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Enumeration reducibility

Definition
A <. Bif there is a c.e. set W, such that

A=W(B) = {z|3D({z,D) € W & D C B)}.

Theorem (Selman)
A <. B if and only if every enumeration of B computes an enumeration of A.

v

The degree structure induced by <. is D, the structure of the enumeration
degrees, an upper semi-lattice with least element.



The total enumeration degrees

Proposition
Q Aisce.in Bifandonlyif A <, B&® B.
@ A<r Bifandonlyif A® A<, B® B.

The embedding ¢ : D — D, defined by «(d7(A)) = de(A & A), defines an
isomorphic copy of the Turing degrees in the enumeration degrees: the total
enumeration degrees.



What is missing?

http://menagerie.math.wisc.edu/menagerie#coloring=meas

The Computability Menagerie
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The enumeration menagerie

©0 0000

Total degrees.
Quasiminimal degrees, disjoint from the total degrees.
Generic degrees are all quasiminimal.

All total degrees are continuous, but no continuous degree is
quasiminimal.

Halves of KC-pairs are quasiminimal and at most 1-generic.

Semi-computable sets that are not co-c.e. are quasiminimal, but not
1-generic.



Algorithmic randomness

Definition

@ A testis a uniform sequence of E(l) classes {V}, }5,<., such that
uVy, < 27" for every n.

@ Aset Z passes thetest V if Z ¢ [
© The set Z is random if it passes all tests.

TL<UJ

Definition
@ A Solovay test is a set c.e. set W (subset of 2<“) with finite weight
wt(W) =3 cw vmal
© A set Z passes the test I if only finitely many initial segments of Z are
in W.

© The set Z is Solovay random if it passes all Solovay tests.
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Randomness relative to a Turing oracle

Definition

@ An A-test is a uniform sequence of X9(A) classes {V}, },<., such that
uVy, < 27" for every n.

@ A sequence Z € 2¢ passes the test V if Z ¢ [
© The sequence Z is A-random if it passes all A—tests.

n<w

Definition
© A Solovay A-testis a c.e. in A set W with finite weight
wt(W) =3 cw 2-lol,
© A sequence Z passes the test W if only finitely many initial segments of
Z arein W.

@ The sequence Z is Solovay A-random if it passes all Solovay A-tests.
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Randomness relative to an enumeration oracle (A)

We have a well defined notion of randomness relative to a total oracle: Z is
(A ® A)-random if and only if Z is A-random.

Approach I: Structural

e A sequence Z is upwards (A)-random if it is random relative to some
total set enumeration above A.

e A sequence Z is downwards (A)-random if it is random relative to every
total set enumeration below A.



Randomness relative to an enumeration oracle (A)
Approach II: Using the fact that ‘c.e. in A’ is the same as ‘<, A @ A’.

Definition
@ VisaX{(A) class if there is a set U <. A such that V = [U]=.

@ An (A)-test is a uniform sequence of ¥.9(A) classes {V}, } <. such that
uVy, < 27" for every n.

© A sequence Z € 2% passes the test V if Z ¢ [
© The sequence Z is A-random if it passes all <A>—tests.

n<w

Definition
@ A Solovay (A)-test is a set W <. A with finite weight
wt(W) =3 cw vmal
© A sequence Z passes the test W if only finitely many initial segments of
Z arein W.

@ The sequence Z is Solovay (A)-random if it passes all Solovay A-tests.
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Relationships

Theorem

For any set A and sequence Z, consider the following “relative randomness”
notions:

© Z is X-random for some X such that A <, X & X,

@ Zis (A)-random,

@ Z is Solovay (A)-random,

© 7 is X-random for every X such that X & X <, A.

Then (1) = (2) = (3) = (4).
Furthermore, each of these implications can be strict.

(2) = (3): If W is a Solovay (A)-test then {V,, },,<., is and (A)-test:

Vio = [{o | ¢ € W and there are at least 2" — 1 proper prefixes of o in W}]=.
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What fails?

