Semi-recursive sets and definability in the enumeration degrees

Mariya I. Soskova¹

Sofia University Visting scholar at University of California, Berkeley

12/09/2012

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) , Sofia University Science Fund grant No. 131/09.05.2012 and BNSF grant No. DMU 03/07/12.12.2011 The South To

Mariya I. Soskova (Sofia University Visting schoolar at University In the e-degrees 12/09/2012 1/19

$A \leq_T B$ iff χ_A is computable with oracle *B*.

$A \leq_T B$ iff $A \oplus A$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set *W* such that $x \in A \oplus A$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus B$.

 $A \leq_{e} B$ if and only if there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

Note that $A \leq_T B$ if and only if $A \oplus A \leq_B B \oplus B$.

 Ω

A > + 3 + + 3

$A \leq_T B$ iff χ_A is computable with oracle *B*.

$A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set *W* such that $x \in A \oplus A$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus B$.

 $A \leq_{e} B$ if and only if there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

Note that $A \leq_T B$ if and only if $A \oplus A \leq_B B \oplus B$.

 Ω

医单侧 医单面

 $A \leq_T B$ iff χ_A is computable with oracle *B*.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus A$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus B$.

 $A \leq_{e} B$ if and only if there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

Note that $A \leq_T B$ if and only if $A \oplus A \leq_B B \oplus B$.

 Ω

母 トメミ トメ 毛

 $A \leq_T B$ iff χ_A is computable with oracle *B*.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus A$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus B$.

Definition

A ≤*^e B* if and only if there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

Note that $A \leq_T B$ if and only if $A \oplus A \leq_B B \oplus B$.

 Ω

医单位 医单

 $A \leq_T B$ iff χ_A is computable with oracle *B*.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus A$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus B$.

Definition

A ≤*^e B* if and only if there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_B B \oplus \overline{B}$.

A ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.

- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).

 $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

 Ω

 $\left\{ \left. \left(\mathsf{d} \mathsf{d} \right) \right| \times \left\{ \left(\mathsf{d} \right) \right| \times \left(\mathsf{d} \right) \right\}$

- *A* ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- \bullet *d_e*(*A*) \leq *d_e*(*B*) iff *A* \leq_e *B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).

 $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

 Ω

 $\left\{ \left. \left(\mathsf{d} \mathsf{d} \right) \right| \times \left\{ \left(\mathsf{d} \right) \right| \times \left(\mathsf{d} \right) \right\}$

- *A* ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- \bullet *d*_{*e*}(*A*) ≤ *d*_{*e*}(*B*) iff *A* ≤*e B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).
- $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

- *A* ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- \bullet *d*_{*e*}(*A*) ≤ *d*_{*e*}(*B*) iff *A* ≤*e B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).

 $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

- *A* ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- \bullet *d*_{*e*}(*A*) ≤ *d*_{*e*}(*B*) iff *A* ≤*e B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).

 $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

 Ω

イタト イヨト イヨ

- *A* ≡*^e B* if *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = {*B* | *A* ≡*e B*}.
- \bullet *d_e*(*A*) \le *d_e*(*B*) iff *A* \leq_e *B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).
- $\mathcal{D}_e = \langle D_e, \leq, \vee, \mathbf{0}_e \rangle$ is an upper semi-lattice with least element.

The total degrees

Proposition

The embedding ι : $\mathcal{D}_T \to \mathcal{D}_e$, *defined by* $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, *preserves the order and the least upper bound.*

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_\mathcal{T}, \leq, \vee, \mathbf{0}_\mathcal{T}) \cong (\mathcal{T} \mathcal{O} \mathcal{T}, \leq, \vee, \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq, \vee, \mathbf{0}_e)$

Mariya I. Soskova (Sofia University Visting schoolar at University in the e-degrees 12/09/2012 4/19

