Cupping Δ_2 Enumeration Degrees to 0'

Guohua Wu Mariya I. Soskova

School of Physical and Mathematical Sciences Nanyang Technological University, guohua@ntu.edu.sg

> Department of Pure Mathematics University of Leeds mariya@maths.leeds.ac.uk

21.07.07

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Definitions

Definition

1. A set *A* is enumeration reducible to a set *B* ($A \leq_{e} B$), if there is a c.e. set Φ such that

$$
n\in A \Leftrightarrow \exists D(\langle n,[D]\rangle \in \Phi \wedge D\subseteq B).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]일 10 Q Q Q

- 2. *A* is enumeration equivalent to B ($A \equiv_{e} B$) if $A \leq_{e} B$ and *B* ≤*^e A*.
- 3. Let $d_e(A) = {B|A \equiv_e B}.$
- 4. (*De*, <,∪, 0 , 0*e*) is the semi-lattice of the enumeration degrees.

Local Degree Structure

There is a natural embedding of the Turing degrees in the Enumeration degrees. Images of Turing degrees under this embedding are the total e-degrees.

Cupping

We say that a degree **a** is cuppable if there exists a degree

b < $0'$ **e** such that **a** ∪ **b** = $0'$ **e**.

Cooper Sorbi and Yui proved that every nonzero Δ_2 e-degree is cuppable by a total Δ_2 e-degree.

Generic Sets

Definition

A set *A* is generic if for every c.e. set *W* there exists a finite string $\lambda \subset \chi_A$ such that:

$$
\lambda \in W \vee (\forall \mu \supseteq \lambda)(\mu \notin W).
$$

Degrees of generic sets are called generic degrees.

- **Every generic enumeration degree a** is quasiminimal, hence partial.
- \triangleright Copestake proved that generic degrees are low if and only if they are Δ_2 .

K E K K Æ K Æ K Æ K Æ H E V A C

Theorem 1

Theorem

Every nonzero ∆² *enumeration degree* **a** *can be cupped by a* ∆² *generic e-degree* **b***, hence by a partial low degree.*

Given a nonzero Δ_2 set *A* we will construct a Δ_2 -set *B* such that:

$$
S: \Gamma^{A,B}=\overline{K}.
$$

$$
G_i : (\exists \lambda \subset B)(\lambda \in W_i \vee \forall \mu \supseteq \lambda[\mu \notin W_i]).
$$

イロトメ*団* トメミトメミト (毛) = のQで

The *S*-strategy

$$
S: \Gamma^{A,B}=\overline{K}.
$$

The *S*-strategy runs at the beginning of every stage and constructs an e-operator Γ such that:

For every $n \in \overline{K}$ there is a valid axiom $\langle n, A \rceil$ $a_n, B \rceil$ b_n .

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ _ 글(날, K) Q Q ^

If *n* exits \overline{K} we correct Γ by extracting b_n from *B*.

The G -strategy

$$
G_i : (\exists \lambda \subset B)(\lambda \in W_i \vee \forall \mu \supseteq \lambda[\mu \notin W_i]).
$$

The *G*-strategy will select a threshold *k*. Choose a witness $\lambda = B \restriction b_k$. Wait for $\mu \supseteq \lambda$ to enter *W*.

Conflict

G would like to preserve μ as an initial segment of *B*, meanwhile *S* might like to change *B* to rectify Γ.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 三目님 K 9 Q (N

Solution

Extract the marker *b^k* to prevent *S* from injuring the restraint. Approximate A up to a_k threatening to prove that it is c.e. Start a new cycle.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]일 10 Q Q Q

A-retreat

If there is an *A*-change, restore *B*. Now $\mu \subseteq B$.

A is nonzero and Δ_2 hence there will be a permanent change in *A* eventually.

Definitions

Definition

- 1. A set *A* is *n*-c.e. if there is a computable function *f* such that for each *x*, $f(x, 0) = 0$, $|\{s + 1 | f(x, s) \neq f(x, s + 1)\}|$ < *n* and $A(x) = \lim_{s \to s} f(x, s)$.
- 2. *A* is ω -c.e. if there are two computable functions $f(x, s)$, $g(x)$ such that for all *x*, $f(x, 0) = 0$, $|\{s+1 | f(x, s) \neq f(x, s+1)\}| \leq q(x)$ and $\lim_{s} f(x, s) \downarrow = A(x)$.
- 3. A degree **a** is n -c.e.(ω -c.e.) if it contains a n -c.e.(ω -c.e.) set.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 Y) Q @

A noncuppable c.e. degree

Cooper and Yates proved that there is a noncuppable c.e. Turing degree. Hence a 2-c.e. e-degree that cannot be cupped by any 2-c.e. e-degree.

Theorem 2

Theorem

Given a nonzero ω*-c.e. e-degree* **a***, there is a* 3*-c.e. e-degree* **b** \mathbf{S} *uch that* $\mathbf{a} \cup \mathbf{b} = \mathbf{0}'_{\mathbf{e}}$ *.*

Given a nonzero ω-c.e set *A* we will construct a 3-c.e. set *B* and an extra Π_1 set *E* such that:

$$
S: \Gamma^{A,B}=\overline{K}.
$$

$$
N_i: E \neq \Psi_i^B.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 할 날 ! > 10 Q Q O

The *N*-strategy

$$
N_i: E \neq \Psi_i^B.
$$

- \triangleright Choose a threshold *k* and a witness $x > k$.
- **I** Wait for *x* to enter Ψ^B .
- **•** Approximate $A \upharpoonright a_k$ and extract b_k . Start a new cycle.
- If there is an A-change re-enumerate b_k to restore the initial segment of *B*.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ _ 글(날, K) Q Q ^

New tricks

- \triangleright Sets of markers if *n* has *A*-marker a_n then it has a *B*-marker *B*^{*n*} a set of size $\sum_{x < a_n} g(x)$.
- ► Make the approximations of the set *A* monotone and always restore the last computation.

Bibliography

S. B. Cooper, *Computability Theory*, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.

- R. I. Soare, *Recursively enumerable sets and degrees*, Springer-Verlag, Heidelberg, 1987.
- S. B. Cooper, *Partial degrees and the density problem*, J. Symb. Log. **47** (1982), 854-859.
- S. B. Cooper, A. Sorbi, X. Yi, *Cupping and noncupping in the enumeration degrees of* Σ⁰₂ sets, Ann. Pure Appl. Logic **82** (1996), 317-342.
- K. Copestake, *1-Genericity enumeration Degrees*, J. Symb. Log. **53** (1988), 878-887.