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Computable sets and functions

Definition (Turing, Church 1936)
A function f : N→ N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A ⊆ N is computable if its characteristic function is computable.
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Computably enumerable sets

Definition
A set A ⊆ N is computably enumerable (c.e.) if it is the range (domain) of a
computable function.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if S = {n | ∃m̄(P (n, m̄) = 0)}.
The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K = {e | Pe halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.

Proof.
We prove, in fact, that K is not c.e.

Assume that it is and let e be such that Pe halts on n if and only if n ∈ K.

Pe halts on e⇔ e ∈ K ⇔ Pe does not halt on e.
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ≤T B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
If A is computable then A ≤T B for every B.
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Comparing the information content of sets

Definition (Uspensky 195?, Friedberg and Rogers 1959)
A ≤e B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is a c.e. table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example
If A is c.e. then A ≤e B for every B.
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Degree structures

Definition
1 A ≡ B if and only if A ≤ B and B ≤ A.
2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two partial orders with least upper bound (upper
semi-lattices):

1 The Turing degrees DT with least element 0T consisting of all
computable sets.

2 The enumeration degrees De with least element 0e consisting of all c.e.
sets.
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The jump operation

The halting set with respect to A is the set
KA = {e | Pe using oracle A halts on input e}.
A <T KA.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.

We always have a < a′.
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Local structures

The Turing degrees of the c.e. sets form a countable substructure of DT .

Definition
We denote byR the collection of c.e. Turing degrees.

R lives inside the interval [0T ,0
′
T ].

The analogR in the enumeration degrees is the structure E = [0e,0
′
e]. We

call it the local structure of the e-degrees.
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What connects DT and De
Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound, and the jump operator.

T = ι(DT ) is the set of total enumeration degrees.

(DT ,≤T ,0T ) ∼= (T ,≤e,0e) ⊂ (De,≤e,0e)

P = ι(R) is the set of all Π0
1 enumeration degrees.

(R,≤T ,0T ) ∼= (P,≤e,0e) ⊂ (E ,≤e,0e)
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Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.
2 They have uncountable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De is downwards dense.
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Properties of the local degree structures

Similarities
1 BothR and E are dense countable structures with least element and

greatest element.
2 They have countable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Sacks 1963) InR every nonzero a degree can be split into two lesser

ones: c ∨ d = a.
2 (Ahmad 1998) There are non-splittable degrees in E .
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Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure and its fragments: what statements (in
the language of partial orders) are true in the degree structure.

II. First order definability: what relations on the degree structure can be
captured by a structural property;

III. Automorphisms: are there degrees that cannot be structurally
distinguished?
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Arithmetic vs Degrees

Second order arithmetic Z2 is the standard model of arithmetic
N = (N, 0, 1,+, ∗, <) with an additional sort for sets of natural numbers and
a membership relation.

Classical results due to Kleene and Post show that ≤T , ≤e are definable in
second order arithmetic.

This means that any sentence ϕ in the language of partial orders can be
effectively translated to a sentence ψT and to a sentence ψe in the language of
second order arithmetic so that

1 ϕ is true in DT if and only if ψT is true in Z2;
2 ϕ is true in De if and only if ψe is true in Z2;

The theory of second order arithmetic is (highly) undecidable.
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Interpreting arithmetic in DT and De

There is a way to represent a
model of arithmetic in DT .

Start by translating arithmetic into
a partial order.

Prove that this partial order can be
embedded into DT .
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The biinterpretability conjecture

Slaman and Woodin show that we can code a model of (N,+,×, <,C) where
C is a unary predicate on N using finitely many parameters ~p.

Theorem (Slaman, Woodin 1986, 1997)
The theories of DT , De and Z2 have the same complexity.

Theorem (Harrington and Slaman 1995; Ganchev and S. 2012)
The theories ofR, E and N have the same complexity.

Conjecture (The Biinterpretability conjecture for D)
The relation Bi, where Bi(~p, c) holds when ~p codes a model of
(N,+,×, <,C) and de(C) = c, is first order definable in D.
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Rogers’ questions from 1969

Question
Is the jump operator definable in DT ?

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question
Are there any nontrivial automorphisms of DT or De?

Question
Is the copy of DT in De (i.e. the total enumeration degrees) definable in De?
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The three aspects: theory, automorphisms and definability
Let D denote DT or De.

IfR is definable in D then the set S = {X | d(X) ∈ R} is:
1 definable in second order arithmetic;
2 invariant with respect to ≡.

Lets call such relationsR on D nice.

Example
The graph of Turing jump and the total enumeration degrees are nice relations.

Theorem (Slaman, Woodin 1986, Soskova 2016)
Let D be DT or De. The following are equivalent:

1 The Biinterpretability conjecture for D is true.
2 D has no nontrivial automorphisms.
3 Every nice relation is definable in D (without any parameters).
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The automorphism analysis

Theorem (Slaman, Woodin 1986, Soskova 2016)
Let D be DT or De.

There are at most countably many automorphisms of D.

The biinterpretability conjecture for D is true if we allow the use of one
parameter.

Every nice relation is definable in D if we allow the use of a parameter.
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Definaility in the Turing degrees

A further consequences of the automorphism analysis is that every
automorphism of DT fixes the degrees above 0′′T .

Theorem (Slaman, Woodin 1986)
The double jump is definable in DT .

Theorem (Slaman, Shore 1999)
The jump is definable in DT .
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of degrees a,b is called a K-pair if and only if satisfy:

K(a,b) � (∀x)((x ∨ a) ∧ (x ∨ b) = x).

Theorem (Kalimullin 2003; Ganchev, S 2015)
The enumeration jump is first order definable: z′ is the largest degree which
can be represented as the least upper bound of a K-pair a,b, such that a ≤ z.
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Maximal K-pairs

Definition (Ganchev, S)
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Conjecture (Ganchev and S 2010)
The joins of maximal K-pairs are exactly the nonzero total degrees.

Partial confirmation: we proved that the conjecture is true in E .
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Defining totallity in De

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The set of total enumeration degrees is first order definable in De. The
nonzero total degrees are the joins of maximal K-pairs.

Theorem (Selman 1971)
a ≤ b if and only if every total degree above b is also above a.

Corollary
Any automorphism of De induces an automorphism of DT .

If an automorphism of De does not move any total degree then it must be the
identity.

If De has a non-trivial automorphism then so does DT .
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Local and global structural interactions

Theorem (Slaman, S (2017))
There is a finite set B of a degrees in E such that B determines the behavior
of every automorphism of De: if f, g are two automorphisms such that for
ever x ∈ B we have f(x) = g(x) then f = g.

Theorem (Slaman, S (2017))
If De has a nontrivial automorphism then so does E and evenR.
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The End

Thank you!


