Extensions of the Turing model for relative definability

Mariya I. Soskova¹

Faculty of Mathematics and Informatics Sofia University

March 9, 2012

¹Research supported by BNSF Grant No. D002-258/18.12.08 and MC-ER Grant 239193 within the 7th European Community Framework Programme

Mariya I. Soskova (FMI)

Extensions of the Turing model

March 9, 2012 1 / 31

The real numbers within the complex numbers

- In his 1545 "Ars Magna", Cardano provided the first complete expression for the solution of a general cubic equation. In this solution a certain class of cases - ones he referred to as "irreducible" - the equation always has three real solutions, but in order to derive his expression he was forced to take the square root of a negative number.
- Roger Penrose in his book "The road to reality" 2005

The magic of the complex numbers ..."indeed provided a utility and a depth of mathematical insight that could not be achieved by use of the reals alone."

The real numbers within the complex numbers

- In his 1545 "Ars Magna", Cardano provided the first complete expression for the solution of a general cubic equation. In this solution a certain class of cases - ones he referred to as "irreducible" - the equation always has three real solutions, but in order to derive his expression he was forced to take the square root of a negative number.
- Roger Penrose in his book "The road to reality" 2005

The magic of the complex numbers ..."indeed provided a utility and a depth of mathematical insight that could not be achieved by use of the reals alone."

A B K A B K

The spectrum of relative definability

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

< 回 > < 三 > < 三 >

The spectrum of relative definability

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

< 回 > < 回 > < 回 >

The spectrum of relative definability

How can a set of natural numbers *B* be used to define a set of natural numbers *A*.

- There is an algorithm, which determines whether *x* ∈ *A* using finite information about memberships in *B*: Turing reducibility.
- There is an algorithm, which enumerates instances of memberships in *A* from instances of memberships in *B*: enumeration reducibility.

A B b 4 B b

 $A \leq_T B$ iff there is a computable in *B* function φ^B , such that $\chi_A = \varphi^B$. $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A (10) > A (10) > A (10)

$A \leq_T B$ iff there is a computable in *B* function φ^B , such that $\chi_A = \varphi^B$. $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in *B*.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A (10) > A (10) > A (10)

 $A \leq_T B$ iff there is a computable in *B* function φ^B , such that $\chi_A = \varphi^B$.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

< 回 > < 三 > < 三 >

 $A \leq_T B$ iff there is a computable in B function φ^B , such that $\chi_A = \varphi^B$.

 $A \leq_T B$ iff $A \oplus \overline{A}$ is c.e. in B.

 $A \leq_T B$ iff there is a c.e. set W such that $x \in A \oplus \overline{A}$ if and only if there are finite sets D_B and $D_{\overline{B}}$ such that $\langle x, D_B \oplus D_{\overline{B}} \rangle \in W$ and $D_B \oplus D_{\overline{B}} \subseteq B \oplus \overline{B}$.

Definition

 $A \leq_e B$ if and only if there is a set W, such that $A = W(B) = \{x \mid \exists u(\langle x, u \rangle \in W \land D_u \subseteq B)\}.$

Note that $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

A (10) A (10)

• $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$

- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

不同 トイモトイモ

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

A (1) > A (2) > A (2)

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

< 回 ト < 三 ト < 三

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨,', 0_e⟩ is an upper semi-lattice with jump operation and least element.

< 回 > < 回 > < 回 >

- $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}$
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- $\mathbf{0}_e = d_e(\emptyset) = \{ W \mid W \text{ is c.e. } \}.$
- $d_e(A) \lor d_e(B) = d_e(A \oplus B).$
- $d_e(A)' = d_e(A')$, where $A' = L_A \oplus \overline{L_A}$ and $L_A = \{x \mid x \in W_x(A)\}$.
- D_e = ⟨D_e, ≤, ∨, ′, 0_e⟩ is an upper semi-lattice with jump operation and least element.

The total degrees

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Note that the enumeration jump of a set $A' = L_A \oplus \overline{L_A}$ is always total.

Proposition

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

The substructure of the total e-degrees is defined as $TOT = \iota(D_T)$.

Note that the enumeration jump of a set $A' = L_A \oplus \overline{L_A}$ is always total.

• *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.

• Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}
ight\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}
ight\}$$

• Corollary: TOT is an automorphism base for D_e .

 Soskov's Jump inversion theorem (JIT): For every x ∈ D_e and every total q ≥ x' exists a ∈ TOT such that a ≥ x and a' = q.