 Ω

医毛囊 医牙骨

The total degrees

Proposition

The embedding ι : $\mathcal{D}_T \to \mathcal{D}_e$, *defined by* $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, *preserves the order and the least upper bound.*

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

 $(\mathcal{D}_\mathcal{T}, \leq, \vee, \mathbf{0}_\mathcal{T}) \cong (\mathcal{T} \mathcal{O} \mathcal{T}, \leq, \vee, \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq, \vee, \mathbf{0}_e)$

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

The total degrees

Proposition

The embedding ι : $\mathcal{D}_T \to \mathcal{D}_e$, *defined by* $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, *preserves the order and the least upper bound.*

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

$$
(\mathcal{D}_\mathcal{T},\leq,\vee,\bm{0}_\mathcal{T})\cong(\mathcal{TOT},\leq,\vee,\bm{0}_e)\subseteq(\mathcal{D}_e,\leq,\vee,\bm{0}_e)
$$

 Ω

 \rightarrow \equiv \rightarrow

- Let $K_A = \{x \mid x \in W_X(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A').$
- **•** The embedding ι preserves the jump operation.

 $(\mathcal{D}_\mathcal{T}, \leq, \vee, \mathbf{0}_\mathcal{T}, ')\cong (\mathcal{TOT}, \leq, \vee, \mathbf{0}_e, ') \subseteq (\mathcal{D}_e, \leq, \vee, \mathbf{0}_e, ')$

 Ω

• Let $K_A = \{x \mid x \in W_X(A)\}$. Note that $K_A \equiv_e A$.

- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A').$
- **•** The embedding ι preserves the jump operation.

$(\mathcal{D}_\mathcal{T}, \leq, \vee, \mathbf{0}_\mathcal{T}, ')\cong (\mathcal{TOT}, \leq, \vee, \mathbf{0}_e, ') \subseteq (\mathcal{D}_e, \leq, \vee, \mathbf{0}_e, ')$

 Ω

- Let $K_A = \{x \mid x \in W_X(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A').$

• The embedding ι preserves the jump operation.

 $(\mathcal{D}_\mathcal{T}, \leq, \vee, \mathbf{0}_\mathcal{T}, ')\cong (\mathcal{TOT}, \leq, \vee, \mathbf{0}_e, ') \subseteq (\mathcal{D}_e, \leq, \vee, \mathbf{0}_e, ')$

 Ω

- Let $K_A = \{x \mid x \in W_X(A)\}$. Note that $K_A \equiv_e A$.
- The jump of *A* is $A' = K_A \oplus \overline{K_A}$. Then $d_e(A)' = d_e(A').$
- The embedding ι preserves the jump operation.

$$
(\mathcal{D}_\mathcal{T},\leq,\vee,\bm{0}_\mathcal{T},')\cong(\mathcal{TOT},\leq,\vee,\bm{0}_e,')\subseteq(\mathcal{D}_e,\leq,\vee,\bm{0}_e,')
$$

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Let *A* be a set of natural numbers. Let $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \leq \chi_A \}.$ *L^A* is a semi-recursive set:

$$
s_{L_A}(\sigma,\tau)=\left\{\begin{array}{ll}\sigma,&\sigma\leq\tau;\\ \tau,&\text{otherwise.}\end{array}\right.
$$

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Let *A* be a set of natural numbers. Let $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \leq \chi_A \}.$ *L^A* is a semi-recursive set:

$$
s_{L_A}(\sigma,\tau)=\left\{\begin{array}{ll}\sigma,&\sigma\leq\tau;\\ \tau,&\text{otherwise.}\end{array}\right.
$$

Semi-recursive sets

Definition (Jockusch)

A set of natural numbers *A* is semi-recursive if there is a total computable selector function s_A , such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

- Let *A* be a set of natural numbers. Let $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \leq \chi_A \}.$
- *L^A* is a semi-recursive set:

$$
s_{L_A}(\sigma,\tau)=\left\{\begin{array}{ll} \sigma,&\sigma\leq\tau;\\ \tau,&\text{otherwise.}\end{array}\right.
$$

Denote by R_A **the set** $\overline{L_A}$ **.** For every set of natural numbers A the following holds.

