Fragments of the theory of the enumeration degrees

Mariya I. Soskova University of Wisconsin–Madison

Southeastern Logic Symposium SEALS 2020, Feb 29-March 1 Joint work with S. Lempp and T. Slaman

Supported by the NSF Grant No. DMS-1762648 and FNI-SU Grant No.80-10-128/16.04.2020

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-}Th(\mathcal{D})$	$orall \exists Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e (\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;
- At the next level of complexity is the extension of embeddings problem:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q?

• To understand what $\forall \exists$ -sentences are true in \mathcal{D} we need to solve a slightly more complicated problem:

Problem

We are given a finite partial order P and finite partial orders $Q_0, \dots Q_n \supseteq P$. Does every embedding of P extend to an embedding of one of the Q_i ?

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_T as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \setminus P$ are compatible with joins in P:
 - If $q \in Q \setminus P$ is bounded by some element in P then q is one of the added joins.
 - ② If $x \in Q \setminus P$ and $u, v \in P$ and $x \geqslant u, v$ then $x \geqslant u \vee v$.

Theorem (Shore 78; Lerman 83)

That is the only obstacle.

A characterization

Let U be an upper semilattice.

Definition

We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \setminus P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

Theorem (Lempp, Slaman, Soskova)

Let φ be a Π_2 -sentence in the language of partial orders. The sentence φ is true in \mathcal{D}_T if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions.

The theory of a degree structure Lets take a look at the table again:

Question

- Both \mathcal{R} and $\mathcal{D}_e(\leqslant \mathbf{0}')$ are dense structures.
- In fact, any countable partial order embeds into any nonempty interval.
- But what is the case of \mathcal{D}_e ?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$orall \exists ext{-} Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e (\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

A degree ${\bf b}$ is a *minimal cover* of a degree ${\bf a}$ if ${\bf a}<{\bf b}$ and the interval $({\bf a},{\bf b})$ is empty.

Theorem (Slaman, Calhoun 96)

There are degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a} .

A degree **b** is a *strong minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and for every degree $\mathbf{x} < \mathbf{b}$ we have that $\mathbf{x} \leq \mathbf{a}$.

Theorem (Kent, Lewis-Pye, Sorbi 12)

There are degrees \mathbf{a} and \mathbf{b} such that \mathbf{b} is a strong minimal cover of \mathbf{a}

The simplest lattice

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some i:

- We can embed \mathcal{L} as degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a} , blocking extensions to Q_i with new x in the interval [a, b].
- **②** We can embed \mathcal{L} as degrees $\mathbf{0}_e < \mathbf{b}$, blocking extensions to Q_i with new x < a.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero enumeration degree.

So these are the only obstacles.

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

- \bullet This would imply a decision procedure for the two quantifier theory of \mathcal{D}_e
- This would imply that we can extend the existence of strong minimal covers significantly:

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_e .
- In fact, it would imply much more—for instance, the following statement:

There are degrees a and b such that:

- **1 a** and **b** are a minimal pair.
- 2 if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} \leqslant \mathbf{b}$.

A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice has a strong interval embedding.

Applying Nies' Transfer Lemma we get:

Corollary

The $\exists \forall \exists$ -theory of \mathcal{D}_e is undecidable.

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists -Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Lempp-Slaman-	Onen
	Woodin 97	Soskova 19	Open
$\mathcal{D}_e (\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

An additional application

Theorem (Lempp, Slaman, Soskova)

The extension of embeddings problem in \mathcal{D}_e is decidable.

Proof sketch:

Given finite orders $P \subseteq Q$, if $q \in Q \setminus P$ is a point that violates the conditions of the usual algorithm (the one for \mathcal{D}_T) then we build a specific embedding that blocks q.

The common fragment of the theories of \mathcal{D}_T and \mathcal{D}_e

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

$$(\exists a)[a \neq 0 \, \land \, \forall x[x < a \rightarrow x = 0]]$$

Theorem

Let E denote the set of Π_2 -sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap Th(\mathcal{D}_e) = E \cap Th(\mathcal{D}_T)$.

Proof sketch:

- One direction uses our characterization of the two quantifier theory of \mathcal{D}_T and the fact that \mathcal{D}_e is an upper semilattice that exhibits end extensions.
- The reverse direction follows from the proof of the extension of embedding theorem.

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

This is an instance of a *super minimal pair*: a minimal pair $\{a, b\}$ such that every degree x < a joins b above a and every degree x < b joins a above b

Theorem (Jacobsen-Grocott, Soskova)

If \mathbf{a} and \mathbf{b} are enumeration degrees such that every degree $\mathbf{x} \leq \mathbf{a} \vee \mathbf{b}$ is bounded by \mathbf{a} or bounded by \mathbf{b} , then $\{\mathbf{a},\mathbf{b}\}$ is not a minimal pair.

However!

Theorem (Jacobsen-Grocott)

There are degrees ${\bf a}$ and ${\bf b}$ that form a minimal pair and every degree ${\bf x}<{\bf a}$ joins ${\bf b}$ above ${\bf a}$.

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :

Question

Are there super minimal pairs in \mathcal{D}_e ?

Question

What property characterizes the two quantifier theory of \mathcal{D}_e ?

