Characterizing the strength of the local theory of the enumeration degrees

Mariya I. Soskova¹ and Hristo Ganchev

Faculty of Mathematics and Informatics Sofia University

> February 28, 2010 SEALS

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework [Pr](#page-0-0)[ogr](#page-1-0)[am](#page-0-0)[m](#page-1-0)[e.](#page-0-0) QQ

Preliminiaries: The enumeration degrees

Definition

A ≤*^e B* iff there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

- *A* ≡*^e B* iff *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = [*A*]₌, and *D_e* = {*d_e*(*A*) | *A* ⊂ N}.
- \bullet *d_e*(*A*) \le *d_e*(*B*) iff *A* \leq_e *B*.
- \bullet $\mathbf{0}_e = d_e(\emptyset) = \{W \mid W \text{ is c.e. }\}.$
- \bullet *d_e*(*A*) \vee *d_e*(*B*) = *d_e*(*A* \oplus *B*).
- $d_e(A)' = d_e(A'),$ where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}.$

 ${\cal D}_{{\bm e}} = \langle D_{{\bm e}}, \leq, \vee, ', \bm 0_{\bm e} \rangle$ is an upper semi-lattice with jump operation and least element.

4 0 8 1

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

舌

Preliminiaries: The enumeration degrees

Definition

A ≤*^e B* iff there is a c.e. set *W*, such that $A = W(B) = \{x \mid \exists u (\langle x, u \rangle \in W \land D_u \subseteq B) \}.$

- *A* ≡*^e B* iff *A* ≤*^e B* and *B* ≤*^e A*.
- \bullet *d_e*(*A*) = [*A*]₌, and *D_e* = {*d_e*(*A*) | *A* ⊂ N}.
- \bullet *d_e*(*A*) \le *d_e*(*B*) iff *A* \leq_e *B*.
- **●** $0_e = d_e$ (∅) = {*W* | *W* is c.e. }.
- \bullet *d_e*(*A*) ∨ *d_e*(*B*) = *d_e*(*A* ⊕ *B*).
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}.$
- $\mathcal{D}_{\bm{e}} = \langle \mathcal{D}_{\bm{e}}, \leq, \vee, ', \bm{0}_{\bm{e}} \rangle$ is an upper semi-lattice with jump operation and least element.

イロト イ押ト イヨト イヨト ニヨ

Preliminiaries: The local structure

The jump operation gives rise to the local structure of the enumeration degrees $\mathcal{G}_e = \mathcal{D}_e(\leq 0_e')$.

Preliminaries: Previous results

Theorem (Slaman and Woodin)

The theory of D*^e is comutably isomorphic to the theory of second order arithmetic. The theory of* G*^e is undecidable.*

The theory of the Δ^0 *enumeration degrees is computably isomorphic to the theory of first order arithmetic.*

Is the theory of G*^e computably isomorphic to first order arithmetic?*

4 0 8 1

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

Preliminaries: Previous results

Theorem (Slaman and Woodin)

The theory of D*^e is comutably isomorphic to the theory of second order arithmetic. The theory of* G*^e is undecidable.*

Theorem (Kent)

The theory of the Δ_2^0 enumeration degrees is computably isomorphic *to the theory of first order arithmetic.*

Is the theory of G*^e computably isomorphic to first order arithmetic?*

4 0 8 1

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

Preliminaries: Previous results

Theorem (Slaman and Woodin)

The theory of D*^e is comutably isomorphic to the theory of second order arithmetic. The theory of* G*^e is undecidable.*

Theorem (Kent)

The theory of the Δ_2^0 enumeration degrees is computably isomorphic *to the theory of first order arithmetic.*

Question

Is the theory of G*^e computably isomorphic to first order arithmetic?*

4 0 8 1

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

The general plan: Coding standard models of arithmetic

Given a sentnece in the langauge of true arithemtic φ we want to be able to computably translate it into a sentence φ_e in the langaunge of the G*^e* so that:

$\langle \mathbb{N}, +, * \rangle \models \varphi$ iff $\mathcal{G}_{\rho} \models \varphi_{\rho}$

- Represent $(N, +, *)$ as a partial order (PO).
- II Embed this partial order in G*^e* and code it with a finite number of parameters.
- III Find a first order condition on the parameters, which ensures that they code a SMA.