- \bullet $L_A \oplus R_A \equiv_e A \oplus \overline{A}$;
- 2 *L*_A \leq_e *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.)
- \overline{B} $R_A \leq e \overline{A}$;

4 A is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- **1** $L_A \oplus R_A \equiv_e A \oplus \overline{A}$:
- 2 *L*_A $\leq e$ *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.) \odot $R_A <_{\rho} \overline{A}$;

 \bigodot *A* is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- **1** $L_A \oplus R_A \equiv_e A \oplus \overline{A}$:
- 2 *L*_A \leq _{*A*}; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.) \odot $R_A <_{\rho} \overline{A}$;

 \bigodot *A* is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

1 *L*_A ⊕ *R*_A \equiv _{*e*} *A* ⊕ \overline{A} ;

2 *L*_A \leq_e *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.) \odot $R_A <_{\rho} \overline{A}$;

 \bigodot *A* is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

イロト イ押 トイラト イラト

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

1 *L*_A ⊕ *R*_A \equiv _{*e*} *A* ⊕ \overline{A} ;

2 *L*_A \leq_e *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.) 3 $R_A < e \overline{A}$;

4 *A* is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

イロト イ押 トイラト イラト

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

- **1** $L_A \oplus R_A \equiv_e A \oplus \overline{A}$:
- 2 *L*_A \leq_e *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subseteq A$ then $\sigma \leq A$.) \overline{B} $R_A \leq_e \overline{A}$;
- 4 *A* is semi-recursive if and only if $A \leq 1$ L_A .

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

 $d_e(A) \vee d_e(\overline{A}) = d_e(T).$

 Ω

イロト イ押 トイラト イラト

Denote by R_A the set $\overline{L_A}$. For every set of natural numbers A the following holds.

1 $L_A \oplus R_A \equiv_e A \oplus \overline{A}$:

2 *L*_A \leq_e *A*; (Mainly because if $\{x \mid \sigma(x) = 1\} \subset A$ then $\sigma \leq A$.) 3 $R_A < e \overline{A}$;

4 *A* is semi-recursive if and only if $A \leq 1$ L_A .

Theorem (Jockusch)

A nonzero enumeration degree de(*T*) *is total if and only if there is a semi-recursive set A, which is not c.e. and not co-c.e. such that:*

$$
d_e(A) \vee d_e(\overline{A}) = d_e(T).
$$

 Ω

医单位 医单位

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

 $(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(A)) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

- *F*¹ ∪ *F*² ⊆ *X*.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq A$.
- **•** Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

 $\left\{ \bigcap_{i=1}^{n} x_i \mid i \in \mathbb{N} \right\}$

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

 $(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

- *F*¹ ∪ *F*² ⊆ *X*.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq A$.
- **•** Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

 $\left\{ \bigcap_{i=1}^{n} x_i \mid i \in \mathbb{N} \right\}$

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

 $(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

- *F*¹ ∪ *F*² ⊆ *X*.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq A$.
- **•** Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

$$
(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).
$$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

$$
\bullet\ \mathsf{F}_1\cup\mathsf{F}_2\subseteq X.
$$

- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq A$.
- **•** Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

$$
(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).
$$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

- \bullet $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- **•** Equivalently there is no pair $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

Theorem (Arslanov, Cooper, Kalimullin) *If A is a semi-recursive set then for every X:*

$$
(d_e(X) \vee d_e(A)) \wedge (d_e(X) \vee d_e(\overline{A})) = d_e(X).
$$

Proof: Suppose that $\Gamma(X \oplus A) = \Lambda(X \oplus A) = Y$. Suppose $\langle y, F_1 \oplus D_1 \rangle$ is in Γ and $\langle y, F_2 \oplus D_2 \rangle$ is in Λ. Check:

- \bullet $F_1 \cup F_2 \subseteq X$.
- It is the case that both $D_1 \nsubseteq A$ and $D_2 \nsubseteq \overline{A}$.
- **Equivalently there is no pair** $\langle \overline{a}, a \rangle \in D_1 \times D_2$ such that $s_A(\overline{a}, a) = a$.

