
Definability in degree structures

Mariya I. Soskova1

Sofia University

April 3, 2017

1Supported by the “Women in Science” program and Sofia University Science Fund.
1 / 29

Computable sets and functions

Definition (Turing, Church 1936)
A function f : N→ N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A ⊆ N is computable if its characteristic function is computable.

2 / 29

Computably enumerable sets
Definition
A set A ⊆ N is computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if S = {n | ∃m̄(P (n, m̄) = 0)}.
The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.

Example (Hilbert’s Entscheidungsproblem 1928)
The set of provable formulas in first order logic is c.e.

3 / 29

An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K = {e | Pe halts on input e}.

Theorem (Turing 1936)
The halting set K is not computable.

Proof.
If K were computable then K would be computable.

Let e be such that Pe halts on n if and only if n ∈ K.

Pe halts on e⇔ e ∈ K ⇔ Pe does not halt on e.

4 / 29

Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ≤T B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
Consider a Diophantine set S = {n | (∃m̄)P (n, m̄) = 0}. Let Pe(n) be the
program that ignores its input and for a listing {m̄i}i∈N of all tuples m̄i

calculates P (n, m̄0), P (n, m̄1), . . . until it sees that the result is 0 and then
halts. Then S ≤T K by the program that on input n computes e(n) and asks
the oracle whether e(n) ∈ K.

5 / 29

Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A ≤e B if there is a program that transforms an enumeration of B to an
enumeration of A.

The program is a c.e. table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example

Let S = {n | (∃m̄)P (n, m̄) = 0} again. S ≤e K by the program that consists
of the axioms:

If {e(n)} ⊆ K then n ∈ S.

6 / 29

Degree structures

Definition
1 A ≡ B if and only if A ≤ B and B ≤ A.
2 d(A) = {B | A ≡ B}.
3 d(A) ≤ d(B) if an only if A ≤ B.
4 Let A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}. Then

d(A⊕B) = d(A) ∨ d(B).

And so we have two upper semi-lattices:
1 The Turing degrees DT with least element 0T consisting of all

computable sets.
2 The enumeration degrees De with least element 0e consisting of all c.e.

sets.

7 / 29

The jump operation

The halting set with respect to A is the set
KA = {e | Pe using oracle A halts on input e}.
A <T KA.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.

We always have a < a′.

8 / 29

What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound, and the jump operator.

T = ι(DT) is the set of total enumeration degrees.

(DT ,≤T ,0T) ∼= (T ,≤e,0e) ⊆ (De,≤e,0e)

9 / 29

Properties of the degree structures

Similarities
1 Both DT and De are uncountable structures with least element and no

greatest element.
2 They have uncountable chains and antichains.
3 They are not lattices: there are pairs of degrees with no greatest lower

bound.

Differences
1 (Spector 1956) In DT there are minimal degrees, nonzero degrees m

such that the interval (0T ,m) is empty.
2 (Gutteridge 1971) De is downwards dense.

10 / 29

Definability

Definition
A set B is definable in a structure A if there is a formula ϕ(x) (in the
language of the structure) such that n ∈ B if and only if ϕ(n) is true in A.

This concept naturally extends to definable relations and functions.

Example
In the field of real numbersR = (R, 0, 1,+,×) the set of non-negative
numbers is definable by the formula ϕ(x) : (∃y)(x = y × y).

In arithmetic N = (N, 0, 1,+,×) the set of prime numbers is definable by the
formula ϕ(x) : x 6= 1 ∧ (∀y)((∃z)(y × z = x)→ (y = 1 ∨ y = x)).

In the partial order of the Turing degrees (DT ,≤T ,0T) the set of minimal
degrees is definable by the formula ϕ(x):
x 6= 0T ∧ (∀y)(y ≤T x→ (y = x ∨ y = 0T)).

11 / 29

Arithmetic vs Degrees

Second order arithmetic Z2 is N with an additional sort for sets of natural
numbers and a membership relation.

Classical results due to Kleene and Post show that the relations and functions
≤T , ≤e, ⊕, KA are definable in second order arithmetic.

Do they translate to definable relations and functions in our degree structures?

Example
The function that maps A and B to A⊕B is definable in Z2 by ϕ(X,Y, Z):
(∀n)(n ∈ X ↔ n+ n ∈ Z) ∧ (n ∈ Y ↔ n+ n+ 1 ∈ Z).

The function that maps d(A) and d(B) to d(A⊕B) is definable by
ψ(x, y, z): x ≤ z ∧ y ≤ z ∧ (∀u)(x ≤ u ∧ y ≤ u→ z ≤ u).

12 / 29

Rogers’ questions from 1969

Question
Is the jump operator definable in DT ?

If a structure A has an automorphism that maps an element in a set X to an
element outside X then X is not definable.

Question
Are there any nontrivial automorphisms of DT or De?

Question
Is the copy of DT in De (i.e. the total enumeration degrees) definable in De?

13 / 29

Definability in the Turing degrees: Forcing + Coding

Paul Cohen in 1963 invented the method of forcing to prove that the
continuum hypothesis is independent from ZFC.

The method gives a way to extend a model V of ZFC to a model V [G] in
which a generic object with predetermined properties has been added.

Slaman and Woodin attempted to use forcing to build a generic model V [G]
which adds a nontrivial automorphism for DT . They found that if V [G] has
such an automorphism, then so does V .

Theorem (Slaman, Woodin 1986)
There are at most countably many automorphisms of DT .

There is a single element g ≤T 0
(5)
T that completely determines the behavior

of every automorphism of DT .

14 / 29

Definability in the Turing degrees: Forcing + Coding

There is a way to represent a
model of arithmetic in DT .

Start by translating arithmetic into
a partial order.

Prove that this partial order can be
embedded into DT .

Theorem (Slaman, Woodin 1986)
Every countable antichain A in DT can be coded by three parameters a, b, c:

x ∈ A ↔ x ≤ a ∧ x 6= (b∨x)∧(c∨x) ∧x is minimal with these properties.

15 / 29

Definability in the Turing degrees: Forcing + Coding

IfR is definable in DT then the set S = {X | dT (X) ∈ R} is:
1 definable in second order arithmetic;
2 invariant with respect to ≡T .

Lets call relationsR on DT that correspond to relations S in second order
arithmetic of this sort nice.

Theorem (Slaman, Woodin 1986)
Every nice relation is definable in DT if we allow the use of a parameter.

Every nice relation that is invariant under automorphisms is definable in DT .

DT is rigid if and only if every nice relations is definable in DT .

The double jump is definable in DT .

Theorem (Slaman, Shore 1999)
The jump is definable in DT .

16 / 29

Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of sets A,B are called a K-pair if there is a c.e. set W , such that
A×B ⊆W and A×B ⊆W .

Example (Jockusch 1968)
A set A is a semi-computable if there is a computable selector function sA:

1 sA(x, y) ∈ {x, y};
2 If {x, y} ∩A 6= ∅ then sA(x, y) ∈ A.

The pair {A,A} is a K-pair witnessed by W = {(m,n) | sA(m,n) = m}.

17 / 29

Definability of the enumeration jump

Theorem (Kalimullin)
A pair of sets A,B is a K-pair if and only if their enumeration degrees a and
b satisfy:

K(a,b) � (∀x)((a ∨ x) ∧ (b ∨ x) = x).

Theorem (Kalimullin)
0′e is the largest degree which can be represented as the least upper bound of a
triple a,b, c, such that K(a,b), K(b, c) and K(c,a).

Corollary (Kalimullin 2003)
The enumeration jump is first order definable in De.

18 / 29

Maximal K-pairs

Recall that a set A is semi-computable if is has a computable selector
function.

Every set X is Turing equivalent to a semi-computable set LX .