Suppose that we wanted to show (3) = (2). The usual reasoning is:

“Suppose that Z is not (A)-random. Let {V}, }n<., be an (A)-test.
Since we may assume that each V,, is given by a a prefix-free set
Up <c Aand wt Uy, = pV,, <277, the set W = |J,, U, of strings
has weight less than 1.”

To transform U, into a prefix free set F,, we enumerate U, one by one. If o
appears, but we have already enumerated an extension ofo in P,, we do not
add o, but instead pick the longest extension 7 of ¢ in P, and add all
extensions of o of length |7|.

The prefix free version of U,, depends on the order in which we enumerate U,,:

if o appears before any of its extensions then o € P,, and otherwise o ¢ P,.



Separating (A)-randomness from Solovay (A)-randomness

Step 1: An alternative characterization of (A)-randomness

Definition

A Kucera (A)-test is a X (A) class U with uU < 1.
A set X passes the test U if not every tail of X isin U.

Theorem
A set X is (A)-random if and only if X passes every Kucera (A)-test. J




Separating (A)-randomness from Solovay (A)-randomness
Step 2: A sufficient condition

Lemma

For any set A, consider the following properties:

@ There is a X{(A)-class U with u(U) < 1 such thatif W <. A is a set of
strings with wt(WW) < 1, then U ~. [W]= has positive measure.

@ There if a Solovay (A)-random sequence that is not (A)-random.

@ There is a X{(A)-class U with u(U) < 1 such thatif W <. A is a set of
strings with wt(W) < 1, then U € [W]~.
Then (1) = (2) = (3).
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Separating (A)-randomness from Solovay (A)-randomness
Step 3: Building a class that is hard to cover.

Lemma

There is a set A and a X9(A)-class U with (U) < 1 such thatif W <. Aisa
set of strings with wt(W) < 1, then U ~. [W]= has positive measure.

We build A C 2<% and set U = [A]~ via forcing.
Conditions are (S, q), where S C 2<%, ¢ < 1 and u[S]= < q.
A condition (7', p) extends (S, ¢q) if T 2 S and p < q.

We show that there is a dense set of conditions that force:

Rg: either wt(®(A)) > 1 or U \ [®(A)]™ has positive measure.
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Separating (A)-randomness from Solovay (A)-randomness
Step 3: Building a class that is hard to cover.

Let o be a string of large enough length n.

If o enters A then the opponent responds by adding g(o) to ®(A).

If instead 7 > o enters A then the opponent:
@ Responds efficiently by covering 7 differently and spending less weight.
© Responds inefficiently by covering o.

Consider Gy = U+, 9(0).

Case 1: G, has infinite weight for some o of length n then we can add all
extensions of o to A.

Case 2: The opponent covers too many strings inefficiently:
I={p|(3>°7)[g(T) > p]} has weight > 1.
Then we can add I to ®(A) by spending very little measure.



Lowness for randomness

Definition

A set A is low for randomness if every 1-random is (A)-random;

A is low for Solovay randomness if every 1-random is Solovay (A)-random.

V.

Proposition

The following two conditions are equivalent:
© A is low for randomness.

@ Every X{(A) class of measure < 1 is covered by a XY class of measure
< L
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Uncountably many low for randomness sets

Proposition

Every 1-generic set is low for randomness.

Proof.
For every enumeration operator ¢ and natural number 7, consider the c.e. set

W(@,n) ={o|pl@{z|o(z) =1} >1-27"}.
If G meets W (®, n) then u[®(G)]= > 127"

If [®(G)]7 is a £9(G) class with measure < 1 then there must be some 7
such that G avoids W (®,n).

There is a 0 < G such that

ul@({z | o(z) = 1} UNZITHS < 1.




Separating (A)-random from upwards (A)-random

Proposition

If A is weakly 1-generic relative to Z and A <. X @ X then Z is not
(X & X)-random.

Fix a weakly 2-generic set A.
@ A is weakly 1-generic relative to Chaitin’s €.
@ Ais 1-generic and hence low for randomness.
Q2 is (A)-random, but not (X @ X )-random for any X ® X >, A.
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Semi-computable sets

Definition (Jockusch)

A set A is semi-computable if it is a left cut is some computable linear
ordering on the natural numbers.

