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Marker’s extensions in the literature

@ 1989 Marker: Xo-categorical non-Y-axiomatizable almost
strongly minimal theory.

@ 2004 Goncharov, Khoussainov: An R;-categorical theory, Turing
equivalent to 0(") with a computable model.

@ 2009 Soskov, Soskova: Jump inversion of spectra of structures.

@ 2009 Stukachev: A jump inversion theorem for the semi-lattices of
sigma-degrees.

@ 2010 Fokina, Kalimullin, Miller: Degrees of categoricity of
computable structures.
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A parallel between classical computability theory and
effective definability in abstract structures

@ Aset Xis c.e. ina set Aif X can be enumerated by a computable
in A function.

@ A set X is enumeration reducible to a set A if and only if there is
an effective procedure to transform an enumeration of A to an
enumeration of X

Denote by AT the set A® A.

Proposition
X isc.e.inAifandonly if X <¢ AT. J

Given a set A can we find a set M such that X <, Aif and only if X is
c.e.in M?

There are sets A which are not enumeration equivalent to any set of
the form M @ M, so the answer is “No”.
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Abstract structures

Let A = (A; Ry, Rz, ... Ry) be a countable structure.
@ An enumeration of 2l is a bijection f : N — A.
o 'R =Ff"R)ef"(R)@---@®f (R, computes the atomic
diagram of an isomorphic copy of .

Definition

A set X C Ais relatively intrinsically c.e. in 2 (X c.e. in ) if for every
enumeration f of 21 we have that f~1(X) is c.e. in f=1(21).

By Ash, Knight, Manasse, Slaman we have that X is c.e. in 2 if and
only if X is definable in 2 by means of a computable infinitary X4
formula with parameters.
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Relatively intrinsically enumeration reducible

Definition
A set X C Ais (relatively intrinsically) enumeration reducible to 24
(X <e ) if for every enumeration f of 2, F=1(X) <¢ f~1(20).

X <e 2if and only if X is definable in 21 by means of a positive
computable infinitary >4 formula with parameters. o
Given a structure 2 = (A, Ry,... Ry) let AT = (A, Ry, Ry, ... Rp, Rp).
Proposition

Forevery X C A, X c.e. in ifand only if X <¢ AT.

Question

Given a structure 2, does there exist a structure 9, such that for every
X CA X<egifandonly if X c.e. in M?

v
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The answer is “Yes”

Consider the simple case when 2 = (A, R) and R C A. We can
assume that R is infinite.

Marker’s (0-th) extension of 2

Let X be an infinite countable set disjoint from A.
Let h: R — X be a bijection. Let M(a, x) be true if and only if h(a) = x.

M= (AU X; A X, M).

R is X4 definable in M: R(a) < IxM(a, x).

@ If Y C Aand Y <, 2 then for every enumeration f of 0, ~1(Y) is
c.e.in f~1(M).

@ If Y £, Athen there is an enumeration f of M such that ~1(Y) is
not c.e. in F~1(M).
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Step 1

Lemma

IfY C Aand Y <. 2 then for every enumeration f of %, f~(Y) is c.e.
in f=1(oM).

Proof: f~1(A) is computable from f~1(90).
Fix a computable in f~'(9) bijection X : N — f~'(A).
Let g(n) = f(A(n)). Then forevery Y C A:

yeg (V) <= gly)eY < fAY) €Y < My)ef (V)

In other words g~ (Y) @ f~1(M)+ =, F1(Y) @ F1 ().

e g '(Aisc.e. inf1(M):
g ' (@A) =g (R) <e (M) @ F1(R) <e F1(M)™.

@ If g71(Y) <e g7 '(A) then F~1(Y) <o F1(MM)*.
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Step 2

Proposition

If Y £¢ A then there is an enumeration f of M such that f~1(Y) is not
c.e. in f~1(9M).

Proof: Let g be an enumeration of 2 such that g='(Y) £e g~ "(21).
We construct f so that 7/(2n) = g(n).

Q (A =2Nand f1(X) =2N +1.

Q (M) = ' (M).

© Foreveryset Y CA, g '(Y) = F(Y).

Q g ') isc.e. in FT(M).
What remains to be done is construct a bijection k : f~1(R) — 2N + 1.

Recall that there is a bijection h: R — X. Then we complete f by
f(2n+1) = h(f(k=1(2n+ 1))).

Note that then f=1(9m) =, (M) = Gk.
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Step 2: Continued

Proposition

If Y £¢ A then there is an enumeration f of M such that f~1(Y) is not
c.e. in f~1(9M).

