The Strongest Non-splitting Theorem

S.B. Cooper and Mariya I. Soskova

University of Leeds
Department of Pure Mathematics

23.05.2007

Definitions

We will say that a pair of degrees a_1 and a_2 form a splitting of a if $a_1 < a$ and $a_2 < a$ but $a_1 \cup a_2 = a$.

Lachlan's non-splitting theorem

There exist c.e. degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} can not be split in the c.e. degrees above \mathbf{a} .

Harrington's non-splitting theorem

There exists a c.e. degree $\mathbf{a} < \mathbf{0}'$ such that $\mathbf{0}'$ can not be split in the c.e. degrees above \mathbf{a} .

Arslanov's splitting theorem

There is a d.c.e. splitting of $\mathbf{0}'$ above each c.e. degree $\mathbf{a} < \mathbf{0}'$.

The strongest non-splitting theorem

Theorem

There exists a c.e. degree $\mathbf{a} < \mathbf{0}'$ such that there exists no nontrivial cuppings of c.e. degrees in the Δ_2 degrees above \mathbf{a} .

The semi-lattice of the enumeration degrees

Definition

1. A set A is enumeration reducible to a set B $(A \leq_e B)$, if there is a c.e. set Φ such that

$$n \in A \Leftrightarrow \exists D(\langle n, [D] \rangle \in \Phi \land D \subseteq B).$$

- 2. A is enumeration equivalent to B $(A \equiv_e B)$ if $A \leq_e B$ and $B \leq_e A$.
- 3. Let $d_e(A) = \{B | A \equiv_e B\}$.
- 4. $(D_e, <, \cup,', 0_e)$ is the semi-lattice of the enumeration degrees.

Embedding the Turing degrees into the enumeration degrees

There exists an order theoretic embedding $\iota: D_T \to D_e$.

Main result

There exists a Π_1 e-degree $\mathbf{a} < \mathbf{0}_e'$ such that there exist no nontrivial cuppings of Π_1 e-degrees in the Δ_2 e-degrees above \mathbf{a} .

The requirements

We will construct Π_1 sets A and E such that:

For all enumeration operators Ψ:

$$\mathcal{N}_{\Psi}: E \neq \Psi^{A}$$

► For each pair of a Δ_2 set U and a Π_1 set W and each enumeration operator Θ :

$$\mathcal{P}_{\Theta,U,W}: E = \Theta^{U,\overline{W}} \Rightarrow (\exists \Gamma, \Lambda)[\overline{K} = \Gamma^{U,A} \vee \overline{K} = \Lambda^{\overline{W},A}]$$

The \mathcal{P} -strategy

$$\mathcal{P}_{\Theta,U,W}: E = \Theta^{U,\overline{W}} \Rightarrow (\exists \Gamma, \Lambda)[\overline{K} = \Gamma^{U,A} \vee \overline{K} = \Lambda^{\overline{W},A}]$$

- ▶ We monitor the length of agreement $I(E, \Theta^{U,W})$ and act only on expansionary stages.
- ▶ Construct an e-operator Γ so that $n \in \overline{K} \leftrightarrow \langle n, (U \oplus A) \upharpoonright \gamma_n \rangle \in \Gamma$.
- ▶ We define a good approximations to the sets U, \overline{W} and $U \oplus \overline{W}$ with following properties:
 - ▶ For sufficiently large stages $U \upharpoonright n = U_s \upharpoonright n$.
 - ► Stability: Changes in *W* are permanent.
 - If $\Theta^{U,\overline{W}} = E$, then there are infinitely many expansionary stages.

$$\mathcal{N}_{\Psi}: E \neq \Psi^{A}$$

Below the *I*-outcome \mathcal{N}' can follow a simple Friedberg-Muchnik strategy:

$$\mathcal{N}_{\Psi}: E \neq \Psi^{A}$$

There is a conflict between \mathcal{P} and \mathcal{N} below outcome e.

$$\mathcal{N}_{\Psi}: E \neq \Psi^{A}$$

We have $x < I(\Theta^{U,\overline{W}}, E)$ so $x \in \Theta^{U,\overline{W}}$ before the attack with axiom $\langle x, U \oplus \overline{W} \upharpoonright \theta(x) \rangle$:

The backup strategies

A backup strategy \mathcal{P}' constructs Λ so that $n \in \overline{K} \leftrightarrow \langle n, (\overline{W} \oplus A) \upharpoonright \lambda_n \rangle \in \Lambda$:

 $\mathcal N$ and $\mathcal N''$ attack simultaneously. No change in \overline{W} :

A change in \overline{W} , \mathcal{N}'' is satisfied, \mathcal{N} starts from the beginning.

Bibliography

- S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.
- R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Heidelberg, 1987.
- M. M. Arslanov, *Structural properties of the degrees below* **0**′, Dokl. Akad. Nauk. SSSR **283** (1985), 270–273.
- L. Harrington, *Understanding Lachlan's Monster Paper*, Notes
- A.H. Lachlan, R.A. Shore, *The n-rea Enumeration Degrees are Dense*, Arch. Math. Logic (1992)31: 277-285.
- S.D. Leonhardi, Generalized Nonsplitting in the Recursively Enumerable Degrees
- R. Soare, Notes on Lachlan's Monster Theorem