The Structure of the ω -enumeration degrees

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

August 3, 2011

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme.

Mariya I. Soskova (FMI)

 ω -Enumeration Degrees

Background from enumeration reducibility

Definition (Friedberg and Rogers, 1959)

We say that $\Psi: 2^{\omega} \to 2^{\omega}$ is an *enumeration operator* (or e-operator) iff for some c.e. set *W*

$$\Psi(B) = \{x | (\exists u) [\langle x, u \rangle \in W \& D_u \subseteq B] \}$$

for each $B \subseteq \omega$.

A is *enumeration reducible to B*, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Enumeration reducibility and the relation "c.e. in"

Theorem (Selman, 1971)

Let A and B be sets of natural numbers.

 $A \leq_e B \iff (\forall X)[B \text{ is c.e. in } X \Rightarrow A \text{ is c.e. in } X].$

Theorem (Case, 1974)

For any sets A and B,

 $A \leq_{e} \emptyset^{n} \oplus B \iff (\forall X)[B \text{ is } \Sigma_{n+1}^{X} \Rightarrow A \text{ is } \Sigma_{n+1}^{X}].$

Mariya I. Soskova (FMI)

Enumeration reducibility and the relation "c.e. in"

Theorem (Selman, 1971)

Let A and B be sets of natural numbers.

 $A \leq_e B \iff (\forall X)[B \text{ is c.e. in } X \Rightarrow A \text{ is c.e. in } X].$

Theorem (Case, 1974)

For any sets A and B,

$$A \leq_{e} \emptyset^{n} \oplus B \iff (\forall X) [B \text{ is } \Sigma_{n+1}^{X} \Rightarrow A \text{ is } \Sigma_{n+1}^{X}].$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Ash's generalizations

In 1992 C. Ash defines a positive reducibility between sequences of sets:

Let $\mathcal{A} = \{A_n\}_{n < \omega}$ and $\mathcal{B} = \{B_n\}_{n < \omega}$ be two sequences of sets.

Definition

 $\mathcal{A} \leq_{\omega} \mathcal{B}$ (\mathcal{A} is *uniformly* reducible to \mathcal{B}) iff

$$(\forall X \subseteq 2^{\omega})[(\forall n)(B_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \Rightarrow (\forall n)(A_n \in \Sigma_{n+1}^X \text{ uniformly in } n)].$$

Theorem (Case, 1974)

For any sets A and B,

 $A \leq_{e} \emptyset^{n} \oplus B \iff (\forall X)[B \text{ is } \Sigma_{n+1}^{X} \Rightarrow A \text{ is } \Sigma_{n+1}^{X}].$

< ロ > < 同 > < 回 > < 回 > < 回 >

Ash's generalizations

In 1992 C. Ash defines a positive reducibility between sequences of sets:

Let $\mathcal{A} = \{A_n\}_{n < \omega}$ and $\mathcal{B} = \{B_n\}_{n < \omega}$ be two sequences of sets.

Definition

 $\mathcal{A} \leq_{\omega} \mathcal{B}$ (\mathcal{A} is *uniformly* reducible to \mathcal{B}) iff

$$(\forall X \subseteq 2^{\omega})[(\forall n)(B_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \Rightarrow (\forall n)(A_n \in \Sigma_{n+1}^X \text{ uniformly in } n)].$$

Theorem (Case, 1974)

For any sets A and B,

$$A \leq_{e} \emptyset^{n} \oplus B \iff (\forall X)[B \text{ is } \Sigma_{n+1}^{X} \Rightarrow A \text{ is } \Sigma_{n+1}^{X}].$$

Uniform enumeration reducibility

Let $\ensuremath{\mathcal{S}}$ be the set of all sequences of sets of natural numbers.

Definition

Let $\mathcal{A} = {\{A_n\}}_{n < \omega} \in S$ and Ψ be an e-operator. $\Psi(\mathcal{A})$, is the sequence:

 $\{\Psi[n](A_n)\}_{n<\omega}.$

We say that $\Psi(\mathcal{A})$ is enumeration reducible (\leq_e) to the sequence \mathcal{A} .

So $\mathcal{A} \leq_{e} \mathcal{B}$ is a combination of two notions:

- Enumeration reducibility: for every *n* we have that A_n ≤_e B_n via, say, Ψ_n.
- Uniformity: the sequence $\{\Psi_n\}_{n < \omega}$ is uniform.

• • • • • • • • • • • •

Uniform enumeration reducibility

Let $\ensuremath{\mathcal{S}}$ be the set of all sequences of sets of natural numbers.

Definition

Let $\mathcal{A} = {\{A_n\}}_{n < \omega} \in S$ and Ψ be an e-operator. $\Psi(\mathcal{A})$, is the sequence:

 $\{\Psi[n](A_n)\}_{n<\omega}.$

We say that $\Psi(\mathcal{A})$ is enumeration reducible (\leq_e) to the sequence \mathcal{A} .

So $\mathcal{A} \leq_{e} \mathcal{B}$ is a combination of two notions:

- Enumeration reducibility: for every *n* we have that A_n ≤_e B_n via, say, Ψ_n.
- Uniformity: the sequence $\{\Psi_n\}_{n < \omega}$ is uniform.

The jump sequence

With every member $A \in S$ we connect a *jump sequence* P(A).

Definition

The *jump sequence* of the sequence A, denoted by P(A) is the sequence $\{P_n(A)\}_{n < \omega}$ defined inductively as follows:

- $P_0(\mathcal{A}) = A_0$.
- *P*_{n+1}(*A*) = *A*_{n+1} ⊕ *P*'_n(*A*), where *P*'_n(*A*) denotes the enumeration jump of the set *P*_n(*A*).

Example

Let $A \subseteq \mathbb{N}$. Consider the sequence $A \uparrow \omega = (A, \emptyset, \dots, \emptyset, \dots)$. Then

$$(P_0(\mathcal{A}), P_1(\mathcal{A}), \dots, P_n(\mathcal{A}), \dots) \equiv_e (\mathcal{A}, \mathcal{A}', \dots, \mathcal{A}^n, \dots)$$

The jump sequence

With every member $A \in S$ we connect a *jump sequence* P(A).

Definition

The *jump sequence* of the sequence A, denoted by P(A) is the sequence $\{P_n(A)\}_{n < \omega}$ defined inductively as follows:

- $P_0(\mathcal{A}) = A_0$.
- *P*_{n+1}(*A*) = *A*_{n+1} ⊕ *P*'_n(*A*), where *P*'_n(*A*) denotes the enumeration jump of the set *P*_n(*A*).

Example

Let $A \subseteq \mathbb{N}$. Consider the sequence $A \uparrow \omega = (A, \emptyset, \dots, \emptyset, \dots)$. Then

$$(P_0(\mathcal{A}), P_1(\mathcal{A}), \dots, P_n(\mathcal{A}), \dots) \equiv_e (\mathcal{A}, \mathcal{A}', \dots, \mathcal{A}^n, \dots)$$

Ash's generalizations in terms of e-reducibility

Let $\mathcal{A}, \mathcal{B} \in \mathcal{S}$.

Theorem (Soskov, Kovachev)

Let \mathcal{A} and \mathcal{B} be sequences of sets.

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff (\forall n) [\mathcal{A}_n \leq_e \mathcal{P}_n(\mathcal{B}) \text{ uniformly in } n],$$

$$\iff \mathcal{A} \leq_{\boldsymbol{e}} \boldsymbol{P}(\mathcal{B}).$$

Remark: Uses a technique called Uniform Regular Enumerations.

∃ ► < ∃</p>

4 6 1 1 4

 $P(\mathcal{A})$ is the sequence $\{P_n(\mathcal{A})\}_{n<\omega}$, where:

- $P_0(\mathcal{A}) = A_0$.
- $P_{n+1}(\mathcal{A}) = A_{n+1} \oplus P'_n(\mathcal{A}).$
- $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{A}).$
- ② If \mathcal{B} ≤_{*e*} $P(\mathcal{C})$ then $P(\mathcal{B})$ ≤_{*e*} $P(\mathcal{C})$.
- ③ If $A \leq_{e} P(B)$ and $B \leq_{e} P(C)$ then $A \leq_{e} P(C)$.

Conclusion: " \leq_{ω} " is a pre-order on the sequences of sets of natural numbers.

< ロ > < 同 > < 回 > < 回 >

 $P(\mathcal{A})$ is the sequence $\{P_n(\mathcal{A})\}_{n<\omega}$, where:

- $P_0(\mathcal{A}) = A_0$.
- $P_{n+1}(\mathcal{A}) = A_{n+1} \oplus P'_n(\mathcal{A}).$
- $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{A}).$
- **2** If $\mathcal{B} \leq_{e} P(\mathcal{C})$ then $P(\mathcal{B}) \leq_{e} P(\mathcal{C})$.
- ③ If $A \leq_{e} P(B)$ and $B \leq_{e} P(C)$ then $A \leq_{e} P(C)$.

Conclusion: " \leq_{ω} " is a pre-order on the sequences of sets of natural numbers.