< 回 > < 三 > < 三 >

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_{e}(X \oplus \overline{X}) \mid B \leq_{e} X \oplus \overline{X}
ight\} \subseteq \left\{ d_{e}(X \oplus \overline{X}) \mid A \leq_{e} X \oplus \overline{X}
ight\}$$

- Corollary: TOT is an automorphism base for D_e .
- Soskov's Jump inversion theorem (JIT): For every x ∈ D_e and every total q ≥ x' exists a ∈ TOT such that a ≥ x and a' = q.

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ d_e(X \oplus \overline{X}) \mid B \leq_e X \oplus \overline{X}
ight\} \subseteq \left\{ d_e(X \oplus \overline{X}) \mid A \leq_e X \oplus \overline{X}
ight\}$$

- Corollary: TOT is an automorphism base for D_e .
- Soskov's Jump inversion theorem (JIT): For every x ∈ D_e and every total q ≥ x' exists a ∈ TOT such that a ≥ x and a' = q.

- *B* is c.e. in *A* if and only if $B \leq_e A \oplus \overline{A}$.
- Selman's Theorem: $A \leq_e B$ if and only if

 $\{X \mid B \text{ is c.e. in } X\} \subseteq \{X \mid A \text{ is c.e. in } X\}.$

$$\left\{ {\it d}_{\it e}(X \oplus \overline{X}) \mid {\it B} \leq_{\it e} X \oplus \overline{X}
ight\} \subseteq \left\{ {\it d}_{\it e}(X \oplus \overline{X}) \mid {\it A} \leq_{\it e} X \oplus \overline{X}
ight\}$$

- Corollary: TOT is an automorphism base for D_e .
- Soskov's Jump inversion theorem (JIT): For every x ∈ D_e and every total q ≥ x' exists a ∈ TOT such that a ≥ x and a' = q.

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair. Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

< ロ > < 同 > < 回 > < 回 >

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair. Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

・ロト ・ 四ト ・ ヨト ・ ヨト

$\mathcal{D}_{\mathcal{T}}$: Coles, Downey and Slaman: "Every set has a least jump enumeration"

Given a set A let $C(A) = \{X \mid A \text{ is c.e. in } X\}.$

Theorem (Richter)

There is a non-c.e. set A such that A is c.e. in two sets B and C which form a minimal pair. Hence there is a set A, such that C(A) does not have a member of least degree.

Theorem (Coles, Downey, Slaman)

For every sets A the set: $C(A)' = \{X' \mid A \text{ is c.e. in } X\}$ has a member of least degree: $c'_{\mu}(A)$.

A set of the degree $c'_{\mu}(A)$ is obtained using forcing with finite conditions.

・ロト ・ 四ト ・ ヨト ・ ヨト

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let *p* be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} \text{ the largest } k, & \text{ such that } p^k | a \text{ in } G; \\ \infty, & \text{ if } \forall k(p^k | a \text{ in } G) . \end{cases}$$

Here $p^k | a$ in G if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_{\rho}(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_{\rho}(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$.

If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$.

In fact if $a, b \neq 0$ then for all but finitely many $p, h_p(a) = h_p(b)$.

A torsion free abelian group of rank 1 *G* is (isomorphic to) a subgroup of $(\mathbb{Q}, +, =)$.

Definition

Let p be a prime number and $a \in G$.

$$h_p(a) = \begin{cases} ext{ the largest } k, & ext{ such that } p^k | a ext{ in } G; \\ \infty, & ext{ if } orall k(p^k | a ext{ in } G) . \end{cases}$$

Here $p^k | a$ in *G* if there exists $b \in G$ such that $p^k \cdot b = a$.

Example: If $G = \mathbb{Q}$ then for all nonzero *a* and all *p*, $h_p(a) = \infty$, because for all *k*, $p^k \cdot \frac{a}{p^k} = a$. If $G = \mathbb{Z}$ then for all nonzero *a* and all but finitely many *p*, $h_p(a) = 0$. In fact if $a, b \neq 0$ then for all but finitely many *p*, $h_p(a) = h_p(b)$.

Let $p_0 < p_1 < \cdots < p_n \dots$ be an enumeration of all prime numbers.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{\rho_0}(a), h_{\rho_1}(a), \dots h_{\rho_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

3

Let $p_0 < p_1 < \cdots < p_n \dots$ be an enumeration of all prime numbers.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(\boldsymbol{a}) = (h_{p_0}(\boldsymbol{a}), h_{p_1}(\boldsymbol{a}), \dots h_{p_n}(\boldsymbol{a}), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$.