 Ω

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a K -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial *K*-pairs: For every *A* and c.e. set *U*, $\{A, U\}$ is a *K*-pair, witnessed by $N \times U$.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a K -pair witnessed by $\{(x, y, \cdot) | S_A(x, y) = x\}.$
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.
A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a K -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- **•** Trivial K-pairs: For every A and c.e. set U , $\{A, U\}$ is a K-pair, witnessed by $N \times U$.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a K -pair witnessed by $\{(x, y, \cdot) | S_A(x, y) = x\}.$
- If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a K -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial K-pairs: For every A and c.e. set U , $\{A, U\}$ is a K-pair, witnessed by $N \times U$.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a K -pair witnessed by $\{ (x, y, \cdot) | S_A(x, y) = x \}.$

If $\{A, B\}$ is a nontrivial \mathcal{K} -pair then $A \leq_e \overline{B}$ and $\overline{A} \leq_e B \oplus \emptyset'$.

A generalization of semi-recursive sets

Definition (Kalimullin)

A pair of sets $\{A, B\}$ is a K -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

- Trivial K-pairs: For every A and c.e. set U , $\{A, U\}$ is a K-pair, witnessed by $N \times U$.
- For every semi-recursive set A, $\{A, \overline{A}\}$ is a K -pair witnessed by $\{ (x, y, \cdot) | S_A(x, y) = x \}.$
- If $\{A,B\}$ is a nontrivial $\mathcal{K}\text{-pair}$ then $A\leq_{\bm{e}}\overline{B}$ and $\overline{A}\leq_{\bm{e}}B\oplus\emptyset'.$

Definability of K -pairs

Theorem (Kalimullin)

 ${A, B}$ *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have *the following property:*

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x}).
$$

- **•** If K (**a**, **b**) and **c** \leq **b** then K (**a**, **c**).
- **•** If K (**a**, **b**) and K (**a**, **c**) then K (**a**, **b** ∨ **c**).
- \bullet If K (**a**, **b**) and **a**, **b** $>$ **0**^{\bullet} then **a**, **b** are quasiminimal.

 Ω

画面

Definability of K -pairs

Theorem (Kalimullin)

 ${A, B}$ *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have *the following property:*

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x}).
$$

- **•** If K (**a**, **b**) and **c** ≤ **b** then K (**a**, **c**).
- \bullet If K(**a**, **b**) and K(**a**, **c**) then K(**a**, **b** ∨ **c**).
- \bullet If K (**a**, **b**) and **a**, **b** $>$ **0**_{*e*} then **a**, **b** are quasiminimal.

 Ω

ラメス 国

Definability of K -pairs

Theorem (Kalimullin)

 ${A, B}$ *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$, $\mathbf{b} = d_e(B)$ have *the following property:*

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x} \in \mathcal{D}_{e})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x}).
$$

- **•** If K (**a**, **b**) and **c** ≤ **b** then K (**a**, **c**).
- \bullet If K(**a**, **b**) and K(**a**, **c**) then K(**a**, **b** ∨ **c**).
- \bullet If K (**a**, **b**) and **a**, **b** $>$ **0** $_e$ then **a**, **b** are quasiminimal.

Definability of the enumeration jump

Theorem (Kalimullin)

The enumeration jump is first order definable in D*e.*

- **0** 0 *e* is the largest e-degree such that there are e-degrees **a**, **b**, **c**, such that $\mathbf{a} \vee \mathbf{b} \vee \mathbf{c} = \mathbf{0}'_e$ and $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c}), \mathcal{K}(\mathbf{a}, \mathbf{c}).$
- \bullet K-pairs can be relativized.

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

- If $\mathcal{K}(A, B)$ and $A \leq_e U$ then $B \leq_e \overline{A} \leq_e A'$, so $A \oplus B \leq_e A' \leq_e U'$.
- Consider the $\mathcal{K}\text{-}\mathsf{pair}\ \{L_{\mathcal{K}_U},R_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U}\leq_e \mathcal{K}_U\equiv_e U$ and $L_{\mathcal{K}_U} \oplus R_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'.$

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$

Consider the $\mathcal{K}\text{-}\mathsf{pair}\ \{L_{\mathcal{K}_U},R_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U}\leq_e \mathcal{K}_U\equiv_e U$ and $L_{\mathcal{K}_U} \oplus R_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'.$

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$

Consider the $\mathcal{K}\text{-}\mathsf{pair}\ \{L_{\mathcal{K}_U},R_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U}\leq_e \mathcal{K}_U\equiv_e U$ and $L_{\mathcal{K}_U} \oplus R_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'.$

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

- If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$
- $\boldsymbol{\mathsf{Consider}}$ the $\mathcal{K}\text{-}\mathsf{pair}\ \{\boldsymbol{L_{K_U},R_{K_U}}\}\text{: then }\ L_{K_U}\leq_{e} K_U\equiv_{e} U \text{ and }$ $L_{\mathcal{K}_U} \oplus R_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'.$

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

- If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$
- $\mathcal{L}_{\mathcal{K}_U}$ (*L* \mathcal{K}_U , $\mathcal{R}_{\mathcal{K}_U}$): then $L_{\mathcal{K}_U} \leq_e \mathcal{K}_U \equiv_e U$ and $L_{\mathcal{K}_U} \oplus R_{\mathcal{K}_U} \equiv_e \mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'.$

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

- If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$
- Consider the $\mathcal{K}\text{-}\mathsf{pair}\ \{L_{\mathcal{K}_U},\mathcal{R}_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U}\leq_e \mathcal{K}_U\equiv_e U$ and $\mathcal{L}_{\mathcal{K}_U} \oplus \mathcal{R}_{\mathcal{K}_U} \equiv$ e $\mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Theorem (Ganchev, S)

For every nonzero enumeration degree **u** ∈ D*e,* **u** 0 *is the largest among all least upper bounds* **a** ∨ **b** *of nontrivial* K*-pairs* {**a**, **b**}*, such that* $a < u$.

Proof.

- If $\mathcal{K}(A,B)$ and $A\leq_e U$ then $B\leq_e \overline{A}\leq_e A',$ so $A\oplus B\leq_e A'\leq_e U'.$
- Consider the $\mathcal{K}\text{-}\mathsf{pair}\ \{L_{\mathcal{K}_U},\mathcal{R}_{\mathcal{K}_U}\}$: then $L_{\mathcal{K}_U}\leq_e \mathcal{K}_U\equiv_e U$ and $\mathcal{L}_{\mathcal{K}_U} \oplus \mathcal{R}_{\mathcal{K}_U} \equiv$ e $\mathcal{K}_U \oplus \overline{\mathcal{K}_U} = U'$.

What if $\{L_{K_U}, R_{K_U}\}$ *is a trivial* K -pair, *i.e.* U is low $(U' = \emptyset')$?

 Ω

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- **D** Non-trivial Σ^0_2 *K*-pairs are low.
- A K-system is a sequence of $\{a_i\}_{i\in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- κ systems are antichains.
- 4 Every nonzero Δ^0_2 e-degree bounds a countable $\mathcal K$ -system.

 Ω

 $A \equiv A \quad A \equiv$

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

D Non-trivial Σ^0_2 *K*-pairs are low.

