Semi-recursive sets and definability in the enumeration degrees

Mariya I. Soskova¹

Sofia University Visting scholar at University of California, Berkeley

12/09/2012

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471), Sofia University Science Fund grant No. 131/09.05.2012 and BNSF grant No. DMU 03/07/12.12.2011

Mariya I. Soskova (Sofia University Visting s

Definability in the e-degrees

$A \leq_T B$ iff χ_A is computable with oracle B.

$A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_{\mathcal{T}} B$ if and only if $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

$A \leq_T B$ iff χ_A is computable with oracle B.

$A \leq_{\mathcal{T}} B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_{\mathcal{T}} B$ if and only if $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

 $A \leq_T B$ iff χ_A is computable with oracle B.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_{\mathcal{T}} B$ if and only if $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$.

 $A \leq_T B$ iff χ_A is computable with oracle B.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A (10) A (10)

 $A \leq_T B$ iff χ_A is computable with oracle B.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a c.e. set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

< 回 > < 回 > < 回 >

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$

• $\mathcal{D}_e = \langle D_e, \leq, \lor, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

< 回 > < 回 > < 回 >

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- $d_e(A) = \{B \mid A \equiv_e B\}.$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $\mathcal{D}_{e} = \langle D_{e}, \leq, \lor, \mathbf{0}_{e} \rangle$ is an upper semi-lattice with least element.

A D A D A D A

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{\boldsymbol{\theta}})\subseteq(\mathcal{D}_{\boldsymbol{\theta}},\leq,\vee,\boldsymbol{0}_{\boldsymbol{\theta}})$

A (10) > A (10) > A (10)

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{\boldsymbol{\theta}})\subseteq(\mathcal{D}_{\boldsymbol{\theta}},\leq,\vee,\boldsymbol{0}_{\boldsymbol{\theta}})$

A (10) > A (10) > A (10)

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order and the least upper bound.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}})\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{e})\subseteq(\mathcal{D}_{e},\leq,\vee,\boldsymbol{0}_{e})$$

- Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.
- The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq,\vee,\boldsymbol{0}_{e},')$

• Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.

- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.
- The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq,\vee,\boldsymbol{0}_{e},')$

- Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.

• The embedding ι preserves the jump operation.

 $(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq,\vee,\boldsymbol{0}_{e},')$

- Let $K_A = \{x \mid x \in W_x(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A')$.
- The embedding ι preserves the jump operation.

$$(\mathcal{D}_{\mathcal{T}},\leq,\vee,\boldsymbol{0}_{\mathcal{T}},')\cong(\mathcal{TOT},\leq,\vee,\boldsymbol{0}_{e},')\subseteq(\mathcal{D}_{e},\leq,\vee,\boldsymbol{0}_{e},')$$

A (B) > A (B) > A (B)

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Let *A* be a set of natural numbers. Let *L_A* = {*σ* ∈ 2^{<ω} | *σ* ≤ *χ_A*}. *L_A* is a semi-recursive set:

$$m{s}_{L_{\!A}}\!(\sigma, au) = \left\{egin{array}{cc} \sigma, & \sigma \leq au; \ au, & \textit{otherwise}. \end{array}
ight.$$

(A) (B) (A) (B)

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Let A be a set of natural numbers. Let L_A = {σ ∈ 2^{<ω} | σ ≤ χ_A}.
L_A is a semi-recursive set:

$$m{s}_{L_{\!A}}\!(\sigma, au) = \left\{egin{array}{cc} \sigma, & \sigma \leq au; \ au, & \textit{otherwise}. \end{array}
ight.$$

一日

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

- Let *A* be a set of natural numbers. Let $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \le \chi_A \}.$
- L_A is a semi-recursive set:

$$m{s}_{L_{A}}(\sigma, au) = \left\{egin{array}{cc} \sigma, & \sigma \leq au; \ au, & \textit{otherwise}. \end{array}
ight.$$

A B F A B F

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- ② $L_A \leq_e A$; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)
- $\bigcirc R_A \leq_e \overline{A}$
- ④ A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

A (10) > A (10) > A (10)

