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Preliminaries: Enumeration reducibility

A ≤T B iff χA is computable with oracle B .

A ≤T B iff A⊕ A is c.e. in B.

A ≤T B iff there is a c.e. set W such that
x ∈ A⊕ A if and only if there are finite sets DB and DB such that
〈x ,DB ⊕ DB〉 ∈W and DB ⊕ DB ⊆ B ⊕ B.

Definition
A ≤e B if and only if there is a c.e. set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.

Note that A ≤T B if and only if A⊕ A ≤e B ⊕ B.
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The structure of the enumeration degrees

A ≡e B if A ≤e B and B ≤e A.

de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

De = 〈De,≤,∨,0e〉 is an upper semi-lattice with least element.
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The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as T OT = ι(DT ).

(DT ,≤,∨,0T ) ∼= (T OT ,≤,∨,0e) ⊆ (De,≤,∨,0e)
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The enumeration jump

Let KA = {x | x ∈Wx (A)}. Note that KA ≡e A.

The jump of A is A′ = KA ⊕ KA. Then de(A)′ = de(A′).

The embedding ι preserves the jump operation.

(DT ,≤,∨,0T ,
′ ) ∼= (T OT ,≤,∨,0e,

′ ) ⊆ (De,≤,∨,0e,
′ )

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 5 / 19



The enumeration jump

Let KA = {x | x ∈Wx (A)}. Note that KA ≡e A.

The jump of A is A′ = KA ⊕ KA. Then de(A)′ = de(A′).

The embedding ι preserves the jump operation.

(DT ,≤,∨,0T ,
′ ) ∼= (T OT ,≤,∨,0e,

′ ) ⊆ (De,≤,∨,0e,
′ )

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 5 / 19



The enumeration jump

Let KA = {x | x ∈Wx (A)}. Note that KA ≡e A.

The jump of A is A′ = KA ⊕ KA. Then de(A)′ = de(A′).

The embedding ι preserves the jump operation.

(DT ,≤,∨,0T ,
′ ) ∼= (T OT ,≤,∨,0e,

′ ) ⊆ (De,≤,∨,0e,
′ )

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 5 / 19



The enumeration jump

Let KA = {x | x ∈Wx (A)}. Note that KA ≡e A.

The jump of A is A′ = KA ⊕ KA. Then de(A)′ = de(A′).

The embedding ι preserves the jump operation.

(DT ,≤,∨,0T ,
′ ) ∼= (T OT ,≤,∨,0e,

′ ) ⊆ (De,≤,∨,0e,
′ )

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 5 / 19



Semi-recursive sets

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a total
computable selector function sA, such that sA(x , y) ∈ {x , y} and if
{x , y} ∩ A 6= ∅ then sA(x , y) ∈ A.

Let A be a set of natural numbers. Let LA = {σ ∈ 2<ω | σ ≤ χA}.
LA is a semi-recursive set:

sLA(σ, τ) =

{
σ, σ ≤ τ ;
τ, otherwise.
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The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



The enumeration degrees of semi-recursive sets

Denote by RA the set LA.For every set of natural numbers A the
following holds.

1 LA ⊕ RA ≡e A⊕ A;
2 LA ≤e A; (Mainly because if {x | σ(x) = 1} ⊆ A then σ ≤ A.)
3 RA ≤e A;
4 A is semi-recursive if and only if A ≤1 LA.

Theorem (Jockusch)
A nonzero enumeration degree de(T ) is total if and only if there is a
semi-recursive set A, which is not c.e. and not co-c.e. such that:

de(A) ∨ de(A) = de(T ).

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 7 / 19



Semi-recursive sets as effective minimal pairs

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-recursive set then for every X:

(de(X ) ∨ de(A)) ∧ (de(X ) ∨ de(A)) = de(X ).

Proof: Suppose that Γ(X ⊕ A) = Λ(X ⊕ A) = Y .
Suppose 〈y ,F1 ⊕ D1〉 is in Γ and 〈y ,F2 ⊕ D2〉 is in Λ.
Check:

F1 ∪ F2 ⊆ X .
It is the case that both D1 * A and D2 * A.
Equivalently there is no pair 〈a,a〉 ∈ D1 × D2 such that
sA(a,a) = a.
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A generalization of semi-recursive sets

Definition (Kalimullin)
A pair of sets {A,B} is a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

Trivial K-pairs: For every A and c.e. set U, {A,U} is a K-pair,
witnessed by N× U.
For every semi-recursive set A, {A,A} is a K-pair witnessed by
{〈x , y , 〉| sA(x , y) = x}.
If {A,B} is a nontrivial K-pair then A ≤e B and A ≤e B ⊕ ∅′.
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Definability of K-pairs

Theorem (Kalimullin)
{A,B} is a K-pair if and only if the degrees a = de(A), b = de(B) have
the following property:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).