3

 $P(\mathcal{A})$ is the sequence $\{P_n(\mathcal{A})\}_{n<\omega}$, where:

- $P_0(\mathcal{A}) = A_0$.
- $P_{n+1}(\mathcal{A}) = A_{n+1} \oplus P'_n(\mathcal{A}).$
- $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{A}).$
- **2** If $\mathcal{B} \leq_{e} P(\mathcal{C})$ then $P(\mathcal{B}) \leq_{e} P(\mathcal{C})$.
- If $A \leq_e P(B)$ and $B \leq_e P(C)$ then $A \leq_e P(C)$.

Conclusion: " \leq_{ω} " is a pre-order on the sequences of sets of natural numbers.

 $P(\mathcal{A})$ is the sequence $\{P_n(\mathcal{A})\}_{n<\omega}$, where:

- $P_0(\mathcal{A}) = A_0$.
- $P_{n+1}(\mathcal{A}) = A_{n+1} \oplus P'_n(\mathcal{A}).$
- $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{A}).$
- 2 If $\mathcal{B} \leq_e P(\mathcal{C})$ then $P(\mathcal{B}) \leq_e P(\mathcal{C})$.
- If $A \leq_e P(B)$ and $B \leq_e P(C)$ then $A \leq_e P(C)$.

Conclusion: " \leq_{ω} " is a pre-order on the sequences of sets of natural numbers.

Definition

Let ${\mathcal A}$ and ${\mathcal B}$ be sequences of sets of natural numbers.

- ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B})$.
- ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- ω -enumeration degrees: $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$
- The structure of the ω-enumeration degrees:
 D_ω = ⟨{d_ω(A) | A ∈ S}, ≤_ω⟩, where d_ω(A) ≤_ω d_ω(B) if A ≤_ω B.
- The least ω-enumeration degree: **0**_ω = d_ω((Ø, Ø, Ø, ...)) or equivalently d_ω((Ø, Ø', Ø'', ...)).

A (10) A (10) A (10)

Definition

Let ${\mathcal A}$ and ${\mathcal B}$ be sequences of sets of natural numbers.

- ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B})$.
- ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- ω -enumeration degrees: $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$
- The structure of the ω-enumeration degrees:
 D_ω = ⟨{d_ω(A) | A ∈ S}, ≤_ω⟩, where d_ω(A) ≤_ω d_ω(B) if A ≤_ω B.
- The least ω-enumeration degree: **0**_ω = d_ω((Ø, Ø, Ø, ...)) or equivalently d_ω((Ø, Ø', Ø'', ...)).

< 回 > < 三 > < 三 >

Definition

Let \mathcal{A} and \mathcal{B} be sequences of sets of natural numbers.

- ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B})$.
- ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- ω -enumeration degrees: $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$
- The structure of the ω-enumeration degrees:
 D_ω = ⟨{d_ω(A) | A ∈ S}, ≤_ω⟩, where d_ω(A) ≤_ω d_ω(B) if A ≤_ω B.
- The least ω-enumeration degree: **0**_ω = d_ω((Ø, Ø, Ø, ...)) or equivalently d_ω((Ø, Ø', Ø'', ...)).

< ロ > < 同 > < 回 > < 回 >

Definition

Let ${\mathcal A}$ and ${\mathcal B}$ be sequences of sets of natural numbers.

- ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B})$.
- ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- ω -enumeration degrees: $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$
- The structure of the ω-enumeration degrees:
 D_ω = ⟨{d_ω(A) | A ∈ S}, ≤_ω⟩, where d_ω(A) ≤_ω d_ω(B) if A ≤_ω B.
- The least ω-enumeration degree: **0**_ω = d_ω((Ø, Ø, Ø, ...)) or equivalently d_ω((Ø, Ø', Ø'', ...)).

Definition

Let $\mathcal A$ and $\mathcal B$ be sequences of sets of natural numbers.

- ω -enumeration reducibility: $\mathcal{A} \leq_{\omega} \mathcal{B}$, if $\mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B})$.
- ω -enumeration equivalence: $\mathcal{A} \equiv_{\omega} \mathcal{B}$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$.
- ω -enumeration degrees: $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \mid \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$
- The structure of the ω -enumeration degrees: $\mathcal{D}_{\omega} = \langle \{ d_{\omega}(\mathcal{A}) \mid \mathcal{A} \in \mathcal{S} \}, \leq_{\omega} \rangle$, where $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{B})$ if $\mathcal{A} \leq_{\omega} \mathcal{B}$.
- The least ω-enumeration degree: **0**_ω = d_ω((Ø, Ø, Ø, ...)) or equivalently d_ω((Ø, Ø', Ø'', ...)).

Let $\mathcal{A} = {\{A_n\}_{n < \omega}}$ be given. We define the *jump class* $\mathcal{J}_{\mathcal{A}}$ of \mathcal{A} by

$$\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \} \\ = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \}.$$

An alternative way to phrase the definition of \leq_{ω} is:

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{B}} \subseteq \mathcal{J}_{\mathcal{A}}.$$

Definition

Let $\mathcal{A} \oplus \mathcal{B} = \{A_n \oplus B_n\}_{k < \omega}$.

 $\mathcal{J}_{\mathcal{A}\oplus\mathcal{B}}=\mathcal{J}_{\mathcal{A}}\cap\mathcal{J}_{\mathcal{B}}$

< ロ > < 同 > < 回 > < 回 >

Let $\mathcal{A} = {\{A_n\}_{n < \omega}}$ be given. We define the *jump class* $\mathcal{J}_{\mathcal{A}}$ of \mathcal{A} by

$$\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \} \\ = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \}.$$

An alternative way to phrase the definition of \leq_{ω} is:

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{B}} \subseteq \mathcal{J}_{\mathcal{A}}.$$

Definition

Let $\mathcal{A} \oplus \mathcal{B} = \{A_n \oplus B_n\}_{k < \omega}$.

 $\mathcal{J}_{\mathcal{A}\oplus\mathcal{B}}=\mathcal{J}_{\mathcal{A}}\cap\mathcal{J}_{\mathcal{B}}$

3

Let $\mathcal{A} = {\{A_n\}_{n < \omega}}$ be given. We define the *jump class* $\mathcal{J}_{\mathcal{A}}$ of \mathcal{A} by

$$\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \} \\ = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \}.$$

An alternative way to phrase the definition of \leq_{ω} is:

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{B}} \subseteq \mathcal{J}_{\mathcal{A}}.$$

Definition

Let $\mathcal{A} \oplus \mathcal{B} = {\{A_n \oplus B_n\}_{k < \omega}}$.

 $\mathcal{J}_{\mathcal{A}\oplus\mathcal{B}}=\mathcal{J}_{\mathcal{A}}\cap\mathcal{J}_{\mathcal{B}}$

Mariya I. Soskova (FMI)

Let $\mathcal{A} = {\{A_n\}_{n < \omega}}$ be given. We define the *jump class* $\mathcal{J}_{\mathcal{A}}$ of \mathcal{A} by

$$\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \} \\ = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \in \Sigma_{n+1}^X \text{ uniformly in } n) \}.$$

An alternative way to phrase the definition of \leq_{ω} is:

$$\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{B}} \subseteq \mathcal{J}_{\mathcal{A}}.$$

Definition

Let $\mathcal{A} \oplus \mathcal{B} = {\{A_n \oplus B_n\}_{k < \omega}}$.

 $\mathcal{J}_{\mathcal{A}\oplus\mathcal{B}}=\mathcal{J}_{\mathcal{A}}\cap\mathcal{J}_{\mathcal{B}}$

Mariya I. Soskova (FMI)

If $\mathcal{A} = {\{A_n\}_{n < \omega}}$ is a sequence of sets then:

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}.$

We would like to define a jump operation ' so that:

$$\mathcal{J}_{\mathcal{A}'} = \{ d_T(X)' \mid d_T(X) \in \mathcal{J}_{\mathcal{A}} \}.$$

Definition

Let $\mathcal{A}' = \{ \mathcal{P}_{n+1}(\mathcal{A}) \}_{n < \omega}.$

 \mathcal{D}_{ω} is an upper semi-lattice with least element and jump operation.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If $\mathcal{A} = {\{A_n\}_{n < \omega}}$ is a sequence of sets then:

 $\mathcal{J}_{\mathcal{A}} = \{ d_{T}(X) | (\forall n) (A_{n} \text{ is c.e. in } X^{n} \text{ uniformly in } n) \}.$

We would like to define a jump operation ' so that:

$$\mathcal{J}_{\mathcal{A}'} = \{ d_T(X)' \mid d_T(X) \in \mathcal{J}_{\mathcal{A}} \}.$$

Definition

Let $\mathcal{A}' = \{ \mathcal{P}_{n+1}(\mathcal{A}) \}_{n < \omega}.$

 \mathcal{D}_{ω} is an upper semi-lattice with least element and jump operation.

