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Computable sets and functions

Definition (Turing, Church 1936)
A function f : N→ N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A ⊆ N is computable if its characteristic function is computable.
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Computably enumerable sets

Definition
A set A ⊆ N is computably enumerable (c.e.) if it can be enumerated by a
computer program. Equivalently, if it is the domain of a computable function.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if S = {n | ∃m̄(P (n, m̄) = 0)}.
The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K = {e | Pe halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.

Proof.
We prove, in fact, that K is not c.e.

Assume that it is and let e be such that Pe halts on n if and only if n ∈ K.

Pe halts on e⇔ e ∈ K ⇔ Pe does not halt on e.
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ≤T B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
Consider a Diophantine set S = {n | (∃m̄)P (n, m̄) = 0}. Let Pe(n) be the
program that ignores its input and for a listing {m̄i}i∈N of all tuples m̄i

calculates P (n, m̄0), P (n, m̄1), . . . until it sees that the result is 0 and then
halts. Then S ≤T K by the program that on input n computes e(n) and asks
the oracle whether e(n) ∈ K.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A ≤e B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is a c.e. table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example

Let S = {n | (∃m̄)P (n, m̄) = 0} again. S ≤e K by the program that consists
of the axioms:

If {e(n)} ⊆ K then n ∈ S.
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Degree structures

Definition
1 A ≡ B if and only if A ≤ B and B ≤ A.
2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two partial orders with least upper bound (upper
semi-lattices):

1 The Turing degrees DT with least element 0T consisting of all
computable sets.

2 The enumeration degrees De with least element 0e consisting of all c.e.
sets.
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The jump operation

The halting set with respect to A is the set
KA = {e | Pe using oracle A halts on input e}.
A <T KA.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.

We always have a < a′.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound, and the jump operator.

T = ι(DT ) is the set of total enumeration degrees.

(DT ,≤T ,0T ) ∼= (T ,≤e,0e) ⊆ (De,≤e,0e)

Medvedev (1955) proved that there are nontotal degrees.
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Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.
2 They have uncountable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De is downwards dense.
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Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure and its fragments: what statements (in
the language of partial orders) are true in the degree structure.

II. First order definability: what relations on the degree structure can be
captured by a structural property;

III. Automorphisms: are there degrees that cannot be structurally
distinguished?
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The existential theory

To understand: “What existential sentences in the language of partial order
are true in a degree structure D?”

we ask “What finite partial orders can be embedded in D?”.

The answer for both DT and De is “all”.

Theorem
There is an algorithm that decides whether an ∃-sentence is true in DT or De.
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The two quantifier theory

The problem of deciding the 2-quantifier theory is equivalent to the following:

Problem
We are given a finite lattice P and partial orders Q1, . . . Qn ⊇ P . Does every
embedding of P extend to an embedding of one of the Qi?

When n = 1, we call this the Extension of embeddings problem.
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The two-quantifier theory of DT is decidable

Theorem (Lerman 1971)
Every finite lattice can be embedded into DT as an initial interval.

This presents a major obstacle to extension of embeddings: if P is embedded
as an initial interval, then there is no extension to a partial order that puts a
new element below any element of P .

Theorem (Shore 1978; Lerman 1983)
The two quantifier theory of the Turing degrees is decidable.
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The two quantifier theory of De
The downward density of De makes the approach used in DT not applicable.

Theorem (Slaman, Calhoun 1996, Kent, Lewis-Pye, Sorbi 2012)
There are e-degrees a < b such that the interval (a,b) is empty and for every
degree x < b we have x ≤ a.

Theorem (Lempp, Slaman, S 2020)
Every finite distributive lattice can be embedded as an interval [a,b] so that if
x ≤ b then x ∈ [a,b] or x ≤ a.

Theorem (Lempp, Slaman, S 2020)
The extension of embeddings problem in De is decidable.
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Arithmetic vs Degrees

Second order arithmetic Z2 is the standard model of arithmetic
N = (N, 0, 1,+, ∗, <) with an additional sort for sets of natural numbers and
a membership relation.

Classical results due to Kleene and Post show that ≤T , ≤e are definable in
second order arithmetic.

This means that any sentence ϕ in the language of partial orders can be
effectively translated to a sentence ψT and to a sentence ψe in the language of
second order arithmetic so that

1 ϕ is true in DT if and only if ψT is true in Z2;
2 ϕ is true in De if and only if ψe is true in Z2;

The theory of second order arithmetic is (highly) undecidable.
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Interpreting arithmetic in DT and De

There is a way to represent a
model of arithmetic in DT .

Start by translating arithmetic into
a partial order.

Prove that this partial order can be
embedded into DT .

Theorem (Slaman, Woodin 1986, 1997)
Every countable relation DT or De is uniformly definable in the respective
structure using finitely many parameters.
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The biinterpretability conjecture

Slaman and Woodin show that it is a definable property of finitely many
parameters ~p that they code a model of (N,+,×, <,C) where C is a unary
predicate on N.

Theorem (Slaman, Woodin 1986, 1997)
The theories of DT , De and Z2 have the same complexity.

Conjecture (The Biinterpretability conjecture)
The relation Bi, where Bi(~p, c) holds when ~p codes a model of
(N,+,×, <,C) and de(C) = c, is first order definable in De.
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Rogers’ questions from 1969

Question
Is the jump operator definable in DT ?

