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Computable sets and functions

Definition (Turing, Church 1936)
A function f : N→ N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A ⊆ N is computable if its characteristic function is computable: the
function A(n), where A(n) = 1 if n ∈ A and A(n) = 0 if n /∈ A.
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Computably enumerable sets

Definition
A set A ⊆ N is computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if there is a polynomial P (x, y1, . . . yk) such that
S = {n | there are numbers m1 . . .mk such that (P (n, m̄1, . . .mk) = 0)}.
If P = x2 − 2y1 + y2 then 3 ∈ S because 32 − 2.5 + 1 = 0, so m1 = 5 and
m2 = 1 witness this.

The Diophantine sets are exactly the c.e. sets.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K = {e | Pe halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.

Proof.

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if a computation will stop.
For imagine you had a procedure called P, . . . Geoffrey K. Pullum
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle.

During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ≤T B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
Consider a Diophantine set S = {n | (∃m̄)P (n, m̄) = 0}. Let Pe(n) be the
program that ignores its input and for a listing {m̄i}i∈N of all tuples m̄i

calculates P (n, m̄0), P (n, m̄1), . . . until it sees that the result is 0 and then
halts. Then S ≤T K by the program that on input n computes e(n) and asks
the oracle whether e(n) ∈ K.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A ≤e B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is a c.e. table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example

Let S = {n | (∃m̄)P (n, m̄) = 0} again. S ≤e K by the program that consists
of the axioms:

If {e(n)} ⊆ K then n ∈ S.
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Degree structures

Definition
1 A ≡ B if and only if A ≤ B and B ≤ A.

2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two partial orders with least upper bound (upper
semi-lattices):

1 The Turing degrees DT with least element 0T consisting of all
computable sets.

2 The enumeration degrees De with least element 0e consisting of all c.e.
sets.
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The jump operation

The halting set with respect to A is the set
KA = {e | Pe using oracle A halts on input e}.

A <T KA.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.

We always have a < a′.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

We can think of the DT as living inside De, namely the Turing degrees are the
enumeration degrees of sets of the form A⊕A.
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Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.

2 They have uncountable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De has no minimal degrees.
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Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure: what statements (in the language of
partial orders) are true in the degree structure.

II. First order definability: what relations on the degree structure can be
captured by a structural property;

III. Automorphisms: are there degrees that cannot be structurally
distinguished?
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Arithmetic vs Degrees

In second order arithmetic Z2 we have the natural numbers with the usual
arithmetic operations and relations N = (N, 0, 1,+, ∗, <), but we also talk
about sets of natural numbers and their members.

For example we can write a statement that expresses “X is the set of natural
numbers whose every element is even”: ∀n(n ∈ X ↔ ∃k(n = k + k).We say
that the set of even numbers is definable in second order arithmetic.

Classical results due to Kleene and Post show that ≤T , ≤e are definable in
second order arithmetic.

This means that any statement ϕ about degrees can be translated to a statement
ψT and to a statement ψe about sets in second order arithmetic so that

1 ϕ is true in DT if and only if ψT is true in Z2;
2 ϕ is true in De if and only if ψe is true in Z2;

The theory of second order arithmetic is (highly) undecidable.
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2 ϕ is true in De if and only if ψe is true in Z2;

The theory of second order arithmetic is (highly) undecidable.
12 / 20



Interpreting arithmetic in DT and De

There is a way to represent second
order arithmetic in DT .

Start by translating arithmetic into
a partial order.

Prove that this partial order can be
embedded into DT .

Theorem (Slaman, Woodin 1986, 1997)
Every countable relation on DT or De is uniformly definable in the respective
structure using finitely many parameters.
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The biinterpretability conjecture

Theorem (Slaman, Woodin 1986, 1997)
The theories of DT , De and Z2 have the same complexity.

Conjecture (The Biinterpretability conjecture)
The relationship between DT and Z2 and the relationship between De and Z2

is much stronger: once we code arithmetic in the degree structure we can
structurally identify the relationship between a set in the coded model and its
actual degree.
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Rogers’ questions from 1969

Question
Is the jump operator definable in DT ?

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question
Are there any nontrivial automorphisms of DT or De?

Question
Is the copy of DT in De definable in De?
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The three aspects: theory, automorphisms and definability

Theorem (Slaman, Woodin 1986)
The following are equivalent:

1 The Biinterpretability conjecture for DT is true.
2 DT has no nontrivial automorphisms.
3 There is a complete characterization of the relation that are definable in
DT in terms of relations definable in second order arithmetic (which
includes the jump operator).
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The automorphism analysis

Cohen in 1963 invented the method of forcing to prove that the continuum
hypothesis is independent from ZFC.

The method gives a way to extend a model V of ZFC to a model V [G] in
which a generic object with predetermined properties has been added.

Slaman and Woodin attempted to use forcing to build a generic model V [G]
which adds a nontrivial automorphism for DT . They found that if V [G] has
such an automorphism, then so does V .

Theorem (Slaman, Woodin 1986, Soskova 2016)
There are very few (at most countably many) automorphisms of DT and of
De.

Theorem (Slaman, Shore 1999)
The jump is definable in DT .
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of degrees a,b is called a K-pair if and only if satisfy:

K(a,b) � (∀x)((x ∨ a) ∧ (x ∨ b) = x).

Theorem (Kalimullin)
The enumeration jump is first order definable: z′ is the largest degree which
can be represented as the least upper bound of a pair a,b, such that K(a,b)
and a ≤ z.
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Maximal K-pairs

Definition (Ganchev, S)
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

Conjecture (Ganchev and S 2010)
The joins of maximal K-pairs are exactly the nonzero total degrees.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The set of total enumeration degrees is first order definable in De.
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The open problem remains

Corollary
If De has a non-trivial automorphism then so does DT .

Question
Are there any nontrivial automorphisms of DT or De?
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Thank you

From “Inside the mind of Alan Turing, the genius behind The Imitation
Game” by Barry Cooper. Illustration by Jin Wicked.


