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The theory of a degree structure

Let D be a degree structure.

Question
@ Is the theory of the structure in the language of partial orders decidable?
e How complicated is the theory?
e How many quantifiers does it take to break decidability?

Degree structure | Complexity of Th(D) | 3V3-Th(D) V3-Th(D)
Dr Simpson 77 g:lrlﬁzg 83 I%}elfrrneazsé:a
Dr(<0) Shore 81 Iéi}ﬁi?l 83 Iéﬁgiags
R %lzfrli?lrgton 80s Iﬁ?:slf)spl_aman 98 Open

D, \Sz\lfir;l;;; 97 Open Open
D.(£0) g};r;{((:)}‘l;vﬁ Kent 06 Open
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Related problems

o To understand what existential sentences are true D we need to
understand what finite partial orders can be embedded into D;

o At the next level of complexity is the extension of embeddings problem:

Problem

We are given a finite partial order P and a finite partial order @ 2 P. Does
every embedding of P extend to an embedding of Q)7

e To understand what V3-sentences are true in D we need to solve a slightly
more complicated problem:

Problem

We are given a finite partial order P and finite partial orders Qy,...Q, 2 P.
Does every embedding of P extend to an embedding of one of the Q;7
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The Turing degrees and initial segment embeddings

Theorem (Lerman 71) J

Every finite lattice can be embedded into Dt as an initial segment.

@ Suppose that P is a finite partial order and ) 2 P is a finite partial order
extending P.

o We can extend P to a lattice by adding extra points for joins when
necessary.

e The initial segment embedding of the lattice P can be extended to an
embedding of @ only if new elements in () \. P are compatible with joins
in P:

Q If g€ Q ~\ P is bounded by some element in P then ¢ is one of the added
joins.
Q Ifxe@~Pandu,ve Pand z > u,v then z > u v v.

Theorem (Shore 78; Lerman 83)
That is the only obstacle. J
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A characterization

Let U be an upper semilattice.

Definition

We say that U ezhibits end-extensions if for every pair of a finite lattice P and
partial order Q 2 P such that if x € @ . P then z is never below any element
of P and z respects least upper bounds, every embedding of P into U extends
to an embedding of @ into U.

Theorem (Lempp, Slaman, Soskova)

Let ¢ be a Ils-sentence in the language of partial orders. The sentence ¢ is
true in Dy if and only if ¢ is true in every upper semilattice U with least
element that exhibits end-extensions.
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The theory of a degree structure

Lets take a look at the table again:

Question

e Both R and D.(< 0’) are dense structures.
e In fact, any countable partial order embeds into any nonempty interval.
@ But what is the case of D,?

Degree structure | Complexity of Th(D) | IV3-Th(D) V3-Th(D)
Dr Stmpson 77 é‘:fllrlrllzg 83 iﬁfﬁfﬁég
Dr(<0) Shore 81 Eﬁﬁﬁiﬁ 83 Isﬁrrnedgs
R ISLII;ifrliirgton 80s E?:;?Sﬁ;man 98 Open
D.(£0) gjsrlﬁxl:ﬁ Kent 06 Open
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The enumeration degrees

Theorem (Gutteridge 71) J

The enumeration degrees are downwards dense.

A degree b is a minimal cover of a degree a if a < b and the interval (a, b) is
empty.

Theorem (Slaman, Calhoun 96) J

There are degrees a < b such that b is a minimal cover of a.

A degree b is a strong minimal cover of a degree a if a < b and for every
degree x < b we have that x < a.

Theorem (Kent, Lewis-Pye, Sorbi 12) J

There are degrees a and b such that b is a strong minimal cover of a
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The simplest lattice

Consider the lattice £ = {a < b}. What properties should possible extensions
Qo, Q1 - .. Q) have so that every embedding of £ extends to @; for some i:

b

a

@ We can embed £ as degrees a < b such that b is a strong minimal cover
of a, blocking extensions to (; with new z in the interval [a, b].

@ We can embed L as degrees 0. < b, blocking extensions to @); with new
x < a.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero
enumeration degree.

So these are the only obstacles.
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A wild conjecture

Let U be an upper semilattice.

Definition

U ezxhibits strong downward density if every countable partial order can be
embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A TI, sentence ¢ is true in D, if and only if ¢ is true in every upper
semilattice U with least element that exhibits end-extensions and strong
downward density.

@ This would imply a decision procedure for the two quantifier theory of D,

@ This would imply that we can extend the existence of strong minimal
covers significantly:
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Strong interval embeddings

Definition

Let £ be a lattice. We say that L strongly embeds as an interval in D, if there
are degrees a < b and a bijection f : £ — [a, b] such that for every x < b we
have that x € [a,b] or else x < a.

@ A strong minimal cover induces a strong interval embedding of the
2-element lattice.

@ The conjecture implies that every finite lattice has a strong interval
embedding in D,.

e In fact, it would imply much more—for instance, the following statement:

There are degrees a and b such that: avb
@ a and b are a minimal pair. 70N b
Q ifx<avbithenx<aorx<hb. a

/ N
0
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A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice has a strong interval embedding.

Applying Nies’ Transfer Lemma we get:

Corollary
The 3V3-theory of D, is undecidable. )
Degree structure | Complexity of Th(D) | 3V3-Th(D) V3-Th(D)
Dr Stmpson 77 Isglizill 83 iﬁfﬁfﬁég
Dr(<0) Shore 81 Schmert 83| Shore 88
R IS-Ilzili?lI;;-ton 80s ;?2?§;man 98 Open
: Woodis o7 Sk 10
D.(< 0') g;i‘;}izvl ) Kent 06 Open
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An additional application

The extension of embeddings problem in D, is decidable.

Theorem (Lempp, Slaman, Soskova ) J

Proof sketch:

Given finite orders P € @, if ¢ € @ . P is a point that violates the conditions
of the usual algorithm (the one for Dr) then we build a specific embedding
that blocks q.
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The common fragment of the theories of Dy and D,

Note that the theories of D, and Dy differ at a 35 sentence :
(Ja)la # 0 A Vx[x <a— x =0]]

Theorem

Let E denote the set of Ils-sentences in the language of a partial orders that
formalize an instance of the extension of embeddings problem. Then
EnTh(D.) = EnTh(Dr).

Proof sketch:

@ One direction uses our characterization of the two quantifier theory of Drp
and the fact that D, is an upper semilattice that exhibits end extensions.

@ The reverse direction follows from the proof of the extension of
embedding theorem.
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An unexpected defeat

Recall that our conjecture implies avb
that there are degrees a and b such VR
that: a and b are a minimal pair and a N b
ifx<awvbthenx<aorx<b. 0/

This is an instance of a super minimal pair: a minimal pair {a, b} such that
every degree x < a joins b above a and every degree x < b joins a above b
Theorem (Jacobsen-Grocott, Soskova)

If a and b are enumeration degrees such that every degree x < a v b is
bounded by a or bounded by b, then {a, b} is not a minimal pair.

However!

Theorem (Jacobsen-Grocott)

There are degrees a and b that form a minimal pair and every degree x < a
joins b above a.
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Questions

Question

Can we embed all finite lattices in D, as strong intervals?

Important test cases are N5 and M3:
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Question

Are there super minimal pairs in D, 7

Question
What property characterizes the two quantifier theory of D,7

13 /13



Thank you!



