Definability in degree structures

Mariya I. Soskova¹

Sofia University

April 3, 2017

¹Supported by the "Women in Science" program and Sofia University Science Fund.

Computable sets and functions

Definition (Turing, Church 1936)

A function $f: \mathbb{N} \to \mathbb{N}$ is *computable* if there is a **computer program** which takes as input a natural number n and outputs f(n).

A set $A \subseteq \mathbb{N}$ is *computable* if its characteristic function is computable.

Computably enumerable sets

Definition

A set $A\subseteq \mathbb{N}$ is *computably enumerable* (c.e.) if it can be enumerated by a computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)

A set $S \subseteq \mathbb{N}$ is Diophantine if $S = \{n \mid \exists \bar{m}(P(n, \bar{m}) = 0)\}.$

The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)

The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.

Example (Hilbert's Entscheidungsproblem 1928)

The set of provable formulas in first order logic is c.e.

An incomputable c.e. set

A set A is computable if and only if both A and \overline{A} are c.e.

We can code programs by natural numbers: P_e is the program with code e.

Definition

The halting set is $K = \{e \mid P_e \text{ halts on input } e\}$.

Theorem (Turing 1936)

The halting set K is not computable.

Proof.

If K were computable then \overline{K} would be computable.

Let e be such that P_e halts on n if and only if $n \in \overline{K}$.

 P_e halts on $e \Leftrightarrow e \in \overline{K} \Leftrightarrow P_e$ does not halt on e.

Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During its computation the program can ask the oracle membership questions: does n belong to you or not?

Definition (Post 1944)

 $A \leq_T B$ if and only if there is a program that computes the elements of A using B as an oracle.

Example

Consider a Diophantine set $S=\{n\mid (\exists \bar{m})P(n,\bar{m})=0\}$. Let $P_{e(n)}$ be the program that ignores its input and for a listing $\{\bar{m}_i\}_{i\in\mathbb{N}}$ of all tuples \bar{m}_i calculates $P(n,\bar{m}_0), P(n,\bar{m}_1),\ldots$ until it sees that the result is 0 and then halts. Then $S\leq_T K$ by the program that on input n computes e(n) and asks the oracle whether $e(n)\in K$.

Comparing the information content of sets

Definition (Friedberg and Rogers 1959)

 $A \leq_e B$ if there is a program that transforms an enumeration of B to an enumeration of A.

The program is a c.e. table of axioms of the sort:

If
$$\{x_1, x_2, \dots, x_k\} \subseteq B$$
 then $x \in A$.

Example

Let $S=\{n\mid (\exists \bar{m})P(n,\bar{m})=0\}$ again. $\overline{S}\leq_e \overline{K}$ by the program that consists of the axioms:

If
$$\{e(n)\}\subseteq \overline{K}$$
 then $n\in \overline{S}$.

Degree structures

Definition

- \bullet $A \equiv B$ if and only if $A \leq B$ and $B \leq A$.
- **2** $d(A) = \{B \mid A \equiv B\}.$
- \bullet $\mathbf{d}(A) \leq \mathbf{d}(B)$ if an only if $A \leq B$.
- **4** Let $A \oplus B = \{2n \mid n \in A\} \cup \{2n+1 \mid n \in B\}$. Then $\mathbf{d}(A \oplus B) = \mathbf{d}(A) \vee \mathbf{d}(B)$.

And so we have two upper semi-lattices:

- The Turing degrees \mathcal{D}_T with least element $\mathbf{0}_T$ consisting of all computable sets.
- ② The enumeration degrees \mathcal{D}_e with least element $\mathbf{0}_e$ consisting of all c.e. sets.

The jump operation

The halting set with respect to A is the set

 $K_A = \{e \mid P_e \text{ using oracle } A \text{ halts on input e}\}.$

 $A <_T K_A$.

Definition

The jump of a Turing degree is $\mathbf{d}_T(A)' = \mathbf{d}_T(K_A)$.

