An automorphism analysis for the Δ_2^0 Turing degrees

Mariya I. Soskova¹ joint work with Theodore Slaman

Sofia University

2015 Spring Eastern Sectional Meeting, Georgetown University

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471).

Mariya I. Soskova joint work with Theodore SlarAn automorphism analysis for the Δ_2^0 Turing degr

• Understanding the expressive power of the theory of the Turing degrees.

Understanding the definable relations in the structure of the Turing degrees.

• Understanding the automorphism group of the Turing degrees.

< 同 > < 三 > < 三 >

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of D_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.

• Understanding the automorphism group of the Turing degrees.

く 伺 とう きょう とう とう

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of D_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: The definable relations in D_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Understanding the automorphism group of the Turing degrees.

▲□ → ▲ 三 → ▲ 三 →

• Understanding the expressive power of the theory of the Turing degrees.

- Simpson (1977) proved: The theory of D_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: The definable relations in D_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Output the subscription of the Turing degrees.
 - Slaman and Woodin (1991) conjectured: There are no non-trivial automorphisms of \mathcal{D}_T .

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if *f* is an automorphism of A and $(\forall x \in B)(f(x) = x)$ then *f* is the identity.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Shore (1981) proved that the theory of $\mathcal{D}_T (\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.

Local structure of the Turing degrees

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Shore (1981) proved that the theory of $\mathcal{D}_T (\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.

Question

Can we show that $\mathcal{D}_T(\leq \mathbf{0}')$ relates to first order arithmetic in the same way that \mathcal{D}_T relates to second order arithmetic?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

Example: If $\bigoplus_{i < \omega} A_i$ is low then $\mathcal{A} = \{ d_T(A_i) \mid i < \omega \}$ is uniformly low.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i < \omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i < i} Z_j$.

Example: If $\bigoplus_{i < \omega} A_i$ is low then $\mathcal{A} = \{ d_T(A_i) \mid i < \omega \}$ is uniformly low.

Theorem (Slaman and Woodin)

If Z is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then Z is definable from finitely many parameters in $\mathcal{D}_T(\leq \mathbf{0}')$.

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

Mariya I. Soskova joint work with Theodore SlarAn automorphism analysis for the Δ_2^0 Turing degr

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

• The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- Provide a state of a state of

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^{\mathcal{M}}, 0^{\mathcal{M}}, s^{\mathcal{M}}, +^{\mathcal{M}}, \times^{\mathcal{M}}, \leq^{\mathcal{M}}).$

- The set $\mathbb{N}^{\mathcal{M}}$ is definable with parameters $\vec{\mathbf{p}}$.
- Provide a constraint of *s*, +, × and the relation ≤ are definable with parameters **p**.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

(日本) (日本) (日本)

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$.

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

マボン マラン マラン 二日

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent *A* and *B* as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$.

(本部) (本語) (本語) (語)

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$.

Then $\mathcal{A} = \{ d_T(A_e) \mid e < \omega \}$ and $\mathcal{B} = \{ d_T(B_e) \mid e < \omega \}$ are uniformly low and hence definable with parameters

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$.

Then $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters and $d_T(W_e) = d_T(A_e) \lor d_T(B_e)$.

ロト (日) (王) (王) (王) (日)

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i < \omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function *an indexing* of \mathcal{Z} .

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets *A* and *B* such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e < \omega} A_e$ and $\bigoplus_{e < \omega} B_e$.

Then $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence definable with parameters and $d_T(W_e) = d_T(A_e) \lor d_T(B_e)$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T (\leq \mathbf{0}')$ such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

◆ロト ◆聞と ◆注と ◆注と 二注

An indexing of the c.e. degrees

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\}.$

The Goal

Extend this result to an indexing φ of the Δ_2^0 Turing degrees.

We will call *e* an index for a Δ_2^0 set *X* if $\{e\}^{\emptyset'}$ is the characteristic function of *X*.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\}.$

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

• A Δ_2^0 degree can be defined from four low degrees using meet and join.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

- A Δ_2^0 degree can be defined from four low degrees using meet and join.
- There exists a uniformly low set of Turing degrees Z, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.

Theorem (Slaman, S)

There are finitely many Δ_2^0 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Proof flavour:

- A Δ_2^0 degree can be defined from four low degrees using meet and join.
- There exists a uniformly low set of Turing degrees Z, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of Z.
 - If $\mathbf{x}, \mathbf{y} \leq \mathbf{0}', \mathbf{x}' = \mathbf{0}'$ and $\mathbf{y} \leq \mathbf{x}$ then there are $\mathbf{g}_i \leq \mathbf{0}'$, c.e. degrees \mathbf{a}_i and Δ_2^0 degrees $\mathbf{c}_i, \mathbf{b}_i \in \mathcal{Z}$ for i = 1, 2 such that:
 - **9** \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
 - $2 x \leq \mathbf{g}_1 \vee \mathbf{g}_2.$

Theorem

 $\mathcal{D}_T(\leq \mathbf{0'})$ has a finite automorphism base.

