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Computable sets and functions
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Definition (Turing, Church 1936)

A function f : N — N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).
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Definition (Turing, Church 1936)

A function f : N — N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A C N is computable if its characteristic function is computable: the
function A(n), where A(n) = 1ifn € Aand A(n) =0ifn ¢ A.
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Computably enumerable sets

Definition

A set A C Nis computably enumerable (c.e.) if it can be enumerated by a
computer program.
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Computably enumerable sets

Definition

A set A C Nis computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)

A set S C N is Diophantine if there is a polynomial P(z,y1, ... yx) such that
S = {n | there are numbers my ...my such that (P(n,mi,...mg) = 0)}.

If P = 22 — 2y1 + y2 then 3 € S because 32 — 2.5+ 1 =0, som; = 5 and
meo = 1 witness this.

The Diophantine sets are exactly the c.e. sets.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e. J

We can code programs by natural numbers: P, is the program with code e.

Definition
The halting set is K = {e | P, halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.

Proof.

No general procedure for bug checks will do.

Now, I won'’t just assert that, I’ll prove it to you.

I'will prove that although you might work till you drop,
you cannot tell if a computation will stop.

For imagine you had a procedure called P, ... Geoffrey K. Pullum []
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A set A is computable if and only if both A and A are c.e. J

We can code programs by natural numbers: P, is the program with code e.

Definition
The halting set is K = {e | P. halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.

Proof.
We prove, in fact, that K is not c.e.

Assume that it is and let e be such that P, halts on 7 if and only if n € K.

P, haltson e < e € K < P. does not halt on e. L]

v
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle.
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Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

v

Definition (Post 1944)

A <p B if and only if there is a program that computes the elements of A
using B as an oracle.

Example

Consider a Diophantine set S = {n | (3m)P(n,m) = 0}. Let P.(,) be the
program that ignores its input and for a listing {/m; };en of all tuples m;
calculates P(n,mg), P(n,m1), ... until it sees that the result is 0 and then
halts. Then S <p K by the program that on input n computes e(n) and asks
the oracle whether e(n) € K.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)

A <. B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is a c.e. table of axioms of the sort:
If{x1,22,...,2k} C Bthenx € A.

Example

Let S = {n | (3m)P(n,m) = 0} again. S <. K by the program that consists
of the axioms:
If{e(n)} C K thenn € S.
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Degree structures

Definition
Q@ A=Bifandonlyif A < Band B < A.
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Degree structures

Definition
Q@ A=Bifandonlyif A < Band B < A.
@ d(A)={B| A= B}.
@ d(A) <d(B)ifanonlyif A < B.
Q@ LletA®B={2n|ne€ A}U{2n+1|n € B}. Then
d(A® B) =d(A) vd(B).

And so we have two partial orders with least upper bound (upper
semi-lattices):

@ The Turing degrees D7 with least element O7 consisting of all
computable sets.

© The enumeration degrees D, with least element O, consisting of all c.e.
sets.
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A<p Ky.

Definition
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The jump operation

The halting set with respect to A is the set
K4 = {e | P. using oracle A halts on input e}.

A<p Ky.

Definition

The jump of a Turing degree is d7(A) = dr(K4).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.

We always have a < a’. ]
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Proposition
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What connects Dy and D,

Proposition
A<rB&A®A<.BoB. J

We can think of the Dr as living inside D, namely the Turing degrees are the
enumeration degrees of sets of the form A @ A.
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Properties of the degree structures

Similarities
@ Both Dy and D, are uncountable structures with least element and no
greatest element.
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Properties of the degree structures

Similarities
@ Both Dy and D, are uncountable structures with least element and no
greatest element.
© They have uncountable chains and antichains.

© They are not lattices: there are pairs of degrees with no greatest lower
bound.

Differences

@ (Spector 1956) In Dy there are minimal degrees, nonzero degrees m
such that the interval (07, m) is empty.

© (Gutteridge 1971) D, has no minimal degrees.

10/20



Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure: what statements (in the language of
partial orders) are true in the degree structure.

11/20



Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure: what statements (in the language of
partial orders) are true in the degree structure.

II. First order definability: what relations on the degree structure can be
captured by a structural property;

11/20



Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure: what statements (in the language of
partial orders) are true in the degree structure.

II. First order definability: what relations on the degree structure can be
captured by a structural property;

III. Automorphisms: are there degrees that cannot be structurally
distinguished?
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arithmetic operations and relations N' = (N, 0, 1, +, %, <), but we also talk
about sets of natural numbers and their members.

For example we can write a statement that expresses “X is the set of natural
numbers whose every element is even”: Vn(n € X <> Jk(n = k + k).We say
that the set of even numbers is definable in second order arithmetic.