The general plan: Coding standard models of arithmetic

Given a sentnece in the langauge of true arithemtic φ we want to be able to computably translate it into a sentence φ_e in the langaunge of the G*^e* so that:

 $\langle \mathbb{N}, +, * \rangle \models \varphi$ iff $\mathcal{G}_e \models \varphi_e$

- Represent $\langle \mathbb{N}, +, * \rangle$ as a partial order (PO).
- II Embed this partial order in G*^e* and code it with a finite number of parameters.
- III Find a first order condition on the parameters, which ensures that they code a SMA.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

 QQQ

A special type of partial order

We can represent an SMA $\langle \mathbb{N}, +, * \rangle$ as follows:

4 0 8

A B

化重新分离

 299

First tool: Coding antichains

$\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}, \mathbf{q}) \iff \mathbf{x} \leq \mathbf{a}$ is a minimal solution to $x \neq (x \vee p) \wedge (x \vee q).$

Theorem (Slaman, Woodin)

Let {*Xⁱ* | *i* ∈ N} *be a system of incomparable sets uniformly enumeration reducible to a low set A with degree* **a***. There are* Σ 0 2 *e-degrees* **p** *and* **q***, such that for arbitrary* Σ 0 2 *degree* **x**

$$
\mathcal{G}_{e} \models \varphi_{\mathcal{SW}}(\mathbf{x}, \mathbf{a}, \mathbf{p}, \mathbf{q}) \iff \exists i [X_i \in \mathbf{x}].
$$

Goal: Embed the PO so that each level is *well presented*.

4 何 ト 4 ヨ ト 4 ヨ ト

Second tool: K -pairs

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A* and *B* be non-c.e. sets of a natural numbers. The pair (*A*, *B*) is a K-pair (e-ideal) if there exists a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

 (A, B) *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
\mathcal{K}(\bm{a},\bm{b}) \leftrightharpoons \bm{a},\bm{b} > \bm{0}_{e} \&
$$

$$
(\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

イロト イ押ト イヨト イヨト

Second tool: K -pairs

Iskander Kalimullin: Definability of the jump operator in the enumeration degrees Journal of Mathematical Logic (2003)

Definition

Let *A* and *B* be non-c.e. sets of a natural numbers. The pair (*A*, *B*) is a K-pair (e-ideal) if there exists a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Theorem (Kalimullin)

 (A, B) *is a* K-pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
\mathcal{K}(\bm{a},\bm{b}) \leftrightharpoons \bm{a},\bm{b} > \bm{0}_{e} \&
$$

$$
(\forall \textbf{x})((\textbf{a} \vee \textbf{x}) \wedge (\textbf{b} \vee \textbf{x}) = \textbf{x})
$$

 \equiv

 QQQ

イロト イ押 トイラ トイラトー

Properties of K -pairs

Theorem (Kallimulin)

- **1** If (a, b) are a Σ^0_2 K-pair then a and b are low.
- ² *Every* K*-pair is a minimal pair.*
- ³ *Every nonzero* ∆⁰ 2 *enumeration degree bounds a* K*-pair.*
- The set of degrees **b** which form a K -pair with a fixed degree **a** is *an ideal.*

K -systems

Definition

We shall say that a system of degrees $\{ \boldsymbol{a}_i \mid i \in I \}$ ($|I| \geq 2$) is a $\mathcal K$ -system, if $\mathcal K(\mathbf a_{{i}},\mathbf a_{{j}})$ for each $i,j\in I,$ such that $i\neq j.$

• Every K -system is an antichain.

If $\{a_i \mid i \in I\}$ is a K -system and $i_1 \neq i_2 \in I$ then {**a***i*¹ ∨ **a***i*² } ∪ {**a***ⁱ* | *i* ∈ *I*, *i* 6= *i*1, *i*2} is a K-system .

Let A be a ∆⁰ 2 *non-c.e. set. There is a sequence* {*Ai*}*i*<ω *uniformly enumeration reducible to A such that* $\{d_e(A_i)\}_{i\leq w}$ *is a* K-system.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

K -systems

Definition

We shall say that a system of degrees $\{ \boldsymbol{a}_i \mid i \in I \}$ ($|I| \geq 2$) is a $\mathcal K$ -system, if $\mathcal K(\mathbf a_{{i}},\mathbf a_{{j}})$ for each $i,j\in I,$ such that $i\neq j.$

- Every K -system is an antichain.
- If $\{a_i \mid i \in I\}$ is a K -system and $i_1 \neq i_2 \in I$ then $\{a_{i_1} \vee a_{i_2}\} ∪ \{a_i | i \in I, i \neq i_1, i_2\}$ is a K -system .

