Randomness relative to an enumeration oracle

Mariya I. Soskova¹

joint work with Joe Miller

Sofia University

17th Midwest Computability Seminar, University of Chicago

¹Supported by Sofia University Science Fund and by the program 'For women in science'.

Enumeration reducibility

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

 $A = W(B) = \left\{ x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B) \right\}.$

Theorem (Selman)

 $A \leq_e B$ if and only if every enumeration of B computes an enumeration of A.

The degree structure induced by \leq_e is \mathcal{D}_e the structure of the enumeration degrees, an upper semi-lattice with least element.

The total enumeration degrees

Proposition

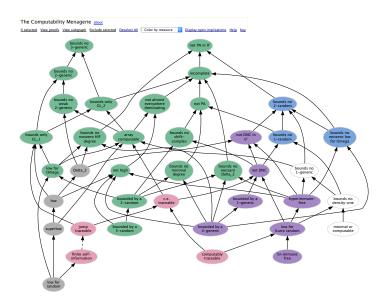
- A is c.e. in B if and only if $A \leq_e B \oplus \overline{B}$.
- $a \leq_T B \text{ if and only if } A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, defines an isomorphic copy of the Turing degrees in the enumeration degrees: the total enumeration degrees.

What is missing?

The Computability Menagerie

http://menagerie.math.wisc.edu/menagerie#coloring=measure



The enumeration menagerie

- Total degrees.
- **Q** Quasiminimal degrees, disjoint from the total degrees.
- S Generic degrees are all quasiminimal.
- All total degrees are continuous, but no continuous degree is quasiminimal.
- Solution Halves of \mathcal{K} -pairs are quasiminimal and at most 1-generic.
- Semi-computable sets that are not co-c.e. are quasiminimal, but not 1-generic.

Algorithmic randomness

Definition

- A test is a uniform sequence of Σ_1^0 classes $\{V_n\}_{n < \omega}$ such that $\mu V_n \leq 2^{-n}$ for every n.
- **2** A set Z passes the test V if $Z \notin \bigcap_{n < \omega} V_n$.
- The set Z is random if it passes all tests.

Definition

- A Solovay test is a set c.e. set W (subset of $2^{<\omega}$) with finite weight $\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$.
- A set Z passes the test W if only finitely many initial segments of Z are in W.
- The set Z is Solovay random if it passes all Solovay tests.

Randomness relative to a Turing oracle

Definition

- An A-test is a uniform sequence of Σ⁰₁(A) classes {V_n}_{n<ω} such that μV_n ≤ 2⁻ⁿ for every n.
- **2** A sequence $Z \in 2^{\omega}$ passes the test V if $Z \notin \bigcap_{n < \omega} V_n$.
- **③** The sequence Z is A-random if it passes all A-tests.

Definition

- A Solovay A-test is a c.e. in A set W with finite weight $\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$.
- A sequence Z passes the test W if only finitely many initial segments of Z are in W.
- **③** The sequence Z is Solovay A-random if it passes all Solovay A-tests.

Randomness relative to an enumeration oracle $\langle A \rangle$

We have a well defined notion of randomness relative to a total oracle: Z is $\langle A \oplus \overline{A} \rangle$ -random if and only if Z is A-random.

Approach I: Structural

- A sequence Z is upwards $\langle A \rangle$ -random if it is random relative to some total set enumeration above A.
- A sequence Z is downwards $\langle A \rangle$ -random if it is random relative to every total set enumeration below A.

Randomness relative to an enumeration oracle $\langle A \rangle$ Approach II: Using the fact that 'c.e. in A' is the same as ' $\leq_e A \oplus \overline{A}$ '.

Definition

- V is a $\Sigma_1^0 \langle A \rangle$ class if there is a set $U \leq_e A$ such that $V = [U]^{\preceq}$.
- An ⟨A⟩-test is a uniform sequence of Σ⁰₁⟨A⟩ classes {V_n}_{n<\omega} such that
 $\mu V_n \leq 2^{-n}$ for every n.
- So A sequence $Z \in 2^{\omega}$ passes the test V if $Z \notin \bigcap_{n < \omega} V_n$.
- **(**) The sequence Z is A-random if it passes all $\langle A \rangle$ -tests.