If $\mathcal{A} = {\{A_n\}_{n < \omega}}$ is a sequence of sets then:

 $\mathcal{J}_{\mathcal{A}} = \{ d_T(X) | (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}.$

We would like to define a jump operation ' so that:

$$\mathcal{J}_{\mathcal{A}'} = \{ d_T(X)' \mid d_T(X) \in \mathcal{J}_{\mathcal{A}} \}.$$

Definition

Let $\mathcal{A}' = \{ \mathcal{P}_{n+1}(\mathcal{A}) \}_{n < \omega}$.

 \mathcal{D}_{ω} is an upper semi-lattice with least element and jump operation.

Where does \mathcal{D}_{ω} stand?

 $\langle \mathcal{D}_e, \leq_e, \lor, ' \rangle$ can be embedded in $\langle \mathcal{D}_\omega, \leq_\omega, \lor, ' \rangle$ via the embedding κ defined as follows:

$$\kappa(d_{\boldsymbol{e}}(\boldsymbol{A})) = d_{\omega}((\boldsymbol{A} \uparrow \omega) = d_{\omega}((\boldsymbol{A}, \emptyset, \emptyset, \dots)) = d_{\omega}((\boldsymbol{A}, \boldsymbol{A}', \boldsymbol{A}'', \dots)).$$

 $\langle D_{\omega}, \leq_{\omega} \rangle$ can be embedded in the Medvedev degrees $\langle D_s, \leq_s \rangle$, via the mapping:

$$\mu(d_{\omega}(A))=d_{s}(J_{A}).$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Where does \mathcal{D}_{ω} stand?

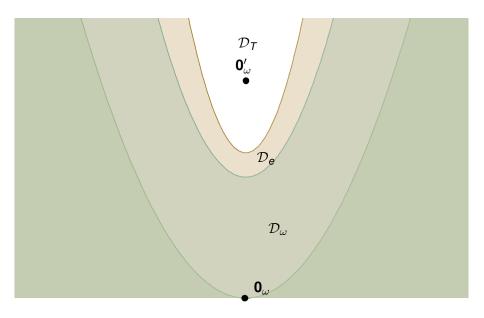
 $\langle \mathcal{D}_e, \leq_e, \lor, ' \rangle$ can be embedded in $\langle \mathcal{D}_\omega, \leq_\omega, \lor, ' \rangle$ via the embedding κ defined as follows:

$$\kappa(d_e(A)) = d_\omega((A \uparrow \omega) = d_\omega((A, \emptyset, \emptyset, \dots)) = d_\omega((A, A', A'', \dots)).$$

 $\langle \mathcal{D}_\omega,\leq_\omega\rangle$ can be embedded in the Medvedev degrees $\langle \mathcal{D}_s,\leq_s\rangle,$ via the mapping:

$$\mu(d_{\omega}(A)) = d_{\mathcal{S}}(J_{\mathcal{A}}).$$

-



Mariya I. Soskova (FMI)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

 $\iota(d_T(A)) = d_e(A \oplus \overline{A}).$

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) \mid (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{\mathcal{T}}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

 $\mathcal{J}_{\mathcal{A}}^{\omega} = \{ \kappa(\iota(d_{\mathcal{T}}(X))) \mid \mathcal{A} \leq_{\omega} (X \oplus \overline{X}) \uparrow \omega. \}$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω

< ロ > < 同 > < 回 > < 回 >

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

$$\iota(d_T(A)) = d_e(A \oplus \overline{A}).$$

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) \mid (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{\mathcal{T}}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

 $\mathcal{J}_{\mathcal{A}}^{\omega} = \{ \kappa(\iota(d_{\mathcal{T}}(X))) \mid \mathcal{A} \leq_{\omega} (X \oplus \overline{X}) \uparrow \omega. \}$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω

< ロ > < 同 > < 回 > < 回 >

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

$$\iota(d_T(A)) = d_e(A \oplus \overline{A}).$$

$\mathcal{J}_{\mathcal{A}} = \{ d_{T}(X) \mid (\forall n) (A_{n} \text{ is c.e. in } X^{n} \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{\mathcal{T}}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

$$\mathcal{J}_{\mathcal{A}}^{\omega} = \{ \kappa(\iota(d_{\mathcal{T}}(X))) \mid \mathcal{A} \leq_{\omega} (X \oplus \overline{X}) \uparrow \omega. \}$$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

$$\iota(d_T(A)) = d_e(A \oplus \overline{A}).$$

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) \mid (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{T}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

$$\mathcal{J}_{\mathcal{A}}^{\omega} = \{ \kappa(\iota(d_{T}(X))) \mid \mathcal{A} \leq_{\omega} (X \oplus \overline{X}) \uparrow \omega. \}$$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

$$\iota(d_T(A)) = d_e(A \oplus \overline{A}).$$

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) \mid (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{T}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

$$\mathcal{J}_{\mathcal{A}}^{\omega} = \{\kappa(\iota(\boldsymbol{d}_{T}(\boldsymbol{X}))) \mid \mathcal{A} \leq_{\omega} (\boldsymbol{X} \oplus \overline{\boldsymbol{X}}) \uparrow \omega.\}$$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_ω

Let \mathcal{D}_1 be the structure $\kappa(\mathcal{D}_e)$, where;

$$\kappa(d_e(A)) = d_\omega(A \uparrow \omega) = d_\omega((A, A', A'', \dots)).$$

 \mathcal{D}_1 is the analog of $\mathcal{T}OT = \iota(\mathcal{D}_T)$, where:

$$\iota(d_T(A)) = d_e(A \oplus \overline{A}).$$

 $\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) \mid (\forall n) (A_n \text{ is c.e. in } X^n \text{ uniformly in } n) \}$

 $\mathcal{J}_{\mathcal{A}}^{e} = \{\iota(d_{T}(X)) \mid (\forall n) (A_{n} \leq_{e} (X \oplus \overline{X})^{n} \text{ uniformly in } n)\}$

$$\mathcal{J}_{\mathcal{A}}^{\omega} = \{\kappa(\iota(\boldsymbol{d}_{T}(\boldsymbol{X}))) \mid \mathcal{A} \leq_{\omega} (\boldsymbol{X} \oplus \overline{\boldsymbol{X}}) \uparrow \omega.\}$$

Conclusion: \mathcal{D}_1 is an automorphism base for \mathcal{D}_{ω} .

Mariya I. Soskova (FMI)

In 1992 Lachlan and Shore introduce the notion "good approximation" and use it to prove the density of the *n*-c.e.a enumeration degrees.

A good approximation to a sequence of sets is a sequence of good approximations with synchronized good stages.

Theorem (Soskov)

Every degree below $\mathbf{0}'_{\omega}$ has a member with a good approximation.

< ロ > < 同 > < 回 > < 回 >

In 1992 Lachlan and Shore introduce the notion "good approximation" and use it to prove the density of the *n*-c.e.a enumeration degrees.

A good approximation to a sequence of sets is a sequence of good approximations with synchronized good stages.

Theorem (Soskov)

Every degree below $\mathbf{0}'_{\omega}$ has a member with a good approximation.

In 1992 Lachlan and Shore introduce the notion "good approximation" and use it to prove the density of the *n*-c.e.a enumeration degrees.

A good approximation to a sequence of sets is a sequence of good approximations with synchronized good stages.

Theorem (Soskov)

Every degree below $\mathbf{0}'_{\omega}$ has a member with a good approximation.

Theorem (Soskov, S)

If $\mathbf{a} <_{\omega} \mathbf{b}$ and \mathbf{b} has a member with a good approximation, then every countable partial ordering can be embedded in the interval (\mathbf{a}, \mathbf{b}) .

Theorem (Soskov)

There is no minimal ω -enumeration degree.

Suppose $(P_0(\mathcal{A}), P_1(\mathcal{A}) \dots) <_{\omega} (P_0(\mathcal{B}), P_1(\mathcal{B}), \dots)$. Case 1. For some $n, P_n(\mathcal{A}) <_e P_n(\mathcal{B})$: then the theorem follows from the corresponding one for \mathcal{D}_e . Case 2. For all $n, P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B})$, but not uniformly: then we need a new construction.

3

イロト 不得 トイヨト イヨト

Theorem (Soskov, S)

If $\mathbf{a} <_{\omega} \mathbf{b}$ and \mathbf{b} has a member with a good approximation, then every countable partial ordering can be embedded in the interval (\mathbf{a}, \mathbf{b}) .

Theorem (Soskov)

There is no minimal ω -enumeration degree.

Suppose $(P_0(\mathcal{A}), P_1(\mathcal{A}) \dots) <_{\omega} (P_0(\mathcal{B}), P_1(\mathcal{B}), \dots)$. Case 1. For some $n, P_n(\mathcal{A}) <_e P_n(\mathcal{B})$: then the theorem follows from the corresponding one for \mathcal{D}_e . Case 2. For all $n, P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B})$, but not uniformly: then we need a new construction.

Theorem (Soskov, S)

If $\mathbf{a} <_{\omega} \mathbf{b}$ and \mathbf{b} has a member with a good approximation, then every countable partial ordering can be embedded in the interval (\mathbf{a}, \mathbf{b}) .