A (1) > A (1) > A (1) >

Theorem

 $\mathcal{D}_T(\leq \mathbf{0'})$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0'})$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in \mathcal{M} .

Theorem

 $\mathcal{D}_T(\leq \mathbf{0'})$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in \mathcal{M} .

Hence π fixes every Δ_2^0 Turing degree.

Corollary

The automorphism group of $\mathcal{D}_T(\leq \mathbf{0}')$ is countable.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0'})$ has a finite automorphism base.

Proof: Let π be an automorphism that fixes the parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ_2^0 degrees.

Then π fixes every degree that represents a natural number in \mathcal{M} .

Hence π fixes every Δ_2^0 Turing degree.

Corollary

The automorphism group of $\mathcal{D}_T(\leq \mathbf{0}')$ is countable. Every automorphism of $\mathcal{D}_T(\leq \mathbf{0}')$ has an arithmetic presentation.

< 回 > < 回 > < 回 >

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is atomic.

> < E > < E >

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is atomic.

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T (\leq \mathbf{0}').$

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is atomic.

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T (\leq \mathbf{0}').$

Now every tuple $(\mathbf{x}_1 \dots \mathbf{x}_n)$ corresponds to a unique tuple of natural numbers $(e_1, \dots e_n)$, such that $\theta(e_i^{\mathcal{M}}) = \mathbf{x}_i$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Definition

We say that a structure is atomic if the complete type of every tuple is axiomatized by a single formula.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is atomic.

Proof flavour: Transform the indexing of the Δ_2^0 degrees into a bijection $\theta : \mathbb{N} \to \mathcal{D}_T (\leq \mathbf{0}').$

Now every tuple $(\mathbf{x}_1 \dots \mathbf{x}_n)$ corresponds to a unique tuple of natural numbers (e_1, \dots, e_n) , such that $\theta(e_i^{\mathcal{M}}) = \mathbf{x}_i$.

The formula for the tuple $(\mathbf{x}_1 \dots \mathbf{x}_n)$ expresses this relationship: whenever $\vec{\mathbf{p}}$ are parameters that define a standard model of arithmetic and a bijection θ that respects the constraints of an indexing, θ maps $e_i^{\mathcal{M}}$ to \mathbf{x}_i .

ロトス部とスモンスモン、モ

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation \mathbf{R} is definable with finitely many Δ_2^0 parameters.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation \mathcal{R} is definable with finitely many Δ_2^0 parameters. If \mathcal{R} is invariant under automorphisms, then \mathcal{R} is definable without parameters.

Proof: Let \mathcal{M} be a model of arithmetic and φ an indexing of the Δ_2^0 degrees.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation \mathcal{R} is definable with finitely many Δ_2^0 parameters. If \mathcal{R} is invariant under automorphisms, then \mathcal{R} is definable without parameters.

Proof: Let \mathcal{M} be a model of arithmetic and φ an indexing of the Δ_2^0 degrees. We define the set of all $(\varphi(e_1^{\mathcal{M}}), \dots, \varphi(e_n^{\mathcal{M}}))$ where $\mathcal{M} \models R(e_1, \dots e_n)$.

Theorem

Every relation $\mathcal{R} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ induced by an arithmetically definable degree invariant relation \mathcal{R} is definable with finitely many Δ_2^0 parameters. If \mathcal{R} is invariant under automorphisms, then \mathcal{R} is definable without parameters.

Proof: Let \mathcal{M} be a model of arithmetic and φ an indexing of the Δ_2^0 degrees. We define the set of all $(\varphi(e_1^{\mathcal{M}}), \ldots, \varphi(e_n^{\mathcal{M}}))$ where $\mathcal{M} \models R(e_1, \ldots, e_n)$. We use the same trick as in the previous application to define \mathcal{R} in the second case.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

Proof: $\mathcal{D}_T (\leq \mathbf{0}')$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

Proof: $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees. If the empty set is an automorphism base then $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid.

Theorem

 $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid if and only if $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic.

Proof: $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable with first order arithmetic if there are a definable model of arithmetic and indexing of the Δ_2^0 degrees. If the empty set is an automorphism base then $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid.

If $\mathcal{D}_T(\leq \mathbf{0}')$ is rigid then the tuple of the finitely many indexing parameters is an example of a relation \mathcal{R} that is induced by an arithmetically definable degree invariant relation R and \mathcal{R} is invariant under automorphisms.

・ 何 ト ・ ヨ ト ・ ヨ ト

The End

Thank you!

2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >