Effective properties of Marker's Extensions

Ivan N. Soskov presented by Mariya I. Soskova

Sofia University

November 25, 2013

I. Soskov (Sofia University)

Effective properties of Marker's Extensions

4 3 5 4 3 5 5

< 6 b

Marker's extensions in the literature

- 1989 Marker: ℵ₀-categorical non-Σ⁰_n-axiomatizable almost strongly minimal theory.
- 2004 Goncharov, Khoussainov: An ℵ₁-categorical theory, Turing equivalent to **0**⁽ⁿ⁾ with a computable model.
- 2009 Soskov, Soskova: Jump inversion of spectra of structures.
- 2009 Stukachev: A jump inversion theorem for the semi-lattices of sigma-degrees.
- 2010 Fokina, Kalimullin, Miller: Degrees of categoricity of computable structures.

- 4 周 ト 4 戸 ト 4 戸 ト

A parallel between classical computability theory and effective definability in abstract structures

- A set *X* is *c.e. in* a set *A* if *X* can be enumerated by a computable in *A* function.
- A set X is enumeration reducible to a set A if and only if there is an effective procedure to transform an enumeration of A to an enumeration of X

Denote by A^+ the set $A \oplus \overline{A}$.

Proposition

X is c.e. in A if and only if $X \leq_e A^+$.

Given a set *A* can we find a set *M* such that $X \leq_e A$ if and only if *X* is *c.e.* in *M*?

There are sets *A* which are not enumeration equivalent to any set of the form $M \oplus \overline{M}$, so the answer is "No".

- 3

Abstract structures

Let $\mathfrak{A} = (A; R_1, R_2, \dots, R_n)$ be a countable structure.

- An enumeration of \mathfrak{A} is a bijection $f : \mathbb{N} \to A$.
- *f*⁻¹(𝔅) = *f*⁻¹(*R*₁) ⊕ *f*⁻¹(*R*₂) ⊕ · · · ⊕ *f*⁻¹(*R_n*) computes the atomic diagram of an isomorphic copy of 𝔅.

Definition

A set $X \subseteq A$ is relatively intrinsically c.e. in \mathfrak{A} (X c.e. in \mathfrak{A}) if for every enumeration f of \mathfrak{A} we have that $f^{-1}(X)$ is c.e. in $f^{-1}(\mathfrak{A})$.

By Ash, Knight, Manasse, Slaman we have that X is c.e. in \mathfrak{A} if and only if X is definable in \mathfrak{A} by means of a computable infinitary Σ_1 formula with parameters.

Relatively intrinsically enumeration reducible

Definition

A set $X \subseteq A$ is (relatively intrinsically) enumeration reducible to \mathfrak{A} $(X \leq_{e} \mathfrak{A})$ if for every enumeration f of \mathfrak{A} , $f^{-1}(X) \leq_{e} f^{-1}(\mathfrak{A})$.

 $X \leq_e \mathfrak{A}$ if and only if X is definable in \mathfrak{A} by means of a positive computable infinitary Σ_1 formula with parameters. Given a structure $\mathfrak{A} = (A, R_1, \dots, R_n)$ let $\mathfrak{A}^+ = (A, R_1, \overline{R_1}, \dots, R_n, \overline{R_n})$.

Proposition

For every $X \subseteq A$, X c.e. in \mathfrak{A} if and only if $X \leq_{e} \mathfrak{A}^+$.

Question

Given a structure \mathfrak{A} , does there exist a structure \mathfrak{M} , such that for every $X \subseteq A$, $X \leq_{e} \mathfrak{A}$ if and only if X c.e. in \mathfrak{M} ?

The answer is "Yes"

Consider the simple case when $\mathfrak{A} = (A, R)$ and $R \subseteq A$. We can assume that *R* is infinite.

Marker's (0-th) extension of \mathfrak{A}

Let *X* be an infinite countable set disjoint from *A*. Let $h : R \to X$ be a bijection. Let M(a, x) be true if and only if h(a) = x.

 $\mathfrak{M} = (\mathbf{A} \cup \mathbf{X}; \mathbf{A}, \mathbf{X}, \mathbf{M}).$

R is Σ_1 definable in \mathfrak{M} : $R(a) \Leftrightarrow \exists x M(a, x)$.

- If $Y \subseteq A$ and $Y \leq_e \mathfrak{A}$ then for every enumeration f of \mathfrak{M} , $f^{-1}(Y)$ is c.e. in $f^{-1}(\mathfrak{M})$.
- ② If $Y \leq_e A$ then there is an enumeration *f* of \mathfrak{M} such that $f^{-1}(Y)$ is not c.e. in $f^{-1}(\mathfrak{M})$.

Step 1

Lemma

If $Y \subseteq A$ and $Y \leq_{e} \mathfrak{A}$ then for every enumeration f of \mathfrak{M} , $f^{-1}(Y)$ is c.e. in $f^{-1}(\mathfrak{M})$.

Proof: $f^{-1}(A)$ is computable from $f^{-1}(\mathfrak{M})$. Fix a computable in $f^{-1}(\mathfrak{M})$ bijection $\lambda : \mathbb{N} \to f^{-1}(A)$. Let $g(n) = f(\lambda(n))$. Then for every $Y \subseteq A$:

$$y \in g^{-1}(Y) \iff g(y) \in Y \iff f(\lambda(y)) \in Y \iff \lambda(y) \in f^{-1}(Y)$$

In other words $g^{-1}(Y) \oplus f^{-1}(\mathfrak{M})^+ \equiv_e f^{-1}(Y) \oplus f^{-1}(\mathfrak{M})^+$.

•
$$g^{-1}(\mathfrak{A})$$
 is c.e. in $f^{-1}(\mathfrak{M})$:
 $g^{-1}(\mathfrak{A}) = g^{-1}(R) \leq_e f^{-1}(\mathfrak{M})^+ \oplus f^{-1}(R) \leq_e f^{-1}(\mathfrak{M})^+$

• If
$$g^{-1}(Y) \leq_e g^{-1}(\mathfrak{A})$$
 then $f^{-1}(Y) \leq_e f^{-1}(\mathfrak{M})^+$.

Step 2

Proposition

If $Y \not\leq_e A$ then there is an enumeration f of \mathfrak{M} such that $f^{-1}(Y)$ is not c.e. in $f^{-1}(\mathfrak{M})$.

Proof: Let *g* be an enumeration of \mathfrak{A} such that $g^{-1}(Y) \not\leq_e g^{-1}(\mathfrak{A})$. We construct *f* so that f(2n) = g(n).

●
$$f^{-1}(A) = 2\mathbb{N}$$
 and $f^{-1}(X) = 2\mathbb{N} + 1$.

$$f^{-1}(\mathfrak{M}) \equiv_e f^{-1}(M).$$

3 For every set
$$Y \subseteq A$$
, $g^{-1}(Y) \equiv_1 f^{-1}(Y)$.

•
$$g^{-1}(\mathfrak{A})$$
 is c.e. in $f^{-1}(\mathfrak{M})$.

What remains to be done is construct a bijection $k : f^{-1}(R) \to 2\mathbb{N} + 1$. Recall that there is a bijection $h : R \to X$. Then we complete f by $f(2n+1) = h(f(k^{-1}(2n+1)))$.

Note that then $f^{-1}(\mathfrak{M}) \equiv_e f^{-1}(M) = G_k$.

Step 2: Continued

Proposition

If $Y \not\leq_e A$ then there is an enumeration f of \mathfrak{M} such that $f^{-1}(Y)$ is not c.e. in $f^{-1}(\mathfrak{M})$.

Proof: We construct a bijection $k : f^{-1}(R) \to 2\mathbb{N} + 1$ using forcing so that statements of the form $x \in \Gamma_e(f^{-1}(M)^+)$ are decided at finite stages.

For $\sigma : f^{-1}(R) \to 2\mathbb{N} + 1$ we say that $\sigma \Vdash x \in \Gamma_e(M_G^+)$ if there exists v, such that $\langle x, v \rangle \in \Gamma_e$ and for every $u \in D_v$

•
$$u = 2\langle a, x \rangle$$
 and $\sigma(a) = x$.

2 $u = 2\langle a, x \rangle + 1$ and $\sigma(b) = x$ for some $b \neq a$.

 $\{x \mid \exists \sigma \supseteq \tau(\sigma \Vdash x \in \Gamma_e(M_G^+))\}$ is enumeration reducible to $g^{-1}(\mathfrak{A})$. We use this to ensuret $g^{-1}(Y) \neq \Gamma_e(f^{-1}(M)^+)$.

Finally note that $f^{-1}(\mathfrak{M})'$ can be computed from $g^{-1}(\mathfrak{A})'$.

- 34

From sets to sequences of sets

Theorem (Selman)

 $X \leq_e A$ if an only if for every Z, if A is c.e. in Z then X is c.e. in Z.

- A sequence of sets $\mathcal{X} = \{X_n\}_{n < \omega}$ is *c.e. in* a set *A* if for every *n*, X_n is c.e. in $A^{(n)}$ uniformly in *n*.
- 2 $\mathcal{X} = \{X_n\}_{n < \omega}$ is ω -enumeration reducible to a sequence $\mathcal{A} = \{A_n\}_{n < \omega}$ if and only for every set of natural numbers *Z*, if $\{A_n\}$ is c.e. in *Z* then $\{X_n\}$ is c.e. in *Z*.

The jump sequence P(A) of a sequence A is defined by induction: $P_0(A) = A_0$ and $P_{n+1}(A) = P_n(A)' \oplus A_{n+1}$.

Theorem (Soskov)

 $\mathcal{X} \leq_{\omega} \mathcal{A}$ if and only if for every $n, X_n \leq_e P_n(\mathcal{A})$ uniformly in n.

Sequences and structures

Let $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ be a countable structure.

Definition

A sequence $\{Y_n\}$ of subsets of *A* is (relatively intrinsically) c.e. in \mathfrak{A} if for every enumeration *f* of \mathfrak{A} the sequence $\{f^{-1}(Y_n)\}$ is c.e in $f^{-1}(\mathfrak{A})$.

By the methods of Ash, Knight, Manasse, Slaman one can show that $\{Y_n\}$ is c.e. in \mathfrak{A} if and only if there is a computable sequence $\{F_n\}$ such that F_n is a computable infinitary Σ_{n+1} formula and parameters t_1, \ldots, t_m , such that Y_n is definable in \mathfrak{A} using F_n and the parameters t_1, \ldots, t_m .

(I) > (A) > (A) > (A) > (A)

Sequences of structures

Now consider a sequence of structures $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$, where $\mathfrak{A}_n = (A_n; R_1^n, R_2^n, \dots, R_{m_n}^n)$. Let $A = \bigcup_n A_n$. An enumeration f of $\vec{\mathfrak{A}}$ is a bijection from $\mathbb{N} \to A$. $f^{-1}(\vec{\mathfrak{A}})$ is the sequence $\{f^{-1}(A_n) \oplus f^{-1}(R_1^n) \dots \oplus f^{-1}(R_{m_n}^n)\}_{n<\omega}$

Definition

A sequence $\{Y_n\}$ of subsets of *A* is (relatively intrinsically) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if for every enumeration *f* of $\vec{\mathfrak{A}}$, $\{f^{-1}(Y_n)\} \leq_{\omega} f^{-1}(\vec{\mathfrak{A}}).$

Soskov and Baleva show that this is equivalent to Y_n is uniformly in n definable by a \sum_{n+1}^+ formula: a positive computable infinitary formula with predicates only from the first n structures, such that the predicates for the *n*-th appear for the first time at level n + 1 positively.

くロン 不通 とくほ とくほ とうほう

The bigger question

Question

Given a sequence of structures $\vec{\mathfrak{A}}$, does there exist a structure \mathfrak{M} , such that for every sequence \mathcal{X} of subsets of $A = \bigcup_n A_n$, $\mathcal{X} \leq_{\omega} \vec{\mathfrak{A}}$ if and only if \mathcal{X} c.e. in \mathfrak{M} ?

Marker's extensions

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$$
, and $A = \bigcup_n A_n$. Let $R \subseteq A^m$.

The *n*-th Marker's extension $\mathfrak{M}_n(R)$ of *R*

Let X_0, X_1, \ldots, X_n be infinite disjoint countable - companions to $\mathfrak{M}_n(R)$. Fix bijections: $h_0 : R \to X_0$ $h_1 : (A^m \times X_0) \setminus G_{h_0} \to X_1 \ldots$ $h_n : (A^m \times X_0 \times X_1 \cdots \times X_{n-1}) \setminus G_{h_{n-1}} \to X_n$

Let
$$M_n = G_{h_n}$$
 and $\mathfrak{M}_n(R) = (A \cup X_0 \cup \cdots \cup X_n; X_0, X_1, \dots X_n, M_n).$

If *n* is even then $a \in R \iff \exists x_0 \in X_0[(a, x_0) \in G_{h_0}] \iff$

$$\exists x_0 \in X_0 \forall x_1 \in X_1[(a, x_0, x_1) \notin G_{h_1}] \iff$$

 $\exists x_0 \in X_0 \forall x_1 \in X_1 \exists x_2 \in X_2[(a, x_0, x_1, 2) \in G_{h_2}] \iff \dots$

 $\exists x_0 \in X_0 \forall x_1 \in X_1 \dots \exists x_n \in X_n[M_n(a, x_0, \dots x_n)].$

イロト イポト イヨト イヨト 二日

Marker's extensions

Given two structures $\mathfrak{A} = (A; R_1, R_2, \dots, R_m)$ and $\mathfrak{B} = (B; P_1, P_2, \dots, P_k)$ let $\mathfrak{A} \cup \mathfrak{B} = (A \cup B; R_1, R_2, \dots, R_m, P_1, P_2, \dots, P_k)$.

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$, and $A = \bigcup_n A_n$.

- For every *n* construct the *n*-th Markers's extensions of A_n , R_1^n , ..., $R_{m_n}^n$ with disjoint companions.
- **2** For every *n* let $\mathfrak{M}_n(\mathfrak{A}_n) = \mathfrak{M}_n(A_n) \cup \mathfrak{M}_n(R_1^n) \cup \cdots \cup \mathfrak{M}_n(R_{m_n}^n)$.
- Set $\mathfrak{M}(\mathfrak{A})$ to be $\bigcup_n \mathfrak{M}_n(\mathfrak{A}_n)$ with one additional predicate for A.