Classical results due to Kleene and Post show that <p, <, are definable in
second order arithmetic.

This means that any statement ¢ about degrees can be translated to a statement
17 and to a statement ), about sets in second order arithmetic so that

Q ¢ istrue in Dy if and only if ¢ is true in Zs;
@ (s true in D, if and only if . is true in Z5;

The theory of second order arithmetic is (highly) undecidable.

12/20



Interpreting arithmetic in Dy and D,
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Interpreting arithmetic in Dy and D,

(n,m)

Max elements

There is a way to represent second
order arithmetic in Dyp.
L4

L3 Start by translating arithmetic into

L2 a partial order.

L1

Minelements  Prove that this partial order can be
embedded into Dr.
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Interpreting arithmetic in Dy and D,

L4
L3

L2

L1

Theorem (Slaman, Woodin 1986, 1997)

(n,m)

Max elements

Min elements

There is a way to represent second
order arithmetic in Dyp.

Start by translating arithmetic into
a partial order.

Prove that this partial order can be
embedded into Dr.

Every countable relation on Dt or D, is uniformly definable in the respective
structure using finitely many parameters.

13/20



The biinterpretability conjecture

Theorem (Slaman, Woodin 1986, 1997)
The theories of Dr, D, and Z; have the same complexity. J
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The biinterpretability conjecture

Theorem (Slaman, Woodin 1986, 1997)
The theories of Dr, D, and Z; have the same complexity.

Conjecture (The Biinterpretability conjecture)

The relationship between D7 and Z5 and the relationship between D, and Z»
is much stronger: once we code arithmetic in the degree structure we can
structurally identify the relationship between a set in the coded model and its
actual degree.
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Rogers’ questions from 1969

Question J

Is the jump operator definable in Dp?
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Rogers’ questions from 1969

Question
Is the jump operator definable in Dp?

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question
Are there any nontrivial automorphisms of Dr or D.?

Question
Is the copy of D in D, definable in D.?
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The three aspects: theory, automorphisms and definability

Theorem (Slaman, Woodin 1986)

The following are equivalent:
@ The Biinterpretability conjecture for Dy is true.
© Dy has no nontrivial automorphisms.

© There is a complete characterization of the relation that are definable in
Dr in terms of relations definable in second order arithmetic (which
includes the jump operator).
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The automorphism analysis

Cohen in 1963 invented the method of forcing to prove that the continuum
hypothesis is independent from ZF'C.
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The automorphism analysis

Cohen in 1963 invented the method of forcing to prove that the continuum
hypothesis is independent from ZF'C.

The method gives a way to extend a model V' of ZFC to a model V'[G] in
which a generic object with predetermined properties has been added.

Slaman and Woodin attempted to use forcing to build a generic model V' [G]
which adds a nontrivial automorphism for Dz. They found that if V' [G] has
such an automorphism, then so does V.

Theorem (Slaman, Woodin 1986, Soskova 2016)

There are very few (at most countably many) automorphisms of D and of
De.

Theorem (Slaman, Shore 1999)
The jump is definable in Dr.
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of degrees a, b is called a K-pair if and only if satisfy:

K(a,b) = (Vx)((x Va) A (x V b) = x).
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of degrees a, b is called a K-pair if and only if satisfy:

K(a,b) = (Vx)((x Va) A (x V b) = x).

Theorem (Kalimullin)

The enumeration jump is first order definable: z’ is the largest degree which
can be represented as the least upper bound of a pair a, b, such that (a, b)
and a < z.
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Maximal /C-pairs

Definition (Ganchev, S)

A K-pair {a, b} is maximal if for every K-pair {c,d} witha < cand b <d,
we have thata = cand b = d.

v

Conjecture (Ganchev and S 2010)

The joins of maximal X -pairs are exactly the nonzero total degrees.
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Maximal /C-pairs

Definition (Ganchev, S)

A K-pair {a, b} is maximal if for every K-pair {c,d} witha < cand b <d,
we have thata = cand b = d.

v

Conjecture (Ganchev and S 2010)

The joins of maximal X -pairs are exactly the nonzero total degrees.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016) J

The set of total enumeration degrees is first order definable in D,.
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The open problem remains

If D, has a non-trivial automorphism then so does Dr.

Corollary J
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The open problem remains

Corollary
If D, has a non-trivial automorphism then so does Dr.

Question
Are there any nontrivial automorphisms of Dr or D.?
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Thank you

R ALAN TURING, 1912 - 1954

From “Inside the mind of Alan Turing, the genius behind The Imitation
Game” by Barry Cooper. Illustration by Jin Wicked.