Definition

- A Solovay $\langle A \rangle$ -test is a set $W \leq_e A$ with finite weight $\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$.
- A sequence Z passes the test W if only finitely many initial segments of Z are in W.
- **(a)** The sequence Z is Solovay $\langle A \rangle$ -random if it passes all Solovay A-tests.

Relationships

Theorem

For any set A and sequence Z, consider the following "relative randomness" notions:

- Z is X-random for some X such that $A \leq_e X \oplus \overline{X}$,
- **2** *I* is $\langle A \rangle$ -random,
- $\textcircled{O} Z \text{ is Solovay } \langle A \rangle \text{-random,}$

(Z is X-random for every X such that $X \oplus \overline{X} \leq_e A$.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$.

Furthermore, each of these implications can be strict.

 $(2) \Rightarrow (3)$: If W is a Solovay $\langle A \rangle$ -test then $\{V_n\}_{n < \omega}$ is and $\langle A \rangle$ -test:

 $V_n = [\{\sigma \mid \sigma \in W \text{ and there are at least } 2^n - 1 \text{ proper prefixes of } \sigma \text{ in } W\}]^{\leq}.$

What fails?

Suppose that we wanted to show $(3) \Rightarrow (2)$. The usual reasoning is:

"Suppose that Z is not $\langle A \rangle$ -random. Let $\{V_n\}_{n < \omega}$ be an $\langle A \rangle$ -test. Since we may assume that each V_n is given by a a prefix-free set $U_n \leq_e A$ and wt $U_n = \mu V_n \leq 2^{-n}$, the set $W = \bigcup_n U_n$ of strings has weight less than 1."

To transform U_n into a prefix free set P_n we enumerate U_n one by one. If σ appears, but we have already enumerated an extension of σ in P_n we do not add σ , but instead pick the longest extension τ of σ in P_n and add all extensions of σ of length $|\tau|$.

The prefix free version of U_n depends on the order in which we enumerate U_n : if σ appears before any of its extensions then $\sigma \in P_n$ and otherwise $\sigma \notin P_n$. Separating $\langle A \rangle$ -randomness from Solovay $\langle A \rangle$ -randomness Step 1: An alternative characterization of $\langle A \rangle$ -randomness

Definition

A Kučera $\langle A \rangle$ -test is a $\Sigma_1^0 \langle A \rangle$ class U with $\mu U < 1$. A set X passes the test U if not every tail of X is in U.

Theorem

A set X is $\langle A \rangle$ -random if and only if X passes every Kučera $\langle A \rangle$ -test.

Separating $\langle A \rangle$ -randomness from Solovay $\langle A \rangle$ -randomness Step 2: A sufficient condition

Lemma

For any set A, consider the following properties:

- There is a ∑₁⁰⟨A⟩-class U with µ(U) < 1 such that if W ≤_e A is a set of strings with wt(W) < 1, then U \ [W][≺] has positive measure.
- **2** There if a Solovay $\langle A \rangle$ -random sequence that is not $\langle A \rangle$ -random.
- Some there is a ∑₁⁰⟨A⟩-class U with µ(U) < 1 such that if W ≤_e A is a set of strings with wt(W) < 1, then U ⊈ [W][≺].

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Separating $\langle A \rangle$ -randomness from Solovay $\langle A \rangle$ -randomness Step 3: Building a class that is hard to cover.

Lemma

There is a set A and a $\Sigma_1^0\langle A \rangle$ -class U with $\mu(U) < 1$ such that if $W \leq_e A$ is a set of strings with wt(W) < 1, then $U \smallsetminus [W]^{\prec}$ has positive measure.

We build $A \subseteq 2^{<\omega}$ and set $U = [A]^{\preceq}$ via forcing.

Conditions are
$$(S, q)$$
, where $S \subseteq 2^{<\omega}$, $q \le 1$ and $\mu[S]^{\preceq} < q$.

A condition (T, p) extends (S, q) if $T \supseteq S$ and $p \leq q$.

