An automorphism analysis for the Δ_2^0 Turing degrees

Mariya I. Soskova¹ joint work with Theodore Slaman

Sofia University

2015 Spring Eastern Sectional Meeting, Georgetown University

¹Supported by a Marie Curie International Outgoing Fello[wship STRIDE \(298471\).](#page-0-0) QQ

Mariya I. Soskova joint work with Theodore Slam[An automorphism analysis for the](#page-0-0) ∆ $\frac{0}{2}$ Turing degrees 1 and 1 / 1 = 1 / 1

¹ Understanding the expressive power of the theory of the Turing degrees.

² Understanding the definable relations in the structure of the Turing degrees.

³ Understanding the automorphism group of the Turing degrees.

→ 何 ▶ → ヨ ▶ → ヨ ▶ →

¹ Understanding the expressive power of the theory of the Turing degrees.

- \triangleright Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- ² Understanding the definable relations in the structure of the Turing degrees.

³ Understanding the automorphism group of the Turing degrees.

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ ...

¹ Understanding the expressive power of the theory of the Turing degrees.

- \triangleright Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- ² Understanding the definable relations in the structure of the Turing degrees.
	- In Slaman and Woodin (1991) conjectured: The definable relations in \mathcal{D}_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- ³ Understanding the automorphism group of the Turing degrees.

イロト (個) くきとくきとく

¹ Understanding the expressive power of the theory of the Turing degrees.

- \triangleright Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- ² Understanding the definable relations in the structure of the Turing degrees.
	- In Slaman and Woodin (1991) conjectured: The definable relations in \mathcal{D}_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- ³ Understanding the automorphism group of the Turing degrees.
	- \triangleright Slaman and Woodin (1991) conjectured: There are no non-trivial automorphisms of \mathcal{D}_T .

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ ...

Definition

Let A be a structure. A set $B \subseteq |A|$ is an automorphism base for A if whenever *f* and *g* are automorphisms of *A* such that $(\forall x \in B)(f(x) = g(x))$, then $f = g$.

Definition

Let A be a structure. A set $B \subseteq |A|$ is an automorphism base for A if whenever *f* and *g* are automorphisms of *A* such that $(\forall x \in B)(f(x) = g(x))$, then $f = g$.

Equivalently if *f* is an automorphism of A and ($\forall x \in B$)($f(x) = x$) then *f* is the identity.

Definition

Let A be a structure. A set $B \subseteq |A|$ is an automorphism base for A if whenever *f* and *g* are automorphisms of *A* such that $(\forall x \in B)(f(x) = g(x))$, then $f = g$.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\bold{g} \leq \bold{0}^{(5)}$ such that $\{ \bold{g} \}$ is an automorphism base for the *structure of the Turing degrees* \mathcal{D}_T *.*

 \Box

Definition

Let A be a structure. A set $B \subseteq |A|$ is an automorphism base for A if whenever *f* and *g* are automorphisms of *A* such that $(\forall x \in B)(f(x) = g(x))$, then $f = g$.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\bold{g} \leq \bold{0}^{(5)}$ such that $\{ \bold{g} \}$ is an automorphism base for the *structure of the Turing degrees* \mathcal{D}_T *.*

Aut(D*^T*) *is countable and every member has an arithmetically definable presentation.*

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Shore (1981) proved that the theory of $\mathcal{D}_T(\leq 0')$ is computably isomorphic to the theory of first order arithmetic.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Shore (1981) proved that the theory of $\mathcal{D}_T(\leq 0')$ is computably isomorphic to the theory of first order arithmetic.

Question

Can we show that $\mathcal{D}_T(\leq \mathbf{0}')$ relates to first order arithmetic in the same way *that* D*^T relates to second order arithmetic?*

∍

メロトメ 御 トメ ミトメ ミト

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i\leq \omega}$, representing the degrees in \mathcal{Z} , and a computable function *f* such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j < i} Z_j$.

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i\leq \omega}$, representing the degrees in \mathcal{Z} , and a computable function *f* such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j < i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i<\omega\}$ is uniformly low.

Definition

A set of degrees $\mathcal Z$ contained in $\mathcal D_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i\leq \omega}$, representing the degrees in \mathcal{Z} , and a computable function *f* such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j < i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i<\omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If Z is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then Z is definable from finitely *many parameters in* $\mathcal{D}_T(\leq 0')$.

Using parameters we can code a model of arithmetic $\mathcal{M} =$ $(N^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}).$

Using parameters we can code a model of arithmetic $\mathcal{M} =$ $(N^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}).$

1 The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters \vec{p} .

Using parameters we can code a model of arithmetic $\mathcal{M} =$ $(N^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}).$

- \bullet The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters \vec{p} .
- **2** The graphs of $s, +, \times$ and the relation ≤ are definable with parameters \vec{p} .

Using parameters we can code a model of arithmetic $\mathcal{M} =$ $(N^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, <^{\mathcal{M}}).$

- \bullet The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters \vec{p} .
- **2** The graphs of $s, +, \times$ and the relation ≤ are definable with parameters \vec{p} .

 $\bullet \mathbb{N} \models \varphi \text{ iff } \mathcal{D}_T(\leq 0') \models \varphi_T(\vec{p})$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

E KERKERKERKER

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent *A* and *B* as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent *A* and *B* as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$.

Then $A = \{d_T(A_e) \mid e < \omega\}$ and $B = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters

(ロ) (@) (E) (E) (E) ⊙Q (O

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent *A* and *B* as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$.

