Cupping Δ_2 Enumeration Degrees to 0'

Guohua Wu Mariya I. Soskova

School of Physical and Mathematical Sciences Nanyang Technological University, guohua@ntu.edu.sg

> Department of Pure Mathematics University of Leeds mariya@maths.leeds.ac.uk

21.07.07

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Definitions

Definition

1. A set *A* is enumeration reducible to a set *B* ($A \leq_e B$), if there is a c.e. set Φ such that

$$n \in A \Leftrightarrow \exists D(\langle n, [D] \rangle \in \Phi \land D \subseteq B).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- 2. *A* is enumeration equivalent to B ($A \equiv_e B$) if $A \leq_e B$ and $B \leq_e A$.
- 3. Let $d_e(A) = \{B|A \equiv_e B\}$.
- (*D_e*, <, ∪, ', 0_e) is the semi-lattice of the enumeration degrees.

Local Degree Structure

There is a natural embedding of the Turing degrees in the Enumeration degrees. Images of Turing degrees under this embedding are the total e-degrees. $0'_e$

Cupping

We say that a degree a is cuppable if there exists a degree $b < 0'_e$ such that $a \cup b = 0'_e.$

Cooper Sorbi and Yui proved that every nonzero Δ_2 e-degree is cuppable by a total Δ_2 e-degree.

Generic Sets

Definition

A set *A* is generic if for every c.e. set *W* there exists a finite string $\lambda \subset \chi_A$ such that:

$$\lambda \in \boldsymbol{W} \lor (\forall \mu \supseteq \lambda) (\mu \notin \boldsymbol{W}).$$

Degrees of generic sets are called generic degrees.

- Every generic enumeration degree a is quasiminimal, hence partial.
- Copestake proved that generic degrees are low if and only if they are Δ₂.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Theorem 1

Theorem

Every nonzero Δ_2 enumeration degree **a** can be cupped by a Δ_2 generic e-degree **b**, hence by a partial low degree.

Given a nonzero Δ_2 set *A* we will construct a Δ_2 -set *B* such that:

$$S: \Gamma^{A,B} = \overline{K}.$$

$$G_i: (\exists \lambda \subset B)(\lambda \in W_i \lor \forall \mu \supseteq \lambda[\mu \notin W_i]).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The S-strategy

$$S: \Gamma^{A,B} = \overline{K}.$$

The *S*-strategy runs at the beginning of every stage and constructs an e-operator Γ such that:

▶ For every $n \in \overline{K}$ there is a valid axiom $\langle n, A \upharpoonright a_n, B \upharpoonright b_n \rangle$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

▶ If *n* exits \overline{K} we correct Γ by extracting b_n from *B*.

The G -strategy

(

$$G_i: (\exists \lambda \subset B) (\lambda \in W_i \lor \forall \mu \supseteq \lambda [\mu \notin W_i]).$$

The *G*-strategy will select a threshold *k*. Choose a witness $\lambda = B \upharpoonright b_k$. Wait for $\mu \supseteq \lambda$ to enter *W*.

Conflict

G would like to preserve μ as an initial segment of *B*, meanwhile *S* might like to change *B* to rectify Γ .

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Solution

Extract the marker b_k to prevent *S* from injuring the restraint. Approximate *A* up to a_k threatening to prove that it is c.e. Start a new cycle.

A-retreat

If there is an *A*-change, restore *B*. Now $\mu \subseteq B$.

A is nonzero and Δ_2 hence there will be a permanent change in A eventually.

Definitions

Definition

- 1. A set *A* is *n*-c.e. if there is a computable function *f* such that for each *x*, f(x, 0) = 0, $|\{s+1 \mid f(x, s) \neq f(x, s+1)\}| \leq n \text{ and } A(x) = \lim_{s} f(x, s).$
- 2. A is ω -c.e. if there are two computable functions f(x, s), g(x) such that for all x, f(x, 0) = 0, $|\{s+1 \mid f(x, s) \neq f(x, s+1)\}| \leq g(x)$ and $\lim_{s} f(x, s) \downarrow = A(x)$.
- A degree a is *n*-c.e.(ω-c.e.) if it contains a *n*-c.e.(ω-c.e.) set.

A noncuppable c.e. degree

Cooper and Yates proved that there is a noncuppable c.e. Turing degree. Hence a 2-c.e. e-degree that cannot be cupped by any 2-c.e. e-degree.

Theorem 2

Theorem

Given a nonzero ω -c.e. e-degree **a**, there is a 3-c.e. e-degree **b** such that $\mathbf{a} \cup \mathbf{b} = \mathbf{0}'_{\mathbf{e}}$.

Given a nonzero ω -c.e set *A* we will construct a 3-c.e. set *B* and an extra Π_1 set *E* such that:

$$S: \Gamma^{A,B} = \overline{K}.$$

$$N_i: E \neq \Psi_i^B.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The N-strategy

$$N_i: E \neq \Psi_i^B.$$

- Choose a threshold k and a witness x > k.
- Wait for x to enter Ψ^B .
- Approximate $A \upharpoonright a_k$ and extract b_k . Start a new cycle.
- If there is an A-change re-enumerate b_k to restore the initial segment of B.

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

New tricks

- Sets of markers if *n* has *A*-marker *a_n* then it has a *B*-marker *B_n* a set of size ∑_{x < a_n} g(x).
- Make the approximations of the set A monotone and always restore the last computation.

Bibliography

- S. B. Cooper, *Computability Theory*, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.
- R. I. Soare, *Recursively enumerable sets and degrees*, Springer-Verlag, Heidelberg, 1987.
- S. B. Cooper, *Partial degrees and the density problem*, J. Symb. Log. **47** (1982), 854-859.
- S. B. Cooper, A. Sorbi, X. Yi, *Cupping and noncupping in the enumeration degrees of* Σ_2^0 *sets*, Ann. Pure Appl. Logic **82** (1996), 317-342.
- K. Copestake, 1-Genericity enumeration Degrees, J. Symb. Log. **53** (1988), 878-887.