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- ② $L_A \leq_e A$; (Mainly because if {*x* | $\sigma(x) = 1$ } ⊆ *A* then $\sigma \leq A$.)
- \bigcirc $R_A \leq_e A$
- A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

< ロ > < 同 > < 回 > < 回 >

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- 2 $L_A \leq_e A$; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)
- ④ A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

< ロ > < 同 > < 回 > < 回 >

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

2 $L_A \leq_e A$; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)

④ A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

2 L_A ≤_e A; (Mainly because if {x | $\sigma(x) = 1$ } ⊆ A then $\sigma \le A$.)
3 R_A ≤_e \overline{A} ;

• A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- 2 $L_A \leq_e A$; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)
- A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

2 $L_A \leq_e A$; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)

- A is semi-recursive if and only if $A \leq_1 L_A$.

Theorem (Jockusch)

A nonzero enumeration degree $d_e(T)$ is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:

$$d_e(A) \vee d_e(\overline{A}) = d_e(T).$$

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

A (10) > A (10) > A (10)

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

A (10) > A (10) > A (10)

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

A (10) > A (10) > A (10)

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

 $(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

Theorem (Arslanov, Cooper, Kalimullin) If A is a semi-recursive set then for every X:

$$(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus \overline{A}) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ . Check:

- $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

< 回 > < 三 > < 三 >

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial *K*-pairs: For every *A* and c.e. set *U*, {*A*, *U*} is a *K*-pair, witnessed by N × *U*.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a \mathcal{K} -pair witnessed by $\{\langle x, y, \rangle | s_A(x, y) = x\}$.
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial *K*-pairs: For every *A* and c.e. set *U*, {*A*, *U*} is a *K*-pair, witnessed by ℕ × *U*.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a \mathcal{K} -pair witnessed by $\{\langle x, y, \rangle | s_A(x, y) = x\}.$
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial *K*-pairs: For every *A* and c.e. set *U*, {*A*, *U*} is a *K*-pair, witnessed by N × *U*.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a \mathcal{K} -pair witnessed by $\{\langle x, y, \rangle | s_A(x, y) = x\}$.

• If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial *K*-pairs: For every *A* and c.e. set *U*, {*A*, *U*} is a *K*-pair, witnessed by ℕ × *U*.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a \mathcal{K} -pair witnessed by $\{\langle x, y, \rangle | s_A(x, y) = x\}.$
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

Definability of \mathcal{K} -pairs

Theorem (Kalimullin)

{A, B} is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have the following property:

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_e)((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{c} \leq \mathbf{b}$ then $\mathcal{K}(\mathbf{a}, \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathcal{K}(\mathbf{a}, \mathbf{b} \vee \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a}, \mathbf{b} > \mathbf{0}_e$ then \mathbf{a}, \mathbf{b} are quasiminimal.

< ロ > < 同 > < 回 > < 回 >

Definability of \mathcal{K} -pairs

Theorem (Kalimullin)

{A, B} is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have the following property:

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{c} \leq \mathbf{b}$ then $\mathcal{K}(\mathbf{a}, \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathcal{K}(\mathbf{a}, \mathbf{b} \vee \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a}, \mathbf{b} > \mathbf{0}_e$ then \mathbf{a}, \mathbf{b} are quasiminimal.

Definability of \mathcal{K} -pairs

Theorem (Kalimullin)

{A, B} is a \mathcal{K} -pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have the following property:

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightarrows (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x}).$

- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{c} \leq \mathbf{b}$ then $\mathcal{K}(\mathbf{a}, \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathcal{K}(\mathbf{a}, \mathbf{b} \vee \mathbf{c})$.
- If $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathbf{a}, \mathbf{b} > \mathbf{0}_e$ then \mathbf{a}, \mathbf{b} are quasiminimal.

Definability of the enumeration jump

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

- 0'_e is the largest e-degree such that there are e-degrees a, b, c, such that a ∨ b ∨ c = 0'_e and K(a, b), K(b, c), K(a, c).
- \mathcal{K} -pairs can be relativized.

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

- If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.
- Consider the \mathcal{K} -pair $\{L_{K_U}, R_{K_U}\}$: then $L_{K_U} \leq_e K_U \equiv_e U$ and $L_{K_U} \oplus R_{K_U} \equiv_e K_U \oplus \overline{K_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low $(U' = \emptyset')$?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

• If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.

