have been used to answer all elements;

• made clear recommendations;

• wrote a clear and understandable paper describing the problem, their model,
and results; and

• handled all the elements.

The required elements, as viewed by the judges, were to

• develop a basic overbooking model that enabled one to find optimal values,

• consider alternative strategies for handling overbooked passengers,

• reflect on post-9-11 issues, and

• contain the CEO report of finding and analysis.

Most of the better papers did an extensive literature and Web search concern-
ing overbooking by airlines and used this information in their model building.

The poorest section in all papers, including many of the Outstanding papers, was
the section on assumptions with rational justification.

Many papers just skipped this section and went directly from the problem to
model-building!

Most papers used a stochastic approach for their model. With interarrival
times assumed to be exponential, a Poisson process was often used to model
passengers. Teams moved quickly from the Poisson to a binomial distribu-
tion with p and 1− p representing “shows” and “no-shows” for ticket-holders.
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Many teams started directly with the binomial distribution without loss of con-
tinuity. Some teams went on to use the normal approximation to the binomial.
Revenues were generally calculated using some sort of “expected value” equa-
tion. Some teams built nonlinear optimization models, which was a nice and
different approach.

Teams usually started with a simple example: a single plane with a fixed
cost and capacity, one ticket price, and a reasonable value for no-shows based
on historical data. This then became a model from which teams could build
refinements (not only to their parameters) but also to include the changes based
on post-9-11.

Teams often simulated these results using the computer and then made
sense of the simulation by summarizing the results.

Wake Forest had two Outstanding papers. Team 69, with their paper entitled
“ACE is High,” was the INFORMS winner because of its superior analysis.
Both papers began using a binomial approach as their base model. Team 273
developed a single-plane model, a two-plane model, and generalized to an n-
plane model. Team 69 did a superb job in maximizing revenue after examining
alternatives and varying their parameters.

The Harvey Mudd team, the MAA winner, had—by far—the best literature
search. They used it to discuss existing models to determine if any could be
used for post-9-11. Their research examined many of the current overbooking
models that could be adapted to the situation.

The University of Colorado team used Frontier Airlines as their airlines.
They began with the binomial random variable approach, with revenues be-
ing expected values. They modeled both linear and nonlinear compensation
plans for bumped passengers. They developed an auction-style model using
Chebyshev’s weighting distribution. They also consider time-dependency in
their model.

The Duke University team, the SIAM winner, had an excellent mix of liter-
ature search material and development of their own models. They too began
with a basic binomial model. They considered multiple fares and related each
post-9-11 issue to parameters in their model. They varied their parameters and
provided many key insights to the overbooking problem. This paper was the
first paper in many years to receive an Outstanding rating from each judge who
read the paper.

The Bethel College team built a risk assessment model. They used a normal
distribution as their probability distribution and then put together an expected
value model for revenue. Their analysis of Vanguard Airlines with a plane
capacity of 130 passengers was done well.

Most papers found an “optimal” overbooking strategy to be to overbook
between 9% and 15%, and they used these numbers to find “optimal” revenues
for the airlines. Many teams tried alternative strategies for compensation, and
some even considered the different classes of seats on an airplane.

All teams and their advisors are commended for the efforts on the Airline
Overbooking Problem.
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