Theorem (Soskov)

There is no minimal ω -enumeration degree.

Suppose $(P_0(\mathcal{A}), P_1(\mathcal{A}) \dots) <_{\omega} (P_0(\mathcal{B}), P_1(\mathcal{B}), \dots).$

Case 1. For some *n*, $P_n(A) <_e P_n(B)$: then the theorem follows from the corresponding one for \mathcal{D}_e . Case 2. For all *n*, $P_n(A) \equiv_e P_n(B)$, but not uniformly: then we need a new construction.

Theorem (Soskov, S)

If $\mathbf{a} <_{\omega} \mathbf{b}$ and \mathbf{b} has a member with a good approximation, then every countable partial ordering can be embedded in the interval (\mathbf{a}, \mathbf{b}) .

Theorem (Soskov)

There is no minimal ω -enumeration degree.

Suppose $(P_0(\mathcal{A}), P_1(\mathcal{A})...) <_{\omega} (P_0(\mathcal{B}), P_1(\mathcal{B}),...)$. Case 1. For some n, $P_n(\mathcal{A}) <_e P_n(\mathcal{B})$: then the theorem follows from the corresponding one for \mathcal{D}_e . Case 2. For all n, $P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B})$, but not uniformly: then we need a

new construction.

Theorem (Soskov, S)

If $\mathbf{a} <_{\omega} \mathbf{b}$ and \mathbf{b} has a member with a good approximation, then every countable partial ordering can be embedded in the interval (\mathbf{a}, \mathbf{b}) .

Theorem (Soskov)

There is no minimal ω -enumeration degree.

Suppose $(P_0(\mathcal{A}), P_1(\mathcal{A})...) <_{\omega} (P_0(\mathcal{B}), P_1(\mathcal{B}),...)$. Case 1. For some $n, P_n(\mathcal{A}) <_e P_n(\mathcal{B})$: then the theorem follows from the corresponding one for \mathcal{D}_e . Case 2. For all $n, P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B})$, but not uniformly: then we need a new construction.

Definition

Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then \mathbf{a} is *almost* \mathbf{b} if there are members $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$, such that

 $(\forall n)(P_n(\mathcal{A}) \equiv_n P_n(\mathcal{B})).$

• If **a** is almost- then for every $A \in$ **a** and $B \in$ **b**,

 $(\forall n)(P_n(\mathcal{A})\equiv_n P_n(\mathcal{B})).$

The class of almost-b degrees is closed under least upper bound.
If b ∈ D₁ then b is the least almost-b ω-enumeration degree.

Definition

Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then \mathbf{a} is *almost* \mathbf{b} if there are members $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$, such that

$$(\forall n)(P_n(\mathcal{A})\equiv_n P_n(\mathcal{B})).$$

• If **a** is almost- then for every $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$,

 $(\forall n)(P_n(\mathcal{A}) \equiv_n P_n(\mathcal{B})).$

The class of almost-b degrees is closed under least upper bound.
If b ∈ D₁ then b is the least almost-b ω-enumeration degree.

∃ ► < ∃</p>

Definition

Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then \mathbf{a} is *almost* \mathbf{b} if there are members $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$, such that

$$(\forall n)(P_n(\mathcal{A})\equiv_n P_n(\mathcal{B})).$$

• If **a** is almost- then for every $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$,

$$(\forall n)(P_n(\mathcal{A}) \equiv_n P_n(\mathcal{B})).$$

The class of almost-b degrees is closed under least upper bound.
If b ∈ D₁ then b is the least almost-b ω-enumeration degree.

The Sec. 74

Definition

Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then \mathbf{a} is *almost* \mathbf{b} if there are members $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$, such that

$$(\forall n)(P_n(\mathcal{A})\equiv_n P_n(\mathcal{B})).$$

• If **a** is almost- then for every $\mathcal{A} \in \mathbf{a}$ and $\mathcal{B} \in \mathbf{b}$,

$$(\forall n)(P_n(\mathcal{A}) \equiv_n P_n(\mathcal{B})).$$

• The class of almost-**b** degrees is closed under least upper bound.

• If $\mathbf{b} \in \mathcal{D}_1$ then \mathbf{b} is the least almost- $\mathbf{b} \omega$ -enumeration degree.

Are there almost degrees?

Theorem (Soskov,S)

Let $\mathbf{b} <_{\omega} \mathbf{a}$ be two ω -enumeration degrees, such that \mathbf{a} contains a member with a good approximation. There exists an almost- \mathbf{b} degree \mathbf{z} such that $\mathbf{b} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{a}$ if and only if:

 $(\exists)(\forall m \geq n)[\mathbf{b}^m <_{\omega} \mathbf{a}^m].$

In particular when $\mathbf{b} = \mathbf{0}_{\omega}$ and $\mathbf{a} = \mathbf{0}'_{\omega}$: there exists a nontrivial *almost-zero* degree below $\mathbf{0}'_{\omega}$.

Let $L = {\mathbf{a} \mid \exists n (\mathbf{0}^n = \mathbf{a}^n)} = Low_1 \cup Low_2 \cdots \cup Low_n \cup \ldots$

Then **a** is in *L* if and only if it bounds no nonzero *almost-zero* degree.

Are there almost degrees?

Theorem (Soskov,S)

Let $\mathbf{b} <_{\omega} \mathbf{a}$ be two ω -enumeration degrees, such that \mathbf{a} contains a member with a good approximation. There exists an almost- \mathbf{b} degree \mathbf{z} such that $\mathbf{b} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{a}$ if and only if:

 $(\exists)(\forall m \geq n)[\mathbf{b}^m <_{\omega} \mathbf{a}^m].$

In particular when $\mathbf{b} = \mathbf{0}_{\omega}$ and $\mathbf{a} = \mathbf{0}'_{\omega}$: there exists a nontrivial *almost-zero* degree below $\mathbf{0}'_{\omega}$.

Let $L = {\mathbf{a} \mid \exists n(\mathbf{0}^n = \mathbf{a}^n)} = Low_1 \cup Low_2 \cdots \cup Low_n \cup \ldots$

Then **a** is in *L* if and only if it bounds no nonzero *almost-zero* degree.

Are there almost degrees?

Theorem (Soskov,S)

Let $\mathbf{b} <_{\omega} \mathbf{a}$ be two ω -enumeration degrees, such that \mathbf{a} contains a member with a good approximation. There exists an almost- \mathbf{b} degree \mathbf{z} such that $\mathbf{b} <_{\omega} \mathbf{z} \leq_{\omega} \mathbf{a}$ if and only if:

 $(\exists)(\forall m \geq n)[\mathbf{b}^m <_{\omega} \mathbf{a}^m].$

In particular when $\mathbf{b} = \mathbf{0}_{\omega}$ and $\mathbf{a} = \mathbf{0}'_{\omega}$: there exists a nontrivial *almost-zero* degree below $\mathbf{0}'_{\omega}$.

Let $L = {\mathbf{a} \mid \exists n(\mathbf{0}^n = \mathbf{a}^n)} = Low_1 \cup Low_2 \cdots \cup Low_n \cup \ldots$

Then **a** is in *L* if and only if it bounds no nonzero *almost-zero* degree.

• $(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots).$

• $(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (\emptyset, P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)'.$

The degree of (Ø, P₁(A), ;Pn(A)...) is the least degree, whose jump is equal to d_ω(A').

Definition

Let $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$.

$$I_n(\mathcal{A}) = (\underbrace{\emptyset, \dots, \emptyset}_n, P_0(\mathcal{A}), P_1(\mathcal{A}), \dots)$$

If $A \in \mathbf{a}$, then $I_n(\mathbf{a}) = d_{\omega}(I_n(A))$. If $\mathbf{0}_{\omega}^n \leq_{\omega} \mathbf{a}$ then $I_n(\mathbf{a})$ is the least degree **x**, such that $\mathbf{x}^{(n)} = \mathbf{a}$.

3

- $(P_0(\mathcal{A}), P_1(\mathcal{A}), \dots, P_n(\mathcal{A}) \dots)' = (P_1(\mathcal{A}), \dots, P_n(\mathcal{A}) \dots).$
- $(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (\emptyset, P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)'.$
- The degree of (Ø, P₁(A), ;Pn(A)...) is the least degree, whose jump is equal to d_ω(A').

Definition

Let $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$.

$$I_n(\mathcal{A}) = (\underbrace{\emptyset, \dots, \emptyset}_n, P_0(\mathcal{A}), P_1(\mathcal{A}), \dots)$$

If $A \in \mathbf{a}$, then $I_n(\mathbf{a}) = d_{\omega}(I_n(A))$. If $\mathbf{0}_{\omega}^n \leq_{\omega} \mathbf{a}$ then $I_n(\mathbf{a})$ is the least degree **x**, such that $\mathbf{x}^{(n)} = \mathbf{a}$.

3

•
$$(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots).$$

- $(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (\emptyset, P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)'.$
- The degree of (Ø, P₁(A), Pn(A)...) is the least degree, whose jump is equal to dω(A').

