Logic, degrees, and definability

Mariya I. Soskova University of Wisconsin–Madison Women in Mathematics in South-Eastern Europe December 10 2021

Supported by the NSF Grant No. DMS-2053848

Computable sets and functions

Definition (Turing, Church 1936)

A function $f : \mathbb{N} \to \mathbb{N}$ is *computable* if there is a **computer program** which takes as input a natural number n and outputs f(n).

A set $A \subseteq \mathbb{N}$ is *computable* if its characteristic function is computable.

Computably enumerable sets

Definition

A set $A \subseteq \mathbb{N}$ is *computably enumerable* (c.e.) if it is the range (domain) of a computable function.

Example (Davis, Matyasevich, Putnam, Robinson 1970)

A set
$$S \subseteq \mathbb{N}$$
 is Diophantine if $S = \{n \mid \exists \overline{m}(P(n, \overline{m}) = 0)\}.$

The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)

The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.

An incomputable c.e. set

A set A is computable if and only if both A and \overline{A} are c.e.

We can code programs by natural numbers: P_e is the program with code e.

Definition

The halting set is $K = \{e \mid P_e \text{ halts on input } e\}.$

Theorem (Turing 1936)

The halting set K is c.e., but not computable.

Proof.

We prove, in fact, that \overline{K} is not c.e.

Assume that it is and let e be such that P_e halts on n if and only if $n \in \overline{K}$.

 P_e halts on $e \Leftrightarrow e \in \overline{K} \Leftrightarrow P_e$ does not halt on e.

Comparing the information content of sets

Consider a program that has access to an external database, an *oracle*. During its computation the program can ask the oracle membership questions: does n belong to you or not?

Definition (Post 1944)

 $A \leq_T B$ if and only if there is a program that computes the elements of A using B as an oracle.

Example

If A is computable then $A \leq_T B$ for every B.

Comparing the information content of sets

Definition (Uspensky 195?, Friedberg and Rogers 1959) $A \leq_e B$ if there is a program that transforms an enumeration of B to an enumeration of A.

The program is a c.e. table of axioms of the sort: If $\{x_1, x_2, \dots, x_k\} \subseteq B$ then $x \in A$.

Example

If A is c.e. then $A \leq_e B$ for every B.

Degree structures

Definition

 $\ \, \bullet \ \, A\equiv B \ \, \text{if and only if} \ \, A\leq B \ \, \text{and} \ \, B\leq A.$

- $\ \, \bullet \ \, \mathbf{d}(A) \leq \mathbf{d}(B) \ \, \text{if an only if } A \leq B.$
- Let $A \oplus B = \{2n \mid n \in A\} \cup \{2n+1 \mid n \in B\}$. Then $\mathbf{d}(A \oplus B) = \mathbf{d}(A) \lor \mathbf{d}(B)$.

And so we have two partial orders with least upper bound (upper semi-lattices):

- The Turing degrees \mathcal{D}_T with least element $\mathbf{0}_T$ consisting of all computable sets.
- ② The enumeration degrees \mathcal{D}_e with least element $\mathbf{0}_e$ consisting of all c.e. sets.

The jump operation

The halting set with respect to A is the set $K_A = \{e \mid P_e \text{ using oracle } A \text{ halts on input } e\}.$ $A <_T K_A.$

Definition

The jump of a Turing degree is $\mathbf{d}_T(A)' = \mathbf{d}_T(K_A)$.

We can apply a similar construction to enumeration reducibility to obtain the enumeration jump.

We always have $\mathbf{a} < \mathbf{a}'$.

The Turing degrees of the c.e. sets form a countable substructure of \mathcal{D}_T .

Definition

We denote by \mathcal{R} the collection of c.e. Turing degrees.

 \mathcal{R} lives inside the interval $[\mathbf{0}_T, \mathbf{0}'_T]$.

The analog \mathcal{R} in the enumeration degrees is the structure $\mathcal{E} = [\mathbf{0}_e, \mathbf{0}'_e]$. We call it the *local structure of the e-degrees*.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition $A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(\mathbf{d}_T(A)) = \mathbf{d}_e(A \oplus \overline{A})$, preserves the order, the least upper bound, and the jump operator.