• Consider the \mathcal{K} -pair $\{L_{K_U}, R_{K_U}\}$: then $L_{K_U} \leq_e K_U \equiv_e U$ and $L_{K_U} \oplus R_{K_U} \equiv_e K_U \oplus \overline{K_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low $(U' = \emptyset')$?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

• If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.

• Consider the \mathcal{K} -pair $\{L_{K_U}, R_{K_U}\}$: then $L_{K_U} \leq_e K_U \equiv_e U$ and $L_{K_U} \oplus R_{K_U} \equiv_e K_U \oplus \overline{K_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low (U' = \emptyset ')?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

- If $\mathcal{K}(A, B)$ and $A \leq_{e} U$ then $B \leq_{e} \overline{A} \leq_{e} A'$, so $A \oplus B \leq_{e} A' \leq_{e} U'$.
- Consider the \mathcal{K} -pair $\{L_{\mathcal{K}_U}, \mathcal{R}_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U} \leq_e \mathcal{K}_U \equiv_e U$ and $L_{\mathcal{K}_U} \oplus \mathcal{R}_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low (U' = \emptyset ')?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

- If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.
- Consider the \mathcal{K} -pair $\{L_{K_U}, R_{K_U}\}$: then $L_{K_U} \leq_e K_U \equiv_e U$ and $L_{K_U} \oplus R_{K_U} \equiv_e K_U \oplus \overline{K_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low (U' = \emptyset ')?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

- If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.
- Consider the \mathcal{K} -pair $\{L_{\mathcal{K}_U}, \mathcal{R}_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U} \leq_e \mathcal{K}_U \equiv_e U$ and $L_{\mathcal{K}_U} \oplus \mathcal{R}_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low $(U' = \emptyset')$?

Theorem (Ganchev, S)

For every nonzero enumeration degree $\mathbf{u} \in \mathcal{D}_e$, \mathbf{u}' is the largest among all least upper bounds $\mathbf{a} \lor \mathbf{b}$ of nontrivial \mathcal{K} -pairs $\{\mathbf{a}, \mathbf{b}\}$, such that $\mathbf{a} \le \mathbf{u}$.

Proof.

- If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.
- Consider the \mathcal{K} -pair $\{L_{\mathcal{K}_U}, \mathcal{R}_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U} \leq_e \mathcal{K}_U \equiv_e U$ and $L_{\mathcal{K}_U} \oplus \mathcal{R}_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ is a trivial \mathcal{K} -pair, i.e. U is low $(U' = \emptyset')$?

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- ② A *K*-system is a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j).
- \bigcirc \mathcal{K} systems are antichains.
- I Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

(4) (5) (4) (5)

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

1 Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.

- ② A *K*-system is a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j).
- \bigcirc \mathcal{K} systems are antichains.
- I Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_{e}(\leq \mathbf{0}'_{e})$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_{e}(\leq \mathbf{0}'_{e})$.

1 Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.

- A \mathcal{K} -system is a sequence of $\{\mathbf{a}_i\}_{i \in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_i)$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- ② A *K*-system is a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j).
- If \mathcal{K} systems are antichains.
- I Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- ② A *K*-system is a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j).
- $\mathbf{3}$ \mathcal{K} systems are antichains.
 - Severy nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 A *K*-system is a sequence of {a_i}_{i∈I} of e-degrees such that if i ≠ j then *K*(a_i, a_j).
- \bigcirc \mathcal{K} systems are antichains.
- Svery nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

 $\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

- For every ∆₂⁰ degree u there is a nontrivial *K*-pair {a, b}, such that a ≤ u and a ∨ b = 0'_e. (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

- For every ∆₂⁰ degree u there is a nontrivial *K*-pair {a, b}, such that a ≤ u and a ∨ b = 0'_e. (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 $\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (\forall \mathsf{x})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- For every ∆₂⁰ degree u there is a nontrivial *K*-pair {a, b}, such that a ≤ u and a ∨ b = 0'_e. (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

A (10) A (10)

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \hookrightarrow (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- For every ∆₂⁰ degree u there is a nontrivial *K*-pair {a, b}, such that a ≤ u and a ∨ b = 0'_e. (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

A (10) A (10)

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \hookrightarrow (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines the \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- For every ∆₂⁰ degree u there is a nontrivial *K*-pair {a, b}, such that a ≤ u and a ∨ b = 0'_e. (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

A B > A B >

Theorem (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ_2^0 if and only if it bounds no \mathcal{K} -pair. An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ_2^0 if and only if no Σ_2^0 e-degree above it is the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree **b** \leq_e **a** bounds a \mathcal{K} -pair.