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question
Are there any nontrivial automorphisms of DT or De?

Question
Is the copy of DT in De (i.e. the total enumeration degrees) definable in De?
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The three aspects: theory, automorphisms and definability

IfR is definable in DT then the set S = {X | dT (X) ∈ R} is:
1 definable in second order arithmetic;
2 invariant with respect to ≡T .

Lets call relationsR on DT that correspond to relations S in second order
arithmetic of this sort nice.

Theorem (Slaman, Woodin 1986)
The following are equivalent:

1 The Biinterpretability conjecture for DT is true.
2 DT has no nontrivial automorphisms.
3 Every nice relation is definable in DT (without any parameters).

20 / 30



The automorphism analysis for the Turing degrees

Cohen in 1963 invented the method of forcing to prove that the continuum
hypothesis is independent from ZFC.

The method gives a way to extend a model V of ZFC to a model V [G] in
which a generic object with predetermined properties has been added.

Slaman and Woodin attempted to use forcing to build a generic model V [G]
which adds a nontrivial automorphism for DT . They found that if V [G] has
such an automorphism, then so does V .

Theorem (Slaman, Woodin 1986)
There are at most countably many automorphisms of DT .

The biinterpretability conjecture for DT is true if we allow the use of one
parameter.

Every nice relation is definable in DT if we allow the use of a parameter.
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Definaility in the Turing degrees

A further consequences of the automorphism analysis is that every
automorphism of DT fixes the degrees above 0′′T .

Theorem (Slaman, Woodin 1986)
The double jump is definable in DT .

Theorem (Slaman, Shore 1999)
The jump is definable in DT .
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of degrees a,b is called a K-pair if and only if satisfy:

K(a,b) � (∀x)((x ∨ a) ∧ (x ∨ b) = x).

A pair of degrees a,b is called a K-pair relative to z if and only if satisfy:

Kz(a,b) � (∀x ≥ z)((x ∨ a ∨ z) ∧ (x ∨ b ∨ z) = x).

Theorem (Kalimullin)
The enumeration jump is first order definable: z′ is the largest degree which
can be represented as the least upper bound of a triple a,b, c, such that
Kz(a,b), Kz(b, c) and Kz(c,a).
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Maximal K-pairs

Definition (Ganchev, S)
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Conjecture (Ganchev and S 2010)
The joins of maximal K-pairs are exactly the nonzero total degrees.

Partial confirmation: we proved that the conjecture is true for e-degrees
bounded by 0′e.
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The automorphisms of De

Theorem (S 2012)
There are at most countably many automorphisms of De.
The biinterpretability conjecture for De is true if we allow the use of one
parameter.

Every nice relation is definable in De if we allow the use of a parameter.

Example
The set of total degrees is a nice relation, and hence it is definable in De with
one parameter.
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Defining totallity in De

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The set of total enumeration degrees is first order definable in De. The
nonzero total degrees are the joins of maximal K-pairs.

Theorem (Selman 1971)
a ≤ b if and only if every total degree above b is also above a.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees. If De has a non-trivial automorphism then so does DT .
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The continuous degrees
Definition (Lacombe 1957)
A computable metric space is a metric spaceM together with a countable
dense sequence QM = {qMn }n∈N on which the metric is computable.

For example R, C[0, 1], and Hilbert cube [0, 1]N can be thought of as
computable.

Definition
A name for a point x ∈M is a function that takes as input a rational precision
ε and outputs the index i so that dM(x, qMi ) < ε.

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x≤ry if there is a uniform way to compute a name for x from a name for y.
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The continuous degrees

The reducibility ≤r induces the continuous degrees.

Theorem (Miller 2004)

Every continuous degree contains a point from [0, 1]N and a point from
C[0, 1].

For α ∈ [0, 1]N, let

Cα =
⊕
i∈N
{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} .

Enumerating Cα is exactly as hard as computing a name for α. So α 7→ Cα
induces an embedding of the continuous degrees into the enumeration
degrees.
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Topology realized as a structural property
Elements of R are mapped to the total degree of their least Turing degree
name, the degree of their binary representation.

Theorem (Miller 2004)
There is a nontotal continuous degree.

Every known proof of this result uses nontrivial topological facts: Brouwer’s
fixed point theorem for multivalued functions on an infinite dimensional
space, or Sperner’s lemma, or results from topological dimension theory:
[0, 1]N is strongly infinite dimensional.

Theorem (Andrews, Igusa, Miller, S.)
An enumeration degree a is continuous if and only if it is almost total: if
x � a and x is total then a ∨ x is total.

The continuous degrees are definable in De.
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Topological classification of classes of e-degrees
Definition (Kihara, Pauly 2018)
Consider a second countable topological space X and listing of an open basis
BX = {Bi}i<N.

A name for a point x ∈ X is an enumeration of the set Nx = {i | x ∈ Bi}.
Say that x ≤ y if every name for y (uniformly) computes a name for x.

Thus a represented space X gives rise to a class of e-degrees DX ⊂ De.

Example
DR is the total enumeration degrees.

D[0,1]N is the continuous degrees.

DS∞ = De, where S is the Sierpinski topology {∅, {1}, {0, 1}}.

Kihara, Ng, and Pauly 2019 investigate DX , where X is the∞-power of the:
cofinite topology on N, telophase space, double origin space, quasi-Polish
Roy space, irregular lattice space. 30 / 30



The End
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