We can apply a similar construction to enumeration reducibility to obtain the enumeration jump.

We always have $\mathbf{a} < \mathbf{a}'$.

What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(\mathbf{d}_T(A)) = \mathbf{d}_e(A \oplus \overline{A})$, preserves the order, the least upper bound, and the jump operator.

 $\mathcal{T} = \iota(\mathcal{D}_T)$ is the set of *total* enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \mathbf{0}_T) \cong (\mathcal{T}, \leq_e, \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \mathbf{0}_e)$$

Properties of the degree structures

Similarities

- **1** Both \mathcal{D}_T and \mathcal{D}_e are uncountable structures with least element and no greatest element.
- They have uncountable chains and antichains.
- They are not lattices: there are pairs of degrees with no greatest lower bound.

Differences

- (Spector 1956) In \mathcal{D}_T there are *minimal degrees*, nonzero degrees \mathbf{m} such that the interval $(\mathbf{0}_T, \mathbf{m})$ is empty.
- ② (Gutteridge 1971) \mathcal{D}_e is downwards dense.

Definability

Definition

A set B is definable in a structure \mathcal{A} if there is a formula $\varphi(x)$ (in the language of the structure) such that $n \in B$ if and only if $\varphi(n)$ is true in \mathcal{A} .

This concept naturally extends to definable relations and functions.

Example

In the field of real numbers $\mathcal{R} = (\mathbb{R}, 0, 1, +, \times)$ the set of non-negative numbers is definable by the formula $\varphi(x) : (\exists y)(x = y \times y)$.

In arithmetic $\mathcal{N} = (\mathbb{N}, 0, 1, +, \times)$ the set of prime numbers is definable by the formula $\varphi(x) : x \neq 1 \land (\forall y)((\exists z)(y \times z = x) \rightarrow (y = 1 \lor y = x))$.

In the partial order of the Turing degrees $(\mathcal{D}_T, \leq_T, \mathbf{0}_T)$ the set of minimal degrees is definable by the formula $\varphi(x)$:

$$x \neq \mathbf{0}_T \land (\forall y)(y \leq_T x \rightarrow (y = x \lor y = \mathbf{0}_T)).$$

Arithmetic vs Degrees

Second order arithmetic \mathcal{Z}_2 is \mathcal{N} with an additional sort for sets of natural numbers and a membership relation.

Classical results due to Kleene and Post show that the relations and functions $\leq_T, \leq_e, \oplus, K_A$ are definable in second order arithmetic.

Do they translate to definable relations and functions in our degree structures?

Example

The function that maps A and B to $A \oplus B$ is definable in \mathbb{Z}_2 by $\varphi(X,Y,Z)$: $(\forall n)(n \in X \leftrightarrow n+n \in Z) \land (n \in Y \leftrightarrow n+n+1 \in Z).$

The function that maps $\mathbf{d}(A)$ and $\mathbf{d}(B)$ to $\mathbf{d}(A \oplus B)$ is definable by $\psi(x,y,z) \colon x \leq z \ \land \ y \leq z \land (\forall u)(x \leq u \ \land \ y \leq u \rightarrow z \leq u).$

Rogers' questions from 1969

Question

Is the jump operator definable in \mathcal{D}_T ?

If a structure A has an automorphism that maps an element in a set X to an element outside X then X is not definable.

Question

Are there any nontrivial automorphisms of \mathcal{D}_T or \mathcal{D}_e ?

Question

Is the copy of \mathcal{D}_T in \mathcal{D}_e (i.e. the total enumeration degrees) definable in \mathcal{D}_e ?

Definability in the Turing degrees: Forcing + Coding

Paul Cohen in 1963 invented the method of forcing to prove that the continuum hypothesis is independent from ZFC.

The method gives a way to extend a model V of ZFC to a model V[G] in which a generic object with predetermined properties has been added.