- A K-system is a sequence of $\{a_i\}_{i \in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- \bullet K systems are antichains.
- 4 Every nonzero Δ^0_2 e-degree bounds a countable $\mathcal K$ -system.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

D Non-trivial Σ^0_2 *K*-pairs are low.

- A K-system is a sequence of $\{a_i\}_{i\in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- \bullet K systems are antichains.
- 4 Every nonzero Δ^0_2 e-degree bounds a countable $\mathcal K$ -system.

 Ω

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- **D** Non-trivial Σ^0_2 *K*-pairs are low.
- A K-system is a sequence of $\{a_i\}_{i\in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- \bullet K systems are antichains.
- 4 Every nonzero Δ^0_2 e-degree bounds a countable $\mathcal K$ -system.

 QQQ

K ロ × K 御 × K 唐 × K 唐 × 『唐

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- **D** Non-trivial Σ^0_2 *K*-pairs are low.
- A K-system is a sequence of $\{a_i\}_{i\in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- \bullet K systems are antichains.
- 4 Every nonzero Δ^0_2 e-degree bounds a countable $\mathcal K$ -system.

 QQQ

K ロ × K 御 × K 唐 × K 唐 × 『唐

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- **D** Non-trivial Σ^0_2 *K*-pairs are low.
- A K-system is a sequence of $\{a_i\}_{i \in I}$ of e-degrees such that if $i \neq j$ then $\mathcal{K}(\mathbf{a}_i, \mathbf{a}_j)$.
- \bullet K systems are antichains.
- ⁴ Every nonzero Δ⁰₂ e-degree bounds a countable K -system.

 Ω

A BAKEN B

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

There is a first order formula LK(*x*, *y*)*, which defines the* K*-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

- For every ∆⁰ 2 degree **u** there is a nontrivial K-pair {**a**, **b**}, such that **a** ≤ **u** and **a** ∨ **b** = **0** 0 *e* . (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

There is a first order formula LK(*x*, *y*)*, which defines the* K*-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

- For every ∆⁰ 2 degree **u** there is a nontrivial K-pair {**a**, **b**}, such that **a** ≤ **u** and **a** ∨ **b** = **0** 0 *e* . (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 Ω

British

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \Leftrightarrow (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} -pairs in $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

- For every ∆⁰ 2 degree **u** there is a nontrivial K-pair {**a**, **b**}, such that **a** ≤ **u** and **a** ∨ **b** = **0** 0 *e* . (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 Ω

REPAREM

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} -pairs in $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

- For every Δ^0_2 degree **u** there is a nontrivial \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$, such that **a** ≤ **u** and **a** ∨ **b** = **0** 0 *e* . (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 Ω

REPAREM

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ^0_2 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$ *, which defines the* \mathcal{K} *-pairs in* $\mathcal{D}_{e}(\leq \mathbf{0}_{e}^{\prime}).$

- For every Δ^0_2 degree **u** there is a nontrivial \mathcal{K} -pair $\{\mathbf{a}, \mathbf{b}\}$, such that **a** ≤ **u** and **a** ∨ **b** = **0** 0 *e* . (This finishes the proof of the definability of the enumeration jump.)
- An additional structural property similar to an e-degree version of Harrington's non-splitting theorem.

 Ω

化重氮化重氮化

Theorem (Ganchev, S) $\mathcal{I}h(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 \mathcal{I}h(\mathbb{N}).$

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ^0_2 if and only if *it bounds no* K*-pair.*

An enumeration degree **a** ≤ **0** 0 *e is upwards properly* Σ 0 2 *if and only if no* Σ 0 2 *e-degree above it is the least upper bound of a nontrivial* K*-pair.*

An enumeration degree **a** *is low if and only if every degree* **b** \leq_e **a** *bounds a* K*-pair.*

 Ω

 \rightarrow \equiv \rightarrow

 \leftarrow \leftarrow \leftarrow

Theorem (Ganchev, S) $\mathcal{I}h(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 \mathcal{I}h(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ^0_2 if and only if *it bounds no* K*-pair.*