Theorem

A sequence \mathcal{Y} of subsets of A is (r.i.) ω -enumeration reducible to $\vec{\mathfrak{A}}$ if and only if \mathcal{Y} is (r.i) c.e. in $\mathfrak{M}(\vec{\mathfrak{A}})$.

Two steps

Lemma

For every enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$ there is an enumeration g of $\vec{\mathfrak{A}}$:

• There is a computable in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$ injective function λ such that for every $Y \subseteq A$, $x \in g^{-1}(Y)$ iff $\lambda(x) \in f^{-1}(Y)$.

2
$$g^{-1}(\vec{\mathfrak{A}})$$
 is c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

Theorem

Let g be an enumeration of $\vec{\mathfrak{A}}$ and $\mathcal{Y} \not\leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$. There is an enumeration f of $\mathfrak{M}(\vec{\mathfrak{A}})$:

• There is a computable injective function λ such that for every $Y \subseteq A$, $x \in g^{-1}(Y)$ iff $\lambda(x) \in f^{-1}(Y)$.

3 \mathcal{Y} is not c.e. in $f^{-1}(\mathfrak{M}(\vec{\mathfrak{A}}))$.

э.

Proof flavour

We consider the case when \mathfrak{A}_n has no predicates, i.e. $g^{-1}(\vec{\mathfrak{A}}) = \{g^{-1}(A_n)\}$ and $\mathfrak{M} = (|\mathfrak{M}|, A, \{M_n, X_0^n, \dots, X_n^n\}_{n < \omega}).$ Let $\{Z_0^n, \dots, Z_n^n\}_{n < \omega}$ be a partition of $2\mathbb{N} + 1$ in uniformly computable

sets.

We define f so that f(2n) = g(n) and $f(Z_i^n) = X_i^n$ for every i, n.

What remains to be constructed is a system of bijections $\{k_0^n, \ldots, k_n^n\}_{n < \omega}$ (an acceptable system) such that: $k_0^n : f^{-1}(A_n) \to Z_0^n$. $k_1^n : (2\mathbb{N} \times Z_0^n) \setminus G_{k_0^n} \to Z_1^n \ldots$ $k_n^n : (2\mathbb{N} \times Z_0^n \times Z_{n-1}^n) \setminus G_{k_{n-1}^n} \to Z_n^n$

We do so by forcing, so that statements of the form $x \in \Gamma_e((f^{-1}(\mathfrak{M})^+)^{(n)})$ are decided at finite stages using only information from $P_{n+1}(g^{-1}(\vec{\mathfrak{A}}))$.

Degree structures

The enumeration degree of set A is d_e(A) = {B | A ≡_e B}.
 The structure of the enumeration degrees D_e is an upper

semi-lattice with jump operation.

The Turing degrees are embedded in to the enumeration degrees by: $\iota(d_T(A)) = d_e(A^+)$.

• The ω -enumeration degree of a sequence \mathcal{A} is $d_{\omega}(\mathcal{A}) = \{\mathcal{B} = \{B_n\}_{n < \omega} \mid \forall n(P_n(\mathcal{A}) \equiv_e P_n(\mathcal{B}) \text{ uniformly in } n)\}$

The structure of the ω -enumeration degrees \mathcal{D}_{ω} is an upper semi-lattice with jump operation.

The enumeration degrees are embedded in to the ω enumeration degrees by: $\kappa(d_e(A)) = d_{\omega}(\{A^{(n)}\}_{n < \omega}).$

$\mathcal{D}_{\textit{T}} \subset \mathcal{D}_{\textit{e}} \subset \mathcal{D}_{\omega}$

- There are sets *A* which are not enumeration equivalent to any set of the form *M*⁺.
- There are sequences $\mathcal{R} = \{R_n\}_{n < \omega}$ such that:
 - $P_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every *n*.
 - $\blacktriangleright \{\emptyset^{(n)}\}_{n<\omega} <_{\omega} \mathcal{R}.$

To make $\mathcal{R} \not\leq_{\omega} \{\emptyset^{(n)}\}_{n < \omega}$ it is sufficient to ensure $\mathcal{R} \neq \{\Gamma_e^{[n]}(\emptyset^{(n)})\}_{n < \omega}$, where $\Gamma_e^{[n]}$ is the *n*-th column of Γ_e .

$$R_n = \begin{cases} \{1\}, & \text{if } 0 \in \Gamma_n^{[n]}(\emptyset^{(n)}); \\ \{0\}, & \text{otherwise.} \end{cases}$$

Sequences with this property are called *almost zero*. Note that R_n is uniformly reducible to $\emptyset^{(n+1)}$

イベト イモト イモト

Spectra and Co-spectra

Let \mathfrak{M} be a structure.