Definition

Let $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$.

$$I_n(\mathcal{A}) = (\underbrace{\emptyset, \dots, \emptyset}_n, P_0(\mathcal{A}), P_1(\mathcal{A}), \dots)$$

If $A \in \mathbf{a}$, then $I_n(\mathbf{a}) = d_{\omega}(I_n(A))$. If $\mathbf{0}_{\omega}^n \leq_{\omega} \mathbf{a}$ then $I_n(\mathbf{a})$ is the least degree **x**, such that $\mathbf{x}^{(n)} = \mathbf{a}$.

3

•
$$(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots)' = (P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}), \ldots).$$

- $(P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}) \ldots)' = (\emptyset, P_1(\mathcal{A}), \ldots, P_n(\mathcal{A}) \ldots)'.$
- The degree of (Ø, P₁(A), P_n(A)...) is the least degree, whose jump is equal to d_ω(A').

Definition

Let $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$.

$$I_n(\mathcal{A}) = (\underbrace{\emptyset, \ldots, \emptyset}_n, P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots)$$

If $\mathcal{A} \in \mathbf{a}$, then $I_n(\mathbf{a}) = d_{\omega}(I_n(\mathcal{A}))$. If $\mathbf{0}_{\omega}^n \leq_{\omega} \mathbf{a}$ then $I_n(\mathbf{a})$ is the least degree \mathbf{x} , such that $\mathbf{x}^{(n)} = \mathbf{a}$.

Relativized jump inversion

Definition

Let $n \in \mathbb{N}$ and $\mathcal{A}, \mathcal{B} \in \mathcal{S}$.

$$I_n^{\mathcal{B}}(\mathcal{A}) = (B_0, B_1, \ldots, B_{n-1}, P_0(\mathcal{A}), P_1(\mathcal{A}), \ldots)$$

If $\mathcal{A} \in \mathbf{a}$ and $\mathbf{b} \in \mathcal{B}$, then $I_n^{\mathbf{b}}(\mathbf{a}) = d_{\omega}(I_n^{\mathcal{B}}(\mathcal{A}))$.

If $\mathbf{b}^n \leq_{\omega} \mathbf{a}$ then $I_n^{\mathbf{b}}(\mathbf{a})$ is the least degree \mathbf{x} , such that $\mathbf{b} \leq_{\omega} \mathbf{x}$ and $\mathbf{x}^{(n)} = \mathbf{a}$.

3

A (10) A (10)

Main idea: Consider a sequence \mathcal{A} of the form

 $(A, \emptyset, \emptyset, \dots).$

Out of all sequences \mathcal{X} with $X_0 \equiv_e A$, the sequence \mathcal{A} is the least one. Let $\mathcal{I}_{\mathbf{a}} = \{I_{\mathbf{a}}^1(\mathbf{x}) \mid \mathbf{a}' \leq_{\omega} \mathbf{x}\}.$

Theorem (Ganchev, Soskov) Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then: $\mathcal{I}_{\mathbf{b}} \subseteq \mathcal{I}_{\mathbf{a}} \iff \mathbf{a} \leq_{\omega} \mathbf{b} \& A_0 \equiv_e B_0$.

So $\mathbf{a} \in D_1$ if and only if for every **b**:

$$\mathcal{I}_{\mathbf{a}} \subseteq \mathcal{I}_{\mathbf{b}} \Rightarrow \mathcal{I}_{\mathbf{a}} = \mathcal{I}_{\mathbf{b}}.$$

イロト イポト イラト イラ

Main idea: Consider a sequence \mathcal{A} of the form

 $(A, \emptyset, \emptyset, \dots).$

Out of all sequences \mathcal{X} with $X_0 \equiv_e A$, the sequence \mathcal{A} is the least one.

Let $\mathcal{I}_{\mathbf{a}} = \{ I_{\mathbf{a}}^{1}(\mathbf{x}) \mid \mathbf{a}' \leq_{\omega} \mathbf{x} \}.$

Theorem (Ganchev, Soskov)

 $\mathcal{I}_{\mathbf{b}} \subseteq \mathcal{I}_{\mathbf{a}} \iff \mathbf{a} \leq_{\omega} \mathbf{b} \& A_0 \equiv_e B_0.$

So $\mathbf{a} \in D_1$ if and only if for every **b**:

$$\mathcal{I}_{a} \subseteq \mathcal{I}_{b} \Rightarrow \mathcal{I}_{a} = \mathcal{I}_{b}.$$

イロト イポト イラト イラ

Main idea: Consider a sequence \mathcal{A} of the form

 $(\boldsymbol{A}, \emptyset, \emptyset, \dots).$

Out of all sequences \mathcal{X} with $X_0 \equiv_e A$, the sequence \mathcal{A} is the least one. Let $\mathcal{I}_{\mathbf{a}} = \{I_{\mathbf{a}}^1(\mathbf{x}) \mid \mathbf{a}' \leq_{\omega} \mathbf{x}\}.$

Theorem (Ganchev, Soskov) Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then: $\mathcal{I}_{\mathbf{b}} \subseteq \mathcal{I}_{\mathbf{a}} \iff \mathbf{a} \leq_{\omega} \mathbf{b} \& A_0 \equiv_{e} B_0$.

So $\mathbf{a} \in D_1$ if and only if for every **b**:

$$\mathcal{I}_{\mathbf{a}} \subseteq \mathcal{I}_{\mathbf{b}} \Rightarrow \mathcal{I}_{\mathbf{a}} = \mathcal{I}_{\mathbf{b}}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Main idea: Consider a sequence \mathcal{A} of the form

 $(\boldsymbol{A}, \emptyset, \emptyset, \dots).$

Out of all sequences \mathcal{X} with $X_0 \equiv_e A$, the sequence \mathcal{A} is the least one. Let $\mathcal{I}_{\mathbf{a}} = \{I_{\mathbf{a}}^1(\mathbf{x}) \mid \mathbf{a}' \leq_{\omega} \mathbf{x}\}.$

Theorem (Ganchev, Soskov) Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then: $\mathcal{I}_{\mathbf{b}} \subseteq \mathcal{I}_{\mathbf{a}} \iff \mathbf{a} \leq_{\omega} \mathbf{b} \& A_0 \equiv_{e} B_0$.

So $\mathbf{a} \in D_1$ if and only if for every **b**:

$$\mathcal{I}_{a} \subseteq \mathcal{I}_{b} \Rightarrow \mathcal{I}_{a} = \mathcal{I}_{b}.$$

3

A (10) A (10)

Main idea: Consider a sequence \mathcal{A} of the form

 $(\boldsymbol{A}, \emptyset, \emptyset, \dots).$

Out of all sequences \mathcal{X} with $X_0 \equiv_e A$, the sequence \mathcal{A} is the least one. Let $\mathcal{I}_{\mathbf{a}} = \{I_{\mathbf{a}}^1(\mathbf{x}) \mid \mathbf{a}' \leq_{\omega} \mathbf{x}\}.$

Theorem (Ganchev, Soskov) Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$. Then: $\mathcal{I}_{\mathbf{b}} \subseteq \mathcal{I}_{\mathbf{a}} \iff \mathbf{a} \leq_{\omega} \mathbf{b} \& A_0 \equiv_{e} B_0$.

So $\mathbf{a} \in D_1$ if and only if for every **b**:

$$\mathcal{I}_{\textbf{a}} \subseteq \mathcal{I}_{\textbf{b}} \Rightarrow \mathcal{I}_{\textbf{a}} = \mathcal{I}_{\textbf{b}}.$$

Some consequences

Corollary

The structure D_1 is first order definable in D'_{ω} , the structure of the ω -enumeration degrees, augmented by the jump operation.

Corollary

The theory of \mathcal{D}'_{ω} is computably isomorphic to second order arithmetic.

Corollary

Every nontrivial automorphism of \mathcal{D}_{ω} induces a nontrivial automorphism of \mathcal{D}_{e} .

Some consequences

Corollary

The structure D_1 is first order definable in D'_{ω} , the structure of the ω -enumeration degrees, augmented by the jump operation.

Corollary

The theory of \mathcal{D}'_{ω} is computably isomorphic to second order arithmetic.

Corollary

Every nontrivial automorphism of \mathcal{D}_{ω} induces a nontrivial automorphism of \mathcal{D}_{e} .

3

Some consequences

Corollary

The structure D_1 is first order definable in D'_{ω} , the structure of the ω -enumeration degrees, augmented by the jump operation.

Corollary

The theory of \mathcal{D}'_{ω} is computably isomorphic to second order arithmetic.

Corollary

Every nontrivial automorphism of \mathcal{D}_{ω} induces a nontrivial automorphism of \mathcal{D}_{e} .

3

Every automorphism of \mathcal{D}_e is the identity on the cone above $\mathbf{0}_e^{(4)}$.

Consider an automorphism φ of \mathcal{D}_e and define Φ working as follows: $\Phi(d_\omega(\mathcal{A})) = d_\omega(\mathcal{B})$, where \mathcal{B} is defined as

 $B_0 \in \varphi(d_e(A_0)), \ldots, B_3 \in \varphi(d_e(A_3))$ and for $n \ge 4$, $B_n = P_n(\mathcal{A})$.

