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Background from enumeration reducibility

Definition (Friedberg and Rogers, 1959)
We say that Ψ : 2ω → 2ω is an enumeration operator (or e-operator) iff
for some c.e. set W

Ψ(B) = {x |(∃u)[〈x ,u〉 ∈W &Du ⊆ B]}

for each B ⊆ ω.

A is enumeration reducible to B, written A ≤e B, by A = Ψ(B) for some
e-operator Ψ.
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Enumeration reducibility and the relation ”c.e. in”

Theorem (Selman, 1971)
Let A and B be sets of natural numbers.

A ≤e B ⇐⇒ (∀X )[B is c.e. in X ⇒ A is c.e. in X ].

Theorem (Case, 1974)
For any sets A and B,

A ≤e ∅n ⊕ B ⇐⇒ (∀X )[B is ΣX
n+1 ⇒ A is ΣX

n+1].
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Ash’s generalizations

In 1992 C. Ash defines a positive reducibility between sequences of
sets:
Let A = {An}n<ω and B = {Bn}n<ω be two sequences of sets.

Definition
A ≤ω B (A is uniformly reducible to B) iff

(∀X ⊆ 2ω)[(∀n)(Bn ∈ ΣX
n+1 uniformly in n)⇒

(∀n)(An ∈ ΣX
n+1 uniformly in n)].

Theorem (Case, 1974)
For any sets A and B,

A ≤e ∅n ⊕ B ⇐⇒ (∀X )[B is ΣX
n+1 ⇒ A is ΣX

n+1].
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Uniform enumeration reducibility

Let S be the set of all sequences of sets of natural numbers.

Definition
Let A = {An}n<ω ∈ S and Ψ be an e-operator. Ψ(A), is the sequence:

{Ψ[n](An)}n<ω.

We say that Ψ(A) is enumeration reducible (≤e) to the sequence A.

So A ≤e B is a combination of two notions:

Enumeration reducibility: for every n we have that An ≤e Bn via,
say, Ψn.
Uniformity: the sequence {Ψn}n<ω is uniform.
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The jump sequence

With every member A ∈ S we connect a jump sequence P(A).

Definition
The jump sequence of the sequence A, denoted by P(A) is the
sequence {Pn(A)}n<ω defined inductively as follows:

P0(A) = A0.
Pn+1(A) = An+1 ⊕ P ′n(A), where P ′n(A) denotes the enumeration
jump of the set Pn(A).

Example
Let A ⊆ N. Consider the sequence A ↑ ω = (A, ∅, . . . , ∅, . . . ). Then

(P0(A),P1(A), . . . ,Pn(A), . . . ) ≡e (A,A′, . . . ,An, . . . )
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Ash’s generalizations in terms of e-reducibility

Let A,B ∈ S.

Theorem (Soskov, Kovachev)
Let A and B be sequences of sets.

A ≤ω B ⇐⇒ (∀n)[An ≤e Pn(B) uniformly in n],

⇐⇒ A ≤e P(B).

Remark: Uses a technique called Uniform Regular Enumerations.
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Easy observations

P(A) is the sequence {Pn(A)}n<ω, where:
P0(A) = A0.
Pn+1(A) = An+1 ⊕ P ′n(A).

1 A ≤e P(A).
2 If B ≤e P(C) then P(B) ≤e P(C).
3 If A ≤e P(B) and B ≤e P(C) then A ≤e P(C).

Conclusion: “≤ω” is a pre-order on the sequences of sets of natural
numbers.
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The ω-enumeration degrees

Definition
Let A and B be sequences of sets of natural numbers.

ω-enumeration reducibility: A ≤ω B, if A ≤e P(B).
ω-enumeration equivalence: A ≡ω B if A ≤ω B and B ≤ω A.
ω-enumeration degrees: dω(A) = {B | A ≡ω B}.
The structure of the ω-enumeration degrees:
Dω = 〈{dω(A) | A ∈ S} ,≤ω〉, where dω(A) ≤ω dω(B) if A ≤ω B.
The least ω-enumeration degree: 0ω = dω((∅, ∅, ∅, . . . )) or
equivalently dω((∅, ∅′, ∅′′, . . . )).
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Jump classes and least upper bounds

Let A = {An}n<ω be given. We define the jump class JA of A by

JA = {dT (X )|(∀n)(An is c.e. in X n uniformly in n)}
= {dT (X )|(∀n)(An ∈ ΣX

n+1 uniformly in n)}.

