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Outline

Enumeration reducibility captures a natural relationship between sets of
natural numbers in which positive information about the first set is used to
produce positive information about the second set.

The induced structure of the enumeration degrees D, can be viewed as an
extension of the Turing degrees, as there is a natural way to embed Dr in D,
preserving structure.

In certain cases, the enumeration degrees can be used to capture the
algorithmic content of mathematical objects, while the Turing degrees fail.

Certain open problems in degree theory present as more approachable in the
extended context of the enumeration degrees, e.g. first order definability.

We have been working to develop a richer “e-verse™ a system of classes of
enumeration degrees with interesting properties and relationships, in order to
better understand the enumeration degrees.



The enumeration degrees
Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A € w is enumeration reducible to B € w (A <. B) if there is a
uniform way to compute an enumeration of A from an enumeration of B.
(Selman 1971 proved that the uniformity condition can be dropped.)

Definition
A <_ B if there is a c.e. set W such that

A= {n: (3e){(n,ey e W and D, < B},

where D, is the eth finite set in a canonical enumeration.

The degree structure D, induced by <. is called the enumeration (e-) degrees.
It is an upper semi-lattice with a least element 0. (the degree of all c.e. sets).

Definition

Let K4 = (—B_eI‘S(A). Note that A =, K 4. The enumeration jump of a set A is
A= K, ® K 4. The jump of a degree is deg,(A) = deg,(A").




The total enumeration degrees
Proposition. A<y Bif A® Ais Bce.iff AQA<. B®B.

This suggests an embedding of the Turing degrees into the e-degrees.
Proposition. The embedding ¢: Dy — D., defined by
U(dr(A)) = de(A® A),

preserves the order and the least upper bound and even the jump.

Definition

A set A is total if A >, A (or equivalently if A =, A® A). An enumeration
degree is total if it contains a total set.

The image of the Turing degrees under the embedding ¢ is exactly the set of
total enumeration degrees.

Proposition. Nontotal degrees exist. The enumeration degree of a 1-generic
set is quasiminimal, i.e. it is nonzero and the only total degree below it is O.
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Kalimullin pairs

Jockusch (1968) introduced the semicomputable sets as left cuts in computable
linear orderings on w .

Arslanov, Cooper, and Kalimullin (2003) showed that if A is semicomputable

then the degrees a = deg,(A) and a = deg, (A) are a robust minimal pair:
(VxeD)[(avx)A(avx)=x]

Definition (Kalimullin 04)

A and B are a [C-pair relative to U if there is a set W <. U such that
AxBcWand Ax BCW.

If A is semi-computable and not c.e. or co-c.e. then {A, A} form a mazximal,
K-pair (relative to ¢F).
Theorem (Kalimullin 04)

A and B are a K-pair relative to U if and only if their degrees a and b form a
robust minimal pair relative to u = deg, (U):

(Vvx=zu)[avuvx)a(bvuvx)=x]
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Natural definability

Theorem (Kalimullin 2003)

The enumeration jump is first order definable in D,: u’ is the largest degree
that can represented as the join of a triple a, b, ¢ such that each pair {a, b},
{b,c}, and {a, c} is a K-pair relative to u.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)

The total enumeration degrees are first order definable in D.: a nonzero
degree is total if and only if it is the join of a maximal KC-pair.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)

The image of the relation “c.e. in” on Turing degrees is first order definable in
D.: for total degrees a and x, a is c.e. in x if and only if a is the join of a
maximal K-pair with one side bounded by x.
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The automorphism problem

Are there nontrivial automorphisms of D, or D7

Problem (Rogers 1969) J

Recall by Selman’s theorem an enumeration degree is determined by the total
degrees above it.

Corollary
The total enumeration degrees form a definable automorphism base for D,.

e Every nontrivial automorphism of D, gives rise to a unique non-trivial
automorphism of Dr.

@ D, has at most countably many automorphisms.
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Local and global structural interactions
Theorem (Slaman, S 2017)

There is a finite set of AY enumeration degrees that is an automorphism base
for D..

Theorem (Slaman, S 2017)
If D, has a nontrivial automorphism then so does:
e The local structure D.(< 0,).
o The structure of the AJ Turing degrees Dr(< 0%).

@ The structure of the c.e. Turing degrees.