Theorem (Soskov, Ganchev)

 $\operatorname{Aut}(\mathcal{D}'_{\omega})\cong\operatorname{Aut}(\mathcal{D}_{e}).$

Question

Is the ω -enumeration jump first order definable in \mathcal{D}_{ω} ?

3

Every automorphism of \mathcal{D}_e is the identity on the cone above $\mathbf{0}_e^{(4)}$.

Consider an automorphism φ of \mathcal{D}_e and define Φ working as follows: $\Phi(d_{\omega}(\mathcal{A})) = d_{\omega}(\mathcal{B})$, where \mathcal{B} is defined as

 $B_0 \in \varphi(d_e(A_0)), \ldots, B_3 \in \varphi(d_e(A_3))$ and for $n \ge 4$, $B_n = P_n(\mathcal{A})$.

Theorem (Soskov, Ganchev)

 $\operatorname{Aut}(\mathcal{D}'_{\omega})\cong\operatorname{Aut}(\mathcal{D}_{e}).$

Question

Is the ω -enumeration jump first order definable in \mathcal{D}_{ω} ?

-

Every automorphism of \mathcal{D}_e is the identity on the cone above $\mathbf{0}_e^{(4)}$.

Consider an automorphism φ of \mathcal{D}_e and define Φ working as follows: $\Phi(d_{\omega}(\mathcal{A})) = d_{\omega}(\mathcal{B})$, where \mathcal{B} is defined as

 $B_0 \in \varphi(d_e(A_0)), \ldots, B_3 \in \varphi(d_e(A_3))$ and for $n \ge 4$, $B_n = P_n(\mathcal{A})$.

Theorem (Soskov, Ganchev)

 $Aut(\mathcal{D}'_{\omega}) \cong Aut(\mathcal{D}_{e}).$

Question

Is the ω -enumeration jump first order definable in \mathcal{D}_{ω} ?

ヘロト 不通 とうき とうとう ほう

Every automorphism of \mathcal{D}_e is the identity on the cone above $\mathbf{0}_e^{(4)}$.

Consider an automorphism φ of \mathcal{D}_e and define Φ working as follows: $\Phi(d_{\omega}(\mathcal{A})) = d_{\omega}(\mathcal{B})$, where \mathcal{B} is defined as

 $B_0 \in \varphi(d_e(A_0)), \ldots, B_3 \in \varphi(d_e(A_3))$ and for $n \ge 4$, $B_n = P_n(\mathcal{A})$.

Theorem (Soskov, Ganchev)

 $Aut(\mathcal{D}'_{\omega}) \cong Aut(\mathcal{D}_{e}).$

Question

Is the ω -enumeration jump first order definable in \mathcal{D}_{ω} ?

The Local structure \mathcal{G}_{ω}

Consider the structure \mathcal{G}_{ω} consisting of all degrees reducible to $\mathbf{0}'_{\omega} = d_{\omega}((\emptyset', \emptyset'', \emptyset'', \dots))$ also called the $\Sigma_2^0 \omega$ -enumeration degrees.

Definition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

- **a** is low_n if $\mathbf{a}^n = \mathbf{0}^n_{\omega}$. The class of all low_n degrees is denoted by L_n . $\bigcup_n L_n = L$
- **2 a** is $high_n$ if $\mathbf{a}^n = \mathbf{0}^{n+1}_{\omega}$. The class of all $high_n$ degrees is denoted by H_n . $\bigcup_n H_n = H$

There is a copy of the Σ_2^0 enumeration degrees $\mathcal{G}_1 = D_1 \cap \mathcal{G}_\omega$.

A (10) > A (10) > A (10)

The Local structure \mathcal{G}_{ω}

Consider the structure \mathcal{G}_{ω} consisting of all degrees reducible to $\mathbf{0}'_{\omega} = d_{\omega}((\emptyset', \emptyset'', \emptyset'', \dots))$ also called the $\Sigma_2^0 \omega$ -enumeration degrees.

Definition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

- **a** is *low_n* if $\mathbf{a}^n = \mathbf{0}_{\omega}^n$. The class of all *low_n* degrees is denoted by L_n . $\bigcup_n L_n = L$
- **2 a** is $high_n$ if $\mathbf{a}^n = \mathbf{0}^{n+1}_{\omega}$. The class of all $high_n$ degrees is denoted by H_n . $\bigcup_n H_n = H$

There is a copy of the Σ_2^0 enumeration degrees $\mathcal{G}_1 = D_1 \cap \mathcal{G}_\omega$.

3

・ロト ・四ト ・ヨト ・ヨト

The Local structure \mathcal{G}_{ω}

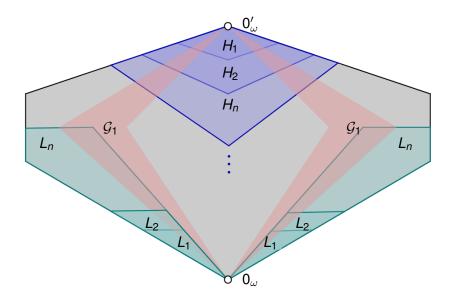
Consider the structure \mathcal{G}_{ω} consisting of all degrees reducible to $\mathbf{0}'_{\omega} = d_{\omega}((\emptyset', \emptyset'', \emptyset'', \dots))$ also called the $\Sigma_2^0 \omega$ -enumeration degrees.

Definition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

- **a** is *low_n* if $\mathbf{a}^n = \mathbf{0}_{\omega}^n$. The class of all *low_n* degrees is denoted by L_n . $\bigcup_n L_n = L$
- **2 a** is $high_n$ if $\mathbf{a}^n = \mathbf{0}^{n+1}_{\omega}$. The class of all $high_n$ degrees is denoted by H_n . $\bigcup_n H_n = H$

There is a copy of the Σ_2^0 enumeration degrees $\mathcal{G}_1 = D_1 \cap \mathcal{G}_\omega$.



Mariya I. Soskova (FMI)

 ω -Enumeration Degrees

August 3, 2011 25 / 36

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

Definition

For every *n* let
$$\mathbf{o}_n = I^n(\mathbf{0}_{\omega}^{n+1}) = d_{\omega}((\underbrace{\emptyset,\ldots,\emptyset}_n, \emptyset^{n+1}, \emptyset^{n+2}, \ldots)).$$

Proposition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

- **()** $\mathbf{a} \in H_n$ if and only if $\mathbf{a} \ge \mathbf{o}_n$
- **2** $\mathbf{a} \in L_n$ if and only if $\mathbf{a} \wedge \mathbf{o}_n = \mathbf{0}_{\omega}$

Proof: 1. **o**_{*n*} is the least *n*-th jump invert of \emptyset^{n+1} , hence $\mathbf{a}^n \ge \mathbf{o}_n^n = \emptyset^{n+1}$ if and only if $\mathbf{a} \in H_n$.

3

Definition

For every *n* let
$$\mathbf{o}_n = I^n(\mathbf{0}_{\omega}^{n+1}) = d_{\omega}((\underbrace{\emptyset,\ldots,\emptyset}_n, \emptyset^{n+1}, \emptyset^{n+2}, \ldots)).$$

Proposition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

- **1** $\mathbf{a} \in H_n$ if and only if $\mathbf{a} \ge \mathbf{o}_n$
- **2** $\mathbf{a} \in L_n$ if and only if $\mathbf{a} \wedge \mathbf{o}_n = \mathbf{0}_{\omega}$

Proof: 1. **o**_{*n*} is the least *n*-th jump invert of \emptyset^{n+1} , hence $\mathbf{a}^n \ge \mathbf{o}_n^n = \emptyset^{n+1}$ if and only if $\mathbf{a} \in H_n$.

3

Definition

For every *n* let
$$\mathbf{o}_n = I^n(\mathbf{0}_{\omega}^{n+1}) = d_{\omega}((\underbrace{\emptyset,\ldots,\emptyset}_n, \emptyset^{n+1}, \emptyset^{n+2}, \ldots)).$$

Proposition

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

1 $\mathbf{a} \in H_n$ if and only if $\mathbf{a} \ge \mathbf{o}_n$

2 $\mathbf{a} \in L_n$ if and only if $\mathbf{a} \wedge \mathbf{o}_n = \mathbf{0}_{\omega}$

Proof: 1. **o**_{*n*} is the least *n*-th jump invert of \emptyset^{n+1} , hence $\mathbf{a}^n \ge \mathbf{o}_n^n = \emptyset^{n+1}$ if and only if $\mathbf{a} \in H_n$.

Definition

For every *n* let
$$\mathbf{o}_n = I^n(\mathbf{0}^{n+1}_{\omega}) = d_{\omega}(\underbrace{(\emptyset, \dots, \emptyset}_n, \emptyset^{n+1}, \emptyset^{n+2}, \dots)).$$

Theorem

Let $\mathbf{a} \in \mathcal{G}_{\omega}$.