Proof: We construct a bijection k : f~'(R) — 2N + 1 using forcing so
that statements of the form x € [e(f~1(M)*) are decided at finite
stages.

Foro : f~1(R) — 2N + 1 we say that o I x € ['¢(M},) if there exists v,
such that (x, v) € ', and for every u € D,

Q@ u=2(a x)ando(a) = x.

Q u=2(a x)+1ando(b) = x for some b # a.
{x |30 27(c Ik x € Te(M{))} is enumeration reducible to g~ (2). We
use this to ensuret g='(Y) # Fe(F1(M)*).
Finally note that f~'(9t)’ can be computed from g—(21)". O
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From sets to sequences of sets

Theorem (Selman)
X <eAifanonlyifforevery Z, ifAis c.e.inZ then X isc.e.inZ. J

@ A sequence of sets X = {Xj}n<w is c.e. ina set Alif for every n,
X, is c.e. in A uniformly in n.

Q X = {X,}n<w is w-enumeration reducible to a sequence
A = {An}n<w if and only for every set of natural numbers Z, if
{An}isc.e.in Zthen {X,}isc.e.in Z.

The jump sequence P(.A) of a sequence A is defined by induction:
Po(A) = Ao and Ppi1(A) = Pp(A) @ Ani.

Theorem (Soskov)
X <, Aifand only if for every n, X, <e¢ Pn(.A) uniformly in n. J
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Sequences and structures

Let A = (A; Ry, Rz, ... Rm) be a countable structure.

Definition
A sequence {Y,} of subsets of A is (relatively intrinsically) c.e. in 2 if
for every enumeration f of 21 the sequence {f~'(Y,)} is c.e in f~1(2).

By the methods of Ash, Knight, Manasse, Slaman one can show that
{Yn}is c.e.in 2 if and only if there is a computable sequence {F,}
such that F, is a computable infinitary ¥, 1 formula and parameters
ti,...tm, such that Y} is definable in 2 using F, and the parameters
t,...tm.
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Sequences of structures

Now consider a sequence of structures 2 = {2,}n., Where
An = (Ap; R, RE,... R ). Let A=, An.

An enumeration f of 2 is a bijection from N — A.

f~1(20) is the sequence {f~"(An) & 1 (RY)--- @ F(RY, )} new

Definition
A sequence {Y,} of subsets of Ais (relatively intrinsically)

w-enumeration reducible to 2l if for every enumeration f of 2,
{F1(Yn)} <o F71(2).

Soskov and Baleva show that this is equivalent to Y, is uniformly in n
definable by a ):;;q formula: a positive computable infinitary formula
with predicates only from the first n structures, such that the predicates

for the n-th appear for the first time at level n+ 1 positively.
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The bigger question

Question

Given a sequence of structures 24, does there exist a structure O,

such that for every sequence X of subsets of A=, An, X <, A if
andonly if X c.e. inn?
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Marker’s extensions
Let 2 = {2An}new, and A=, An. Let R C A™.
The n-th Marker’s extension 9t,(R) of R

Let Xo, Xi,. .. X, be infinite disjoint countable - companions to 9t,(R).

Fix bijections: hy : R — Xg
h1 :(AmXXO)\GhO —>X1

hnZ(AmXXO><X1-~-><Xn_1)\Gh —)Xn

n—1

Let M, = G, and Mn(R) = (AU Xo U+~ U Xn; Xo, X1, - . . X, Mp).

If niseventhenac R <= dxg € Xp[(a x0) € Gp,] <=
Ixo € XoVx1 € Xi[(@, %0, %1) & Gn] <=
dxp € XoVXx1 € X13xo € Xg[(a, Xo,X1,2) € Ghz] — ...
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Marker’s extensions

Given two structures 2 = (A; Ry, Ro, ... Rm) and B = (B; Py, Pa, ... Py)
letAUDB = (AUB;R1,R2,...Rm,P1,P2,...Pk).

Let 2 = {2An}new, and A=, An.

@ For every n construct the n-th Markers’s extensions of A,, RY,
... Rp, with disjoint companions.

@ For every nlet M,(Ap) = Mp(An) UMp(RY) U --- UMa(RY,).
@ Set M(2A) to be U, Ma(An) with one additional predicate for A.

Theorem

A sequence ) of subsets of A js (r.i.) w-enumeration reducible to A if
and only if Y is (r.i) c.e. in M(A).
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Two steps

Lemma

For every enumeration f of 9)2(5[) there is an enumeration g of .

