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The real numbers within the complex numbers

In his 1545 “Ars Magna”, Cardano provided the first complete
expression for the solution of a general cubic equation. In this
solution a certain class of cases - ones he referred to as
“irreducible” - the equation always has three real solutions, but in
order to derive his expression he was forced to take the square
root of a negative number.
Roger Penrose in his book “The road to reality” 2005

The magic of the complex numbers ...“indeed provided a utility
and a depth of mathematical insight that could not be achieved by

use of the reals alone.”
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The spectrum of relative definability

How can a set of natural numbers B be used to define a set of natural
numbers A.

There is an algorithm, which determines whether x ∈ A using
finite information about memberships in B: Turing reducibility.
There is an algorithm, which enumerates instances of
memberships in A from instances of memberships in B:
enumeration reducibility.
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Preliminaries: Enumeration reducibility

A ≤T B iff there is a computable in B function ϕB, such that χA = ϕB.

A ≤T B iff A⊕ A is c.e. in B.

A ≤T B iff there is a c.e. set W such that
x ∈ A⊕ A if and only if there are finite sets DB and DB such that
〈x ,DB ⊕ DB〉 ∈W and DB ⊕ DB ⊆ B ⊕ B.

Definition
A ≤e B if and only if there is a set W , such that
A = W (B) = {x | ∃u(〈x ,u〉 ∈W ∧ Du ⊆ B)}.

Note that A ≤T B if and only if A⊕ A ≤e B ⊕ B.
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The structure of the enumeration degrees

de(A) = {B | A ≤e B & B ≤e A}
de(A) ≤ de(B) iff A ≤e B.

0e = de(∅) = {W |W is c.e. }.
de(A) ∨ de(B) = de(A⊕ B).

de(A)′ = de(A′), where A′ = LA ⊕ LA and LA = {x | x ∈Wx (A)}.
De = 〈De,≤,∨,′ ,0e〉 is an upper semi-lattice with jump operation
and least element.
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The total degrees

Proposition

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as T OT = ι(DT ).

Note that the enumeration jump of a set A′ = LA ⊕ LA is always total.
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More connections between DT and De

B is c.e. in A if and only if B ≤e A⊕ A.
Selman’s Theorem: A ≤e B if and only if

{X | B is c.e. in X} ⊆ {X | A is c.e. in X} .{
de(X ⊕ X ) | B ≤e X ⊕ X

}
⊆
{

de(X ⊕ X ) | A ≤e X ⊕ X
}

Corollary: T OT is an automorphism base for De.

Soskov’s Jump inversion theorem (JIT): For every x ∈ De and
every total q ≥ x′ exists a ∈ T OT such that a ≥ x and a′ = q.
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DT : Coles, Downey and Slaman: “Every set has a
least jump enumeration”

Given a set A let C(A) = {X | A is c.e. in X}.

Theorem (Richter)
There is a non-c.e. set A such that A is c.e. in two sets B and C which
form a minimal pair. Hence there is a set A, such that C(A) does not
have a member of least degree.

Theorem (Coles, Downey, Slaman)
For every sets A the set: C(A)′ = {X ′ | A is c.e. in X} has a member of
least degree: c′µ(A).

A set of the degree c′µ(A) is obtained using forcing with finite
conditions.
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Motivation: torsion-free abelian groups of rank 1

A torsion free abelian group of rank 1 G is (isomorphic to) a subgroup
of (Q,+,=).

Definition
Let p be a prime number and a ∈ G.

hp(a) =

{
the largest k , such that pk |a in G;
∞, if ∀k(pk |a in G) .

Here pk |a in G if there exists b ∈ G such that pk .b = a.

Example: If G = Q then for all nonzero a and all p, hp(a) =∞,
because for all k , pk . a

pk = a.
If G = Z then for all nonzero a and all but finitely many p, hp(a) = 0.

In fact if a,b 6= 0 then for all but finitely many p, hp(a) = hp(b).
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The type of G

Let p0 < p1 < · · · < pn . . . be an enumeration of all prime numbers.

Definition
The characteristic of an element a ∈ G is the sequence:

χ(a) = (hp0(a),hp1(a), . . .hpn (a), . . . )

So if a,b 6= 0 then χ(a) =∗ χ(b).
The type of G, denoted χ(G) is the equivalence class of χ(a) for any
a 6= 0 in G.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)
Two torsion-free abelian groups of rank 1 are isomorphic if and only if
they have the same type.
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The standard type of G

Definition
Let S(G) = {〈i , j〉 | j ≤ the i-th element of χ(G)}.

Note that every S can be coded as (is m-equivalent to)
{〈i , j〉 | j = 0 ∨ i ∈ S & j = 1}.

Theorem (Downey, Jockusch)
The degree spectrum of G: {dT (H) | H ∼= G} is precisely
{degT (Y ) | S(G) is c.e. in Y}.
c′µ(A) exists for all A if and only if for every torsion-free abelian group G
the jump spectrum of G, the set {dT (H)′ | H ∼= G} has a least element.