Let A be a ∆⁰ 2 *non-c.e. set. There is a sequence* {*Ai*}*i*<ω *uniformly enumeration reducible to A such that* {*de*(*Ai*)}*i*<ω *is a* K*-system.*

4 0 8 4 6 8 4 9 8 4 9 8 1

K -systems

Definition

We shall say that a system of degrees $\{ \boldsymbol{a}_i \mid i \in I \}$ ($|I| \geq 2$) is a $\mathcal K$ -system, if $\mathcal K(\mathbf a_{{i}},\mathbf a_{{j}})$ for each $i,j\in I,$ such that $i\neq j.$

- Every K -system is an antichain.
- If $\{a_i \mid i \in I\}$ is a K -system and $i_1 \neq i_2 \in I$ then $\{a_{i_1} \vee a_{i_2}\} ∪ \{a_i | i \in I, i \neq i_1, i_2\}$ is a K -system .

Theorem

Let A be a ∆⁰ 2 *non-c.e. set. There is a sequence* {*Ai*}*i*<ω *uniformly enumeration reducible to A such that* $\{d_e(A_i)\}_{i\leq w}$ *is a* K-system.

イロト イ押 トイラ トイラトー

 \equiv

Construction:

Let $\mathbf{a} = d_e(\mathcal{A})$ be half of a $\mathcal{K}\text{-}\mathsf{pair}.$ (Hence a low nonzero Δ^0_2 enumeration degree.)

Let ${A_i}_{i\leq w}$ be the uniformly reducible to A sequence whose degrees {**a***i*}*i*<ω form a K-system. This is a *well presented system*. We computably divide the system $\{a_i\}_{i\leq n}$ into six infinite groups.

a mara mara

To every pair of elements from G1 we assign 4 unique elements of G2, 3 of G3, 2 of G4 and 1 of each G5 and G6.

The elements of G1 will represent the natural numbers. There are parameters \mathbf{p}_0 and \mathbf{q}_0 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_0, \mathbf{q}_0)$ defines them.

L1 is constructed from lub's of elements from G1 and G2. There are parameters \mathbf{p}_1 and \mathbf{q}_1 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_1, \mathbf{q}_1)$ defines them.

L2 is constructed from lub's of elements from L1 and G3. There are parameters \mathbf{p}_2 and \mathbf{q}_2 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_2, \mathbf{q}_2)$ defines them.

L3 is constructed from lub's of elements from L2 and G4. There are parameters \mathbf{p}_3 and \mathbf{q}_3 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_3, \mathbf{q}_3)$ defines them.

L4 is constructed from lub's of elements from L3 and G5. There are parameters \mathbf{p}_4 and \mathbf{q}_4 such that $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_4, \mathbf{q}_4)$ defines them.

Finally the maximal elements are constructed from lub's of elements from L1, L2, L3, L4 and G6. $\varphi_{SW}(\mathbf{x}, \mathbf{a}, \mathbf{p}_5, \mathbf{q}_5)$ defines them.

 QQ

The other direction

Given parameters $a, p_0, p_1, p_2 p_3, p_4, p_5, q_0, q_1, q_2, q_3, q_4, q_5$, let *PO* = { \bf{x} | φ_{SW} ($\bf{x}, \bf{a}, \bf{p}_i, \bf{q}_i$) for some *i* = 0, 1, 2, 3, 4, 5}. We can define a first order condition $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ so that the partial order (*PO*, <) satisfies:

- (M1) Every element is either minimal, maximal or in an interval with endpoints a minimal and a maximal element.
- (M2) For every pair of minimal elements there exists a unique maximal element at distance 1 from the first and distance 2 from the second.
- (M3) For every maximal element *m* there exists a unique quadruple of minimal elements below it such that the first one is at distance 1 from *m*, the second is at distance 2, the third at distance 3 and the fourth at distance 4 from *m*.

