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Computable sets and functions

Definition
A function f : Nk → N is computable if there is an algorithm which takes as
input natural numbers n1, n2 . . . nk and outputs f(n1, n2, . . . , nk).

Example
Addition, multiplication and exponentiation on the natural numbers.

The sequence of the digits of π in its decimal expansion.

The decision function (characteristic function) for the set of prime
numbers.

Question (Hilbert’s Entscheidungsproblem 1928)
Is the set of all logically valid formulas in first order logic computable?
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First order logic

Propositional logic deals with
simple declarative statements.

Example
Ladybugs are purple or green. Ladybugs are not green. Therefore ladybugs
are purple.

((P ∨Q) & ¬Q)→ P

First order logic introduces the idea of prediacates, variables and quantifiers.

Example
All ladybugs are purple or green. Mary is a ladybug. Mary is not green.
Therefore there are purple things.

(∀X(L(X)→ (P (X) ∨Q(X))) & L(Mary) & ¬Q(Mary))→ ∃XP (X).
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Computable sets and functions

Definition (Turing, Church 1936)

A function f : Nk → N is computable if there is a computer program which
takes as input natural numbers n1, n2 . . . nk and outputs f(n1, n2, . . . , nk).
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Computably enumerable sets
Definition
A set A ⊆ N is computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if S = {n | ∃m̄(P (n, m̄) = 0)}, where P (n, m̄)
is a polynomial with integer coefficients.

E.g. S =
{
n | ∃m1∃m2(n

4 − 55m2
1 + 11m2 − 16 = 0)

}
.The number 2

belongs to S, as witnessed by m1 = 1 and m2 = 5.

The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.

5 / 27



Computably enumerable sets

Example (Hilbert’s Entscheidungsproblem 1928)
The set of all logically valid formulas in first order logic is c.e.

Theorem (Gödel’s completeness theorem)
The logically valid formulas in first order logic are exactly the ones that have
formal proofs (deductions).

Question
Are c.e. sets and computable sets the same thing?

If A is computable then A is c.e.

If A and A are c.e. then A is computable.
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An incomputable c.e. set

No general procedure for bug checks succeeds.
Now, I won’t just assert that, I’ll show where it leads:
I will prove that although you might work till you drop,
you cannot tell if a computation will stop.
. . .

From: “Scooping the loop snooper”, G. Pullum
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An incomputable c.e. set

A program P can be coded by a natural number e.

Not all programs Pe compute total functions, some are undefined (run
forever) on certain inputs.

Definition
The halting set is the set K of all codes e for programs P such that P halts on
input e.

The set K is computably enumerable.

Suppose K is computable by a program P .

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.
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An incomputable c.e. set

Suppose K, the set of all e such that Pe halts on e, is computable by a
program P .

We can define a program Q that on input e runs P to check if e ∈ K. If
the answer is “yes” then Q goes into an infinite loop. If the answer is
“no” then Q halts and outputs 42.

Consider what happens when we run Q on Q’s code ê:
Q halts on ê if and only if e /∈ K if and only if Q does not halt on ê.

Corollary (Church, Turing 1936)
The answer to Hilbert’s Entsheidungs problem is ‘NO’.
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Comparing the information content of sets

Consider a program that has access to an
external database, an oracle.
During its computation the program can ask
the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ≤T B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
Consider a Diophantine set S = {n | (∃m̄)P (n, m̄) = 0}. Let Pe(n) be the
program that ignores its input and for a listing {m̄i}i∈N of all tuples m̄i

calculates P (n, m̄0), P (n, m̄1), . . . until it sees that the result is 0 and then
halts. Then S ≤T K by the program that on input n computes e(n) and asks
the oracle whether e(n) ∈ K.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A ≤e B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is an infinite table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example

Let S = {n | (∃m̄)P (n, m̄) = 0} again. S ≤e K by the program that consists
of the axioms:

If {e(n)} ⊆ K then n ∈ S.
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Degree structures

Definition
1 A ≡ B if and only if A ≤ B and B ≤ A.
2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two orders:
1 The Turing degrees DT with least element 0T consisting of all

computable sets.
2 The enumeration degrees De with least element 0e consisting of al c.e.

sets.
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The jump operation

The halting set K is an example of an incomputable set.
Let KA be the set of all e such that the oracle program Pe halts on e when
using A as an oracle.
Then A <T KA.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction within the enumeration degrees to obtain
the enumeration jump of an enumeration degree.

We always have a < a′.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound, and the jump operator.

T OT = ι(DT ) is the set of total enumeration degrees.
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Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.
2 They are partial orders with uncountable chains and antichains.
3 Every pair of degrees has a least upper bound, but not always a greatest

lower bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De is downwards dense.
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Definability
Definition
A set B is definable in a structure A if there is a formula ϕ(x) (in the
language of the structure) such that n ∈ B if and only if ϕ(n) is true in A.

This concept naturally extends to definable relations and functions.

Example
In the field of real numbersR = (R, 0, 1,+,×) the set positive numbers is
definable by the formula ϕR+(x) : (∃y)(x = y × y) & x 6= 0.