 $\mathcal{T} = \iota(\mathcal{D}_T)$ is the set of *total* enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \mathbf{0}_T) \cong (\mathcal{T}, \leq_e, \mathbf{0}_e) \subset (\mathcal{D}_e, \leq_e, \mathbf{0}_e)$$

 $\mathcal{P} = \iota(\mathcal{R})$ is the set of all Π_1^0 enumeration degrees.

$$(\mathcal{R}, \leq_T, \mathbf{0}_T) \cong (\mathcal{P}, \leq_e, \mathbf{0}_e) \subset (\mathcal{E}, \leq_e, \mathbf{0}_e)$$

Properties of the degree structures

Similarities

- Both \mathcal{D}_T and \mathcal{D}_e are uncountable structures with least element and no greatest element.
- ② They have uncountable chains and antichains.
- They are not lattices: there are pairs of degrees with no greatest lower bound.

Differences

- (Spector 1956) In D_T there are *minimal degrees*, nonzero degrees m such that the interval (0_T, m) is empty.
- **2** (Gutteridge 1971) \mathcal{D}_e is downwards dense.

Properties of the local degree structures

Similarities

- Both \mathcal{R} and \mathcal{E} are dense countable structures with least element and greatest element.
- Provide the second s
- They are not lattices: there are pairs of degrees with no greatest lower bound.

Differences

- (Sacks 1963) In *R* every nonzero a degree can be split into two lesser ones: c ∨ d = a.
- **(Ahmad 1998)** There are non-splittable degrees in \mathcal{E} .

Three aspects of degree structures

We will consider questions about these degree structures from three interrelated aspects:

- I. The theory of the degree structure and its fragments: what statements (in the language of partial orders) are true in the degree structure.
- II. First order definability: what relations on the degree structure can be captured by a structural property;
- III. Automorphisms: are there degrees that cannot be structurally distinguished?

Arithmetic vs Degrees

Second order arithmetic Z_2 is the standard model of arithmetic $\mathcal{N} = (\mathbb{N}, 0, 1, +, *, <)$ with an additional sort for sets of natural numbers and a membership relation.

Classical results due to Kleene and Post show that \leq_T , \leq_e are definable in second order arithmetic.

This means that any sentence φ in the language of partial orders can be effectively translated to a sentence ψ_T and to a sentence ψ_e in the language of second order arithmetic so that

- φ is true in \mathcal{D}_T if and only if ψ_T is true in \mathcal{Z}_2 ;
- $\boldsymbol{Q} \quad \varphi$ is true in \mathcal{D}_e if and only if ψ_e is true in \mathcal{Z}_2 ;

The theory of second order arithmetic is (highly) undecidable.

Interpreting arithmetic in \mathcal{D}_T and \mathcal{D}_e

There is a way to represent a model of arithmetic in \mathcal{D}_T .

Start by translating arithmetic into a partial order.

Prove that this partial order can be embedded into \mathcal{D}_T .

The biinterpretability conjecture

Slaman and Woodin show that we can code a model of $(\mathbb{N}, +, \times, <, C)$ where C is a unary predicate on \mathbb{N} using finitely many parameters $\vec{\mathbf{p}}$.

Theorem (Slaman, Woodin 1986, 1997) The theories of \mathcal{D}_T , \mathcal{D}_e and \mathcal{Z}_2 have the same complexity.

Theorem (Harrington and Slaman 1995; Ganchev and S. 2012) The theories of \mathcal{R} , \mathcal{E} and \mathcal{N} have the same complexity.

Conjecture (The Biinterpretability conjecture for \mathcal{D})

The relation Bi, where $Bi(\vec{\mathbf{p}}, \mathbf{c})$ holds when $\vec{\mathbf{p}}$ codes a model of $(\mathbb{N}, +, \times, <, C)$ and $\mathbf{d}_e(C) = \mathbf{c}$, is first order definable in \mathcal{D} .

Rogers' questions from 1969

Question

Is the jump operator definable in \mathcal{D}_T ?

If a structure A has an automorphism that maps an element in a set X to an element outside X then X is not definable.