イロト イ押 トイラト イラト・ラー

The other direction

Given parameters $a, p_0, p_1, p_2 p_3, p_4, p_5, q_0, q_1, q_2, q_3, q_4, q_5$, let *PO* = { \bf{x} | φ_{SW} ($\bf{x}, \bf{a}, \bf{p}_i, \bf{q}_i$) for some *i* = 0, 1, 2, 3, 4, 5}. We can define a first order condition $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ on the parameters **a**, \overline{p} , \overline{q} so that the partial order ($PO \leq$) satisfies:

- R_{+} The relation *R*₊(*x*, *y*, *z*) = $_{def}$ *min*(*x*)& min(*y*)& min(*z*)&∃*m*(max(*m*)&*x* <1 $m \& y \leq_2 m \& z \leq_3 m$ defines an operation $+$:
- *R*[∗] The relation

*R*_∗(*x*, *y*, *z*) =*def min*(*x*)& min(*y*)& min(*z*)&∃*m*(max(*m*)&*x* <1 $m \& y \leq 2 m \& z \leq 4 m$ defines an operation ∗;

PA[−] The structure $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}) = \langle \{x \in PO \mid \min(x)\}, +, *\rangle$ is a model of arithmetic which contains a standard part.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Isolating parameters which code SMA'a

We will ask that $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ ensures also:

- **a** is half of K -pair
- \bullet The minimal elements in *PO* form a K -system.

Let **b** be such that **a** and **b** are a K -pair. There are parameters $\overline{p'}$ and $\overline{\mathbf{q}'}$ such that $ST_0(\mathbf{b},\overline{\mathbf{p}'},\overline{\mathbf{q}'})$ and $\mathfrak{A}(\mathbf{b},\overline{\mathbf{p}}',\overline{\mathbf{q}}')$ is a standard model of arithmetic.

It will be enough to require that $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ can be embedded into $\mathfrak{A}(\mathbf{b},\overline{\mathbf{p}}',\overline{\mathbf{q}}').$

A + + = + + = +

Isolating parameters which code SMA'a

We will ask that $ST_0(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ ensures also:

- **a** is half of K -pair
- The minimal elements in PO form a K -system.

Let **b** be such that **a** and **b** are a K -pair. There are parameters $\overline{p'}$ and $\overline{\mathbf{q}'}$ such that $ST_0(\mathbf{b},\overline{\mathbf{p}'},\overline{\mathbf{q}'})$ and $\mathfrak{A}(\mathbf{b},\overline{\mathbf{p}}',\overline{\mathbf{q}}')$ is a standard model of arithmetic.

It will be enough to require that $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ can be embedded into $\mathfrak{A}(\mathbf{b},\overline{\mathbf{p}}',\overline{\mathbf{q}}').$

化重压 化重压

Comparison maps

We will additionally ask that for every element $m_a \in \mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ there is an element $m_b\in \mathfrak{A}(\mathbf{b},\overline{\mathsf{p}}',\overline{\mathsf{q}}')$ and an antichain $(y_0,y_1,\dots y_m)$ coded by parameters **c**, **p**" and **q**" such that:

Mariya I. Soskova and Hristo Ganchev (FacuCharacterizing the strength of the local theory February 28, 2010 SEALS 23/35

Comparison maps

Denote this requirement by $\mathcal{M}(\mathbf{a},\overline{\mathbf{p}},\overline{\mathbf{q}},\mathbf{b},\overline{\mathbf{p}}',\overline{\mathbf{q}}')$

If for all $\overline{\mathsf{p}}', \overline{\mathsf{q}}'$ such that $ST_0(\mathsf{b}, \overline{\mathsf{p}}', \overline{\mathsf{q}}')$ we have $\mathcal{M}(\mathsf{a}, \overline{\mathsf{p}}, \overline{\mathsf{q}}, \mathsf{b}, \overline{\mathsf{p}}', \overline{\mathsf{q}}')$ then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is an SMA.

Mariya I. Soskova and Hristo Ganchev (FacuCharacterizing the strength of the local theory February 28, 2010 SEALS 24/35

Comparison maps

• If $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is an SMA then this condition is true.