An enumeration degree **a** ≤ **0** 0 *e is upwards properly* Σ 0 2 *if and only if no* Σ 0 2 *e-degree above it is the least upper bound of a nontrivial* K*-pair.*

An enumeration degree **a** *is low if and only if every degree* **b** \leq_e **a** *bounds a* K*-pair.*

 Ω

Theorem (Ganchev, S) $\mathcal{I}h(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 \mathcal{I}h(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ^0_2 if and only if *it bounds no* K*-pair.*

 A ⁿ enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ^0_2 if and only if no Σ 0 2 *e-degree above it is the least upper bound of a nontrivial* K*-pair.*

An enumeration degree **a** *is low if and only if every degree* **b** ≤*^e* **a** *bounds a* K*-pair.*

 Ω

Theorem (Ganchev, S) $\mathcal{I}h(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 \mathcal{I}h(\mathbb{N}).$

Theorem (Ganchev, S)

An enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is downwards properly Σ^0_2 if and only if *it bounds no* K*-pair.*

 A ⁿ enumeration degree $\mathbf{a} \leq \mathbf{0}'_e$ is upwards properly Σ^0_2 if and only if no

Σ 0 2 *e-degree above it is the least upper bound of a nontrivial* K*-pair.*

Theorem (Ganchev, S)

An enumeration degree **a** *is low if and only if every degree* **b** ≤*^e* **a** *bounds a* K*-pair.*

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- **•** If $\{A, B\}$ is a nontrivial *K*-pair then $B \leq_e \overline{A}$.

• The K -pair $\{A, \overline{A}\}$ is maximal.

For every Σ 0 ² K*-pair* {*B*, *C*} *there is a semi-recursive set A, such that* $B \leq_{e} A$ and $C \leq_{e} A$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- \bullet If {*A*, *B*} is a nontrivial *K*-pair then *B* \leq_e *A*.

• The K -pair $\{A, \overline{A}\}$ is maximal.

For every Σ 0 ² K*-pair* {*B*, *C*} *there is a semi-recursive set A, such that* $B \leq_{e} A$ and $C \leq_{e} A$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- \bullet If {*A*, *B*} is a nontrivial *K*-pair then *B* \leq_e *A*.
- The K -pair $\{A,\overline{A}\}$ is maximal.

For every Σ 0 ² K*-pair* {*B*, *C*} *there is a semi-recursive set A, such that* $B \leq_{e} A$ and $C \leq_{e} A$.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- \bullet If {*A*, *B*} is a nontrivial *K*-pair then *B* \leq_e *A*.
- The K -pair $\{A,\overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every Σ 0 ² K*-pair* {*B*, *C*} *there is a semi-recursive set A, such that B* ≤*^e A and C* ≤*^e A.*

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$ *.*

 Ω

化重氮化重氮

- Recall that an enumeration degree is total if an only if it is the least upper bound of $d_e(A) \oplus d_e(\overline{A})$ for some semi-recursive set $A \notin \Sigma_1^0 \cup \Pi_1^0$.
- \bullet If {*A*, *B*} is a nontrivial *K*-pair then *B* \leq_e *A*.
- The K -pair $\{A,\overline{A}\}$ is maximal.

Theorem (Ganchev, S)

For every Σ 0 ² K*-pair* {*B*, *C*} *there is a semi-recursive set A, such that B* ≤*^e A and C* ≤*^e A.*

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}_e')$.

 Ω

 $\mathbf{A} \oplus \mathbf{A} \rightarrow \mathbf{A} \oplus \mathbf{A}$

Open question

We know that:

 $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.

 $\mathcal{T} \mathcal{O} \mathcal{T} \cap \mathcal{D}_e (\leq \mathbf{0}^\prime_e)$ is first order definable.