Definition

The spectrum of \mathfrak{M} is the set $Sp(\mathfrak{M}) = \{ \mathbf{a} \in \mathcal{D}_T \mid \exists f(d_T(f^{-1}(\mathfrak{M}))) \leq \mathbf{a} \}.$ The *n*-th jump spectrum of \mathfrak{M} is the set $Sp_n(\mathfrak{M}) = \{ \mathbf{a}^n \mid \mathbf{a} \in Sp(\mathfrak{M}) \}.$

We can view $Sp_n(\mathfrak{M})$ as a subset of \mathcal{D}_e or as a subset of \mathcal{D}_{ω} .

Definition

The *n*-th co-spectrum of \mathfrak{M} is the set $CoSp_n(\mathfrak{M}) = \{ \mathbf{a} \in \mathcal{D}_e \mid \forall \mathbf{x} \in Sp_n(\mathfrak{M}) (\mathbf{a} \leq_e \mathbf{x}) \}.$ The ω -enumeration co-pectrum of \mathfrak{M} is the set $Ocsp(\mathfrak{M}) = \{ \mathbf{a} \in \mathcal{D}_\omega \mid \forall \mathbf{x} \in Sp(\mathfrak{M}) (\mathbf{a} \leq_\omega \mathbf{x}) \}.$

Co-spectra of Marker's extensions

Theorem

Fix $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ and let $\mathfrak{M} = \mathfrak{M}(\vec{\mathfrak{A}})$.

•
$$CoSp_n(\mathfrak{M}) = \left\{ d_e(Y) \mid (\forall g)(Y \leq_e P_n(g^{-1}(\vec{\mathfrak{A}}))) \right\}.$$

$${ @ \textit{Ocsp}(\mathfrak{M}) = \Big\{ \textit{d}_{\omega}(\mathcal{Y}) \mid (\forall g)(\mathcal{Y} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})) \Big\}. }$$

Example: Let $\mathcal{R} = \{R_n\}$ be a sequence of sets. Consider the sequence $\vec{\mathfrak{A}}$, where $\mathfrak{A}_0 = (\mathbb{N} : G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$, For every enumeration g of $\vec{\mathfrak{A}}$, $\mathcal{R} \le_{\omega} g^{-1}(\vec{\mathfrak{A}})$:

- *g* is computable from $g^{-1}(G_s)$.
- $x \in R_n$ if and only if $g^{-1}(x) \in g^{-1}(R_n)$.

Considering that g = id is an enumeration, we obtain that

•
$$CoSp_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e P_n(\mathcal{R}) \}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Example: continued

Definition

The least element of $Sp_n(\mathfrak{M})$ if it exists is the *n*-th jump degree of \mathfrak{M} . The greatest element of $CoSp_n(\mathfrak{M})$ if it exists is the *n*-th co-degree of \mathfrak{M} .

Richter, Knight: linear orderings have co-degree $\mathbf{0}_e$ and first co-degree $\mathbf{0}'_e$ but not always a degree or a jump degree.

• $CoSp_n(\mathfrak{M}) = \{ d_e(Y) \mid Y \leq_e P_n(\mathcal{R}) \}.$

Consider the *almost zero* sequence \mathcal{R} :

- $P_n(\mathcal{R}) \equiv_e \emptyset^{(n)}$ for every *n*. Hence the *n*-th co-degree of \mathfrak{M} is $\mathbf{0}_e^{(n)}$
- 2 $\{\emptyset^{(n)}\}_{n<\omega} <_{\omega} \mathcal{R}$. Hence \mathfrak{M} has no *n*-th jump degree for any *n*.

Spectra of sequences of structures

Let
$$\vec{\mathfrak{A}} = {\mathfrak{A}}_n {}_{n < \omega}$$
 be given and let $A = \bigcup_n A_n$.

Definition

- The relative degree spectrum of $\vec{\mathfrak{A}}$ is $Rsp(\vec{\mathfrak{A}}) = \left\{ g^{-1}(\vec{\mathfrak{A}}) \mid g \text{ is an enumeration of } A \right\}.$
- The joint spectrum of $\vec{\mathfrak{A}}$ is $Jsp(\vec{\mathfrak{A}}) = \left\{ \{g_n^{-1}(\mathfrak{A}_n)\}_{n < \omega} \mid g_n \text{ is an enumeration of } A_n \right\}.$

If $\vec{\mathfrak{A}}$ and $\vec{\mathfrak{A}}^*$ are such that for every $n \mathfrak{A}_n \cong \mathfrak{A}_n^*$ then $Jsp(\vec{\mathfrak{A}}) = Jsp(\vec{\mathfrak{A}}^*)$.

Consider the structure $\vec{\mathfrak{A}}$ obtained from the almost zero sequence \mathcal{R} : $\mathfrak{A}_0 = (\mathbb{N} : G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$. As $\mathcal{R} \not\leq_{\omega} \{\emptyset^{(n)}\}_{n < \omega}, \{\emptyset^{(n)}\}_{n < \omega} \notin Rsp(\vec{\mathfrak{A}})$. Now consider the $\vec{\mathfrak{A}}^*$ obtained from the sequence (R_0, R_0, R_0, \dots) .

