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Outline

Enumeration reducibility gives a way to compare the algorithmic complexity
between sets of natural numbers.

The structure of the enumeration degrees can be viewed as an extension of the
better studied partial order of the Turing degrees.

In certain cases, the enumeration degrees capture the algorithmic content of
mathematical objects, while the Turing degrees fail.

Certain open problems in degree theory seem more approachable in the
extended context of the enumeration degrees.

We have been working to develop a richer “e-verse”: a system of classes of
enumeration degrees with interesting properties and relationships, in order to
better understand the enumeration degrees.
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Computable sets and functions

Definition (Turing, Church 1936)
A function f : N→ N is computable if there is a computer program which
takes as input a natural number n and outputs f(n).

A set A ⊆ N is computable if its characteristic function is computable.
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Computably enumerable sets

Definition
A set A ⊆ N is computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S ⊆ N is Diophantine if S = {n | ∃m̄(P (n, m̄) = 0)} for some
polynomial P (x, ȳ).

The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K = {e | Pe halts on input e}.

Theorem (Turing 1936)
The halting set K is c.e., but not computable.
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A is Turing reducible to B (A ≤T B) if and only if there is a program that
computes the elements of A using B as an oracle.

Example

For every A, we have A ≤T A: on input n check whether n is in the oracle
and output the opposite.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A is enumeration reducible to B (A ≤e B) if there is a program that
transforms an enumeration of B to an enumeration of A.

The program can always be taken to be a c.e. table of axioms of the sort:
If {x1, x2, . . . , xk} ⊆ B then x ∈ A.

Example

K �e K because K is not c.e.
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Degree structures

Let ≤∗∈ {≤T ,≤e}.

Definition
1 A ≡∗ B if and only if A ≤∗ B and B ≤∗ A.
2 The ∗-degree of A is d∗(A) = {B | A ≡∗ B}.
3 d∗(A) ≤ d∗(B) if and only if A ≤∗ B.
4 d∗(A⊕B) = d∗(A) ∨ d∗(B), where
A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}.

And so we have two partial orders with least upper bound:
1 The Turing degrees DT with least element 0T consisting of all

computable sets.
2 The enumeration degrees De with least element 0e consisting of all c.e.

sets.
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The jump operation

The halting set with respect to A is the set
KA = {e | Pe using oracle A halts on input e}.
A <T K

A.

Definition
The jump of a Turing degree is dT (A)′ = dT (KA).

We can apply a similar construction to enumeration reducibility to obtain the
enumeration jump.
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What connects DT and De
Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

So mapping dT (A) to de(A⊕A) induces an embedding. It preserves the
order, the least upper bound, and the jump operator.

The image of the Turing degrees under this embedding is the set T of total
enumeration degrees.

(DT ,≤T ,0T ) ∼= (T ,≤e,0e) ⊆ (De,≤e,0e)

Medvedev (1955) proved that there are nontotal degrees.

DT and De exhibit structural differences: De is downwards dense, while DT
is not.
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Measuring the computability of other mathematical objects

Question
What should the degree of a real number r be?

Fix some effective listing of the rational numbers: {qi}i∈N. We can then
describe r via a name: a function f on the natural numbers such that

|r − qf(n)| <
1

n
.

Every real has infinitely many names, of infinitely many Turing degrees, but...

Proposition
For every real r there is a least Turing degree dr, such that r has a name of
degree dr (the degree of the binary representation of r).
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Measuring the computability of other mathematical objects

Question
What should the degree of a continuous function F be?

We can approximate continuous functions via piece-wise linear function Li
with rational endpoints. We can fix some effective listing of these function:
{Li}i∈N. We can then describe F via a name: a function f on the natural
numbers such that

‖F − Lf(n)‖∞ <
1

n
.

Theorem (Miller 04)
Not every continuous function has a name of least Turing degree. However,
there is a meaningful way to assign an enumeration degree to every
continuous function.
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Three aspects of degree structures

We will consider questions about these degree structures from three
interrelated aspects:

I. The theory of the degree structure: what statements (in the language of
partial orders) are true in the degree structure.

II. Automorphisms: are there degrees that cannot be structurally
distinguished?

III. First order definability: what relations on the degree structure can be
captured by a structural property;
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Arithmetic vs Degrees

Second order arithmetic Z2 is the theory of N = (N,+, ·) where we can
quantify both over natural numbers and sets of natural numbers.

Classical results due to Kleene and Post show that ≤T , ≤e are definable in
second order arithmetic.

This means that any sentence ϕ in the language of partial orders can be
effectively translated to a sentence ψT and to a sentence ψe in the language of
second order arithmetic so that

1 ϕ is true in DT if and only if ψT is true in Z2;
2 ϕ is true in De if and only if ψe is true in Z2;

The theory of second order arithmetic is (highly) undecidable.
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Interpreting arithmetic in DT and De
There is a way to represent a model of second order arithmetic in
D ∈ {DT ,De}:

Any countable set M ⊆ Dn can be defined using a finite sequence of
parameters ~p from D.

You can use a countable subset of D and two countable subsets of D3 to
represent a copy of (N,+, ·).

It is a definable property of ~p whether it codes a copy of (N,+, ·, C),
where C ⊆ N.

Theorem (Simpson 1977; Slaman, Woodin 1997)
The theories of DT and De have the same complexity as Z2.

Conjecture (The Biinterpretability conjecture for D)
The relation Bi, where Bi(~p, c) holds when ~p codes a model of (N,+, ·, C)
and de(C) = c, is first order definable in D.
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The three aspects: theory, automorphisms and definability

IfR is definable in D ∈ {De,DT } then the set S = {X | d∗(X) ∈ R} is:
1 definable in second order arithmetic;
2 invariant with respect to the corresponding equivalence relation.