In first order arithmetic N = (N, 0, 1,+,×) the set of prime numbers is
definable by the formula
ϕprime(x) : x 6= 1 ∧ (∀y)((∃z)(y × z = x)→ (y = 1 ∨ y = x)).

In the partial order of the Turing degrees (DT ,≤T ,0T ) the set of minimal
degrees is definable by the formula ϕmin(x):
x 6= 0T ∧ (∀y)(y ≤T x→ (y = x ∨ y = 0T )).
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Arithmetic vs Degrees
Second order arithmetic Z2 = (N,S,∈, 0, 1,+,×) is N with an additional
sort for sets of natural numbers and a membership relation.

Example
In Z2 the pairs of sets X and Y such that X is the set of prime numbers that
belong to Y is definable by ψ(X,Y ) : (∀n)(n ∈ X ⇔ ϕprime(n) & n ∈ Y ).

Classical results due to Kleene and Post show that the relations and functions
≤T , ≤e, ⊕, KA are definable in second order arithmetic.

Do they translate to definable relations and functions in our degree structures?

Example
The function that maps A and B to A⊕B is definable in Z2 by ϕ(X,Y, Z):
(∀n)(n ∈ X ↔ n+ n ∈ Z) ∧ (n ∈ Y ↔ n+ n+ 1 ∈ Z).

The function that maps d(A) and d(B) to d(A⊕B) is definable by
ψ(x, y, z): x ≤ z ∧ y ≤ z ∧ (∀u)(x ≤ u ∧ y ≤ u→ z ≤ u).
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Rogers’ questions from 1969
Question 1: Is the jump operator definable in DT ?

Definition
An automorphism of a structure A is a bijection on A that preserves all of the
structure.

Example
Consider Z = (Z,≤). The function f(z) = z + 1 is an automorphism
because it is a bijection and z1 ≤ z2 if and only if f(z1) ≤ f(z2).

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question 2: Are there any nontrivial automorphisms of DT or De?

Question 3: Is the copy of DT in De (i.e. the total enumeration degrees)
definable in De?
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Definability in the Turing degrees

Theorem (Slaman, Woodin 1986)
There are at most countably many automorphisms of DT .

Using parameters you can represent a model of arithmetic within DT .

Definable relations in second order arithmetic correspond to relations that can
be defined in DT using parameters.

Relations that are in addition invariant under automorphisms is definable in
DT .

The double jump is definable in DT .

Theorem (Slaman, Shore 1999)
The jump is definable in DT .
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A×B ⊆W and A×B ⊆W .

Theorem (Kalimullin)
A pair of sets A,B is a K-pair if and only if their enumeration degrees a and
b satisfy:

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x).
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Definability of the enumeration jump

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper bound of a
triple a,b, c, such that K(a,b), K(b, c) and K(c,a).

Corollary (Kalimullin 2003)
The enumeration jump is first order definable in De.
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Maximal K-pairs

Definition (Ganchev, S)
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Theorem (Jockusch)
Every total enumeration degree is the least upper bound of the elements of a
maximal K-pair.
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A partial solution
Definition
De(≤ 0′e) is the substructure of the enumeration degrees that consist of all
enumeration degrees bounded by 0′e.

De(≤ 0′e) is countable and Cooper (1984) showed it is dense.

The members of degrees in De(≤ 0′e) are easier to construct and handle using
finite approximations.

Theorem (Ganchev, S 2009)
K-pairs are first order definable in De(≤ 0′e).

Theorem (Ganchev, S 2010)
In De(≤ 0′e) maximal K-pairs have total least upper bounds.

The total degrees are definable in De(≤ 0′e).
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The automorphisms of De

Theorem (S 2012)
There are at most countably many automorphisms of De.

Using parameters you can represent a model of arithmetic within De.

Definable relations in second order arithmetic correspond to relations that can
be defined in De using parameters.

Relations that are in addition invariant under automorphisms is definable in
De.

Example
T OT corresponds to a definable relation in Z2.

So T OT is definable in De with parameters.

24 / 27



Defining totallity in De

Theorem (Cai, Ganchev, Lempp, Miller, S)
Maximal K-pairs have total least upper bounds.

If C is a left cut in a computable linear ordering then {C,C} is a maximal
K-pair.

Let W be a c.e. set witnessing that a pair of sets {A,B} forms a K-pair.
1 The countable component: we use W to construct the computable linear

ordering.
2 The uncountable component: find an appropriate left cut in this ordering

to define C.

Theorem (Cai, Ganchev, Lempp, Miller, S 2013)
The set of total enumeration degrees is first order definable in De.
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Rogers’ questions from 1969

Question 1: Is the jump operator definable in DT ?

Question 2: Are there any nontrivial automorphisms of DT or De?

Question 3: Is the copy of DT in De (i.e. the total enumeration degrees)
definable in De?

Theorem (Cai, Ganchev, Lempp, Miller, S)
If De has a nontrivial automorphism then so does DT .
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The end

Thank you!
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