不同 とくきとくきとう き

Main theorem

Theorem

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ be a sequence of structures.

- There exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \mathcal{Y} \in Rsp(\mathfrak{A}))(\mathcal{Y} \text{ is c.e. in } B) \right\}.$
- ② There exists a structure 𝔐 such that $Sp(𝔅) = \{ d_T(B) \mid (\exists 𝔅 \in Jsp(𝔅))(𝔅 is c.e. in B) \}.$

Note: (2) follows from (1): take an isomorphic copy $\vec{\mathfrak{A}}^*$ of $\vec{\mathfrak{A}}$ with $\{A_n^*\}_{n<\omega}$ disjoint and use the structure \mathfrak{M}^* for $\vec{\mathfrak{A}}^*$.

Proof of 1:

Consider $\mathfrak{M} = \mathfrak{M}(\mathfrak{A})$. One direction we know: if *B* computes $f^{-1}(\mathfrak{M})$ we can find an enumeration *g* of \mathfrak{A} such that $g^{-1}(\mathfrak{A})$ is c.e. in $f^{-1}(\mathfrak{M})$ and hence in *B*.

For the other direction we need a new construction.

イロト イポト イヨト イヨト 二日

The other direction

Theorem

Let $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n < \omega}$ be a sequence of structures.

• There exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \mathcal{Y} \in Rsp(\mathfrak{A}))(\mathcal{Y} \text{ is c.e. in } B) \right\}.$

Let *g* be an enumeration of $\vec{\mathfrak{A}}$. And let $g^{-1}(\vec{\mathfrak{A}})$ be c.e. in *B*. Consider again the case when \mathfrak{A}_n has no predicates, i.e. $g^{-1}(\vec{\mathfrak{A}}) = \{g^{-1}(A_n)\}_{n < \omega}$ and hence $g^{-1}(A_n)$ is Σ_{n+1} in *B* uniformly in *n*.

We want an enumeration f of \mathfrak{M} , such that $f^{-1}(\mathfrak{M})$ is computable in B. We set again f(2n) = g(n) and partition $2\mathbb{N} + 1$ into infinite uniformly computable sets Z_i^n . To complete f we need an acceptable system : $k_0^n : f^{-1}(A_n) \to Z_0^n$. $k_1^n : (2\mathbb{N} \times Z_0^n) \setminus G_{k_0^n} \to Z_1^n \dots$ $k_n^n : (2\mathbb{N} \times Z_0^n \times Z_{n-1}^n) \setminus G_{k_{n-1}^n} \to Z_n^n$ with G_{k_n} uniformly computable in B.

Generalized Goncharov and Khoussainov Lemma

Proposition

Let $n \ge 0$ and R be a $\sum_{n+1}^{0}(B)$ set with an infinite computable subset. Then there exists functions $k_0 \ldots k_n$ such that the graph of k_n is computable in B, uniformly in an index for R and n and $k_0 : R \to \mathbb{N}$. $k_1 : \mathbb{N}^2 \setminus G_{k_0} \to \mathbb{N} \ldots$ $k_n : \mathbb{N}^{n+1} \setminus G_{k_n \to 1} \to \mathbb{N}$.

As $f^{-1}(A_n) \equiv_1 g^{-1}(A_n)$, it is Σ_{n+1} in *B* uniformly in *n*. To ensure $f^{-1}(A_n)$ has an infinite computable set this we change $\vec{\mathfrak{A}}$: Let $\perp \notin A$ be a new symbol.

• For every $R \subset A$ we set $R^{\perp} = \{(a, t) \mid a \in R \lor t = \perp\}$.

• Set
$$\mathfrak{A}_n = (\mathbf{A} \cup \{\bot\}; \mathbf{A}_n^{\perp}, (\mathbf{P}_0^n)^{\perp}, \dots, (\mathbf{P}_{k_m}^n)^{\perp})$$

• Set
$$\vec{\mathfrak{A}}^{\perp} = \{A_n^{\perp}\}_{n < \omega}$$
.

 $\mathfrak{M}=\mathfrak{M}(\vec{\mathfrak{A}}^{\perp})$ is the required structure.

< ロ > < 同 > < 回 > < 回 >

The inductive step

Lemma

Let R be $\Sigma_2^0(X)$ and $S \subseteq R$ be infinite and computable. There exists a bijection $k : R \to \mathbb{N}$ such that $\mathbb{N}^2 \setminus G_k$ is $\Sigma_1^0(X)$ and has an infinite computable subset.

Proof:

Fix a computable in *X* approximation $\{R_s\}_{s<\omega}$ such that $x \in R$ if and only if for all but finitely many $s, x \in R_s$. Assume $R_s \bigtriangleup R_{s+1} \le 1$. We can map an element *x* of *R* to the least stage s_x , such that for all $t \ge s_x$ we have $x \in R_t$.