@ There is a computable in f~'(9(2)) injective function X such that
forevery Y C A, x € g~ (Y) iff \(x) € f=1(Y).

Q g ') isc.e in 1 (M(A)).

Theorem

Let g be an enumeration of % and Y £ g ! (2A). There is an

—

enumeration f of M(A):

@ There is a computable injective function \ such that for every
YCA xeg \(Y)iffx(x) e f1(Y).

Q@ D, P97 () =e (FT(M(A))) .
Q Yisnotc.e. in f~1(M(2A)).
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Proof flavour

We cgnsider the case when 2, has no predicates, i.e.
g () = {g7"(An)} and M = (IM|, A, {Mn, X7, ..., X]}n<wo)-

Let {Z],...,Z]}n<. be a partition of 2N + 1 in uniformly computable

sets.
We define f so that f(2n) = g(n) and f(Z) = X[ for every i, n.

What remains to be constructed is a system of bijections
{K{, ..., k}n<w (an acceptable system ) such that:

ki f1(An) — Z5.

kf:(QNXZ&)\Gk(I;%Z{’...

kit (@Nx Z§ x Z] 1)\ Gkn . — Zf

We do so by forcing, so that statements of the form

x € Te((f~1(9m)7)("M) are decided at finite stages using only
information from P, 1(g~"(2A)).
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Degree structures

@ The enumeration degree of set Ais de(A) = {B | A =¢ B}.

The structure of the enumeration degrees Dg is an upper
semi-lattice with jump operation.

The Turing degrees are embedded in to the enumeration degrees
by: «(dr(A)) = de(A™).

@ The w-enumeration degree of a sequence A is
du(A) = {B = {Bn}n<w | YN(Pn(A) =¢ Pn(B) uniformly in n)}
The structure of the w-enumeration degrees D, is an upper
semi-lattice with jump operation.

The enumeration degrees are embedded in to the w enumeration
degrees by: r(de(A)) = du({AM}hew).
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DTCDQCDW

@ There are sets A which are not enumeration equivalent to any set

of the form M.

@ There are sequences R = {Rp}n<. such that:
> Pn(R) =e 0" for every n.
> {m(n)}n<w <w R

To make R £, {#("}, itis sufficient to ensure
R # {T(OM) ..., where TV is the n-th column of T.

R, —{ {13 ifoerflomy
{0}, otherwise.

Sequences with this property are called almost zero.
Note that R, is uniformly reducible to (")
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Spectra and Co-spectra

Let 91 be a structure.

Definition

The spectrum of M is the set

Sp(9m) = {a € Dy | If(dr(f~1(M))) < a}.

The n-th jump spectrum of 9t is the set Sp,(Mt) = {@" | a € Sp(M)}.

We can view Sp,(M1) as a subset of D or as a subset of D,,,.

Definition

The n-th co-spectrum of 9 is the set
CoSpn(n) = {a € De | VX € Spp(M)(a <e X)}.
The w-enumeration co-pectrum of 9 is the set
Ocsp(M) = {ae€ D, | Vx € Sp(M)(a <, X)}.
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Co-spectra of Marker’s extensions
Theorem

Fix A = {An}new and let 9 = ().

@ CoSpy(M) = {de(Y) | (VO)(Y <o Palg ()}

@ Ocsp(m) = {d.(V) | (Vo) <u g~ (A))}.

Example: Let R = { Ry} be a sequence of sets. Consider the
sequence 20, where Ao = (N Gs, Rp) and for alln>1,2,=(N; Ry),
For every enumeration g of AR <. g ' )

@ g is computable from g1 (Gs).

@ x € Ryifandonly if g=1(x) € g7 (Rp).
Considering that g = id is an enumeration, we obtain that
Q@ CoSpn(M) = {de(Y) | Y <e Pn(R)}.
@ Ocsp(M) ={d,(V) | Y <, R}
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Example: continued

Definition

The least element of Sp,(9N) if it exists is the n-th jump degree of M.
The greatest element of CoSp,(9N) if it exists is the n-th co-degree of
M.

Richter, Knight: linear orderings have co-degree 0, and first co-degree
0, but not always a degree or a jump degree.

@ CoSpn(M) = {de(Y) | Y <e Pn(R)}.
Consider the almost zero sequence R:

@ P,(R) = 0" for every n. Hence the n-th co-degree of 9t is 0"
Q {0(M},., <, R. Hence M has no n-th jump degree for any n.
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Spectra of sequences of structures

Let 26 = {2} be given and let A = |, An.