Theorem (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ_2^0 if and only if it bounds no \mathcal{K} -pair.

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ_2^0 if and only if no Σ_2^0 e-degree above it is the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree **b** \leq_e **a** bounds a \mathcal{K} -pair.

< ロ > < 同 > < 回 > < 回 >

Theorem (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ_2^0 if and only if it bounds no \mathcal{K} -pair. An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ_2^0 if and only if no Σ_2^0 e-degree above it is the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree **b** \leq_e **a** bounds a \mathcal{K} -pair.

Theorem (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ_2^0 if and only if it bounds no \mathcal{K} -pair. An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ_2^0 if and only if no Σ_2^0 e-degree above it is the least upper bound of a nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

An enumeration degree **a** is low if and only if every degree $\mathbf{b} \leq_e \mathbf{a}$ bounds a \mathcal{K} -pair.

- Recall that an enumeration degree is total if an only if it is the least upper bound of *d_e(A)* ⊕ *d_e(Ā)* for some semi-recursive set *A* ∉ Σ₁⁰ ∪ Π₁⁰.
- If {A, B} is a nontrivial *K*-pair then B ≤_e Ā.
 The *K*-pair {A, Ā} is maximal.

Theorem (Ganchev, S)

For every $\Sigma_2^0 \mathcal{K}$ -pair $\{B, C\}$ there is a semi-recursive set A, such that $B \leq_e A$ and $C \leq_e \overline{A}$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

(4) (2) (4) (2)

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $B \leq_e \overline{A}$.

• The \mathcal{K} -pair $\{A, \overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every $\Sigma_2^0 \mathcal{K}$ -pair {B, C} there is a semi-recursive set A, such that $B \leq_e A$ and $C \leq_e \overline{A}$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

(A) (B) (A) (B)

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $B \leq_e \overline{A}$.
- The \mathcal{K} -pair $\{A, \overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every $\Sigma_2^0 \mathcal{K}$ -pair {B, C} there is a semi-recursive set A, such that $B \leq_e A$ and $C \leq_e \overline{A}$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $B \leq_e \overline{A}$.
- The \mathcal{K} -pair $\{A, \overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every $\Sigma_2^0 \mathcal{K}$ -pair $\{B, C\}$ there is a semi-recursive set A, such that $B \leq_e A$ and $C \leq_e \overline{A}$.

The class of total degrees is first order definable in ${\mathcal D}_e(\leq {f 0}_e').$

A B A A B A

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $B \leq_e \overline{A}$.
- The \mathcal{K} -pair $\{A, \overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every $\Sigma_2^0 \mathcal{K}$ -pair $\{B, C\}$ there is a semi-recursive set A, such that $B \leq_e A$ and $C \leq_e \overline{A}$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

A > + = + + =

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

(4) (5) (4) (5)

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

A B F A B F

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

A B F A B F

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u, or the second second

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u, where to a state of the state of

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u, and a set of the set of t

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u, and a set of the set of t

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then *ι*(x) can be represented as a ∨ b for a maximal *K*-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u, and a set of the set of t

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.

Theorem

- Say that the Turing degree x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X is c.e. in U.
- If x and u ≠ 0_e are Turing degrees and x is c.e. in u then ι(x) can be represented as a ∨ b for a maximal K-pair {a, b}, such that a ≤ u.
- Suppose that every \mathcal{K} -pair can be extended to a \mathcal{K} -pair of a semi-recursive set and its complement.
- Then TOT would be definable in D_e .
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero u, our definition of the jump would read u' is the largest total degree, which is c.e. in u

Thank you!

★ E ▶ E • つ Q C 12/09/2012 19 / 19

イロト イヨト イヨト イヨト