Slaman and Woodin attempted to use forcing to build a generic model V[G] which adds a nontrivial automorphism for \mathcal{D}_T . They found that if V[G] has such an automorphism, then so does V.

Theorem (Slaman, Woodin 1986)

There are at most countably many automorphisms of \mathcal{D}_T .

There is a single element $\mathbf{g} \leq_T \mathbf{0}_T^{(5)}$ that completely determines the behavior of every automorphism of \mathcal{D}_T .

Definability in the Turing degrees: Forcing + Coding

There is a way to represent a model of arithmetic in \mathcal{D}_T .

Start by translating arithmetic into a partial order.

Prove that this partial order can be embedded into \mathcal{D}_T .

Theorem (Slaman, Woodin 1986)

Every countable antichain A in D_T can be coded by three parameters a, b, c:

 $x \in \mathcal{A} \leftrightarrow x \le a \land x \ne (b \lor x) \land (c \lor x) \land x$ is minimal with these properties.

Definability in the Turing degrees: Forcing + Coding

If \mathcal{R} is definable in \mathcal{D}_T then the set $S = \{X \mid \mathbf{d}_T(X) \in \mathcal{R}\}$ is:

- definable in second order arithmetic;
- ② invariant with respect to \equiv_T .

Lets call relations \mathcal{R} on \mathcal{D}_T that correspond to relations S in second order arithmetic of this sort *nice*.

Theorem (Slaman, Woodin 1986)

Every nice relation is definable in \mathcal{D}_T if we allow the use of a parameter.

Every nice relation that is invariant under automorphisms is definable in \mathcal{D}_T .

 \mathcal{D}_T is rigid if and only if every nice relations is definable in \mathcal{D}_T .

The double jump is definable in \mathcal{D}_T .

Theorem (Slaman, Shore 1999)

The jump is definable in \mathcal{D}_T .

Definability of the enumeration jump

Definition (Kalimullin 2003)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example (Jockusch 1968)

A set A is a semi-computable if there is a computable selector function s_A :

- \bullet $s_A(x,y) \in \{x,y\};$

The pair $\{A, \overline{A}\}$ is a \mathcal{K} -pair witnessed by $W = \{(m, n) \mid s_A(m, n) = m\}$.

Definability of the enumeration jump

Theorem (Kalimullin)

A pair of sets A, B is a K-pair if and only if their enumeration degrees ${\bf a}$ and ${\bf b}$ satisfy:

$$\mathcal{K}(\mathbf{a},\mathbf{b}) \leftrightharpoons (\forall \mathbf{x})((\mathbf{a} \vee \mathbf{x}) \wedge (\mathbf{b} \vee \mathbf{x}) = \mathbf{x}).$$

Theorem (Kalimullin)

 $\mathbf{0}_e'$ is the largest degree which can be represented as the least upper bound of a triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$, such that $\mathcal{K}(\mathbf{a}, \mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{c})$ and $\mathcal{K}(\mathbf{c}, \mathbf{a})$.

Corollary (Kalimullin 2003)

The enumeration jump is first order definable in \mathcal{D}_e .

Maximal K-pairs

Recall that a set A is semi-computable if is has a computable selector function.

Every set X is Turing equivalent to a semi-computable set L_X .

Every total degree contains $X \oplus \overline{X} \equiv_e L_X \oplus \overline{L_X}$.

So every total enumeration degree is the least upper bound of the elements of a semi-computable \mathcal{K} -pair.

Semi-computable K-pairs are *maximal*.

Definition (Ganchev, S)

A \mathcal{K} -pair $\{a,b\}$ is maximal if for every \mathcal{K} -pair $\{c,d\}$ with $a\leq c$ and $b\leq d$, we have that a=c and b=d.

A partial solution

Definition

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the substructure of the enumeration degrees that consist of all enumeration degrees bounded by $\mathbf{0}'_e$.

 $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is countable and Cooper (1984) showed it is dense.