Proposition (Jockusch)

Every total enumeration degree x contains A @ A for some semicomputable
A. If x is nonzero then A and A are not c.e.

Theorem (Rozinas)

Every enumeration degree is the meet of two total enumeration degrees.
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Low for randomness sets generate the e-degrees

Proposition

If A is semicomputable and not co-c.e. then A is low for randomness.

Proof.
Let A be a left cut in the computable ordering L = (N, <r).

Suppose that u[®(A)]= < 1 — 27" and consider

W={z|p®{yly<pz}]®>1-27"}.

W N A=1(.As A is not co-c.e. it follows that W C A.

Letz € A\ W, then [®({y | y <1 2})]7 is a XY class with measure < 1 that
covers [®(A)]7.

O

v
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Not all quasiminimal are low for randomness

Proposition

For any sequence Z, there is a set A of quasi-minimal enumeration degree
such that Z is not Solovay (A)-random.

If Z is random then Z is random relative to all total sets reducible to A, but
not Solovay (A)-random.
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Relativizing PA

Definition

X is PA above Y if and only if X computes an element in every nonempty
9(Y) class.

A TIY(A) class is the complement of some ¥.9(A) class.

Definition

A set Ais (PA) above B if every nonempty I19(B) class contains an element
Z whose characteristic function is enumeration reducible to A (i.e.,
ZOZ <, A).
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Self (PA) sets

Theorem
There is a set A such that A is (PA) above A.

Proof.

We construct A in stages as J, Ae.
The set A, has total columns Al for i < e and finite columns AUl for j > e.

@ First we try to force [®.(A)]= to be 2¥:

If [®.(A. UN=¢)]= = 2% then by compactness there is a finite set F’
such that [®. (4. U F)]= = 2.

Otherwise 2 \ [®, (A, UNZ¢)]= is a nonempty 1'[1(691<e 1)-class
contained in 2 \ [®.(A)]=.

@ Then we code in Al aset X @ X thatis PA above @Ke
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Randomness properties of self-(PA) sets

Proposition

If A is self-(PA) then there is neither a universal (A)-test nor a universal
Solovay (A)-test.

Proposition

Let A be self-(PA) enumeration degree and U be a Y9(A) class U of
measure < 1. There exists a set Y such that Y @Y <. A and a X{(Y)) class
V of measure < 1, such that U C V.

Corollary

If A is self-(PA) then for every X the following are equivalent:
Q@ X is (A)-random;
@ X is Solovay (A)-random;
@ X is Y-random for every Y, suchthatY @Y <. A.
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Other proporties of self-(PA) sets

Proposition
If A is self-(PA) then the set of total degrees below A is a Scott set.

Proposition

Let S be a countable Scott set of total enumeration degrees. There exists a
self-(PA) set A such that S is the set of total enumeration degrees below A.

v

Proposition

If X is PA above Y if and only if then there is a self-(PA) A such that
YOY <cA<. X X.
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Continuous degrees

“Does every continuous function on the unit interval have a name of least
Turing degree?”

Definition (Miller)

There is a way to assign to every continuous function fon the unit interval an
enumeration degree c( f), so that the total degrees above c( f) correspond to
Turing degrees of names for f.

The degree c(f) is called a continuous enumeration degree.

Theorem (Miller)
There are non-total continuous degrees. J
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Non-total continuous degrees

Theorem (Miller)
@ The total degrees below a non-total continuous degree form a Scott ideal.

© Every Scot ideal can be realized as the set of total enumeration degrees
below some non-total continuous degree.

© For a, b-total, “b is PA above a” if and only if there is a non-total
continuous degree x such that a < x < b.

Proposition
If A has continuous degree, then there is a universal (Martin-L6f) (A)-test.

If A has continuous degree, then Z is (A)-random iff Z is X -random for
some X suchthat A <, X ¢ X.
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The end

Thank you!