Insight. We need to identify more subclasses of e-degrees, understand how
they interact with each other and with the local structure, to help us
understand what’s going on.
@ Turn to effective mathematics, focusing on cases where enumeration
degrees provide a better tool for capturing algorithmic content.
@ Extend properties/relations from Turing oracles to enumeration oracles.
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Computable metric spaces
Definition (Lacombe 1957)

A computable metric space is a metric space M together with a countable
dense sequence QM = {gM},,c., on which the metric is computable, i.e. there
is a computable function that maps a pairs of indices 4, j and a precision

¢ € Q" to a rational that is within € of da(gi, g;)-

Examples. 2¥; w* R, C[0,1], and Hilbert cube [0,1]~.

Definition

A: QT — wis a name of a point x € M if for all rationals € > 0 we have
d./\/l(qu%g)) <E.

Question. How can we assign a measure of algorithmic complexity to a point
in a computable metric space?

Points in R have a name of least Turing degree. Do points in all metric spaces
have such a name?
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The continuous degrees

Definition (Miller 2004)

If x and y are members of (possibly different) computable metric spaces, then
x <, y if there is a uniform way to compute a name for = from a name for y.

This reducibility induces the continuous degrees.

Every continuous degree contains a point from [0, 1] and a point from C[0, 1].

Theorem (Miller 2004) J

For a € [0,1]¥, let Co = @,c, (€ Q| g < a(i)} ® {¢geQ | qg> ali)}.
Enumerating C, is exactly as hard as computing a name for . So o — Cy
induces an embedding of the continuous degrees into the enumeration degrees.

Elements of 2%, w*, and R are mapped to the total degrees.
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Topology realized as a structural property
Theorem (Miller 2004) J

There is a nontotal continuous degree.

Points in such degrees do not have a name of least Turing degree.
Every known proof invokes nontrivial topological theorems, e.g. Brouwer’s
fixed point theorem for multi-valued functions.

Theorem (Andrews, Igusa, Miller, S.)

The continuous degrees are definable in D,: a is continuous if and only if it is
almost total: if x € a and x is total then a v x is total.

Theorem (Ganchev, Kalimullin, Miller, S.)

There is a structural dichotomy in the enumeration degrees:
© An e-degree a is either continuous, hence almost total;

@ or half of a nontrivial relativized IC-pair, hence there is a total degree x
such that a v x is strong quasi-minimal cover of x.
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The relation “relatively PA”

The continuous degrees interact nicely with the relation “relatively PA”.
Definition

For Wc2<¥let [W]={X€2¥|3oeW(oc<X)}

P is a 119 class is there is a c.e. set W < 2<% such that P = 2* <\ [W].

Pis aTI9(A) class is there is a c.e. in A set W € 2<% such that P = 2% \ [W].
For Turing oracles A and B we say that B is PA relative to A if B computes a

member of every nonempty I19(A) class

v

Theorem (Miller 2004)

For Turing degrees b is PA relative to a if and only if there is a nontotal
continuous degree ¢ such that ¢(a) < ¢ < ¢(b).

And so, the image of the relation “PA above” is first order definable in D,.
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Relative to an enumeration oracle

We can relativize to an enumeration oracle by replacing “c.e. in A” by “<, A”.

Definition
P is a IY(A) class if there is some W <, A such that P = 2 < [W]. J

Note that a II{{A @® A°) class is just a I1{(A)-class.

Definition

(B) is PA relative to (A) if B enumerates a member of every nonempty IT19(A)
class.

Thus, B is PA above A if and only if (B @ B¢) is PA above (A ® A°).

We have extended the image of the relation “PA above” from total degrees to
all enumeration degrees.
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Preserving or violating properties
Transferring theorems from the Turing degrees to total oracles we have:
@ No total degree a is (self)-PA: a is not PA relative to a.

© If b is PA relative to a and a is total then b > a. We say that a is
PA-bounded.

@ If a is total then it has a universal class: a I1{(a) class P such that (b) is
PA relative to (a) if and only if b enumerates a member of P.

Theorem (Franklin, Lempp, Miller, Schweber, and S 2019)

The continuous degrees are exactly the PA bounded degrees. They cannot be
(self)-PA and they have universal classes.

Theorem (Miller, S. 2014)

There are (self)-PA oracles. They cannot have universal oracles.

Investigating the oracles with a universal class lead to the introduction and
exploration of many other classes.
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The skip operator
Recall that A’ = K4 @ K 4, where K4 = @_T'.(A).
Definition (AGKLMSS 2019)

The skip of A is the set A® = K 4. The skip of a degree is
deg,(A)® = deg,(A°).