1
$$\mathbf{a} \in H_n$$
 if and only if $\mathbf{a} \ge H_n$

)
$$\mathbf{a}\in \mathsf{L}_n$$
 if and only if $\mathbf{a}\wedge\mathbf{o}_n=\mathbf{0}_\omega$

Proof: 2. For every $\mathcal{A} \equiv_{e} \mathcal{P}(\mathcal{A}) \in \mathbf{a}$:

$$(A_0, A_1, \dots, A_n, A_{n+1}, \dots) \land (\underbrace{\emptyset, \dots, \emptyset}_n, \emptyset^{n+1}, \emptyset^{n+2}, \dots)$$
$$= (\underbrace{\emptyset, \dots, \emptyset}_n, A_n, A_{n+1}, \dots) = I^n(\mathcal{A}^n)$$

Hence $\mathbf{a} \wedge \mathbf{o}_n = \mathbf{0}_{\omega}$ if and only if $I^n(\mathbf{a}^n) = \mathbf{0}_{\omega}$, if and only if $\mathbf{a}^n = \mathbf{0}_{\omega}^n$.

Definition

An ω -enumeration degree **a** called almost zero (a.z.) if for $\mathcal{A} \in \mathbf{a}$ and every n, $P_n(\mathcal{A}) \equiv_e \emptyset^n$.

- The a.z. degrees form an ideal.
- If $\mathbf{a} \in \mathcal{G}_{\omega}$ then \mathbf{a} is a.z. if and only if $\mathbf{a} < \mathbf{o}_n$ for all n.
- Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)

- $\mathbf{a} \in L = \bigcup_n L_n$ if and only if \mathbf{a} does not bound any nonzero a.z degree.
- 3 $\mathbf{a} \in H = \bigcup_n H_n$ if and only if \mathbf{a} bound every \mathbf{a} . z. degree.

3

Definition

An ω -enumeration degree **a** called almost zero (a.z.) if for $\mathcal{A} \in \mathbf{a}$ and every n, $P_n(\mathcal{A}) \equiv_e \emptyset^n$.

• The a.z. degrees form an ideal.

- If $\mathbf{a} \in \mathcal{G}_{\omega}$ then \mathbf{a} is a.z. if and only if $\mathbf{a} < \mathbf{o}_n$ for all n.
- Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)

- $\mathbf{a} \in L = \bigcup_n L_n$ if and only if \mathbf{a} does not bound any nonzero \mathbf{a} .z degree.
- 3 $\mathbf{a} \in H = \bigcup_n H_n$ if and only if \mathbf{a} bound every \mathbf{a} . z. degree.

3

Definition

An ω -enumeration degree **a** called almost zero (a.z.) if for $\mathcal{A} \in \mathbf{a}$ and every n, $P_n(\mathcal{A}) \equiv_e \emptyset^n$.

- The a.z. degrees form an ideal.
- If $\mathbf{a} \in \mathcal{G}_{\omega}$ then \mathbf{a} is a.z. if and only if $\mathbf{a} < \mathbf{o}_n$ for all n.
- Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)

- $\mathbf{a} \in L = \bigcup_n L_n$ if and only if \mathbf{a} does not bound any nonzero \mathbf{a} .z degree.
- 3 $\mathbf{a} \in H = \bigcup_n H_n$ if and only if \mathbf{a} bound every \mathbf{a} . z. degree.

3

Definition

An ω -enumeration degree **a** called almost zero (a.z.) if for $\mathcal{A} \in \mathbf{a}$ and every n, $P_n(\mathcal{A}) \equiv_e \emptyset^n$.

- The a.z. degrees form an ideal.
- If $\mathbf{a} \in \mathcal{G}_{\omega}$ then \mathbf{a} is a.z. if and only if $\mathbf{a} < \mathbf{o}_n$ for all n.
- Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)

- $\mathbf{a} \in L = \bigcup_n L_n$ if and only if \mathbf{a} does not bound any nonzero \mathbf{a} .z degree.
- 3 $\mathbf{a} \in H = \bigcup_n H_n$ if and only if \mathbf{a} bound every \mathbf{a} . z. degree.

3

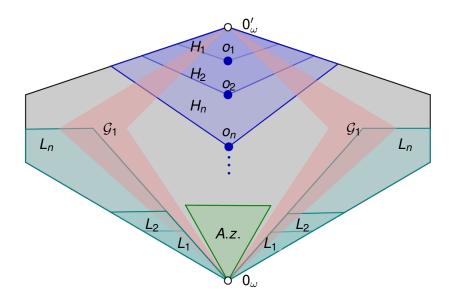
Definition

An ω -enumeration degree **a** called almost zero (a.z.) if for $\mathcal{A} \in \mathbf{a}$ and every n, $P_n(\mathcal{A}) \equiv_e \emptyset^n$.

- The a.z. degrees form an ideal.
- If $\mathbf{a} \in \mathcal{G}_{\omega}$ then \mathbf{a} is a.z. if and only if $\mathbf{a} < \mathbf{o}_n$ for all n.
- Nonzero a.z. degrees exist.

Theorem (Ganchev, Soskov)

- $\mathbf{a} \in L = \bigcup_n L_n$ if and only if \mathbf{a} does not bound any nonzero a.z degree.
- **2** $\mathbf{a} \in H = \bigcup_n H_n$ if and only if \mathbf{a} bound every \mathbf{a} . z. degree.



Mariya I. Soskova (FMI)

 ω -Enumeration Degrees

August 3, 2011 29 / 36

\mathcal{K} -pairs in \mathcal{G}_{ω}

Definition

A pair of degrees $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$ is called a \mathcal{K} -pair if

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x} \in \mathcal{D}_\omega)[(\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x}]$$

Theorem (Ganchev)

If $d_{\omega}(\mathcal{A})$ and $d_{\omega}(\mathcal{B})$ form a nontrivial \mathcal{K} -pair in \mathcal{G}_{ω} then both \mathcal{A} and \mathcal{B} are a.z. or for some *n* there exists a \mathcal{K} -pair over \emptyset^n in $\mathcal{D}_e \{A, B\}$, such that $\emptyset^n < A, B, A' = B' = \emptyset^{n+1}$ and:

$$\mathcal{A} \equiv_{\omega} \{ \underbrace{\emptyset, \dots, \emptyset}_{n}, A, \emptyset, \dots, \emptyset, \dots \} \text{ and}$$
$$\mathcal{B} \equiv_{\omega} \{ \underbrace{\emptyset, \dots, \emptyset}_{n}, B, \emptyset, \dots, \emptyset, \dots \}.$$

Mariya I. Soskova (FMI)

-

イロト イポト イラト イラ

 $\mathcal K\text{-pairs}$ in $\mathcal G_\omega$

Definition

A pair of degrees $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$ is called a \mathcal{K} -pair if

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_\omega)[(\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x}]$$

Theorem (Ganchev)

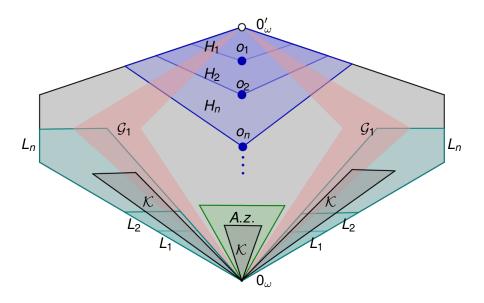
If $d_{\omega}(\mathcal{A})$ and $d_{\omega}(\mathcal{B})$ form a nontrivial \mathcal{K} -pair in \mathcal{G}_{ω} then both \mathcal{A} and \mathcal{B} are a.z. or for some *n* there exists a \mathcal{K} -pair over \emptyset^n in $\mathcal{D}_e \{A, B\}$, such that $\emptyset^n < A, B, A' = B' = \emptyset^{n+1}$ and:

$$\mathcal{A} \equiv_{\omega} \{ \underbrace{\emptyset, \dots, \emptyset}_{n}, \mathbf{A}, \emptyset, \dots, \emptyset, \dots \} \text{ and}$$
$$\mathcal{B} \equiv_{\omega} \{ \underbrace{\emptyset, \dots, \emptyset}_{n}, \mathbf{B}, \emptyset, \dots, \emptyset, \dots \}.$$

э

The Sec. 74

• • • • • • • • • •



Mariya I. Soskova (FMI)

 ω -Enumeration Degrees

August 3, 2011 31 / 36

æ

<ロ> <四> <ヨ> <ヨ>

Distinguishing \mathcal{K} -pairs at different levels

Theorem (Ganchev, S)

Let $\mathbf{a}, \mathbf{b} \in \mathcal{G}_{\omega}$ form a nontrivial \mathcal{K} -pair. Then for every natural number n

$$\forall \mathbf{x} \lneq_{\omega} \mathbf{o}_n [\mathbf{a} \lor \mathbf{x} \lneq_{\omega} \mathbf{o}_n] \iff \mathbf{a}, \mathbf{b} \leq_{\omega} \mathbf{o}_{n+1}.$$

Proof Sketch:

Suppose that $\mathbf{a}, \mathbf{b} \leq_{\omega} \mathbf{o}_n$ and $\mathbf{a}, \mathbf{b} \nleq_{\omega} \mathbf{o}_{n+1}$. Then

$$\mathbf{a} = d_{\omega}(\{\underbrace{\emptyset, \dots, \emptyset}_{n}, \mathbf{A}, \emptyset, \dots, \emptyset, \dots\})$$

and $\emptyset^n < A < \emptyset^{n+1}$ and $A' = \emptyset^{n+1}$.