An alternative way to phrase the definition of ≤ω is:

A ≤ω B ⇐⇒ JB ⊆ JA.

Definition
Let A⊕ B = {An ⊕ Bn}k<ω.

JA⊕B = JA ∩ JB
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Jump classes and least upper bounds

If A = {An}n<ω is a sequence of sets then:

JA = {dT (X )|(∀n)(An is c.e. in X n uniformly in n)}.

We would like to define a jump operation ′ so that:

JA′ = {dT (X )′ | dT (X ) ∈ JA}.

Definition
Let A′ = {Pn+1(A)}n<ω.

Dω is an upper semi-lattice with least element and jump operation.
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Where does Dω stand?

〈De,≤e,∨,′ 〉 can be embedded in 〈Dω,≤ω,∨,′ 〉 via the embedding κ
defined as follows:

κ(de(A)) = dω((A ↑ ω) = dω((A, ∅, ∅, . . . )) = dω((A,A′,A′′, . . . )).

〈Dω,≤ω〉 can be embedded in the Medvedev degrees 〈Ds,≤s〉, via the
mapping:

µ(dω(A)) = ds(JA).
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0′ω

De

Dω

DT

0ω
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The structure D1.
Let D1 be the structure κ(De), where;

κ(de(A)) = dω(A ↑ ω) = dω((A,A′,A′′, . . . )).

D1 is the analog of T OT = ι(DT ), where:

ι(dT (A)) = de(A⊕ A).

JA = {dT (X ) | (∀n)(An is c.e. in X n uniformly in n)}

J e
A = {ι(dT (X )) | (∀n)(An ≤e (X ⊕ X )n uniformly in n)}

J ω
A = {κ(ι(dT (X ))) | A ≤ω (X ⊕ X ) ↑ ω.}

Conclusion: D1 is an automorphism base for Dω.
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First steps: Good approximations for sequences of
sets

In 1992 Lachlan and Shore introduce the notion “good approximation”
and use it to prove the density of the n-c.e.a enumeration degrees.

A good approximation to a sequence of sets is a sequence of good
approximations with synchronized good stages.

Theorem (Soskov)
Every degree below 0′ω has a member with a good approximation.
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First steps: Good approximations for sequences of
sets

Theorem (Soskov, S)
If a <ω b and b has a member with a good approximation, then every
countable partial ordering can be embedded in the interval (a,b).

Theorem (Soskov)
There is no minimal ω-enumeration degree.

Suppose (P0(A),P1(A) . . . ) <ω (P0(B),P1(B), . . . ).
Case 1. For some n, Pn(A) <e Pn(B): then the theorem follows from
the corresponding one for De.
Case 2. For all n, Pn(A) ≡e Pn(B), but not uniformly: then we need a
new construction.
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Case 2. For all n, Pn(A) ≡e Pn(B), but not uniformly: then we need a
new construction.

Mariya I. Soskova (FMI) ω-Enumeration Degrees August 3, 2011 16 / 36



The relation “Almost”

Definition
Let a,b ∈ Dω. Then a is almost b if there are members A ∈ a and
B ∈ b, such that

(∀n)(Pn(A) ≡n Pn(B)).

If a is almost- then for every A ∈ a and B ∈ b,

(∀n)(Pn(A) ≡n Pn(B)).

The class of almost-b degrees is closed under least upper bound.
If b ∈ D1 then b is the least almost-b ω-enumeration degree.
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Are there almost degrees?

Theorem (Soskov,S)
Let b <ω a be two ω-enumeration degrees, such that a contains a
member with a good approximation. There exists an almost-b degree z
such that b <ω z ≤ω a if and only if:

(∃)(∀m ≥ n)[bm <ω am].

In particular when b = 0ω and a = 0′ω: there exists a nontrivial
almost-zero degree below 0′ω.