The set $B = \{s \mid s \neq s_x \text{ for any } x\} \cup \{s \mid s = s_x \rightarrow x \in S\}$ is $\Sigma_1^0(X)$. We map elements x in $R \setminus S$ to s_x and computably in X map S to B.

Let k(0) = a. Then $\{(0, b) \mid b \neq a\}$ is a computable subset of $\mathbb{N}^2 \setminus G_k$.

Embedding the ω -enumeration degrees

Consider again the structure $\vec{\mathfrak{A}}$ obtained from a sequence of sets \mathcal{R} . $\mathfrak{A}_0 = (\mathbb{N} : G_s, R_0)$ and for all $n \ge 1$, $\mathfrak{A}_n = (\mathbb{N}; R_n)$.

- Recall that for every enumeration g of $\vec{\mathfrak{A}}, \mathcal{R} \leq_{\omega} g^{-1}(\vec{\mathfrak{A}})$.
- By Main Theorem there is a structure $\mathfrak{M}_{\mathcal{R}}$ such that $Sp(\mathfrak{M}_{\mathcal{R}}) = \Big\{ d_{\mathcal{T}}(B) \mid (\exists g)(g^{-1}(\vec{\mathfrak{A}}) \text{ is c.e. in } B) \Big\}.$

• If
$$g^{-1}(\vec{\mathfrak{A}})$$
 is c.e. in *B* then \mathcal{R} is c.e. in *B*.

• If \mathcal{R} is c.e. in B then as $\mathcal{R} \equiv_{\omega} id^{-1}(\vec{\mathfrak{A}}), B \in Sp(\mathfrak{M}_{\mathcal{R}}).$

•
$$Sp(\mathfrak{M}_{\mathcal{R}}) = \{ d_T(B) \mid \mathcal{R} \text{ is c.e. in } B \}.$$

This allows us to embed \mathcal{D}_{ω} into the Muchnik degrees generated by spectra of structures.

$$\mathcal{R} \leq_{\omega} \mathcal{Q} \iff \{d_{\mathcal{T}}(B) \mid \mathcal{R} \text{ is c.e. in } B\} \supseteq \{d_{\mathcal{T}}(B) \mid \mathcal{Q} \text{ is c.e. in } B\} \iff Sp(\mathcal{M}_R) \supseteq Sp(\mathcal{M}_{\mathcal{Q}}).$$

A (B) (A (B) (A (B)))

Enumeration spectra

Let $\mathfrak{A} = (A; P_1 \dots P_m)$ be a structure

Definition

A partial enumeration of \mathfrak{A} is a partial injective map φ from \mathbb{N} onto A. $\varphi^{-1}(\mathfrak{A}) = dom(\varphi) \oplus \varphi^{-1}(P_1) \oplus \cdots \oplus \varphi^{-1}(P_m).$

The enumeration spectrum of \mathfrak{A} is $Esp(\mathfrak{A}) = \{ d_e(\varphi^{-1}(\mathfrak{A})) \mid \varphi \text{ is a partial enumeration of } \mathfrak{A} \}.$ The enumeration co-spectrum of \mathfrak{A} is $CoEsp(\mathfrak{A}) = \{ \mathbf{y} \mid (\forall \mathbf{x} \in Esp(\vec{\mathfrak{A}})) (\mathbf{y} \leq \mathbf{x}) \}.$

- Kalimullin showed that there is a structure 𝔅 with *Esp*(𝔅) = {x | x ≠ 0_e}.
- Soskov showed that every countable ideal of enumeration degrees can be represented as the CoEsp(𝔅) for some 𝔅.

Enumerations spectra and spectra of structures

Recall the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$.

Theorem

For every structure \mathfrak{A} there exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = \{ \mathbf{a} \in \mathcal{D}_T \mid (\exists \mathbf{x} \in Esp(\mathfrak{A}))(\iota(\mathbf{a}) \geq \mathbf{x}) \}$

Proof: Let $C \supseteq A$ be such that $C \setminus A$ is infinite and $\mathfrak{C} = (C; A, P_1, \dots, P_m)$. Any partial enumeration φ of \mathfrak{A} can be extended to a total enumeration f of \mathfrak{C} with $\varphi^{-1}(\mathfrak{A}) \equiv_e f^{-1}(\mathfrak{C})$ and vice versa. Let \mathfrak{M} be such that $Sp(\mathfrak{M}) = \{d_T(B) \mid \exists f(f^{-1}(\mathfrak{C}) \text{ is c.e. in } B)\}$.

- Slaman and Wehner's result follows from Kalimullin's: there is a structure 𝔐 with Sp(𝔐) = {𝗙 | 𝗙 ≠ 𝜒}.
- Every countable ideal of enumeration degrees can be represented as the CoSp(M) for some M.