Then $A = \{d_T(A_e) \mid e < \omega\}$ and $B = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters and $d_T(W_e) = d_T(A_e) \vee d_T(B_e)$.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i \leq \omega}$ then there are parameters that code a model of arithmetic M and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of Z.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent *A* and *B* as $\bigoplus_{e<\omega}A_e$ and $\bigoplus_{e<\omega}B_e$.

Then $A = \{d_T(A_e) \mid e < \omega\}$ and $B = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters and $d_T(W_e) = d_T(A_e) \vee d_T(B_e)$.

Theorem (Slaman and Woodin)

There are finitely many Δ^0_2 parameters which code a model of arithmetic ${\cal M}$ and an indexing of the c.e. degrees: a function $\psi:\mathbb{N}^{\cal M}\to{\cal D}_{T}(\leq{\bf 0}')$ such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ │ 경

An indexing of the c.e. degrees

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\}.$

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set X if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\}.$

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic ${\cal M}$ *and an indexing of the* Δ_2^0 *degrees.*

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic ${\cal M}$ and an indexing of the Δ^0_2 degrees.

Proof flavour:

1 A Δ_2^0 degree can be defined from four low degrees using meet and join.

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic ${\cal M}$ and an indexing of the Δ^0_2 degrees.

Proof flavour:

- **1** A Δ_2^0 degree can be defined from four low degrees using meet and join.
- There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic ${\cal M}$ *and an indexing of the* Δ_2^0 *degrees.*

Proof flavour:

- **1** A Δ_2^0 degree can be defined from four low degrees using meet and join.
- **2** There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.
	- If $x, y \le 0'$, $x' = 0'$ and $y \nleq x$ then there are $g_i \le 0'$, c.e. degrees a_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i \in \mathcal{Z}$ for $i = 1, 2$ such that:
		- **1** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
		- 2 $\mathbf{x} \leq \mathbf{g}_1 \vee \mathbf{g}_2$.
		- $y \nleq g_1 \vee g_2$.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

K ロ ▶ K 何 ▶ K

∋ » -41 ∍∍

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic $\mathcal M$ and an indexing of the Δ_2^0 degrees.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic $\mathcal M$ and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in M.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic $\mathcal M$ and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in M.

Hence π fixes every Δ_2^0 Turing degree.

Corollary

The automorphism group of $\mathcal{D}_T(\leq 0)$ is countable.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic $\mathcal M$ and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in M.

Hence π fixes every Δ_2^0 Turing degree.

Corollary

The automorphism group of $\mathcal{D}_T(\leq 0)$ is countable. Every automorphism of $\mathcal{D}_T (\leq \mathbf{0}')$ has an arithmetic presentation.

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

4 **D F** ≺ ∩⊽

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq 0)$ *is atomic.*

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq 0)$ *is atomic.*

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T(\leq 0').$

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq 0)$ *is atomic.*

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T(\leq 0').$

Now every tuple $(\mathbf{x}_1 \dots \mathbf{x}_n)$ corresponds to a unique tuple of natural numbers $(e_1, \ldots e_n)$, such that $\theta(e_i^{\mathcal{M}}) = \mathbf{x}_i$.

(ロ) (何) (ヨ) (ヨ) (

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq 0)$ *is atomic.*

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T(\leq 0').$

Now every tuple $(\mathbf{x}_1 \dots \mathbf{x}_n)$ corresponds to a unique tuple of natural numbers $(e_1, \ldots e_n)$, such that $\theta(e_i^{\mathcal{M}}) = \mathbf{x}_i$.

The formula for the tuple $(x_1 \ldots x_n)$ expresses this relationship: whenever \vec{p} are parameters that define a standard model of arithmetic and a bijection θ that respects the constraints of an indexing, θ maps $e_i^{\mathcal{M}}$ to \mathbf{x}_i .

◆ロト→個・→重ト→重ト→重

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation R is definable with finitely many Δ^0_2 parameters.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation R is definable with finitely many Δ^0_2 parameters. *If* R *is invariant under automorphisms, then* R *is definable without parameters.*

Proof: Let M be a model of arithmetic and φ an indexing of the Δ_2^0 degrees.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation R is definable with finitely many Δ^0_2 parameters. *If* R *is invariant under automorphisms, then* R *is definable without parameters.*

Proof: Let M be a model of arithmetic and φ an indexing of the Δ_2^0 degrees. We define the set of all $(\varphi(e_1^{\mathcal{M}}), \dots, \varphi(e_n^{\mathcal{M}}))$ where $\mathcal{M} \models R(e_1, \dots e_n)$.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation R is definable with finitely many Δ^0_2 parameters. *If* R *is invariant under automorphisms, then* R *is definable without parameters.*

Proof: Let M be a model of arithmetic and φ an indexing of the Δ_2^0 degrees. We define the set of all $(\varphi(e_1^{\mathcal{M}}), \dots, \varphi(e_n^{\mathcal{M}}))$ where $\mathcal{M} \models R(e_1, \dots e_n)$. We use the same trick as in the previous application to define $\mathcal R$ in the second case.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order *arithmetic.*

Proof: $\mathcal{D}_T(\leq 0)$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order *arithmetic.*

Proof: $\mathcal{D}_T(\leq 0)$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees. If the empty set is an automorphism base then $\mathcal{D}_T(\leq 0')$ is rigid.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order *arithmetic.*

Proof: $\mathcal{D}_T(\leq 0)$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees. If the empty set is an automorphism base then $\mathcal{D}_T(\leq 0')$ is rigid.

If $\mathcal{D}_T(\leq 0')$ is rigid then the tuple of the finitely many indexing parameters is an example of a relation R that is induced by an arithmetically definable degree invariant relation *R* and $\mathcal R$ is invariant under automorphisms.

The End

Thank you!

∍

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A}$