Corollary (Coles, Downey, Slaman)
Every every torsion-free abelian group of rank 1 G has a jump degree.
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Every every torsion-free abelian group of rank 1 G has a jump degree.
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De: Soskov “Degree spectra and co-spectra of
structures”

Consider a structure A = (N,R1 . . .Rk ).

Definition
An enumeration is any bijective mapping f : N→ N.

If R is an n-ary relation then
f−1(R) = {〈x1, . . . , xn〉 | (f (x1), . . . f (xn)) ∈ R}.
The pullback of A is the set f−1(A) = f−1(R1)⊕ f−1(R2) · · · ⊕ f−1(Rk ).

Consider the structure A+ = (N,R1,R1 . . .Rk ,Rk ).
Then f−1(A+) is total set and corresponds to an isomorphic
presentation of A with isomorphism induced by f and atomic
diagram e-equivalent f−1(A+).
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Enumeration degree spectrum

Fix A = (N,R1 . . .Rk ).

Definition
The e-degree spectrum of A is
DSe(A) =

{
de(f−1(A)) | f in an enumeration

}
.

If DSe(A) has a least member, it is the (enumeration) degree of A.

In fact DSe(A+) = {ι(a) | a ∈ DST (A)}.
A has T-degree a if and only if A+ has e-degree ι(a).
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Co-spectrum

Definition
The co-spectrum of A is the set CSe(A) = {b | ∀a ∈ DSe(A)(b ≤ a)}.
If CSe(A) has a largest element, then it is called the co-degree of A.

If A has degree a then it has co-degree a.
There are examples of structures which have a co-degree but do
not have a degree.

Theorem (Soskov)
Every countable ideal of enumeration degrees can be represented as
the co-spectrum of a structure.
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The case of principal ideals

Let G be a torsion-free abelian group of rank 1.

Recall that the degree spectrum of G: {dT (H) | H ∼= G} is precisely
{degT (Y ) | S(G) is c.e. in Y}.
So the enumeration degree spectrum of G+ is
DSe(G+) = {a | a ∈ T OT & de(S(G)) ≤e a}.
Denote de(S(G)) by sG-the type degree of G.
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TFA groups in the e-degrees

DSe(G+) = {a | a ∈ T OT & sG ≤ a}

Theorem (Soskov)
1 The co-spectrum of G+ is CS(G+) = {b | b ≤ sG}. Hence G+

always has co-degree: sG.
2 Every principal ideal of e-degrees can be represented as the

co-spectrum of a torsion-free abelian group of rank 1.

1 Follows from Selman’s theorem: if a and b are bounded by the
same total degrees then a = b.

2 Follows from the observation that every set S can be coded as a
standard type of a group.
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TFA groups in the e-degrees

DSe(G+) = {a | a ∈ T OT & sG ≤ a}

Theorem (Soskov)
1 G+ has an e-degree (and hence G has a T-degree) if and only if

the set sG is total. This e-degree is precisely sG.
2 G+ always has first jump degree (both e- and T-) and it is s′G.

1 Follows again from Selman’s theorem.
2 Follows from the monotonicity of the jump and Soskov’s JIT: There

is a total degree a ≥ sG such that a′ = s′G.
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DT : Shore and Slaman: “Defining the Turing jump”

Theorem (Shore, Slaman)
The Turing jump is first order definable in DT .

1 Slaman and Woodin: The double jump is first order definable in
DT .

2 For every a /∈ ∆0
2 there is g such that a ∨ g = g′′

Hence 0′ is the greatest degree which does not join any g to g′′.

Ingredient 1: Slaman and Woodin’s analysis of the automorphisms of
the Turing degrees and “involves explicit translation of automorphism
facts in definability facts via a coding of second order arithmetic”.

Ingredient 2: A special case of a more general theorem for any n-rea
operator. Involves sharp analysis of Kumabe-Slaman forcing.
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De: Kalimullin “Some notes on definability in the
enumeration degrees”

Theorem (Kalimullin)
The enumeration jump is first order definable in De.

Main ingredient: K-pairs.

Definition
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

A pair of sets A,B are called a K-pair over a set U if there is a set
W ≤e U, such that A× B ⊆W and A× B ⊆W .
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K-pairs: An example

Definition (Jockusch)
A set of natural numbers A is semi-recursive if there is a computable
function sA such that for every pair of natural numbers (x , y):

1 sA(x , y) ∈ {x , y}.
2 If x ∈ A or y ∈ A then sA(x , y) ∈ A.

Example

Let A be a semi-recursive set. Then (A,A) is a K-pair.

W = {〈x , y〉 | sA(x , y) = x}.

Theorem (Jockusch)
For every noncomputable set B there is a semi-recursive set A ≡T B
such that both A and A are not c.e.
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Three steps

Theorem (Kalimullin)
1 The property of being a K-pair is degree theoretic and first order

definable in De by:

K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x)

2 There are a,b,c, which form a K-system, such that a∨ b∨ c = 0′e.
3 If A and B are a non-trivial K-pair then A⊕ 0′e ≡e B ⊕ 0′e.