Mariya I. Soskova and Hristo Ganchev (FacuCharacterizing the strength of the local theory February 28, 2010 SEALS 25/ 35

SMA condition

If $\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}$ satisfy:

SMA

ST_0 $(a, \overline{p}, \overline{q})$

and

\exists **b**(\mathcal{K} (**a**, **b**)) & \forall $\overline{p'}$, \forall $\overline{q'}$ [S \mathcal{T}_0 (**b**, $\overline{p}',$ \overline{q}') \implies $\mathcal{M}($ **a**, $\overline{p},$ \overline{q} , **b**, $\overline{p}',$ \overline{q}')]

then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a standard model of arithmetic.

Of course, all this relies on the assumption that being a K -pair is a property definable in G*e*!

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

SMA condition

If $\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}$ satisfy:

SMA

 ST_0 $(a, \overline{p}, \overline{q})$

and

 \exists **b**(\mathcal{K} (**a**, **b**)) & \forall $\overline{p'}$, \forall $\overline{q'}$ [S \mathcal{T}_0 (**b**, $\overline{p}',$ \overline{q}') \implies $\mathcal{M}($ **a**, $\overline{p},$ \overline{q} , **b**, $\overline{p}',$ \overline{q}')]

then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a standard model of arithmetic.

Of course, all this relies on the assumption that being a K -pair is a property definable in G*e*!

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

An order theoretic characterization of K -pairs

Theorem (Kalimullin)

 (A, B) *is a* K -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons \mathbf{a},\mathbf{b} > \mathbf{0}_e \&
$$

$$
(\forall \mathbf{x} \in \mathcal{D}_\mathbf{e}) ((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x})
$$

Is it enough to check that:

$$
(\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x}
$$

for all $\mathbf{x} \in \mathcal{G}_e$?

AD > 3 B > 3 B

An order theoretic characterization of K -pairs

Theorem (Kalimullin)

 (A, B) *is a* K -pair if and only if the degrees $\mathbf{a} = d_e(A)$ and $\mathbf{b} = d_e(B)$ *have the following property:*

$$
\mathcal{K}(\textbf{a},\textbf{b}) \leftrightharpoons \textbf{a},\textbf{b} > \textbf{0}_{e} \& \\ (\forall \textbf{x} \in \mathcal{D}_{\textbf{e}})((\textbf{a} \vee \textbf{x}) \wedge (\textbf{b} \vee \textbf{x}) = \textbf{x})
$$

Is it enough to check that:

$$
(\bm{a}\vee\bm{x})\wedge(\bm{b}\vee\bm{x})=\bm{x}
$$

for all $\mathbf{x} \in \mathcal{G}_e$?

 Ω

A B

3 B X 3 B

Definability of K -pairs

Theorem (Kalimullin)

If (*A*, *B*) *is not a* K*-pair then there is a witness C computable from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) \vee d_e(C)) \wedge (d_e(B) \vee d_e(C)) \neq d_e(C)$

- If **a** and **b** are Δ^0_2 then C is also Δ^0_2 and $\mathcal{K}(\mathbf{a},\mathbf{b})$ ensures "**a** and **b** are a true K -pair".
- If **a** and **b** are properly Σ^0_2 then C is Δ^0_3 . So it is possible that there is a fake K -pair **a** and **b** such that

$$
\mathcal{G}_{\bm{e}} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{but } \mathcal{D}_{\bm{e}} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})
$$

AD > 3 B > 3 B

Definability of K -pairs

Theorem (Kalimullin)

If (*A*, *B*) *is not a* K*-pair then there is a witness C computable from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) \vee d_e(C)) \wedge (d_e(B) \vee d_e(C)) \neq d_e(C)$

- If **a** and **b** are Δ^0_2 then *C* is also Δ^0_2 and $\mathcal{K}(\mathbf{a},\mathbf{b})$ ensures "**a** and **b** are a true K -pair".
- If **a** and **b** are properly Σ^0_2 then C is Δ^0_3 . So it is possible that there is a fake K -pair **a** and **b** such that

$$
\mathcal{G}_{\bm{e}} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{but } \mathcal{D}_{\bm{e}} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})
$$

化重新分离

Definability of K -pairs

Theorem (Kalimullin)

If (*A*, *B*) *is not a* K*-pair then there is a witness C computable from* $A \oplus B \oplus K$ *such that:*