Let’s call relationsR with this property nice.

Theorem (Slaman, Woodin 1986, S 2016)
The following are equivalent for D ∈ {DT ,De}:

1 The Biinterpretability conjecture for D is true.
2 D has no nontrivial automorphisms.
3 Every nice relation is definable in D without any parameters.
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The automorphism analysis

Theorem (Slaman, Woodin 1986, S 2016)
Let D ∈ {DT ,De}:
There are at most countably many automorphisms of D.

The biinterpretability conjecture for D is true if we allow the use of one
parameter.

Every nice relation is definable in D if we allow the use of a parameter.
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Definability in the Turing degrees

Theorem (Slaman, Shore 1999)
The jump is definable in DT .

The proof is far from “natural” and the definition passes through the coding
machinery of the automorphism analysis.
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Definability of the enumeration jump

Definition (Kalimullin 2003)
A pair of enumeration degrees a,b is called a K-pair if and only if satisfy:

K(a,b) � (∀x)((x ∨ a) ∧ (x ∨ b) = x).

Theorem (Kalimullin 2003)
The enumeration jump is first order definable: z′ is the largest degree which
can be written as a ∨ b, where K(a,b), and a ≤ z.

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The set of total enumeration degrees is first order definable in De: The
nonzero total degrees are the joins of maximal K-pairs.
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Consequences for the automorphism problem

Theorem (Selman 1971)
For enumeration degrees a and b we have a ≤ b if and only if every total
degree above b is also above a.

Corollary
The total enumeration degrees form a definable automorphism base of the
enumeration degrees. If De has a non-trivial automorphism then so does DT .

Insight
We need to identify more subclasses of e-degrees, understand how they
interact with each other, to help us understand what’s going on. We turn to
effective mathematics, focusing on cases where enumeration degrees provide
a better tool for capturing algorithmic content.
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The continuous degrees

Definition (Lacombe 1957)
A computable metric space is a metric spaceM together with a countable
dense sequence QM = {qMn }n∈N on which the metric is computable.

For example R, C[0, 1], and the Hilbert cube [0, 1]N are computable.

Definition
A name for a point x ∈M is a function f on N such that dM(x, qMf(n)) <

1
n .

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x≤ry if there is a way to compute a name for x from a name for y.
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The continuous degrees

The reducibility ≤r induces the continuous degrees.

Theorem (Miller 2004)

Every continuous degree contains a point from [0, 1]N and a point from
C[0, 1].

For α ∈ [0, 1]N, let

Cα =
⊕
i∈N
{q ∈ Q | q < α(i)} ⊕ {q ∈ Q | q > α(i)} .

Enumerating Cα is exactly as hard as computing a name for α. So α 7→ Cα
induces an embedding of the continuous degrees into the enumeration
degrees.
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Topology realized as a structural property
Elements of R are mapped to the total degree of their least Turing degree
name.

Theorem (Miller 2004)
There is a nontotal continuous degree.

Every known proof of this result uses topological facts: Brouwer’s fixed point
theorem for multivalued functions on an infinite dimensional space, or
Sperner’s lemma, or the results that [0, 1]N is strongly infinite dimensional.

Theorem (Andrews, Igusa, Miller, S. 2019)
An enumeration degree a is continuous if and only if it is almost total: if for
all x � a such that x is total we have a ∨ x is also total.

Therefore the continuous degrees are definable in De.
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Topological classification of classes of e-degrees
Definition (Kihara, Pauly 2018)
A represented space is a countably based topological space X together with
listing of an open basis BX = {Bi}i<N.

A name for a point x ∈ X is an enumeration of the set Nx = {i | x ∈ Bi}.
The enumeration degree of x ∈ X is de(Nx).

Thus a represented space (X,BX) gives rise to a class DX ⊆ De.

Example
DR is the total enumeration degrees.

D[0,1]N is the continuous degrees.

DR< , where R< is the reals with topology generated by the basis
{(q,∞)| q ∈ Q} is the degrees of members of maximal K-pairs.

Kihara, Ng, and Pauly 2019 investigate DX , for many other spaces X .
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The cototal enumeration degrees
Recall that total degrees contain sets of the form A⊕A or equivalently sets A
such that A ≤e A.

Definition
A set A is cototal if A ≤e A. A degree is cototal if it contains a cototal set.

The cototal degrees contain the continuous degrees. Not every e-degree is
cototal.

The cototal enumeration degrees are characterized as:
1 The degrees of languages of minimal subshifts by Jeandel and McCarthy

2018.
2 The degrees of complements of maximal independent sets in computable

graphs by AGKLMSS 2019.
3 The degrees of points in countably based effectively Gδ topological

spaces by Kihara, Ng, and Pauly.
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The graph cototal enumeration degrees

An e-degree is total if and only if it contains the graph of a total function.

Definition
An enumeration degree is graph cototal if it contains the complement of the
graph of a total function.

It is easy to see that graph cototal degrees are cototal, but are they the same
class?

Theorem (AGKLMSS 2019)
There is a cototal degree that is not graph cototal.

Problem
Are all continuous degrees graph cototal?
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Topological classification of the graph cototal degrees

Theorem (Kihara, Ng, Pauly)
D(Ncof )N is the graph cototal degrees.

The problem “Is every continuous degree graph cototal?” can be restated as

Problem
Can you cover the Hilbert cube with countably many homeomorphic copies of
subspaces of (Ncof )N?
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The End: Thank you!