We show that there is a dense set of conditions that force:

 R_{Φ} : either wt($\Phi(A)$) ≥ 1 or $U \smallsetminus [\Phi(A)]^{\prec}$ has positive measure.

Separating $\langle A \rangle$ -randomness from Solovay $\langle A \rangle$ -randomness Step 3: Building a class that is hard to cover.

Let σ be a string of large enough length n.

If σ enters A then the opponent responds by adding $g(\sigma)$ to $\Phi(A)$.

If instead $\tau \succeq \sigma$ enters A then the opponent:

- **(**) Responds efficiently by covering τ differently and spending less weight.
- **2** Responds inefficiently by covering σ .

Consider $G_{\sigma} = \bigcup_{\tau \succeq \sigma} g(\sigma)$.

Case 1: G_{σ} has infinite weight for some σ of length n then we can add all extensions of σ to A.

Case 2: The opponent covers too many strings inefficiently: $I = \{\rho \mid (\exists^{\infty} \tau)[g(\tau) \ni \rho]\}$ has weight ≥ 1 . Then we can add I to $\Phi(A)$ by spending very little measure.

Lowness for randomness

Definition

A set A is *low for randomness* if every 1-random is $\langle A \rangle$ -random;

A is low for Solovay randomness if every 1-random is Solovay $\langle A \rangle$ -random.

Proposition

The following two conditions are equivalent:

- A is low for randomness.
- $\label{eq:2.1} \mbox{@ Every Σ_1^0} \langle A \rangle \mbox{ class of measure } < 1 \mbox{ is covered by a Σ_1^0 class of measure } < 1.$

Uncountably many low for randomness sets Proposition

Every 1-generic set is low for randomness.

Proof.

For every enumeration operator Φ and natural number n, consider the c.e. set

$$W(\Phi, n) = \left\{ \sigma \mid \mu[\Phi(\{x \mid \sigma(x) = 1\})]^{\preceq} > 1 - 2^{-n} \right\}.$$

If G meets $W(\Phi, n)$ then $\mu[\Phi(G)]^{\preceq} > 1 - 2^{-n}$.

If $[\Phi(G)] \leq 1$ is a $\Sigma_1^0 \langle G \rangle$ class with measure < 1 then there must be some n such that G avoids $W(\Phi, n)$.

There is a $\sigma \preceq G$ such that

$$\mu[\Phi(\{x\mid \sigma(x)=1\}\cup \mathbb{N}^{\geq |\sigma|})]^{\preceq} < 1.$$

Separating $\langle A \rangle$ -random from upwards $\langle A \rangle$ -random

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not $\langle X \oplus \overline{X} \rangle$ -random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω .
- A is 1-generic and hence low for randomness.

 Ω is $\langle A \rangle$ -random, but not $\langle X \oplus \overline{X} \rangle$ -random for any $X \oplus \overline{X} \geq_e A$.

Semi-computable sets

Definition (Jockusch)

A set A is semi-computable if it is a left cut is some computable linear ordering on the natural numbers.

Proposition (Jockusch)

Every total enumeration degree \mathbf{x} contains $A \oplus \overline{A}$ for some semicomputable A. If \mathbf{x} is nonzero then A and \overline{A} are not c.e.

Theorem (Rozinas)

Every enumeration degree is the meet of two total enumeration degrees.

Low for randomness sets generate the e-degrees

Proposition

If A is semicomputable and not co-c.e. then A is low for randomness.

Proof.

Let A be a left cut in the computable ordering $L = (\mathbb{N}, \leq_L)$.

Suppose that $\mu[\Phi(A)]^{\preceq} < 1 - 2^{-n}$ and consider

$$W = \left\{ x \mid \mu[\Phi(\{y \mid y \leq_L x\})]^{\preceq} \ge 1 - 2^{-n} \right\}.$$

 $W \cap A = \emptyset$. As A is not co-c.e. it follows that $W \subset \overline{A}$.

Let $z \in \overline{A} \setminus W$, then $[\Phi(\{y \mid y \leq_L z\})] \leq$ is a Σ_1^0 class with measure < 1 that covers $[\Phi(A)] \leq$.