Every total degree contains X ⊕X ≡e LX ⊕ LX .

So every total enumeration degree is the least upper bound of the elements of
a semi-computable K-pair.

Semi-computable K-pairs are maximal.

Definition (Ganchev, S)
A K-pair {a,b} is maximal if for every K-pair {c,d} with a ≤ c and b ≤ d,
we have that a = c and b = d.

19 / 29

A partial solution
Definition
De(≤ 0′e) is the substructure of the enumeration degrees that consist of all
enumeration degrees bounded by 0′e.

De(≤ 0′e) is countable and Cooper (1984) showed it is dense.

The members of degrees in De(≤ 0′e) are easier to construct and handle using
finite approximations.

Theorem (Ganchev, S 2009)
K-pairs are first order definable in De(≤ 0′e).

Theorem (Ganchev, S 2010)
In De(≤ 0′e) maximal K-pairs and semi-computable K-pairs coincide.

The total degrees are definable in De(≤ 0′e).

20 / 29

A conjecture

Conjecture (Ganchev and S 2010)
The maximal K-pairs are the semi-computable K-pairs.

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. using as
oracle some X ∈ x.

A total degree a is c.e. in a total degree x if a is the image of a Turing degree
that is c.e. in the pre-image of x.

Proposition (Ganchev, S)
If the conjecture is true then the relation “a is c.e. in x” for total degrees and
x 6= 0e is first order definable in De.

21 / 29

The automorphisms of De

Theorem (S 2012)
There are at most countably many automorphisms of De.

There is a single element g ≤e 0
(8)
e that completely determines the behavior

of every automorphism of De.

Every nice relation is definable in De if we allow the use of a parameter.

Every nice relation that is invariant under automorphisms is definable in De.

De is rigid if and only if every nice relations is definable in De.

Example

T is a nice relation,
{
A | ∃B(A ≡e B ⊕B)

}
is definable in Z2.

So T is definable in De with one parameter.

22 / 29

Defining totallity in De
Theorem (Cai, Ganchev, Lempp, Miller, S)
The maximal K-pairs are the semi-computable K-pairs.

Every semi-computable set is a left cut in some computable linear ordering of
the natural numbers.

Let W be a c.e. set witnessing that a pair of sets {A,B} forms a K-pair. We
build a semi-computable set C such that A ≤e C and B ≤e C.

1 The countable component: we use W to construct a computable linear
ordering on the natural numbers.

2 The uncountable component: find an appropriate left cut in this ordering
to define C.

Theorem (Cai, Ganchev, Lempp, Miller, S 2013)
The set of total enumeration degrees is first order definable in De.

The relation “a is c.e. in x” for total degrees is first order definable in De.

23 / 29

The total degrees as an automorphism base

Theorem (Selman 1971)
a ≤e b if and only if {x ∈ T | a ≤e x} ⊇ {x ∈ T | b ≤e x}.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees.

If De has a non-trivial automorphism then so does DT .

The total degrees below 0
(5)
e are an automorphism base of De.

24 / 29

One final application in many steps

Theorem (Slaman, S)
The position of every total
enumeration degree in
De(≤ 0′e) is completely
determined with respect to
the positions of all images
of Turing degrees of c.e.
sets.

25 / 29

One final application in many steps

Theorem (Slaman, S)
If x is total and below 0′e
then the position of every
total degree in the interval
[x,x′] is completely
determined by the total
degrees below 0′e.

26 / 29

One final application in many steps

Theorem (Slaman, S)
The position of every total
degree below 0′′e is
completely determined
with respect to the
positions of all degrees in
intervals [x,x′] with x
total and below 0′e.

27 / 29

And now we iterate

28 / 29

And now we iterate

28 / 29

And now we iterate

28 / 29

And now we iterate

28 / 29

And now we iterate

Theorem (Slaman, S 2015)
If De has a nontrivial automorphism then so does the structure of the c.e.
Turing degrees.

28 / 29

29 / 29