So 0′e joins every K-partner of A to the same degree.

Hence y ≥e 0′e if an only if for all a,b,c if K(a,b) and K(a,c) then
y ∨ b = y ∨ c.

All the steps can be proved for K-pairs over any degree u.
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Consequences

1 The set of total degrees a above 0′e is definable in De.

Follows for example from Soskov’s Jump inversion theorem.
2 For every torsion-free abelian group of rank 1 G, the first jump

degree spectrum of G is first order definable in De with parameter
sG.

Follows from the fact that the first jump degree of G is sG.

Mariya I. Soskova (FMI) Extensions of the Turing model March 9, 2012 22 / 31



Consequences

1 The set of total degrees a above 0′e is definable in De.

Follows for example from Soskov’s Jump inversion theorem.
2 For every torsion-free abelian group of rank 1 G, the first jump

degree spectrum of G is first order definable in De with parameter
sG.

Follows from the fact that the first jump degree of G is sG.

Mariya I. Soskova (FMI) Extensions of the Turing model March 9, 2012 22 / 31



Definability in the local structures

Consider the local structures DT (≤ 0′T ) consisting of all ∆0
2 Turing

degrees and De(≤ 0′e), consisting of all Σ0
2 enumeration degrees.

Recall that ι : DT → De preserves the jump, hence DT (≤ 0′) embeds
in De(≤ 0′e).

Definition
1 For every n ≥ 1 the class of lown degrees is

Ln = {a ≤ 0′ | an = 0n}.
2 For every n ≥ 1 the class of highn degrees is

Hn =
{

a ≤ 0′ | an = 0n+1}
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DT (≤ 0′): Shore “Biinterpretability up to double jump
in the degrees below 0′”
Theorem (Shore)
For every n ≥ 1 the classes Ln+1 and Hn are first order definable in
DT (≤ 0′).

1 The theory of first order arithmetic can be interpreted in DT (≤ 0′).
2 There is a definable way of mapping a degree a to a set A in every

coded model of arithmetic so that A′′ ∈ a′′.
3 Every relation which is invariant under double jump and definable

in arithmetic is definable in DT (≤ 0′).
4 An additional proof that H1 is first order definable, using the fact

that x ∈ H1 if and only if ∀w∃yb ≤ x(w′′ = y′′).

Note that the definability of L1 in DT (≤ 0′T ) remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the
corresponding result for the c.e. degrees.
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De(≤ 0′e): Ganchev and S

Initial motivation: Prove that the theory of first order arithmetic is
interpretable in De(≤ 0′e).

Theorem (Slaman and Woodin)
A uniformly low antichain can be coded by parameters in De(≤ 0′e).

1 Non-trivial Σ0
2 K-pairs are low.

2 K-systems form antichains.
3 Every nonzero ∆0

2 e-degree bounds a countable K-system.
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An obstacle

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x)
Is it enough to require that this formula is satisfied by all Σ0

2 e-degrees?

Theorem (Ganchev, S)
There is a first order formula LK(x , y), which defines K-pairs in
De(≤ 0′e).

Proof flavor: We add a cupping property to the formula K(x , y), proved
with a priority construction, similar to Harrington’s non-splitting.

Corollary (Ganchev, S)
Th(De(≤ 0′e)) ≡1 Th(N).
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An easy consequence

Theorem
The class of downwards properly Σ0

2 enumeration degrees is first order
definable in De(≤ 0′e).

a is downwards properly Σ0
2 if and only if it bounds no K-pairs.
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A more important consequence

Jockusch:

For every incomputable set B there is a semi-recursive set A ≡T B
such that both A and A are not c.e.

It is not hard to see that a K-pair of the form {A,A} is maximal, i.e. it
cannot be extended to a K-pair (B,C), with A <e B or A <e C

Corollary
Every nonzero total enumeration degree can be represented as the
least upper bound of a maximal nontrivial K-pair.

Theorem (Ganchev, S)

For every nontrivial ∆0
2 K-pair can be extended to a maximal.

The class of total degrees is first order definable in De(≤ 0′e).
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One final consequence

Theorem (Giorgi, Sorbi, Yang)
If a is a total degree then a is low iff a does not bound a downwards
properly Σ0

2 enumeration degree.

By Soskov’s Jump Inversion Theorem every low degree is bounded by
a total low degree.

Corollary
The class of low e-degrees is first order definable in De(≤ 0′e).
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Open question

We know that:
T OT ∩ De(≥ 0′e) is first order definable.
T OT ∩ De(≤ 0′e) is first order definable.

Question
Is T OT first order definable in De?

Recall that the total degrees are an automorphism base for De.

A positive answer would connect the problems of the existence of a
non-trivial automorphism in both structures.
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The end

Thank you!
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