Not all quasiminimal are low for randomness

Proposition

For any sequence Z, there is a set A of quasi-minimal enumeration degree such that Z is not Solovay $\langle A \rangle$ -random.

If Z is random then Z is random relative to all total sets reducible to A, but not Solovay $\langle A \rangle$ -random.

Relativizing PA

Definition

X is PA above Y if and only if X computes an element in every nonempty $\Pi_1^0(Y)$ class.

A $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

A set A is $\langle PA \rangle$ above B if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z whose characteristic function is enumeration reducible to A (i.e., $Z \oplus \overline{Z} \leq_e A$).

Self $\langle PA \rangle$ sets

Theorem

There is a set A such that A is $\langle PA \rangle$ above A.

Proof.

We construct A in stages as $\bigcup_e A_e$. The set A_e has total columns $A^{[i]}$ for i < e and finite columns $A^{[j]}$ for $j \ge e$.

• First we try to force $[\Phi_e(A)] \leq$ to be 2^{ω} :

If $[\Phi_e(A_e \cup \mathbb{N}^{\geq e})]^{\preceq} = 2^{\omega}$ then by compactness there is a finite set F such that $[\Phi_e(A_e \cup F)]^{\preceq} = 2^{\omega}$.

Otherwise $2^{\omega} \setminus [\Phi_e(A_e \cup \mathbb{N}^{\geq e})]^{\preceq}$ is a nonempty $\Pi^0_1(\bigoplus_{i < e} A^{[i]})$ -class contained in $2^{\omega} \setminus [\Phi_e(A)]^{\preceq}$.

② Then we code in $A^{[e]}$ a set $X \oplus \overline{X}$ that is PA above $\bigoplus_{i \le e} A_e^{[i]}$.

Randomness properties of self- $\langle PA \rangle$ sets

Proposition

If A is self- $\langle PA \rangle$ then there is neither a universal $\langle A \rangle$ -test nor a universal Solovay $\langle A \rangle$ -test.

Proposition

Let A be self- $\langle PA \rangle$ enumeration degree and U be a $\Sigma_1^0 \langle A \rangle$ class U of measure < 1. There exists a set Y such that $Y \oplus \overline{Y} \leq_e A$ and a $\Sigma_1^0(Y)$ class V of measure < 1, such that $U \subseteq V$.

Corollary

If A is self- $\langle PA \rangle$ then for every X the following are equivalent:

- X is $\langle A \rangle$ -random;
- **2** X is Solovay $\langle A \rangle$ -random;
- $I X is Y random for every Y, such that <math>Y \oplus \overline{Y} \leq_e A.$

Other proporties of self- $\langle PA \rangle$ sets

Proposition

If A is self- $\langle PA \rangle$ then the set of total degrees below A is a Scott set.

Proposition

Let S be a countable Scott set of total enumeration degrees. There exists a self- $\langle PA \rangle$ set A such that S is the set of total enumeration degrees below A.

Proposition

If X is PA above Y if and only if then there is a self- $\langle PA \rangle A$ such that $Y \oplus \overline{Y} <_e A <_e X \oplus \overline{X}$.

Continuous degrees

"Does every continuous function on the unit interval have a name of least Turing degree?"

Definition (Miller)

There is a way to assign to every continuous function f on the unit interval an enumeration degree c(f), so that the total degrees above c(f) correspond to Turing degrees of names for f.

The degree c(f) is called a *continuous enumeration degree*.

Theorem (Miller)

There are non-total continuous degrees.

Non-total continuous degrees

Theorem (Miller)

- The total degrees below a non-total continuous degree form a Scott ideal.
- Every Scot ideal can be realized as the set of total enumeration degrees below some non-total continuous degree.
- For a, b-total, "b is PA above a" if and only if there is a non-total continuous degree x such that a < x < b.</p>

Proposition

If A has continuous degree, then there is a universal (Martin-Löf) $\langle A \rangle$ -test. If A has continuous degree, then Z is $\langle A \rangle$ -random iff Z is X-random for some X such that $A \leq_e X \oplus \overline{X}$.

Thank you!