The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

3

Let $p_0 < p_1 < \cdots < p_n \dots$ be an enumeration of all prime numbers.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(\boldsymbol{a}) = (h_{\rho_0}(\boldsymbol{a}), h_{\rho_1}(\boldsymbol{a}), \dots h_{\rho_n}(\boldsymbol{a}), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

Let $p_0 < p_1 < \cdots < p_n \dots$ be an enumeration of all prime numbers.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(\boldsymbol{a}) = (h_{p_0}(\boldsymbol{a}), h_{p_1}(\boldsymbol{a}), \dots h_{p_n}(\boldsymbol{a}), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

イロト 不得 トイヨト イヨト 二日

Let $p_0 < p_1 < \cdots < p_n \dots$ be an enumeration of all prime numbers.

Definition

The characteristic of an element $a \in G$ is the sequence:

$$\chi(a) = (h_{p_0}(a), h_{p_1}(a), \dots h_{p_n}(a), \dots)$$

So if $a, b \neq 0$ then $\chi(a) =^* \chi(b)$. The type of *G*, denoted $\chi(G)$ is the equivalence class of $\chi(a)$ for any $a \neq 0$ in *G*.

Baer noticed that there is a TFA1 group of every possible type.

Theorem (Baer)

Two torsion-free abelian groups of rank 1 are isomorphic if and only if they have the same type.

イロト 不得 トイヨト イヨト 二日

The standard type of G

Definition Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

3

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

-

Definition

Let $S(G) = \{ \langle i, j \rangle \mid j \leq \text{ the i-th element of } \chi(G) \}.$

Note that every *S* can be coded as (is *m*-equivalent to) $\{\langle i, j \rangle \mid j = 0 \lor i \in S \& j = 1\}.$

Theorem (Downey, Jockusch)

The degree spectrum of G: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}.$

 $c'_{\mu}(A)$ exists for all A if and only if for every torsion-free abelian group G the jump spectrum of G, the set $\{d_T(H)' \mid H \cong G\}$ has a least element.

Corollary (Coles, Downey, Slaman)

Every every torsion-free abelian group of rank 1 G has a jump degree.

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

3

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of $\mathcal A$ is the set $f^{-1}(\mathcal A) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

3

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(R_1) \oplus f^{-1}(R_2) \cdots \oplus f^{-1}(R_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

3

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

• Then $f^{-1}(\mathcal{A}^+)$ is total set and corresponds to an isomorphic presentation of \mathcal{A} with isomorphism induced by f and atomic diagram *e*-equivalent $f^{-1}(\mathcal{A}^+)$.

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

• Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$

 Then f⁻¹(A⁺) is total set and corresponds to an isomorphic presentation of A with isomorphism induced by f and atomic diagram *e*-equivalent f⁻¹(A⁺).

Consider a structure $\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$.

Definition

An enumeration is any bijective mapping $f : \mathbb{N} \to \mathbb{N}$.

If *R* is an *n*-ary relation then $f^{-1}(R) = \{ \langle x_1, \dots, x_n \rangle \mid (f(x_1), \dots f(x_n)) \in R \}.$

The pullback of \mathcal{A} is the set $f^{-1}(\mathcal{A}) = f^{-1}(\mathcal{R}_1) \oplus f^{-1}(\mathcal{R}_2) \cdots \oplus f^{-1}(\mathcal{R}_k)$.

- Consider the structure $\mathcal{A}^+ = (\mathbb{N}, R_1, \overline{R_1} \dots R_k, \overline{R_k}).$
- Then f⁻¹(A⁺) is total set and corresponds to an isomorphic presentation of A with isomorphism induced by f and atomic diagram *e*-equivalent f⁻¹(A⁺).

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

• In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$

• \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Enumeration degree spectrum

Fix
$$\mathcal{A} = (\mathbb{N}, R_1 \dots R_k)$$
.

Definition

The e-degree spectrum of \mathcal{A} is $DS_e(\mathcal{A}) = \{ d_e(f^{-1}(\mathcal{A})) \mid f \text{ in an enumeration} \}.$

If $DS_e(A)$ has a least member, it is the (enumeration) degree of A.

- In fact $DS_e(\mathcal{A}^+) = \{\iota(\mathbf{a}) \mid \mathbf{a} \in DS_T(\mathcal{A})\}.$
- \mathcal{A} has T-degree **a** if and only if \mathcal{A}^+ has e-degree $\iota(\mathbf{a})$.

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(A)$ has a largest element, then it is called the co-degree of A.

- If A has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(A)$ has a largest element, then it is called the co-degree of A.