Let L = {a | ∃n(0n = an)} = Low1 ∪ Low2 · · · ∪ Lown ∪ . . . .
Then a is in L if and only if it bounds no nonzero almost-zero degree.
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Inverting the jump operation

(P0(A),P1(A), . . . ,Pn(A) . . . )′ = (P1(A), . . . ,Pn(A) . . . ).
(P0(A),P1(A), . . . ,Pn(A) . . . )′ = (∅,P1(A), . . . ,Pn(A) . . . )′.
The degree of (∅,P1(A), ,̇Pn(A) . . . ) is the least degree, whose
jump is equal to dω(A′).

Definition
Let n ∈ N and A ∈ S.

In(A) = (∅, . . . , ∅︸ ︷︷ ︸
n

,P0(A),P1(A), . . . )

If A ∈ a, then In(a) = dω(In(A)).
If 0n

ω ≤ω a then In(a) is the least degree x, such that x(n) = a.
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Relativized jump inversion

Definition
Let n ∈ N and A,B ∈ S.

IBn (A) = (B0,B1, . . . ,Bn−1,P0(A),P1(A), . . . )

If A ∈ a and b ∈ B, then Ib
n (a) = dω(IBn (A)).

If bn ≤ω a then Ib
n (a) is the least degree x, such that b ≤ω x and

x(n) = a.
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First order definability of D1 in D′ω
Main idea: Consider a sequence A of the form

(A, ∅, ∅, . . . ).

Out of all sequences X with X0 ≡e A, the sequence A is the least one.

Let Ia = {I1
a(x) | a′ ≤ω x}.

Theorem (Ganchev, Soskov)
Let a,b ∈ Dω. Then:
Ib ⊆ Ia ⇐⇒ a ≤ω b & A0 ≡e B0.

So a ∈ D1 if and only if for every b:

Ia ⊆ Ib ⇒ Ia = Ib.
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Some consequences

Corollary
The structure D1 is first order definable in D′ω, the structure of the
ω-enumeration degrees, augmented by the jump operation.

Corollary
The theory of D′ω is computably isomorphic to second order arithmetic.

Corollary
Every nontrivial automorphism of Dω induces a nontrivial
automorphism of De.
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The reverse direction

Every automorphism of De is the identity on the cone above 0(4)
e .

Consider an automorphism ϕ of De and define Φ working as follows:
Φ(dω(A)) = dω(B), where B is defined as

B0 ∈ ϕ(de(A0)), . . . ,B3 ∈ ϕ(de(A3)) and for n ≥ 4, Bn = Pn(A).

Theorem (Soskov, Ganchev)

Aut(D′ω) ∼= Aut(De).

Question
Is the ω-enumeration jump first order definable in Dω?
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The Local structure Gω

Consider the structure Gω consisting of all degrees reducible to
0′ω = dω((∅′, ∅′′, ∅′′′, . . . )) also called the Σ0

2 ω-enumeration degrees.

Definition
Let a ∈ Gω.

1 a is lown if an = 0n
ω. The class of all lown degrees is denoted by

Ln.
⋃

n Ln = L
2 a is highn if an = 0n+1

ω . The class of all highn degrees is denoted
by Hn.

⋃
n Hn = H

There is a copy of the Σ0
2 enumeration degrees G1 = D1 ∩ Gω.
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0′ω

0ω

G1 G1

L1 L1

L2 L2

Ln Ln

Hn

H2

H1
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The on degrees

Definition
For every n let on = In(0n+1

ω ) = dω((∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . )).

Proposition
Let a ∈ Gω.

1 a ∈ Hn if and only if a ≥ on

2 a ∈ Ln if and only if a ∧ on = 0ω

Proof: 1. on is the least n-th jump invert of ∅n+1, hence an ≥ on
n = ∅n+1

if and only if a ∈ Hn.
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The on degrees
Definition
For every n let on = In(0n+1

ω ) = dω((∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . )).

Theorem
Let a ∈ Gω.

