Enumeration Degrees

Mariya I. Soskova

University of Leeds Department of Pure Mathematics

25.06.07

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Work of Alan Turing

A function *f* is computable if there is Turing Machine which computes it.

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

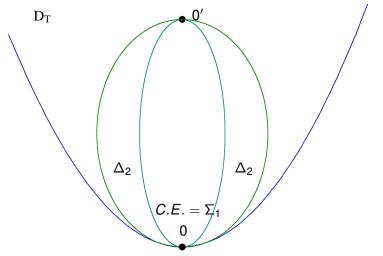
 Using Oracle Turing machines we can compare the information content of different problems.

Kleene and Post

- Turing reducibility: A set A is Turing reducible to a set B if there is an oracle Turing machine which computes A when using oracle B.
- $A \equiv_T B$ if $A <_T B$ and $B <_T A$.
- The Turing degree of A is $d_T(A) = \{B | B \equiv_T A\}$.
- ▶ $D_T = (D_T, \lor, 0)$ the semi-lattice of the Turing Degrees.

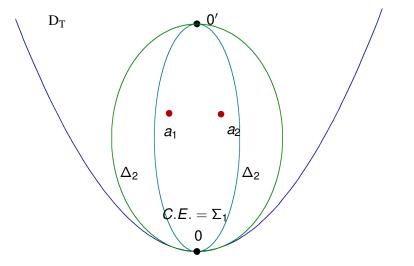
The c.e. degrees and Post's Program

- Problems arising outside of computability: computably enumerable.
- Construct a c.e. set that is neither computable nor complete by defining some structural property of this set.



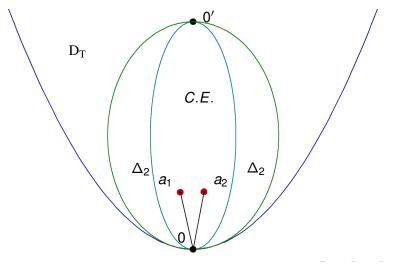
The solution to Post's Program and the Priority method

 Friedberg and Muchnik independently construct two incomparable c.e. sets.



Infinite Injury Priority

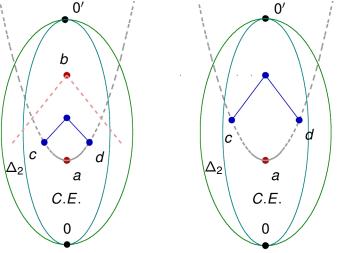
- Sacks proved that the c.e. degrees are dense.
- Shoenfield's conjecture: The c.e. degrees form a countably infinite homogeneous semi-lattice.



Lachlan's Monster theorem

There exist c.e. degrees **a** < **b** such that **b** can not be split in the c.e. degrees above **a**.

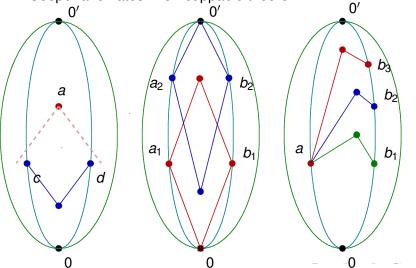
Harrington proved that the top degree can be taken to be 0'.



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Further surprising results

- Lachlan's Non-bounding theorem.
- Lachlan's Non-diamond theorem.
- Cooper and Yates: Non-cuppable theorem.



The enumeration degrees

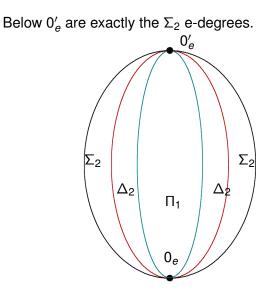
Definition

1. $A \leq_e B$ if there is a c.e. set Φ such that

$$n \in A \Leftrightarrow \exists D(\langle n, [D] \rangle \in \Phi \land D \subseteq B).$$

- 2. *A* is enumeration equivalent to B ($A \equiv_e B$) if $A \leq_e B$ and $B \leq_e A$.
- 3. Let $d_e(A) = \{B | A \equiv_e B\}$.
- 4. (*D_e*, <, ∪, ', 0_e) is the semi-lattice of the enumeration degrees with the jump operator.

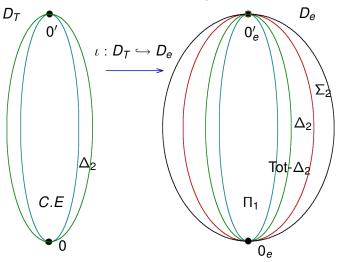
The Local structure



◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ●目目 のへで

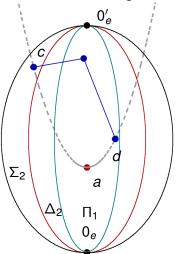
Natural Embedding

There is an order theoretic embedding of D_T into D_e .



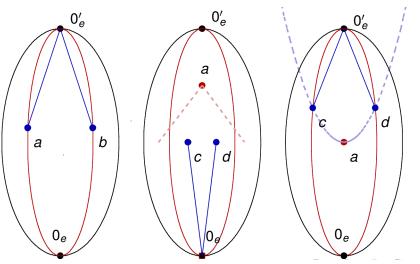
An extension of Harrington's Theorem

Cooper and M.S.: There exists a Π_1 e-degree $\mathbf{a} < \mathbf{0'_e}$ such that no pair of a Π_1 and a Σ_2 e-degree above \mathbf{a} split $\mathbf{0'_e}$.



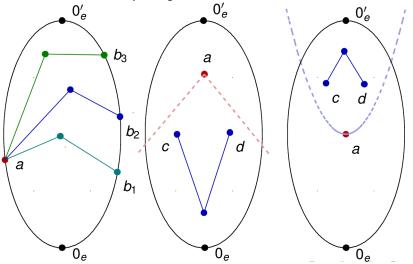
The Δ_2 - e-degrees

- ► Cooper, Sorbi, Yui: The Cupping theorem.
- Cooper, Li, Sorbi, Yang: The Bounding theorem.
- Arslanov, Sorbi: The Splitting theorem.



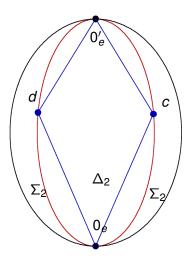
The Σ_2 e-degrees

- ► Cooper, Sorbi, Yui: The Non-cupping theorem.
- Cooper, Li, Sorbi, Yang: The Non-bounding theorem.
- M.S.: The Non-splitting theorem.



What is the connection?

- Cooper's conjecture: The Σ₂ e-degrees elementary equivalent to the c.e. degrees.
- Ahmad refutes the conjecture.
- Is there a mathematical reason for the connection?



Bibliography

- S. B. Cooper, *Computability Theory*, Chapman & Hall/CRC Mathematics, Boca Raton, FL, 2004.
- R. I. Soare, *Recursively Enumerable Sets and Degrees*, Springer-Verlag, Heidelberg, 1987.
- H. Rogers, Theory of Recursive Functions and Effective Computability,McGRaw-Hill Book Company, 1967

K. Ambos-Spies, P.A. Fejer *Degrees of Unsolvability*, http://www.cs.umb.edu/ fejer/pub.html

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>