- If A has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Co-spectrum

Definition

The co-spectrum of \mathcal{A} is the set $CS_e(\mathcal{A}) = \{\mathbf{b} \mid \forall \mathbf{a} \in DS_e(\mathcal{A}) (\mathbf{b} \leq \mathbf{a})\}.$

If $CS_e(A)$ has a largest element, then it is called the co-degree of A.

- If A has degree **a** then it has co-degree **a**.
- There are examples of structures which have a co-degree but do not have a degree.

Theorem (Soskov)

Every countable ideal of enumeration degrees can be represented as the co-spectrum of a structure.

3

3 + 4 = +

Let G be a torsion-free abelian group of rank 1.

Recall that the degree spectrum of *G*: $\{d_T(H) \mid H \cong G\}$ is precisely $\{deg_T(Y) \mid S(G) \text{ is c.e. in } Y\}$.

So the enumeration degree spectrum of G^+ is $DS_e(G^+) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$ Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

4 **A** N A **B** N A **B** N

Let G be a torsion-free abelian group of rank 1.

Recall that the degree spectrum of G: { $d_T(H) | H \cong G$ } is precisely { $deg_T(Y) | S(G)$ is c.e. in *Y*}.

So the enumeration degree spectrum of G^+ is $DS_e(G^+) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$ Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

3

Let G be a torsion-free abelian group of rank 1.

Recall that the degree spectrum of G: { $d_T(H) | H \cong G$ } is precisely { $deg_T(Y) | S(G)$ is c.e. in *Y*}.

So the enumeration degree spectrum of G^+ is $DS_e(G^+) = \{ \mathbf{a} \mid \mathbf{a} \in TOT \& d_e(S(G)) \leq_e \mathbf{a} \}.$ Denote $d_e(S(G))$ by \mathbf{s}_G -the type degree of G.

3

イベト イラト イラト・

$$DS_e(G^+) = \{ a \mid a \in TOT \& s_G \le a \}$$

Theorem (Soskov)

- The co-spectrum of G^+ is $CS(G^+) = \{ \mathbf{b} \mid \mathbf{b} \leq \mathbf{s}_G \}$. Hence G^+ always has co-degree: \mathbf{s}_G .
- Every principal ideal of e-degrees can be represented as the co-spectrum of a torsion-free abelian group of rank 1.
- Follows from Selman's theorem: if a and b are bounded by the same total degrees then a = b.
- Follows from the observation that every set S can be coded as a standard type of a group.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$DS_e(G^+) = \{ a \mid a \in TOT \& s_G \le a \}$$

Theorem (Soskov)

- The co-spectrum of G^+ is $CS(G^+) = \{ \mathbf{b} \mid \mathbf{b} \leq \mathbf{s}_G \}$. Hence G^+ always has co-degree: \mathbf{s}_G .
- Every principal ideal of e-degrees can be represented as the co-spectrum of a torsion-free abelian group of rank 1.
- Follows from Selman's theorem: if **a** and **b** are bounded by the same total degrees then **a** = **b**.
- Follows from the observation that every set S can be coded as a standard type of a group.

3

∃ ► < ∃ ►</p>

$$DS_e(G^+) = \{ a \mid a \in TOT \& s_G \le a \}$$

Theorem (Soskov)

- The co-spectrum of G^+ is $CS(G^+) = \{ \mathbf{b} \mid \mathbf{b} \leq \mathbf{s}_G \}$. Hence G^+ always has co-degree: \mathbf{s}_G .
- Every principal ideal of e-degrees can be represented as the co-spectrum of a torsion-free abelian group of rank 1.
- Follows from Selman's theorem: if a and b are bounded by the same total degrees then a = b.
- Follows from the observation that every set S can be coded as a standard type of a group.

3

∃ ► < ∃ ►</p>

$$DS_e(G^+) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{TOT} \& \mathbf{s}_G \leq \mathbf{a} \}$$

Theorem (Soskov)

- G⁺ has an e-degree (and hence G has a T-degree) if and only if the set s_G is total. This e-degree is precisely s_G.
- 2 G^+ always has first jump degree (both e- and T-) and it is \mathbf{s}'_G .
- Follows again from Selman's theorem.
- Pollows from the monotonicity of the jump and Soskov's JIT: There is a total degree a ≥ s_G such that a' = s'_G.

A (10) A (10)

$$\mathsf{DS}_{e}(\mathsf{G}^{+}) = \{ \mathsf{a} \mid \mathsf{a} \in \mathcal{TOT} \& \mathsf{s}_{\mathsf{G}} \leq \mathsf{a} \}$$

Theorem (Soskov)

- G⁺ has an e-degree (and hence G has a T-degree) if and only if the set s_G is total. This e-degree is precisely s_G.
- 2 G^+ always has first jump degree (both e- and T-) and it is \mathbf{s}'_G .
- Follows again from Selman's theorem.
- **②** Follows from the monotonicity of the jump and Soskov's JIT: There is a total degree $\mathbf{a} \ge \mathbf{s}_G$ such that $\mathbf{a}' = \mathbf{s}'_G$.