Question

Are there any nontrivial automorphisms of \mathcal{D}_T or \mathcal{D}_e ?

Question

Is the copy of \mathcal{D}_T in \mathcal{D}_e (i.e. the total enumeration degrees) definable in \mathcal{D}_e ?

The three aspects: theory, automorphisms and definability Let \mathcal{D} denote \mathcal{D}_T or \mathcal{D}_e .

If \mathcal{R} is definable in \mathcal{D} then the set $S = \{X \mid \mathbf{d}(X) \in \mathcal{R}\}$ is:

- definable in second order arithmetic;
- **2** invariant with respect to \equiv .

Lets call such relations \mathcal{R} on \mathcal{D} nice.

Example

The graph of Turing jump and the total enumeration degrees are nice relations.

Theorem (Slaman, Woodin 1986, Soskova 2016)

Let \mathcal{D} be \mathcal{D}_T or \mathcal{D}_e . The following are equivalent:

- **(**) The Biinterpretability conjecture for \mathcal{D} is true.
- **2** \mathcal{D} has no nontrivial automorphisms.
- Solution Every nice relation is definable in \mathcal{D} (without any parameters).

The automorphism analysis

Theorem (Slaman, Woodin 1986, Soskova 2016)

Let \mathcal{D} be \mathcal{D}_T or \mathcal{D}_e .

There are at most countably many automorphisms of \mathcal{D} .

The biinterpretability conjecture for \mathcal{D} is true if we allow the use of one parameter.

Every nice relation is definable in \mathcal{D} if we allow the use of a parameter.

Definaility in the Turing degrees

A further consequences of the automorphism analysis is that every automorphism of \mathcal{D}_T fixes the degrees above $\mathbf{0}_T''$.

Theorem (Slaman, Woodin 1986) The double jump is definable in \mathcal{D}_T .

Theorem (Slaman, Shore 1999) The jump is definable in D_T .

Definability of the enumeration jump

Definition (Kalimullin 2003)

A pair of degrees \mathbf{a} , \mathbf{b} is called a \mathcal{K} -pair if and only if satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightarrows (\forall \mathbf{x})((\mathbf{x} \lor \mathbf{a}) \land (\mathbf{x} \lor \mathbf{b}) = \mathbf{x}).$$

Theorem (Kalimullin 2003; Ganchev, S 2015)

The enumeration jump is first order definable: \mathbf{z}' is the largest degree which can be represented as the least upper bound of a \mathcal{K} -pair \mathbf{a} , \mathbf{b} , such that $\mathbf{a} \leq \mathbf{z}$.

Maximal *K*-pairs

Definition (Ganchev, S)

A \mathcal{K} -pair $\{a, b\}$ is maximal if for every \mathcal{K} -pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that a = c and b = d.

Conjecture (Ganchev and S 2010)

The joins of maximal \mathcal{K} -pairs are exactly the nonzero total degrees.

Partial confirmation: we proved that the conjecture is true in \mathcal{E} .

Defining totallity in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)

The set of total enumeration degrees is first order definable in \mathcal{D}_e . The nonzero total degrees are the joins of maximal \mathcal{K} -pairs.

Theorem (Selman 1971)

 $\mathbf{a} \leq \mathbf{b}$ if and only if every total degree above \mathbf{b} is also above \mathbf{a} .

Corollary

Any automorphism of \mathcal{D}_e induces an automorphism of \mathcal{D}_T .

If an automorphism of \mathcal{D}_e does not move any total degree then it must be the identity.

If \mathcal{D}_e has a non-trivial automorphism then so does \mathcal{D}_T .

Local and global structural interactions

Theorem (Slaman, S (2017))

There is a finite set B of a degrees in \mathcal{E} such that B determines the behavior of every automorphism of \mathcal{D}_e : if f, g are two automorphisms such that for ever $\mathbf{x} \in B$ we have $f(\mathbf{x}) = g(\mathbf{x})$ then f = g.

Theorem (Slaman, S (2017))

If \mathcal{D}_e has a nontrivial automorphism then so does \mathcal{E} and even \mathcal{R} .

Thank you!