The main theorem for Turing degrees

Recall that

•
$$Jsp(\vec{\mathfrak{A}}) = \left\{ \{ g_n^{-1}(\mathfrak{A}_n) \}_{n < \omega} \mid g_n \text{ is an enumeration of } A_n \right\}.$$

- 2 There exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \mathcal{Y} \in Jsp(\mathfrak{A}))(\mathcal{Y} \text{ is c.e. in } B) \right\}.$
- Consider $\vec{\mathfrak{A}}^+$, where $\mathfrak{A}_n^+ = (A_n; P_1, \overline{P_1}, \dots, P_m, \overline{P_m})$.
- Then $\{g^{-1}(\mathfrak{A}_n)\} \in Jsp(\vec{\mathfrak{A}}) \iff \{g^{-1}(\mathfrak{A}_n) \oplus \overline{g^{-1}(\mathfrak{A}_n)}\} \in Jsp(\vec{\mathfrak{A}})^+.$
- $\{g^{-1}(\mathfrak{A}_n) \oplus \overline{g^{-1}(\mathfrak{A}_n)}\}$ is c.e. in $B \iff g^{-1}(\mathfrak{A}_n) \leq_T B^{(n)}$ uniformly in n.

Theorem

For every sequence $\vec{\mathfrak{A}} = {\mathfrak{A}_n}_{n<\omega}$ there exists a structure \mathfrak{M} such that $Sp(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \{Y_n\}_{n<\omega} \in Jsp(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n) \right\}.$

4 **A** N A **B** N A **B** N

Wehner's construction

Let $\ensuremath{\mathcal{F}}$ be a countable family of sets.

Definition

An enumeration of \mathcal{F} is a set $U \subseteq \mathbb{N}^2$ such that:

• For every a, $\{n \mid (a, n) \in U\} \in \mathcal{F}$.

2 For every $F \in \mathcal{F}$ there is an *a* such that $\{n \mid (a, n) \in U\} = F$.

Let
$$\mathfrak{A}_{\mathcal{F}} = (A; S, Z, I)$$
 where $A = \mathcal{F} \times \mathbb{N}^2$;
 $Z = \{(F, x, 0) \mid F \in \mathcal{F}, x \in \mathbb{N}\},\$
 $S = \{((F, x, n), (F, x, n + 1)) \mid F \in \mathcal{F}, x, n \in \mathbb{N}\}$ and
 $I = \{(F, x, n) \mid n \in F\}$

Proposition (Wehner)

- There is a uniform way to compute an enumeration of F in any isomorphic copy B of A_F.
- 2 There is a uniform way to compute an isomorphic copy \mathfrak{B} of $\mathfrak{A}_{\mathcal{F}}$ in any enumeration of \mathcal{F} .

A structure with a nice spectrum

Consider the family $\mathcal{F}^X = \{\{n\} \oplus F \mid F \text{ is finite and } F \neq W_n^X\}.$

- No enumeration of \mathcal{F}^X is c.e. in X.
- ② If $B
 \leq_T X$ then one can compute uniformly in *B* and *X* an enumeration of *F*.

Theorem

There is a structure \mathfrak{M} with $Sp(\mathfrak{M}) = \{ \mathbf{b} \mid \forall n(\mathbf{b}^{(n)} > \mathbf{0}^{(n)}) \}.$

Proof: Consider the sequence $\vec{\mathfrak{A}}$ where $\mathfrak{A}_n = \mathfrak{A}_{\mathcal{F}^{\emptyset^{(n)}}}$. Let \mathfrak{M} be such that $Sp(\mathfrak{M}) = \left\{ d_T(B) \mid (\exists \{Y_n\}_{n < \omega} \in Jsp(\vec{\mathfrak{A}}))(Y_n \leq_T B^{(n)} \text{ uniformly in } n) \right\}$. If $d_T(\mathcal{B}) \in Sp(\mathfrak{M})$ then $B^{(n)}$ computes an enumeration of $\mathcal{F}^{\emptyset^{(n)}}$ and hence $B^{(n)} \nleq_T \emptyset^{(n)}$. If $B^{(n)} \nleq_T \emptyset^{(n)}$ for every *n* then as $\emptyset^{(n)} \leq_T B^{(n)}$ uniformly in *n*, it follows that $B^{(n)}$ computes an enumeration of $\mathcal{F}^{\emptyset^{(n)}}$.

くロン 不通 とくほ とくほ とうほう

The end

Gian-Carlo Rota

According to ...[the "one-shot"] ... view, mathematics would consist of a succession of targets, called problems, which mathematicians would be engaged in shooting down by well-aimed shots. But where do problems come from, and what are they for? If the problems of mathematics were not instrumental in revealing a broader truth, then they would be indistinguishable from chess problems or crossword puzzles. Mathematical problems are worked on because they are pieces of a larger puzzle.

Ivan Soskov

The good puzzles are the ones that will never be completely solved.