∃ ► < ∃ ►</p>

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in \mathcal{D}_T .
- 3 For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- 3 For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

< ロ > < 同 > < 回 > < 回 >

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_{T} .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence **0**′ is the greatest degree which does not join any **g** to **g**″.

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

< ロ > < 同 > < 回 > < 回 >

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence **0**' is the greatest degree which does not join any **g** to **g**".

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_{T} .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

3

Theorem (Shore, Slaman)

The Turing jump is first order definable in \mathcal{D}_T .

- Slaman and Woodin: The double jump is first order definable in $\mathcal{D}_{\mathcal{T}}$.
- **2** For every $\mathbf{a} \notin \Delta_2^0$ there is \mathbf{g} such that $\mathbf{a} \lor \mathbf{g} = \mathbf{g}''$

Hence $\mathbf{0}'$ is the greatest degree which does not join any \mathbf{g} to \mathbf{g}'' .

Ingredient 1: Slaman and Woodin's analysis of the automorphisms of the Turing degrees and *"involves explicit translation of automorphism facts in definability facts via a coding of second order arithmetic".*

Ingredient 2: A special case of a more general theorem for any *n*-rea operator. Involves sharp analysis of Kumabe-Slaman forcing.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

\mathcal{D}_e : Kalimullin "Some notes on definability in the enumeration degrees"

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Main ingredient: *K*-pairs.

Definition

A pair of sets *A*, *B* are called a \mathcal{K} -pair if there is a c.e. set *W*, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

A pair of sets *A*, *B* are called a \mathcal{K} -pair over a set *U* if there is a set $W \leq_e U$, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

3

\mathcal{D}_e : Kalimullin "Some notes on definability in the enumeration degrees"

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Main ingredient: \mathcal{K} -pairs.

Definition

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

A pair of sets *A*, *B* are called a \mathcal{K} -pair over a set *U* if there is a set $W \leq_e U$, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

3

\mathcal{D}_e : Kalimullin "Some notes on definability in the enumeration degrees"

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Main ingredient: *K*-pairs.

Definition

A pair of sets A, B are called a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

A pair of sets *A*, *B* are called a \mathcal{K} -pair over a set *U* if there is a set $W \leq_e U$, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

3

\mathcal{K} -pairs: An example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

3 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

 $W = \{ \langle x, y \rangle \mid s_A(x, y) = x \}.$

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

3

< ロ > < 同 > < 回 > < 回 > < 回 >

\mathcal{K} -pairs: An example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$s_{\mathcal{A}}(x,y) \in \{x,y\}.$$

3 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

 $W = \{ \langle x, y \rangle \mid s_A(x, y) = x \}.$

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal K\text{-pairs}$: An example

Definition (Jockusch)

A set of natural numbers A is semi-recursive if there is a computable function s_A such that for every pair of natural numbers (x, y):

$$\bullet s_A(x,y) \in \{x,y\}.$$

3 If
$$x \in A$$
 or $y \in A$ then $s_A(x, y) \in A$.

Example

Let A be a semi-recursive set. Then (A, \overline{A}) is a \mathcal{K} -pair.

$$W = \{ \langle x, y \rangle \mid s_A(x, y) = x \}.$$

Theorem (Jockusch)

For every noncomputable set B there is a semi-recursive set $A \equiv_T B$ such that both A and \overline{A} are not c.e.

3 > 4 3

Theorem (Kalimullin)

● The property of being a *K*-pair is degree theoretic and first order definable in D_e by:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e.

So $\mathbf{0}'_{e}$ joins every \mathcal{K} -partner of A to the same degree.

Hence $\mathbf{y} \ge_e \mathbf{0}'_e$ if an only if for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ if $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathbf{y} \lor \mathbf{b} = \mathbf{y} \lor \mathbf{c}$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

A (10) > A (10) > A (10)

Theorem (Kalimullin)

● The property of being a *K*-pair is degree theoretic and first order definable in D_e by:

 $\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e. So 0'_e joins every K-partner of A to the same degree.

Hence $\mathbf{y} \ge_e \mathbf{0}'_e$ if an only if for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ if $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathbf{y} \lor \mathbf{b} = \mathbf{y} \lor \mathbf{c}$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

3

< ロ > < 同 > < 回 > < 回 >

Theorem (Kalimullin)

● The property of being a *K*-pair is degree theoretic and first order definable in D_e by:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e.