Definition
@ The relative degree spectrum of A is
Rsp(2A) = {g—1 (2) | g is an enumeration of A}.

@ The joint spectrum of 2 is
Jsp(2A) = {{951(an)}n<w | gn is an enumeration of An}.

If 2 and 20* are such that for every n 21, = 2% then Jsp(2) = Jsp(A*).

Consider the structure 2 obtained from the almost zero sequence R:
Ao = (N: Gs, Rp) and forall n> 1, 2, = (N; Rp).

As R Lo {0}, {0} oy, ¢ Rsp(A).

Now consider the 2* obtained from the sequence (Ry, Ro, Ro, - - . ).
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Main theorem

Theorem

LetA = {An}n<. be a sequence of structures.
@ There exists a structure M sucfl that
Sp() = {dT(B) | (3Y € Rsp(2A))(V is c.e. in B)}.

@ There exists a structure M sucg that
Sp() = {dT(B) | (3Y € Jsp(A)) (Y is c.e. in B)}.

Note: (2) follows from (1): take an isomorphic copy 20*of 2 with
{A}} n<w disjoint and use the structure 9t* for 2(*.

Proof of 1:

Consider 9 = 9(2A). One direction we know: if B computes £~ (zm)
we can find an enumeration g of 2 such that g—1(2A) is c.e. in ~1(M)
and hence in B.

For the other direction we need a new construction.
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The other direction

Theorem

Let 2 = {A,}n<., be a sequence of structures.

@ There exists a structure M sucll that
Sp(o) = {dT(B) | (3Y € Rsp(A))(Vis c.e. in B)}.

Let g be an enumeration of 2. And let g~'(2l) be c.e. in B.
Consider again the case when 2, has no predicates, i.e.
97 ') = {97 (An)}n<w and hence g1 (Ap) is 11 in B uniformly in n.

We want an enumeration f of 92, such that /=1 (9%) is computable in B.
We set again f(2n) = g(n) and partition 2N + 1 into infinite uniformly
computable sets Z. To complete f we need an acceptable system :
Ky f1(An) — Z5.

ki (N x Zg)\ Ggp — 27 ...

ki : (@Nx Z§ x Z7) 1)\ Ggn . — Zj with Gy, uniformly computable in B.
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Generalized Goncharov and Khoussainov Lemma

Proposition

Letn >0 and R be a¥?,,(B) set with an infinite computable subset.
Then there exists functions ky . . . kn such that the graph of k,, is
computable in B, uniformly in an index for R and n and

ko :R— N.

k1 :Nz\GkO—>N...

ko : N1\ G, . —N.

As F=1(An) =1 g (An), itis 1 in B uniformly in n. B
To ensure f~1(Ap) has an infinite computable set this we change :
Let L ¢ Abe a new symbol.

@ Forevery RCc Aweset Rt ={(a,t)|ac Rvt=1}.
@ SetA, = (AU{L}; A%, (Pg)l, .. (P,’gm)l)
@ Set 2+ = {Al}heu.

M = M(A~L) is the required structure.
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The inductive step

Lemma

Let R be £3(X) and S C R be infinite and computable. There exists a
bijection k : R — N such that N? \ G is £9(X) and has an infinite
computable subset.

Proof:

Fix a computable in X approximation { Rs}s<. such that x € R if and
only if for all but finitely many s, x € Rs. Assume Rs A Rgq < 1.
We can map an element x of R to the least stage sy, such that for all
t > sy, we have x € R;.

The set B= {s|s # scforany x} U{s|s=sx — x € S} is Z%(X).
We map elements x in R\ S to sx and computably in X map S to B.

Let k(0) = a. Then {(0,b) | b # a} is a computable subset of N2 \ G.
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Embedding the w-enumeration degrees

Consider again the structure 2 obtained from a sequence of sets R.

Ao = (N: Gs, Rp) and forall n> 1, 2, = (N; Rp).
@ Recall that for every enumeration g of 2, R <., g~ (2).