 $(d_e(A) \vee d_e(C)) \wedge (d_e(B) \vee d_e(C)) \neq d_e(C)$

- If **a** and **b** are Δ^0_2 then *C* is also Δ^0_2 and $\mathcal{K}(\mathbf{a},\mathbf{b})$ ensures "**a** and **b** are a true K -pair".
- If **a** and **b** are properly Σ^0_2 then *C* is Δ^0_3 . So it is possible that there is a fake K -pair **a** and **b** such that

$$
\mathcal{G}_{\bm{e}} \models \mathcal{K}(\mathbf{a}, \mathbf{b}), \text{but } \mathcal{D}_{\bm{e}} \models \neg \mathcal{K}(\mathbf{a}, \mathbf{b})
$$

医单位 医单位

Definition

A Σ⁰₂ enumeration degree **a** is called *cuppable* if there is an incomplete $Σ⁰₂$ e-degree **b**, such that **a** ∨ **b** = **0**^{\prime}^{*e*}. If furthermore **b** is low, then **a** will be called *low cuppable*.

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* **a** \vee **b** = $\mathbf{0}'_e$ *.*

There are non-cuppable nonzero Σ^0_2 enumeration degrees.

Are all cuppable degrees also low cuppable?

Mariya I. Soskova and Hristo Ganchev (FacuCharacterizing the strength of the local theory February 28, 2010 SEALS 29 / 35

 QQQ

 $A \equiv 1, A \equiv 1.$

Definition

A Σ⁰₂ enumeration degree **a** is called *cuppable* if there is an incomplete $Σ⁰₂$ e-degree **b**, such that **a** ∨ **b** = **0**^{\prime}^{*e*}. If furthermore **b** is low, then **a** will be called *low cuppable*.

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$ *.*

There are non-cuppable nonzero Σ^0_2 enumeration degrees.

Are all cuppable degrees also low cuppable?

 η an

K 등 > K 등 >

Definition

A Σ⁰₂ enumeration degree **a** is called *cuppable* if there is an incomplete $Σ⁰₂$ e-degree **b**, such that **a** ∨ **b** = **0**^{\prime}^{*e*}. If furthermore **b** is low, then **a** will be called *low cuppable*.

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$ *.*

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ^0_2 enumeration degrees.

Are all cuppable degrees also low cuppable?

 η an

 $A^{\dagger} \equiv \{A^{\dagger}A^{\dagger}A^{\dagger}B^{\dagger}A^{\dagger}$

Definition

A Σ⁰₂ enumeration degree **a** is called *cuppable* if there is an incomplete $Σ⁰₂$ e-degree **b**, such that **a** ∨ **b** = **0**^{\prime}^{*e*}. If furthermore **b** is low, then **a** will be called *low cuppable*.

Theorem (S,Wu)

Every nonzero ∆⁰ 2 *enumeration degree* **a** *is low cuppable, i.e. there is a low* **b** *such that* $\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e$ *.*

Theorem (Cooper, Sorbi, Yi)

There are non-cuppable nonzero Σ^0_2 enumeration degrees.

Question

Are all cuppable degrees also low cuppable?

 $\sqrt{2}$

(**C)** (*C*) (*C*) (2) (2)

Theorem

If **u** and **v** are Σ^0_2 enumeration degrees such that $\mathbf{u} \vee \mathbf{v} = \mathbf{0}'_e$ then \mathbf{u} is *low cuppable or* **v** *is low cuppable.*

Proof:

Uses a construction very similar to the construction of a non-splitting enumeration degree.

REPARE

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

Kallimulin has proved that there is a Δ^0_2 *K*-pair which splits $\mathbf{0}'_e$ so the set $\{a \mid \mathcal{G}_e \models \mathcal{L}(\mathbf{a})\} \neq \emptyset$.

Let **a** be a Σ^0_2 degree such that $\mathcal{G}_{\bm{e}} \models \mathcal{L}(\mathbf{a}).$ Let **b** a witness such that $\mathcal{K}(\mathbf{a}, \mathbf{b}) \wedge (\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e).$

Then **a** is low cuppable or **b** is low cuppable.