1 a ∈ Hn if and only if a ≥ Hn

2 a ∈ Ln if and only if a ∧ on = 0ω

Proof: 2. For every A ≡e P(A) ∈ a:

(A0,A1 . . . ,An,An+1, . . . ) ∧ (∅, . . . , ∅︸ ︷︷ ︸
n

, ∅n+1, ∅n+2, . . . )

= (∅, . . . , ∅︸ ︷︷ ︸
n

,An,An+1, . . . ) = In(An)

Hence a ∧ on = 0ω if and only if In(an) = 0ω, if and only if an = 0n
ω.
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The almost zero degrees

Definition
An ω-enumeration degree a called almost zero (a.z.) if for A ∈ a and
every n, Pn(A) ≡e ∅n.

The a.z. degrees form an ideal.
If a ∈ Gω then a is a.z. if and only if a < on for all n.
Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)
1 a ∈ L =

⋃
n Ln if and only if a does not bound any nonzero a.z

degree.
2 a ∈ H =

⋃
n Hn if and only if a bound every a. z. degree.
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K-pairs in Gω

Definition
A pair of degrees a,b ∈ Dω is called a K-pair if

K(a,b) � (∀x ∈ Dω)[(a ∨ x) ∧ (b ∨ x) = x]

Theorem (Ganchev)
If dω(A) and dω(B) form a nontrivial K-pair in Gω then both A and B are
a.z. or for some n there exists a K-pair over ∅n in De {A,B}, such that
∅n < A,B, A′ = B′ = ∅n+1 and:

A ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

,A, ∅, . . . , ∅, . . . } and

B ≡ω {∅, . . . , ∅︸ ︷︷ ︸
n

,B, ∅, . . . , ∅, . . . }.
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Distinguishing K-pairs at different levels

Theorem (Ganchev, S)
Let a,b ∈ Gω form a nontrivial K-pair. Then for every natural number n

∀x �ω on[a ∨ x �ω on] ⇐⇒ a,b ≤ω on+1.

Proof Sketch:
Suppose that a,b ≤ω on and a,b �ω on+1. Then

a = dω({∅, . . . , ∅︸ ︷︷ ︸
n

,A, ∅, . . . , ∅, . . . })

and ∅n < A < ∅n+1 and A′ = ∅n+1.

Theorem (S, Wu)

For every non-c.e. ∆0
2 set A there is a low1 X, such that A⊕ X ≡e ∅′.
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Theorem (Ganchev, S)
Let a,b ∈ Gω form a nontrivial K-pair. Then for every natural number n:

∀x �ω on[a ∨ x �ω on] ⇐⇒ a,b ≤ω on+1.

Proof Sketch:
Relativizing it follows that there is an X , ∅n <e X <e ∅n+1, such that
X ′ = ∅n+1 and X ∨ A ≡e ∅n+1, hence

dω({∅, . . . , ∅︸ ︷︷ ︸
n

,A, . . . }) ∨ dω({∅, . . . , ∅︸ ︷︷ ︸
n

,X , ∅, . . . }) = on.
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Definability of on

Theorem (Ganchev, S)
For every n {on} is first order definable in Gω.

Proof Sketch: Fix n ≥ 0. Then on+1 is the greatest degree which is the
least upper bound of a nontrivial K-pair {a,b} in Gω, such that

∀x � on[a ∨ x �ω on].

Corollary
For all n the classes Hn and Ln are first order definable in Gω.

Corollary
Every automorphism of D′ω is the identity on the ideal below o4.
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Definability of G1
For every sequence A = {A0,A1,A2, . . . } we have that:

dω(A) ∨ o1 = dω({A0, ∅′′, ∅′′′, . . . }).
If Ae ∈ G1 and Ae = {A0, ∅, ∅, . . . } then dω(Ae) ∨ o1 = dω(A) ∨ o1 and
dω(Ae) ≤ω dω(A).

Theorem (Ganchev, S)
G1 is first order definable in Gω by:

a ∈ G1 ↔ ∀y(a ∨ o1 = y ∨ o1 ⇒ a ≤ y).

Corollary
The theory of first order arithmetic can be interpreted in Gω.

Question
What is the strength of the theory of Gω?
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The end

Thank you!
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