@ By Main Theorem there is a structure 91z such that
Sp(Mx) = {dr(B) | (Bg)(g~"(H) is c.e.in B) }.

e Ifg~'(2A) is c.e.in Bthen R is c.e. in B.
e lf Risc.e.in Bthenas R =, id~'(2), B € Sp(Mx).
@ Sp(Mr) ={dr(B) | Risc.e.in B}.
This allows us to embed D,, into the Muchnik degrees generated by
spectra of structures.
R <, Q <~
{dr(B) | Risc.e.in B} D {dr(B) | Qisc.e.in B} <
Sp(MRg) 2 Sp(Mo).
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Enumeration spectra

Let 2 = (A; Py ... Pnp) be a structure

Definition

A partial enumeration of 2l is a partial injective map ¢ from N onto A.
¢~ '(A) = dom(p) @ o~ (P1) @ -+ & ¢~ (Pr).

The enumeration spectrum of A is

Esp(2) = {de(p~"(2)) | ¢ is a partial enumeration of 2A}.
The enumeration co-spectrum of 2 is

CoEsp(2t) = {y | (vx € Esp(A))(y < )}.

@ Kalimullin showed that there is a structure 2 with
Esp(2) = {x | x # 0c}.

@ Soskov showed that every countable ideal of enumeration
degrees can be represented as the CoEsp(2l) for some 2.
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Enumerations spectra and spectra of structures
Recall the standard embedding ¢ : D1 — De.

Theorem

For every structure 2 there exists a structure 9 such that
Sp(9) = {a € Dr | (Ix € Esp(A))(«(a) > x)}

Proof: Let C 2 Abe such that C\ Ais infinite and

C=(C,A Py,...Pp).

Any partial enumeration <p of 2 can be extended to a total enumeration
f of € with = 1(A) =¢ f~ (€) and vice versa.

Let 91 be such that Sp(M) = {dr(B) | If(f~(¢) is c.e. in B)}.

@ Slaman and Wehner’s result follows from Kalimullin’s: there is a
structure 9t with Sp(9t) = {x | x # 0}.

@ Every countable ideal of enumeration degrees can be represented
as the CoSp(9t) for some 9.
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The main theorem for Turing degrees

Recall that
Q@ Jsp(A) = {{9,71(2ln)}n<w | gn is an enumeration of An}.

@ There exists a structure I sucg that
Sp(o) = {dT(B) | (3Y € Jsp(A)) (Y is c.e. in B)}.

@ Consider 21, where 2} = (Ap; Py, Py, ..., Pm, Pm).
@ Then {g~"(2An)} € Jsp(A) = {g~"(An) & g~ T(An)} € Jsp(A)*.

o {g'(An)®gT(An)tisce. in B <= g (A, <7 B™ uniformly
in n.

Theorem

For every sequence 2l = {2, }n., there exists a structure 9 such that
Sp() = {dT(B) | (3{ Yo} new € Jsp(2))(Yn <7 B™ uniformly in n)}.
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Wehner’s construction
Let F be a countable family of sets.

Definition
An enumeration of F is a set U C N2 such that:
@ Forevery a, {n|(an)e U} e F.
@ For every F € F thereis an asuch that {n | (a,n) € U} = F.

Let2r = (A; S, Z, /) where A= F x N?;
Z={(F,x,0)| Fe F,x e N},
S={((F,x,n),(F,x,n+1))| F € F,x,ne N} and
I={(F.x,n)|neF}

Proposition (Wehner)

@ There is a uniform way to compute an enumeration of F in any
isomorphic copy B of A r.

@ There is a uniform way to compute an isomorphic copy B of Ax in
any enumeration of F.

v
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A structure with a nice spectrum

Consider the family 7X = {{n} & F | F is finite and F # Wx}.
@ No enumeration of FX is c.e. in X.
@ If B £ X then one can compute uniformly in B and X an
enumeration of F.
Theorem

There is a structure 9 with Sp(9) = {b | Yn(b(" > 0(M)}.

Proof: Consider the sequence 21 where Ap, =2
that

o) - Let 91 be such

Sp() = {dT(B) | (3{ Yn}new € Jsp(2))( Vs <7 B™ uniformly in n)}

If dr(B) € Sp(9M) then B computes an enumeration of 7% and
hence B &1 (M. 1f B! £+ )" for every nthen as (" < B("
uniformly in n, it follows that B(" computes an enumeration of 7%,
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The end

Gian-Carlo Rota

According to ...[the “one-shot”] ... view, mathematics would consist of a
succession of targets, called problems, which mathematicians would
be engaged in shooting down by well-aimed shots. But where do
problems come from, and what are they for? If the problems of
mathematics were not instrumental in revealing a broader truth, then
they would be indistinguishable from chess problems or crossword
puzzles. Mathematical problems are worked on because they are
pieces of a larger puzzle.

Ivan Soskov
The good puzzles are the ones that will never be completely solved.
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