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The total enumeration degrees

The structure of the enumeration degrees is an upper semi lattice with
jump operation which extends the structure of the Turing degrees. It
arises naturally from enumeration reducibility, a notion introduced by
Friedberg and Rogers in 1959.

The total enumeration degrees are the image of the Turing degrees
under their natural, structure preserving embedding into the
enumeration degrees.

Question (Rogers 67)
Is the set of total enumeration degrees first order definable in the
structure of the enumeration degrees?
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Partial solutions

Kalimullin 2003: The enumeration jump operation is first order
definable in the enumeration degrees.

Thus the total enumeration degrees above 0′e can be defined as
the image of the enumeration jump.
Ganchev and Soskova 2010: The total enumeration degrees
below 0′e are first order definable in the enumeration degrees.

Main ingredient: Kalimullin Pairs.

Soskova 2013: The total enumeration degrees are first order
definable with one parameter.

Main ingredient: An analysis of the automorphism group of the
enumeration degrees, based on Slaman and Woodin’s framework.
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Enumeration reducibility
Reducibility Oracle set B Reduced set A

A ≤T B Complete information Complete information

A c.e. in B Complete information Positive information

A ≤e B Positive information Positive information

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x ,D〉 ∈W & D ⊆ B)} .

Example: A ≤e A via W = {〈n, {n}〉 | n ∈ ω}.
if A is c.e. then A ≤e B via W = {〈x , ∅〉 | x ∈ A}.
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The structure of the enumeration degrees

A ≡e B iff A ≤e B and B ≤e A. The enumeration degree of a set A
is de(A) = {B | A ≡e B}.

de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕ B). Here
A⊕ B = (2A) ∪ (2B + 1)

The enumeration jump: de(A)′ = de(KA ⊕ KA), where
KA = {〈e, x〉 | x ∈We(A)}
De = 〈De,≤,∨,′ 0e〉 is an upper semi-lattice with least element
and jump operation.
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What connects DT and De

Proposition
1 A is c.e. in B ⇔ A ≤e B ⊕ B.
2 A ≤T B ⇔ A⊕ A is c.e. in B ⇔ A⊕ A ≤e B ⊕ B.

A set A is total if A ≡e A⊕ A. An enumeration degree is total if it
contains a total set. The set of total degrees is denoted by T OT .

Example: If f is a total function then Gf is a total set.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕ A),
preserves the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)
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Semi-computable sets

Definition (Jockusch)
A set of natural numbers A is semi-computable if there is a total
computable selector function sA, such that sA(x , y) ∈ {x , y} and if
{x , y} ∩ A 6= ∅ then sA(x , y) ∈ A.

Example:
A left cut in a computable linear ordering is a semi-computable set.
In particular for any set A consider LA = {σ ∈ 2<ω | σ ≤ χA}.
Every Turing degree contains a semi-computable set.

Theorem (Arslanov, Cooper, Kalimullin)
If A is a semi-computable set then for every X:

(de(X ) ∨ de(A)) ∧ (de(X ) ∨ de(A)) = de(X ).
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Kalimullin pairs

Definition (Kalimullin)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A× B ⊆W and A× B ⊆W .

In other words:
If (m,n) ∈W then m ∈ A or n ∈ B.
If (m,n) /∈W then m /∈ A or n /∈ B.

Example:
1 A trivial example is {A,U}, where U is c.e: W = N× U.
2 If A is a semi-computable set, then {A,A} is a K-pair:

W = {(m,n) | sA(m,n) = m}.
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Properties of K-pairs

Proposition
Fix A. The set of all B, such that {A,B} is a K-pair is closed under
least upper bound and downwards closed with respect to enumeration
reducibility, i.e. it is an ideal.

Proposition

If {A,B} is a nontrivial K-pair then A ≤e B and B ≤e A.

Proof: A =
{

m | ∃n ∈ B((m,n) ∈W )
}

. Suppose there were an m0 ∈ A
such that for every n if (m0,n) ∈W then n ∈ B. Then
B = {n | (m0,n) ∈W} and is hence c.e.
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such that for every n if (m0,n) ∈W then n ∈ B. Then
B = {n | (m0,n) ∈W} and is hence c.e.
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Definability of the enumeration jump

Theorem (Kalimullin)
A pair of sets A,B are a K-pair if and only if their enumeration degrees
a and b satisfy:

K(a,b)� (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper
bound of a triple a,b,c, such that K(a,b), K(b,c) and K(c,a).

Corollary (Kalimullin)
The enumeration jump is first order definable in De.
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Definability in the local structure of the enumeration
degrees

Theorem (Ganchev, S)
The class of K-pairs below 0′e is first order definable in De(≤ 0′e).

Theorem (Ganchev, S)
The classes of the:

1 Downwards properly Σ0
2 enumeration degrees;

2 Upwards properly Σ0
2 enumeration degrees;

3 Low enumeration degrees;
are first order definable in De(≤ 0′e).
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Maximal K-pairs

Definition
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and
b ≤ d, we have that a = c and b = d.