Theorem (S, Wu)

For every non-c.e. Δ_2^0 set A there is a low₁ X, such that $A \oplus X \equiv_e \emptyset'$.

-

Distinguishing \mathcal{K} -pairs at different levels

Theorem (Ganchev, S)

Let $\mathbf{a}, \mathbf{b} \in \mathcal{G}_{\omega}$ form a nontrivial \mathcal{K} -pair. Then for every natural number n:

$$\forall \mathbf{x} \lneq_{\omega} \mathbf{o}_n [\mathbf{a} \lor \mathbf{x} \lneq_{\omega} \mathbf{o}_n] \iff \mathbf{a}, \mathbf{b} \leq_{\omega} \mathbf{o}_{n+1}.$$

Proof Sketch:

Relativizing it follows that there is an X, $\emptyset^n <_e X <_e \emptyset^{n+1}$, such that $X' = \emptyset^{n+1}$ and $X \lor A \equiv_e \emptyset^{n+1}$, hence

$$d_{\omega}(\{\underbrace{\emptyset,\ldots,\emptyset}_{n},A,\ldots\})\vee d_{\omega}(\{\underbrace{\emptyset,\ldots,\emptyset}_{n},X,\emptyset,\ldots\})=\mathbf{o}_{n}.$$

3

イロト イポト イラト イラト

Definability of **o**_n

Theorem (Ganchev, S)

For every $n \{ \mathbf{o}_n \}$ is first order definable in \mathcal{G}_{ω} .

Proof Sketch: Fix $n \ge 0$. Then \mathbf{o}_{n+1} is the greatest degree which is the least upper bound of a nontrivial \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$ in \mathcal{G}_{ω} , such that

 $\forall \mathbf{x} \lneq \mathbf{o}_n [\mathbf{a} \lor \mathbf{x} \lneq_\omega \mathbf{o}_n].$

Corollary

For all n the classes H_n and L_n are first order definable in \mathcal{G}_ω .

Corollary

Every automorphism of \mathcal{D}'_ω is the identity on the ideal below \mathbf{o}_4 .

Definability of **o**_n

Theorem (Ganchev, S)

For every $n \{ \mathbf{o}_n \}$ is first order definable in \mathcal{G}_{ω} .

Proof Sketch: Fix $n \ge 0$. Then \mathbf{o}_{n+1} is the greatest degree which is the least upper bound of a nontrivial \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$ in \mathcal{G}_{ω} , such that

 $\forall \mathbf{x} \lneq \mathbf{o}_n [\mathbf{a} \lor \mathbf{x} \lneq_\omega \mathbf{o}_n].$

Corollary

For all n the classes H_n and L_n are first order definable in \mathcal{G}_{ω} .

Corollary

Every automorphism of \mathcal{D}'_ω is the identity on the ideal below $\mathbf{o}_{4^{,i}}$

3

・ロト ・四ト ・ヨト ・ヨト

Definability of **o**_n

Theorem (Ganchev, S)

For every $n \{ \mathbf{o}_n \}$ is first order definable in \mathcal{G}_{ω} .

Proof Sketch: Fix $n \ge 0$. Then \mathbf{o}_{n+1} is the greatest degree which is the least upper bound of a nontrivial \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$ in \mathcal{G}_{ω} , such that

 $\forall \mathbf{x} \leq \mathbf{o}_n [\mathbf{a} \lor \mathbf{x} \leq_\omega \mathbf{o}_n].$

Corollary

For all n the classes H_n and L_n are first order definable in \mathcal{G}_{ω} .

Corollary

Every automorphism of \mathcal{D}'_{ω} is the identity on the ideal below \mathbf{o}_4 .

For every sequence $\mathcal{A} = \{A_0, A_1, A_2, \dots\}$ we have that:

 $d_{\omega}(\mathcal{A}) \vee \mathbf{o}_1 = d_{\omega}(\{A_0, \emptyset'', \emptyset''', \dots\}).$

If $\mathcal{A}^e \in \mathcal{G}_1$ and $\mathcal{A}^e = \{A_0, \emptyset, \emptyset, \dots\}$ then $d_{\omega}(\mathcal{A}^e) \vee \mathbf{o}_1 = d_{\omega}(\mathcal{A}) \vee \mathbf{o}_1$ and $d_{\omega}(\mathcal{A}^e) \leq_{\omega} d_{\omega}(\mathcal{A})$.

Theorem (Ganchev, S)

 \mathcal{G}_1 is first order definable in \mathcal{G}_{ω} by:

$$\mathbf{a} \in \mathcal{G}_1 \leftrightarrow \forall \mathbf{y} (\mathbf{a} \lor \mathbf{o}_1 = \mathbf{y} \lor \mathbf{o}_1 \Rightarrow \mathbf{a} \leq \mathbf{y}).$$

Corollary

The theory of first order arithmetic can be interpreted in \mathcal{G}_{ω} .

Question

What is the strength of the theory of \mathcal{G}_{ω} ?

For every sequence $\mathcal{A} = \{A_0, A_1, A_2, \dots\}$ we have that:

 $d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1} = d_{\omega}(\{A_{0}, \emptyset'', \emptyset''', \dots\}).$ If $\mathcal{A}^{e} \in \mathcal{G}_{1}$ and $\mathcal{A}^{e} = \{A_{0}, \emptyset, \emptyset, \dots\}$ then $d_{\omega}(\mathcal{A}^{e}) \vee \mathbf{o}_{1} = d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1}$ and $d_{\omega}(\mathcal{A}^{e}) \leq_{\omega} d_{\omega}(\mathcal{A}).$

Theorem (Ganchev, S)

 \mathcal{G}_1 is first order definable in \mathcal{G}_{ω} by:

$$\mathbf{a} \in \mathcal{G}_1 \leftrightarrow \forall \mathbf{y} (\mathbf{a} \lor \mathbf{o}_1 = \mathbf{y} \lor \mathbf{o}_1 \Rightarrow \mathbf{a} \leq \mathbf{y}).$$

Corollary

The theory of first order arithmetic can be interpreted in \mathcal{G}_{ω} .

Question

What is the strength of the theory of \mathcal{G}_{ω} ?

For every sequence $\mathcal{A} = \{A_0, A_1, A_2, \dots\}$ we have that:

 $d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1} = d_{\omega}(\{A_{0}, \emptyset'', \emptyset''', \dots\}).$ If $\mathcal{A}^{e} \in \mathcal{G}_{1}$ and $\mathcal{A}^{e} = \{A_{0}, \emptyset, \emptyset, \dots\}$ then $d_{\omega}(\mathcal{A}^{e}) \vee \mathbf{o}_{1} = d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1}$ and $d_{\omega}(\mathcal{A}^{e}) \leq_{\omega} d_{\omega}(\mathcal{A}).$

Theorem (Ganchev, S)

 \mathcal{G}_1 is first order definable in \mathcal{G}_ω by:

$$\mathbf{a} \in \mathcal{G}_1 \leftrightarrow \forall \mathbf{y} (\mathbf{a} \lor \mathbf{o}_1 = \mathbf{y} \lor \mathbf{o}_1 \Rightarrow \mathbf{a} \leq \mathbf{y}).$$

Corollary

The theory of first order arithmetic can be interpreted in \mathcal{G}_{ω} .

Question

What is the strength of the theory of \mathcal{G}_{ω} ?

For every sequence $\mathcal{A} = \{A_0, A_1, A_2, \dots\}$ we have that:

 $d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1} = d_{\omega}(\{A_{0}, \emptyset'', \emptyset''', \dots\}).$ If $\mathcal{A}^{e} \in \mathcal{G}_{1}$ and $\mathcal{A}^{e} = \{A_{0}, \emptyset, \emptyset, \dots\}$ then $d_{\omega}(\mathcal{A}^{e}) \vee \mathbf{o}_{1} = d_{\omega}(\mathcal{A}) \vee \mathbf{o}_{1}$ and $d_{\omega}(\mathcal{A}^{e}) \leq_{\omega} d_{\omega}(\mathcal{A}).$

Theorem (Ganchev, S)

 \mathcal{G}_1 is first order definable in \mathcal{G}_ω by:

$$\mathbf{a} \in \mathcal{G}_1 \leftrightarrow \forall \mathbf{y} (\mathbf{a} \lor \mathbf{o}_1 = \mathbf{y} \lor \mathbf{o}_1 \Rightarrow \mathbf{a} \leq \mathbf{y}).$$

Corollary

The theory of first order arithmetic can be interpreted in \mathcal{G}_{ω} .

Question

What is the strength of the theory of \mathcal{G}_{ω} ?

Thank you!

2

イロト イヨト イヨト イヨト