If K(a,b) and c ≤ b then K(a,c).
If K(a,b) and K(a,c) then K(a,b ∨ c).
If K(a,b) and a,b > 0e then a,b are quasiminimal.
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Definability of the enumeration jump

Theorem (Kalimullin)
The enumeration jump is first order definable in De.

0′
e is the largest e-degree such that there are e-degrees a, b, c,

such that a ∨ b ∨ c = 0′
e and K(a,b), K(b,c), K(a,c).

K-pairs can be relativized.
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An alternative definition of the enumeration jump

Theorem (Ganchev, S)
For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤ u.

Proof.
If K(A,B) and A ≤e U then B ≤e A ≤e A′, so A⊕ B ≤e A′ ≤e U ′.
Consider the K-pair {LKU ,RKU}: then LKU ≤e KU ≡e U and
LKU ⊕ RKU ≡e KU ⊕ KU = U ′.

What if {LKU ,RKU} is a trivial K-pair, i.e. U is low (U ′ = ∅′)?
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Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



Definability in the local structure of the enumeration
degrees

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′

e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′

e).

1 Non-trivial Σ0
2 K-pairs are low.

2 A K-system is a sequence of {ai}i∈I of e-degrees such that if i 6= j
then K(ai ,aj).

3 K systems are antichains.
4 Every nonzero ∆0

2 e-degree bounds a countable K-system.

Mariya I. Soskova ( Sofia University Visting scholar at University of California, Berkeley )Definability in the e-degrees 12/09/2012 13 / 19



An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines the K-pairs in
De(≤ 0′

e).

For every ∆0
2 degree u there is a nontrivial K-pair {a,b}, such that

a ≤ u and a ∨ b = 0′
e. (This finishes the proof of the definability of

the enumeration jump.)
An additional structural property similar to an e-degree version of
Harrington’s non-splitting theorem.
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Consequences

Theorem (Ganchev, S)
Th(De(≤ 0′

e)) ≡1 Th(N).

Theorem (Ganchev, S)

An enumeration degree a ≤ 0′
e is downwards properly Σ0

2 if and only if
it bounds no K-pair.
An enumeration degree a ≤ 0′

e is upwards properly Σ0
2 if and only if no

Σ0
2 e-degree above it is the least upper bound of a nontrivial K-pair.

Theorem (Ganchev, S)
An enumeration degree a is low if and only if every degree b ≤e a
bounds a K-pair.
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A more surprising consequence

Recall that an enumeration degree is total if an only if it is the least
upper bound of de(A)⊕ de(A) for some semi-recursive set
A /∈ Σ0

1 ∪ Π0
1.

If {A,B} is a nontrivial K-pair then B ≤e A.
The K-pair {A,A} is maximal.

Theorem (Ganchev, S)

For every Σ0
2 K-pair {B,C} there is a semi-recursive set A, such that

B ≤e A and C ≤e A.

The class of total degrees is first order definable in De(≤ 0′
e).
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Open question

We know that:
T OT ∩ De(≥ 0′

e) is first order definable.
T OT ∩ De(≤ 0′

e) is first order definable.

Question
Is T OT first order definable in De?

Every enumeration degree is the greatest lower bound of two total
degrees. The total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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One step further in the dream world
Theorem
For every nonzero enumeration degree u ∈ De, u′ is the largest among
all least upper bounds a ∨ b of nontrivial K-pairs {a,b}, such that
a ≤ u.

Say that the Turing degree x is c.e. in u if there are sets X ∈ x and
U ∈ u, such that X is c.e. in U.
If x and u 6= 0e are Turing degrees and x is c.e. in u then ι(x) can
be represented as a ∨ b for a maximal K-pair {a,b}, such that
a ≤ u.
Suppose that every K-pair can be extended to a K-pair of a
semi-recursive set and its complement.
Then T OT would be definable in De.
The relation x is c.e. in u would also be definable for total nozero
degrees.
Then for total nonzero u, our definition of the jump would read u′

is the largest total degree, which is c.e. in u.
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U ∈ u, such that X is c.e. in U.
If x and u 6= 0e are Turing degrees and x is c.e. in u then ι(x) can
be represented as a ∨ b for a maximal K-pair {a,b}, such that
a ≤ u.
Suppose that every K-pair can be extended to a K-pair of a
semi-recursive set and its complement.
Then T OT would be definable in De.
The relation x is c.e. in u would also be definable for total nozero
degrees.
Then for total nonzero u, our definition of the jump would read u′

is the largest total degree, which is c.e. in u.
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The end

Thank you!
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