Example: If {A,A} is a nontrivial K-pair then it is maximal.

Suppose A ≤e C and A ≤e D and {C,D} is a K-pair. Then {A,D} is a
nontrivial K-pair by the ideal property. But then D ≤e A by the
reduction property.

A semi-computable set and its complement form a maximal K-pair.
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Defining total enumeration degrees in De(≤ 0′e)
Theorem (Jockusch)
Every nonzero Turing degree contains a semi-computable set which is
not c.e. and not co-c.e.

Corollary
Every nonzero total enumeration degree is the least upper bound of a
nontrivial maximal K-pair.

Theorem (Ganchev, S)
If {A,B} is a nontrivial K-pair in De(≤ 0′e) then there is a
semi-computable set C, such that A ≤e C and B ≤e C.

Corollary
In De(≤ 0′e) a nonzero degree is total if and only if it is the least upper
bound of a maximal K-pair.
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Defining total enumeration degrees in De

Theorem (Jockusch)
Every nonzero Turing degree contains a semi-computable set which is
not c.e. and not co-c.e.

Corollary
Every nonzero total enumeration degree is the least upper bound of a
nontrivial maximal K-pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable
set C, such that A ≤e C and B ≤e C.

Corollary
A nonzero degree is total if and only if it is the least upper bound of a
maximal K-pair.

Mariya I. Soskova ( Sofia University ) Defining totality 14 / 1



Defining total enumeration degrees in De

Theorem (Jockusch)
Every nonzero Turing degree contains a semi-computable set which is
not c.e. and not co-c.e.

Corollary
Every nonzero total enumeration degree is the least upper bound of a
nontrivial maximal K-pair.

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair in De then there is a semi-computable
set C, such that A ≤e C and B ≤e C.

Corollary
A nonzero degree is total if and only if it is the least upper bound of a
maximal K-pair.

Mariya I. Soskova ( Sofia University ) Defining totality 14 / 1



Main theorem

Theorem (Cai, Ganchev, Lempp, Miller, S)
If {A,B} is a nontrivial K-pair then there is a semi-computable set C,
such that A ≤e C and B ≤e C.

Proof:
Let {A,B} be a nontrivial K-pair witnessed by W .
C will be a left cut in the computable linear ordering (Q,≤).
We take two copies of the natural numbers: N for A and N for B.
Using W we dynamically label elements of Q with the elements of
N ∪ N.
A rational number can have at most one label, but many rationals
will be given the same label.
Ultimately A will be the set {m | ∃q ∈ C(q is labeled by m)} and B
will be the set

{
k | ∃q ∈ C(q is labeled by k)

}
.
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The main rule for labeling

While (m, k) /∈W , keep blue labels for k to the left of red labels for m.
If this situation persists then m /∈ A or k /∈ B.
L

Q : k m

m /∈ A
k ∈ B
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The main rule for labeling

If (m, k) enters W we move the current label for k : we label a new
rational with k to the right of the m-label.
Now we know that m ∈ A or k ∈ B:
L

Q : k m k

m /∈ A
k ∈ B

m ∈ A
k ∈ B

m ∈ A
k /∈ B
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The checkerboard scenario

W n m
k
j

Initially no pair is in W .
First we label for the pair (m, k).

Q : n j k m k n

m /∈ A
k ∈ B

If this situation persists then we have the following:

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The checkerboard scenario

W n m
k X
j X

The pair (n, j) enters W .
There is no possible move.

Q : n j k m k n

Or the following:

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The checkerboard scenario

W n m
k X X
j X

If the pair (n, k) enters W , the conflict is
resolved.
We move the current label for n.

Q : n j k m k n

m /∈ A
k ∈ B

If this situation persists then we have the following:

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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Or if the pair (m, j) enters W , the conflict
is resolved.
We move the current label for j .
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m /∈ A
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The infinite checkerboard scenario

W n m1 m2 . . .

k
j

Initially no pair is in W .

Q : j k n m1 m2 m3

m /∈ A
k ∈ B

If this situation persists then we have the following:

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The infinite checkerboard scenario

W n m1 m2 . . .

k X
j X

The pair (n, j) enters W .
No move is possible.

Q : j m1 k n m1 m2 m3

If this situation persists then we have the following:
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The infinite checkerboard scenario

W n m1 m2 . . .

k X X
j X

The pair (m2, k) enters W .
We move the current label for m2.

Q : j m1 m2 k n m1 m2 m3

A second checkerboard scenario has appeared before the first one is
resolved.

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The infinite checkerboard scenario

W n m1 m2 . . .

k X X
j X X

The pair (m1, j) enters W .
We move the current label for j .

Q : j m1 j m2 k n m1 m2 m3

The first checkerboard turns out temporary.
The same thing repeats with m3,m4, . . .

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The infinite checkerboard scenario

W n m1 m2 . . .

k X X
j X X

Q : j m1 j m2 k n m1 m2 m3

It is possible that n ∈ A and j /∈ B, but the dynamic of the enumeration
of W prevents us from ever switching the order of these labels. Thus
no correct cut is possible.