Is T OT *first order definable in* D*e?*

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

 Ω

 $A \equiv A \quad A \equiv$

Open question

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Is T OT *first order definable in* D*e?*

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

 Ω

化重压 化重
Open question

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question

Is T OT *first order definable in* D*e?*

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

 Ω

医下半面

Open question

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question *Is* T OT *first order definable in* D*e?*

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

 Ω

医下す 医下

Open question

We know that:

- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e} (\geq \mathbf{0}_e')$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_\mathit{e}(\leq\mathbf{0}'_e)$ is first order definable.

Question

Is T OT *first order definable in* D*e?*

Every enumeration degree is the greatest lower bound of two total degrees. The total degrees are an automorphism base for D*e*.

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

 Ω

化重氮化重氮

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and **u** \neq **0**_{*e*} are Turing degrees and **x** is c.e. in **u** then ι (**x**) can be represented as **a** \vee **b** for a maximal \mathcal{K} -pair {**a**, **b**}, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathbf{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-74-0)**. QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and **u** \neq **0**_{*e*} are Turing degrees and **x** is c.e. in **u** then ι (**x**) can be represented as **a** \vee **b** for a maximal \mathcal{K} -pair {**a**, **b**}, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathfrak{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-75-0)**. QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and $\mathbf{u} \neq \mathbf{0}_e$ are Turing degrees and **x** is c.e. in **u** then $\iota(\mathbf{x})$ can be represented as **a** \vee **b** for a maximal \mathcal{K} -pair {**a**, **b**}, such that **a** ≤ **u**.
- Suppose that every K-pair can be extended to a K-pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathfrak{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-76-0)**. QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and $\mathbf{u} \neq \mathbf{0}_e$ are Turing degrees and **x** is c.e. in **u** then $\iota(\mathbf{x})$ can be represented as $\mathbf{a} \vee \mathbf{b}$ for a maximal K-pair $\{\mathbf{a}, \mathbf{b}\}\)$, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathfrak{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-77-0)**. QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and $\mathbf{u} \neq \mathbf{0}_e$ are Turing degrees and **x** is c.e. in **u** then $\iota(\mathbf{x})$ can be represented as $\mathbf{a} \vee \mathbf{b}$ for a maximal K-pair $\{\mathbf{a}, \mathbf{b}\}\)$, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathbf{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-78-0)**. QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and $\mathbf{u} \neq \mathbf{0}_e$ are Turing degrees and **x** is c.e. in **u** then $\iota(\mathbf{x})$ can be represented as $\mathbf{a} \vee \mathbf{b}$ for a maximal K-pair $\{\mathbf{a}, \mathbf{b}\}\)$, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathbf{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-79-0)**. \sim \pm QQ

Theorem

- Say that the Turing degree **x** is c.e. in **u** if there are sets *X* ∈ **x** and $U \in \mathbf{u}$, such that *X* is c.e. in *U*.
- **•** If **x** and $\mathbf{u} \neq \mathbf{0}_e$ are Turing degrees and **x** is c.e. in **u** then $\iota(\mathbf{x})$ can be represented as $\mathbf{a} \vee \mathbf{b}$ for a maximal K-pair $\{\mathbf{a}, \mathbf{b}\}\)$, such that **a** ≤ **u**.
- Suppose that every K -pair can be extended to a K -pair of a semi-recursive set and its complement.
- Then TOT would be definable in $\mathcal{D}_{\mathbf{a}}$.
- The relation **x** is c.e. in **u** would also be definable for total nozero degrees.
- Then for total nonzero **u**, our definition of the jump would read **u** 0 is the largest total degree, which is c.e. in **[u](#page-80-0)**. QQ

Thank you!

Mariya I. Soskova (Sofia University Visting schoolar a[t University of California, Berk](#page-0-0)eley in the e-degrees 12/09/2012 19/19

重

 299

メロトメ 倒 トメ ヨ トメ ヨト