イロト イ押ト イヨト イヨトー

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

(**a** ∨ **c**) ∧ (**b** ∨ **c**) = **c** $| {\overline{\bf x}} |$

 $(\mathbf{a} \vee \mathbf{c}) \wedge \mathbf{0}'_e = \mathbf{c}$

 $(a \vee c)$ = **c**

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . KET KALLAS YER EL VOO

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\underbrace{\mathbf{b} \vee \mathbf{c}}) = \mathbf{c}
$$

$$
(\mathbf{a} \vee \mathbf{c}) \wedge \mathbf{0}'_e = \mathbf{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\underbrace{\mathbf{b} \vee \mathbf{c}}) = \mathbf{c}
$$

$$
(\mathbf{a} \vee \mathbf{c}) \wedge \quad \mathbf{0}'_{\mathbf{e}} = \mathbf{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\underbrace{\mathbf{b} \vee \mathbf{c}}) = \mathbf{c}
$$

$$
(\bm{a}\vee\bm{c})\wedge\quad \bm{0}'_e\quad=\bm{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.125 \times 10^{-14} \text{ m})$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\bm{a}\vee\bm{c})\wedge\quad \bm{0}'_{e}\quad =\bm{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\bm{a}\vee\bm{c})\wedge\quad \bm{0}'_{e}\quad =\bm{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **b** is low cuppable then let **c** be a low Δ^0_2 e-degree which cups **b**.

$$
(\mathbf{a} \vee \mathbf{c}) \wedge (\mathbf{b} \vee \mathbf{c}) = \mathbf{c}
$$

$$
(\textbf{a} \vee \textbf{c}) \wedge \quad \textbf{0}'_e \quad = \textbf{c}
$$

 $(a \vee c)$ = **c**

 Ω

So $\mathbf{a} \leq \mathbf{c}$ and $\mathbf{a}' \leq \mathbf{c}' = \mathbf{0}'_e$ and \mathbf{a} is low, hence Δ^0_2 and hence low-cuppable . $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **a** is low cuppable then let **d** be a low Δ^0_2 e-degree which cups **a**.

$$
\begin{array}{c}\n\left(\mathbf{a} \vee \mathbf{d}\right) \wedge \left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d} \\
\mathbf{0}'_e \wedge \left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d} \\
\left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d}\n\end{array}
$$

So **b** \leq **d** and hence **b** is low, Δ_2^0 and low cuppable.

In either case both **a** and **b** are Δ^0_2 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true K -pair.

イロト イ押ト イヨト イヨトー

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **a** is low cuppable then let **d** be a low Δ^0_2 e-degree which cups **a**.

$$
\underbrace{(a \vee d)}_{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{d})} = \mathbf{d}
$$

$$
\underbrace{\mathbf{0}'_e \wedge (\mathbf{b} \vee \mathbf{d})}_{(\mathbf{b} \vee \mathbf{d})} = \mathbf{d}
$$

So **b** \le **d** and hence **b** is low, Δ_2^0 and low cuppable.

In either case both **a** and **b** are Δ^0_2 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true K -pair.

イロト イ押ト イヨト イヨト

Corollary

 $\mathcal{L}(\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\mathcal{K}(\mathbf{a}, \mathbf{b})\&(\mathbf{a} \vee \mathbf{b} = \mathbf{0}'_e))$ defines in \mathcal{G}_e a *nonempty set of true halves of* K*-pairs.*

Proof:

If **a** is low cuppable then let **d** be a low Δ^0_2 e-degree which cups **a**.

$$
\begin{array}{c}\n\left(\mathbf{a} \vee \mathbf{d}\right) \wedge \left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d} \\
\mathbf{0}'_e \wedge \left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d} \\
\left(\mathbf{b} \vee \mathbf{d}\right) = \mathbf{d}\n\end{array}
$$

So **b** \le **d** and hence **b** is low, Δ_2^0 and low cuppable.

In either case both **a** and **b** are Δ^0_2 and hence $\mathcal{K}(\mathbf{a}, \mathbf{b})$ ensures that they form a true K -pair.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{B} \supseteq \mathcal{B}$

The final condition SMA

Finally if $\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}}$ satisfy:

then $\mathfrak{A}(\mathbf{a}, \overline{\mathbf{p}}, \overline{\mathbf{q}})$ is a standard model of arithmetic.

イロト イ押ト イヨト イヨト

 \equiv

The end

Thank you!

(ロトイ部)→(差)→(差)→

重

 299