Mariya I. Soskova ( Sofia University ) Defining totality 18 / 1



The infinite checkerboard scenario: resolved

W n m1 m2 . . .

k
j

We introduce priority between pairs:
(n, j) < (m1, k) < (m2, k).

Q : j k n m1 m2

m /∈ A
k ∈ B

If this situation persists then we have the following:

n ∈ A⇒ k /∈ B ⇒ m ∈ A⇒ j /∈ B
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The infinite checkerboard scenario

W n m1 m2 . . .

k X
j X

The pair (n, j) enters W .
We announce the interval [j ,n] as a dead
zone.

Q : j m1 k n m1 m2

No pair of lower priority can label inside the dead zone.
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W n m1 m2 . . .

k X X
j X

The pair (m2, k) enters W .
The interval (k ,m2) becomes a dead
zone.

Q : j m1 k n m1 m2

We cannot label m2 inside the dead zone, as the pair (m2, k) has lower
priority than (n, j).
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The infinite checkerboard scenario: resolved

W n m1 m2 . . .

k X X
j X X

The pair (m1, j) enters W .
We move the current label for j .

Q : j m1 k n m1 j m2

We can label j inside the deadzone [k ,m2], as (n, j) has higher priority.
The first checkerboard is resolved.
We now have a new checkerboard scenario of lower priority.
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The Core of the argument

Say that two current labels are connected if the rationals labeled with
them are in the same connected union of permanent dead zones.

Lemma (Dead zone lemma)
If the current label m is connected to the current label k then
m ∈ A⇔ k /∈ B.
If the current label m is connected to the current label n then
m ∈ A⇔ n ∈ A.
If the current label k is connected to the current label j then
k /∈ B ⇔ j /∈ B.

C is the set of all rational q such that for some k ∈ B:
q is to the left of some k -labelled rational or
q is in the same permanent deadzone with the current label k .
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The relation c.e. in

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in
some X ∈ x.

Recall that ι is the standard embedding of DT into De.

Theorem (Ganchev, S)
Let a and x be Turing degrees such that a is not c.e. Then a is c.e. in x
if and only if there is a nontrivial K-pair {C,C} such that de(C) ≤e ι(x)
and ι(a) = de(C) ∨ de(C).

Thus for non c.e. Turing degrees a, we have that a is c.e. in x if and
only if there is a maximal K-pair {c,d} such that c ≤e ι(x) and
ι(a) = c ∨ d.
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The images of c.e. degrees

If a ∈ DT is c.e. then for every b we have that a ∨ b is c.e. in b.

Lemma (Cai and Shore)
If a ∈ DT is not c.e and b is 2-generic in a then a ∨ b is not c.e. in b.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set CE = {ι(a) | a ∈ DT is c.e.} is first order definable in De.

Proof: a is c.e. iff for every b � 0′ we have that a ∨ b is c.e. in b.

Corollary
The image of the relation c.e. in in the enumeration degrees is first
order definable.
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The automorphism analysis of degree structures

Theorem (Slaman and Woodin (95))
1 Every member of Aut(DT ) is the identity on the cone above 0′′.
2 Aut(DT ) is countable, every member has an arithmetic

presentation.
3 DT has a finite automorphism basis.
4 Every relation on DT induced by a degree invariant relation

definable in Second order arithmetic is definable in DT from
parameters.

5 Every relation on DT induced by a degree invariant relation
definable in Second order arithmetic and invariant under
automorphisms is definable in DT .
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Enumeration induced automorphisms

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ DT | A is c.e. in x} ⊇ {x ∈ DT | B is c.e. in x}.

Corollary
The total enumeration degrees form an automorphism basis of the
enumeration degrees.

If DT is rigid then De is rigid.
Every automorphism of the enumeration degrees is the identity on
the cone above 0′′e.

Definition
An automorphism π of DT is enumeration induced if there is an
automorphism of De, πe such that f π(x) = ι−1(πe(ι(x))).
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Extendable automorphisms of DT

Definition
An automorphism π of DT is enumeration extendible if there exists a
function P : 2ω → 2ω such that for every set of natural numbers A and
every Turing degree x, we have that A is c.e. in x if and only if P(A) is
c.e. in π(x).

Proposition (Cai, Ganchev, Lempp, Miller, S)

Let π be a automorphism of DT . Then π and π−1 are enumeration
extendable if and only if they are enumeration induced.

Question
Is every automorphism of the Turing degrees enumeration extendable?
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Thank you

Gian-Carlo Rota
According to ...[the “one-shot”] ... view, mathematics would consist of a
succession of targets, called problems, which mathematicians would
be engaged in shooting down by well-aimed shots. But where do
problems come from, and what are they for? If the problems of
mathematics were not instrumental in revealing a broader truth, then
they would be indistinguishable from chess problems or crossword
puzzles. Mathematical problems are worked on because they are
pieces of a larger puzzle.

Ivan Soskov
The good puzzles are the ones that will never be completely solved.
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