In some ways the skip is a more natural analog of the Turing jump operator:
e A<, Bifand only if A® <, B?;
o If S >, ¢’ then there is some X such that X° =, S;

e If a is total then a’ = a®, and so the skip is an extension of the Turing
jump operator to the enumeration degrees.

There are degrees a such that a < a®:

o AGKLMSS show that there are skip 2-cycles: degrees a and b with
a® = b and b® = a. Such degrees must be above all hyperarithmetical
enumeration degrees.

o Goh proved that an e-degree is hyperarithmetical if and only if it is
bounded by every skip 2-cycle.
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The cototal enumeration degrees

What are the degrees that preserve the property of total degrees that a < a®?

Definition

A set A is cototal if A <, A. A degree is cototal if it contains a cototal set.

The cototal degrees contain the continuous degrees. Not every e-degree is
cototal.

The cototal enumeration degrees are characterized as:
@ The degrees which are bounded by their skip.

@ The degrees of complements of maximal independent sets in computable
graphs by AGKLMSS 2019.

@ The degrees of languages of minimal subshifts by Jeandel and McCarthy
2018.



The graph cototal enumeration degrees

An e-degree is total if and only if it contains the graph of a total function.

Definition

An enumeration degree is graph cototal if it contains the complement of the
graph of a total function.

It is easy to see that graph cototal degrees are cototal, but are they the same
class?

Theorem (AGKLMSS 2019) J

There is a cototal degree that is not graph cototal.

Are all continuous degrees graph cototal?

Problem J
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Topological classification of classes of e-degrees
Definition (Kihara, Pauly 2018)

A represented space is a pair of a second countable Ty topological space X and
listing of an open basis BX = {B;}i<..
A name for a point z € X is an enumeration of the set N, = {i | z € B;}.

For z,y € X, say that « < y if every name for y (uniformly) computes a name
for x.

Thus a represented space X gives rise to a class of e-degrees Dx < D..

Examples:.
@ Dgw = D,, where S is the Sierpinski topology {&J, {1},{0,1}}.
Dsw = Dy is the total enumeration degrees.
Dio,1)« is the continuous degrees.
DNiof is the graph cototal degrees.

The problem “Is every continuous degree graph cototal?” can be restated as

Can you cover the Hilbert cube with countably many homeomorphic
copies of subspaces of N, ¢ ?




New classes arising from topology

Theorem(Kihara, Ng, and Pauly). The following are subclasses of the
graph co-total degrees.

@ The cocylinder topology on w® gives rise to the cylinder cototal degrees.
@ The Telophase space gives rise to the telograph co-total degrees.
@ The double origin space gives rise to the doubled co-d.c.e.a degrees.

@ The product quasi-Polish Arens space gives rise to the Arens co-d.c.e.a
degrees

@ The product of the quasi-Polish Roy space gives rise to the Roy
halfgraph-above degrees .

Yvette Ren gives alternative proofs characterizing the relative position of the
cylinder cototal degrees and telograph co-total degrees with respect to known
classes.

Goh and I are currently studying these two classes further within the local
structure of the enumeration degrees.

Jacobsen-Grocott is investigating properties of the last three classes.



Separation axioms
Recall that:

To o T o Ty DTy 5 D submetrizable > metrizable

Theorem (Kihara, Ng, Pauly)

Degrees of points in computable metrizable spaces are exactly the continuous
degrees. Every e-degree is the degree of a point in some computable
submetrizable space.

How can we distinguish the degree-theoretic properties of spaces satisfying
different separation axioms?

Definition

Let T be a class of represented spaces. A class of degrees C is not-T' if for
every Y € T there is a degree a € C such that a ¢ Dy.

We can separate two classes S and T' by producing an S-space X such that
Dx is not-T.
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Degree separations of separation axioms

Theorem (Kihara, Ng, Pauly)

@ There is a computable Ty-space X such that Dx is not Ti: Dx = D..

@ There is a computable Ti-space X such that Dx is not Th: Dx is the
cylinder cototal degrees.

@ There is a computable T5 space X such that Dx is not T3 5.

Theorem (Jacobsen-Grocott)

There is a computable T5 5 space X such that Dx is not submetrizable: Dy
an be either the Arens co-d-c.e.a. degrees or the Roy halfgraph above degreess.
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Thank you!