So $\mathbf{0}'_{e}$ joins every \mathcal{K} -partner of A to the same degree.

Hence $\mathbf{y} \ge_e \mathbf{0}'_e$ if an only if for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ if $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathbf{y} \lor \mathbf{b} = \mathbf{y} \lor \mathbf{c}$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

3

Theorem (Kalimullin)

The property of being a *K*-pair is degree theoretic and first order definable in D_e by:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e. So 0'_e joins every K-partner of A to the same degree.

Hence $\mathbf{y} \ge_e \mathbf{0}'_e$ if an only if for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ if $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathbf{y} \lor \mathbf{b} = \mathbf{y} \lor \mathbf{c}$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

3

Theorem (Kalimullin)

● The property of being a *K*-pair is degree theoretic and first order definable in D_e by:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e. So 0'_e joins every K-partner of A to the same degree.

Hence $y \ge_e 0'_e$ if an only if for all a, b, c if $\mathcal{K}(a, b)$ and $\mathcal{K}(a, c)$ then $y \lor b = y \lor c$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

3

Theorem (Kalimullin)

The property of being a *κ*-pair is degree theoretic and first order definable in D_e by:

$$\mathcal{K}(\mathsf{a},\mathsf{b}) \leftrightarrows (orall \mathsf{x} \in \mathcal{D}_{e})((\mathsf{a} \lor \mathsf{x}) \land (\mathsf{b} \lor \mathsf{x}) = \mathsf{x})$$

2 There are a, b, c, which form a K-system, such that a ∨ b ∨ c = 0'_e.
3 If A and B are a non-trivial K-pair then A ⊕ 0'_e ≡_e B ⊕ 0'_e. So 0'_e joins every K-partner of A to the same degree.

Hence $\mathbf{y} \ge_{e} \mathbf{0}'_{e}$ if an only if for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ if $\mathcal{K}(\mathbf{a}, \mathbf{b})$ and $\mathcal{K}(\mathbf{a}, \mathbf{c})$ then $\mathbf{y} \lor \mathbf{b} = \mathbf{y} \lor \mathbf{c}$.

All the steps can be proved for \mathcal{K} -pairs over any degree **u**.

3

Consequences

- The set of total degrees a above 0'_e is definable in D_e.
 Follows for example from Soskov's Jump inversion theorem.
- Provide a provide a provided a set of the first provided and a set of the first provided a spectrum of G is first order definable in \mathcal{D}_e with parameter \mathbf{s}_G .

Follows from the fact that the first jump degree of G is s_G .

Consequences

- The set of total degrees a above 0'_e is definable in D_e.
 Follows for example from Soskov's Jump inversion theorem.
- Por every torsion-free abelian group of rank 1 G, the first jump degree spectrum of G is first order definable in \mathcal{D}_e with parameter \mathbf{s}_G .

Follows from the fact that the first jump degree of G is \mathbf{s}_{G} .

Definability in the local structures

Consider the local structures $\mathcal{D}_T (\leq \mathbf{0}'_T)$ consisting of all Δ_2^0 Turing degrees and $\mathcal{D}_e (\leq \mathbf{0}'_e)$, consisting of all Σ_2^0 enumeration degrees.

Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq \mathbf{0}')$ embeds in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Definition

• For every $n \ge 1$ the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$

② For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

Definability in the local structures

Consider the local structures $\mathcal{D}_T (\leq \mathbf{0}'_T)$ consisting of all Δ_2^0 Turing degrees and $\mathcal{D}_e (\leq \mathbf{0}'_e)$, consisting of all Σ_2^0 enumeration degrees.

Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq 0')$ embeds in $\mathcal{D}_e (\leq 0'_e)$.

Definition

- For every $n \ge 1$ the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$
- **2** For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

-

Definability in the local structures

Consider the local structures $\mathcal{D}_T (\leq \mathbf{0}'_T)$ consisting of all Δ_2^0 Turing degrees and $\mathcal{D}_e (\leq \mathbf{0}'_e)$, consisting of all Σ_2^0 enumeration degrees.

Recall that $\iota : \mathcal{D}_T \to \mathcal{D}_e$ preserves the jump, hence $\mathcal{D}_T (\leq 0')$ embeds in $\mathcal{D}_e (\leq 0'_e)$.

