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The Work of Alan Turing

I A function f is computable if there is Turing Machine which
computes it.

I Using Oracle Turing machines we can compare the
information content of different problems.



Kleene and Post

I Turing reducibility: A set A is Turing reducible to a set B if
there is an oracle Turing machine which computes A when
using oracle B.

I A ≡T B if A <T B and B <T A.
I The Turing degree of A is dT (A) = {B|B ≡T A}.
I DT = (DT ,∨, 0) the semi-lattice of the Turing Degrees.



The c.e. degrees and Post’s Program
I Problems arising outside of computability: computably

enumerable.
I Construct a c.e. set that is neither computable nor

complete by defining some structural property of this set.
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The solution to Post’s Program and the Priority method

I Friedberg and Muchnik independently construct two
incomparable c.e. sets.
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Infinite Injury Priority
I Sacks proved that the c.e. degrees are dense.
I Shoenfield’s conjecture: The c.e. degrees form a countably

infinite homogeneous semi-lattice.
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Lachlan’s Monster theorem
There exist c.e. degrees a < b such that b can not be split in
the c.e. degrees above a.
Harrington proved that the top degree can be taken to be 0′.
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Further surprising results
I Lachlan’s Non-bounding theorem.
I Lachlan’s Non-diamond theorem.
I Cooper and Yates: Non-cuppable theorem.
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The enumeration degrees

Definition

1. A ≤e B if there is a c.e. set Φ such that

n ∈ A ⇔ ∃D(〈n, [D]〉 ∈ Φ ∧ D ⊆ B).

2. A is enumeration equivalent to B (A≡eB) if A ≤e B and
B ≤e A.

3. Let de(A) = {B|A≡eB}.
4. (De, <,∪,′ , 0e) is the semi-lattice of the enumeration

degrees with the jump operator.



The Local structure

Below 0′
e are exactly the Σ2 e-degrees.
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Natural Embedding

There is an order theoretic embedding of DT into De.
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An extension of Harrington’s Theorem

Cooper and M.S.: There exists a Π1 e-degree a < 0′
e such that

no pair of a Π1 and a Σ2 e-degree above a split 0′
e.
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The ∆2 - e-degrees
I Cooper, Sorbi, Yui: The Cupping theorem.
I Cooper, Li, Sorbi, Yang: The Bounding theorem.
I Arslanov, Sorbi: The Splitting theorem.
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The Σ2 e-degrees
I Cooper, Sorbi, Yui: The Non-cupping theorem.
I Cooper, Li, Sorbi, Yang: The Non-bounding theorem.
I M.S.: The Non-splitting theorem.
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What is the connection?
I Cooper’s conjecture: The Σ2 e-degrees elementary

equivalent to the c.e. degrees.
I Ahmad refutes the conjecture.
I Is there a mathematical reason for the connection?
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