The members of degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ are easier to construct and handle using finite approximations.

Theorem (Ganchev, S 2009)

 \mathcal{K} -pairs are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Theorem (Ganchev, S 2010)

In $\mathcal{D}_e(\leq \mathbf{0}'_e)$ maximal \mathcal{K} -pairs and semi-computable \mathcal{K} -pairs coincide.

The total degrees are definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

A conjecture

Conjecture (Ganchev and S 2010)

The maximal K-pairs are the semi-computable K-pairs.

Definition

A Turing degree \mathbf{a} is *c.e.* in a Turing degree \mathbf{x} if some $A \in \mathbf{a}$ is c.e. using as oracle some $X \in \mathbf{x}$.

A total degree \mathbf{a} is *c.e.* in a total degree \mathbf{x} if \mathbf{a} is the image of a Turing degree that is c.e. in the pre-image of \mathbf{x} .

Proposition (Ganchev, S)

If the conjecture is true then the relation "a is c.e. in x" for total degrees and $\mathbf{x} \neq \mathbf{0}_e$ is first order definable in \mathcal{D}_e .

The automorphisms of \mathcal{D}_e

Theorem (S 2012)

There are at most countably many automorphisms of \mathcal{D}_e .

There is a single element $\mathbf{g} \leq_e \mathbf{0}_e^{(8)}$ that completely determines the behavior of every automorphism of \mathcal{D}_e .

Every nice relation is definable in \mathcal{D}_e if we allow the use of a parameter.

Every nice relation that is invariant under automorphisms is definable in \mathcal{D}_e .

 \mathcal{D}_e is rigid if and only if every nice relations is definable in \mathcal{D}_e .

Example

 \mathcal{T} is a nice relation, $\{A \mid \exists B (A \equiv_e B \oplus \overline{B})\}$ is definable in \mathcal{Z}_2 .

So \mathcal{T} is definable in \mathcal{D}_e with one parameter.

Defining totallity in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

The maximal K-pairs are the semi-computable K-pairs.

Every semi-computable set is a left cut in some computable linear ordering of the natural numbers.

Let W be a c.e. set witnessing that a pair of sets $\{A, B\}$ forms a \mathcal{K} -pair. We build a semi-computable set C such that $A \leq_e C$ and $B \leq_e \overline{C}$.

- $lackbox{0}$ The countable component: we use W to construct a computable linear ordering on the natural numbers.

Theorem (Cai, Ganchev, Lempp, Miller, S 2013)

The set of total enumeration degrees is first order definable in \mathcal{D}_e .

The relation "a is c.e. in x" for total degrees is first order definable in \mathcal{D}_e .

The total degrees as an automorphism base

Theorem (Selman 1971)

$$\mathbf{a} \leq_e \mathbf{b}$$
 if and only if $\{\mathbf{x} \in \mathcal{T} \mid \mathbf{a} \leq_e \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{T} \mid \mathbf{b} \leq_e \mathbf{x}\}.$

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If \mathcal{D}_e has a non-trivial automorphism then so does \mathcal{D}_T .
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

One final application in many steps

Theorem (Slaman, S)

The position of every total enumeration degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is completely determined with respect to the positions of all images of Turing degrees of c.e. sets.

One final application in many steps

Theorem (Slaman, S)

If \mathbf{x} is total and below $\mathbf{0}'_e$ then the position of every total degree in the interval $[\mathbf{x}, \mathbf{x}']$ is completely determined by the total degrees below $\mathbf{0}'_e$.

One final application in many steps

Theorem (Slaman, S)
The position of every total degree below $\mathbf{0}_e''$ is completely determined with respect to the positions of all degrees in intervals $[\mathbf{x}, \mathbf{x}']$ with \mathbf{x} total and below $\mathbf{0}_e'$.

Theorem (Slaman, S 2015)

If \mathcal{D}_e has a nontrivial automorphism then so does the structure of the c.e. Turing degrees.