Definition

- For every $n \ge 1$ the class of low_n degrees is $L_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^n \}.$
- **2** For every $n \ge 1$ the class of high_n degrees is $H_n = \{ \mathbf{a} \le \mathbf{0}' \mid \mathbf{a}^n = \mathbf{0}^{n+1} \}$

$\mathcal{D}_{\mathcal{T}}(\leq 0')$: Shore "Biinterpretability up to double jump in the degrees below 0'"

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **()** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- 3 Every relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- ④ An additional proof that H₁ is first order definable, using the fact that x ∈ H₁ if and only if ∀w∃yb ≤ x(w" = y").

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

$\mathcal{D}_{\mathcal{T}}(\leq 0')$: Shore "Biinterpretability up to double jump in the degrees below 0'"

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- ② There is a definable way of mapping a degree a to a set A in every coded model of arithmetic so that A'' ∈ a''.
- 3 Every relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- ④ An additional proof that H_1 is first order definable, using the fact that $\mathbf{x} \in H_1$ if and only if $\forall \mathbf{w} \exists yb \leq \mathbf{x}(\mathbf{w}'' = \mathbf{y}'')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- 3 Every relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- An additional proof that H₁ is first order definable, using the fact that x ∈ H₁ if and only if ∀w∃yb ≤ x(w'' = y'').

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Severy relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.

④ An additional proof that H₁ is first order definable, using the fact that x ∈ H₁ if and only if ∀w∃yb ≤ x(w'' = y'').

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Solution Every relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- Solution An additional proof that *H*₁ is first order definable, using the fact that $\mathbf{x} \in H_1$ if and only if ∀w∃yb ≤ $\mathbf{x}(\mathbf{w}'' = \mathbf{y}'')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Severy relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- Solution An additional proof that *H*₁ is first order definable, using the fact that $\mathbf{x} \in H_1$ if and only if ∀w∃yb ≤ $\mathbf{x}(\mathbf{w}'' = \mathbf{y}'')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Theorem (Shore)

For every $n \ge 1$ the classes L_{n+1} and H_n are first order definable in $\mathcal{D}_T (\le \mathbf{0}')$.

- **①** The theory of first order arithmetic can be interpreted in $\mathcal{D}_T (\leq \mathbf{0}')$.
- 2 There is a definable way of mapping a degree **a** to a set *A* in every coded model of arithmetic so that $A'' \in \mathbf{a}''$.
- Severy relation which is invariant under double jump and definable in arithmetic is definable in $\mathcal{D}_T (\leq \mathbf{0}')$.
- Solution An additional proof that *H*₁ is first order definable, using the fact that $\mathbf{x} \in H_1$ if and only if ∀w∃yb ≤ $\mathbf{x}(\mathbf{w}'' = \mathbf{y}'')$.

Note that the definability of L_1 in $\mathcal{D}_T (\leq \mathbf{0}'_T)$ remains open.

Similar ideas are used by Nies Shore and Slaman in the proof of the corresponding result for the c.e. degrees.

Mariya I. Soskova (FMI)

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_{e}(\leq \mathbf{0}_{e}')$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 *K*-systems form antichains.
- **③** Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

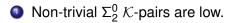
- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 *K*-systems form antichains.
- **③** Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

< 回 > < 三 > < 三 >

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.



- K-systems form antichains.
- (a) Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

< 回 > < 三 > < 三 >

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 \mathcal{K} -systems form antichains.
- **3** Every nonzero Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

(B) (A) (B) (A)

Initial motivation: Prove that the theory of first order arithmetic is interpretable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Slaman and Woodin)

A uniformly low antichain can be coded by parameters in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

- Non-trivial $\Sigma_2^0 \mathcal{K}$ -pairs are low.
- 2 \mathcal{K} -systems form antichains.
- Solution Sector Δ_2^0 e-degree bounds a countable \mathcal{K} -system.

$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$

Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines \mathcal{K} -pairs in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Proof flavor: We add a cupping property to the formula $\mathcal{K}(x, y)$, proved with a priority construction, similar to Harrington's non-splitting.

Corollary (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

A (1) > A (2) > A

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \rightleftharpoons (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines \mathcal{K} -pairs in $\mathcal{D}_e (\leq \mathbf{0}'_e)$.

Proof flavor: We add a cupping property to the formula $\mathcal{K}(x, y)$, proved with a priority construction, similar to Harrington's non-splitting.

Corollary (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

A (10) > A (10) > A (10)

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \rightleftharpoons (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Proof flavor: We add a cupping property to the formula $\mathcal{K}(x, y)$, proved with a priority construction, similar to Harrington's non-splitting.

Corollary (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

3

A (10) A (10)

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \rightleftharpoons (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Proof flavor: We add a cupping property to the formula $\mathcal{K}(x, y)$, proved with a priority construction, similar to Harrington's non-splitting.

Corollary (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

 $\mathcal{K}(\mathbf{a}, \mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x}) = \mathbf{x})$ Is it enough to require that this formula is satisfied by all Σ_2^0 e-degrees?

Theorem (Ganchev, S)

There is a first order formula $\mathcal{LK}(x, y)$, which defines \mathcal{K} -pairs in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Proof flavor: We add a cupping property to the formula $\mathcal{K}(x, y)$, proved with a priority construction, similar to Harrington's non-splitting.

Corollary (Ganchev, S) $Th(\mathcal{D}_e(\leq \mathbf{0}'_e)) \equiv_1 Th(\mathbb{N}).$

An easy consequence

Theorem

The class of downwards properly Σ_2^0 enumeration degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

 \boldsymbol{a} is downwards properly $\boldsymbol{\Sigma}_2^0$ if and only if it bounds no $\mathcal{K}\text{-pairs}.$

Jockusch:

For every incomputable set *B* there is a semi-recursive set $A \equiv_T B$ such that both *A* and \overline{A} are not c.e.

It is not hard to see that a \mathcal{K} -pair of the form $\{A, \overline{A}\}$ is maximal, i.e. it cannot be extended to a \mathcal{K} -pair (B, C), with $A <_e B$ or $\overline{A} <_e C$

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a maximal nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair can be extended to a maximal.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Jockusch:

For every incomputable set *B* there is a semi-recursive set $A \equiv_T B$ such that both *A* and \overline{A} are not c.e.

It is not hard to see that a \mathcal{K} -pair of the form $\{A, \overline{A}\}$ is maximal, i.e. it cannot be extended to a \mathcal{K} -pair (B, C), with $A <_e B$ or $\overline{A} <_e C$

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a maximal nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair can be extended to a maximal.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Jockusch:

For every incomputable set *B* there is a semi-recursive set $A \equiv_T B$ such that both *A* and \overline{A} are not c.e.

It is not hard to see that a \mathcal{K} -pair of the form $\{A, \overline{A}\}$ is maximal, i.e. it cannot be extended to a \mathcal{K} -pair (B, C), with $A <_e B$ or $\overline{A} <_e C$

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a maximal nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair can be extended to a maximal.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Jockusch:

For every incomputable set *B* there is a semi-recursive set $A \equiv_T B$ such that both *A* and \overline{A} are not c.e.

It is not hard to see that a \mathcal{K} -pair of the form $\{A, \overline{A}\}$ is maximal, i.e. it cannot be extended to a \mathcal{K} -pair (B, C), with $A <_e B$ or $\overline{A} <_e C$

Corollary

Every nonzero total enumeration degree can be represented as the least upper bound of a maximal nontrivial \mathcal{K} -pair.

Theorem (Ganchev, S)

For every nontrivial $\Delta_2^0 \mathcal{K}$ -pair can be extended to a maximal.

The class of total degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

One final consequence

Theorem (Giorgi, Sorbi, Yang)

If **a** is a total degree then **a** is low iff **a** does not bound a downwards properly Σ_2^0 enumeration degree.

By Soskov's Jump Inversion Theorem every low degree is bounded by a total low degree.

Corollary

The class of low e-degrees is first order definable in ${\mathcal D}_e(\leq {f 0}'_e).$

< 回 ト < 三 ト < 三

One final consequence

Theorem (Giorgi, Sorbi, Yang)

If **a** is a total degree then **a** is low iff **a** does not bound a downwards properly Σ_2^0 enumeration degree.

By Soskov's Jump Inversion Theorem every low degree is bounded by a total low degree.

Corollary

The class of low e-degrees is first order definable in ${\mathcal D}_e(\leq {f 0}_e').$

(B) (A) (B) (A)

One final consequence

Theorem (Giorgi, Sorbi, Yang)

If **a** is a total degree then **a** is low iff **a** does not bound a downwards properly Σ_2^0 enumeration degree.

By Soskov's Jump Inversion Theorem every low degree is bounded by a total low degree.

Corollary

The class of low e-degrees is first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question

Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

E N 4 E N

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $TOT \cap D_e (\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

周 ト イ ヨ ト イ ヨ ト

We know that:

- $TOT \cap D_e (\geq \mathbf{0}'_e)$ is first order definable.
- $\mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)$ is first order definable.

Question Is TOT first order definable in D_e ?

Recall that the total degrees are an automorphism base for \mathcal{D}_e .

A positive answer would connect the problems of the existence of a non-trivial automorphism in both structures.

Thank you!

2

イロト イヨト イヨト イヨト