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Outline

Enumeration reducibility captures a natural relationship between sets of
natural numbers in which positive information about the first set is used to
produce positive information about the second set.

By identifying sets that are reducible to each other we obtain an algebraic
representation of this reducibility as a partial order: the structure of the
enumeration degrees De.

Motivation for the interest in this area comes from its nontrivial connections
to the study of the Turing degrees.

I. The first order theory of De and its fragments;
II. First order definability;
III. Automorphisms and automorphism bases.
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Computable sets and functions

Definition (Turing, Church 1936)
A function f : NÑ N is computable if there is a computer program which
takes as input a natural number n and outputs fpnq.

A set A Ď N is computable if its characteristic function is computable.
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Computably enumerable sets

Definition
A set A Ď N is computably enumerable (c.e.) if it can be enumerated by a
computer program.

Example (Davis, Matyasevich, Putnam, Robinson 1970)
A set S Ď N is Diophantine if S “ tn | Dm̄pP pn, m̄q “ 0qu.

The Diophantine sets are exactly the c.e. sets.

Example (Novikov, Boone 1955)
The word problem for a finitely presented group is c.e.

Every c.e. set can be coded as the word problem for a finitely presented group.

Example (Hilbert’s Entscheidungsproblem 1928)
The set of provable formulas in first order logic is c.e.
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An incomputable c.e. set

A set A is computable if and only if both A and A are c.e.

We can code programs by natural numbers: Pe is the program with code e.

Definition
The halting set is K “ te | Pe halts on input eu.

Theorem (Turing 1936)
The halting set K is not computable.

Proof.
If K were computable then K would be computable.

Let e be such that Pe halts on n if and only if n P K.

Pe halts on e ô e P K ô Pe does not halt on e.

Note! This means that K is not c.e.
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Comparing the information content of sets

Consider a program that has access to an external database, an oracle. During
its computation the program can ask the oracle membership questions: does n
belong to you or not?

Definition (Post 1944)
A ďT B if and only if there is a program that computes the elements of A
using B as an oracle.

Example
Consider a Diophantine set S “ tn | pDm̄qP pn, m̄q “ 0u. Let Pepnq be the
program that ignores its input and for a listing tm̄iuiPN of all tuples m̄i

calculates P pn, m̄0q, P pn, m̄1q, . . . until it sees that the result is 0 and then
halts. Then S ďT K by the program that on input n computes epnq and asks
the oracle whether epnq P K.
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Comparing the information content of sets

Definition (Friedberg and Rogers 1959)
A ďe B if there is a program that transforms an enumeration of B (i.e. a
function on the natural numbers with range B) to an enumeration of A.

The program is a c.e. table of axioms of the sort:
If tx1, x2, . . . , xku Ď B then x P A.

Example
Let S “ tn | pDm̄qP pn, m̄q “ 0u again. S ďe K by the program that consists of
the axioms:

If tepnqu Ď K then n P S.
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Degree structures

Definition
1 A ” B if and only if A ď B and B ď A.
2 dpAq “ tB | A ” Bu.
3 dpAq ď dpBq if an only if A ď B.
4 Let A‘B “ t2n | n P Au Y t2n` 1 | n P Bu. Then

dpA‘Bq “ dpAq _ dpBq.

And so we have two partial orders with least upper bound:
1 The Turing degrees DT with least element 0T consisting of all computable

sets.
2 The enumeration degrees De with least element 0e consisting of all c.e.

sets.
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Definability

Definition
A set B is definable in a structure A if there is a formula ϕpxq (in the
language of the structure) such that n P B if and only if ϕpnq is true in A.

This concept naturally extends to definable relations and functions.

Example
In the field of real numbers R “ pR, 0, 1,`,ˆq the set of non-negative numbers
is definable by the formula ϕpxq : pDyqpx “ y ˆ yq.

In arithmetic N “ pN, 0, 1,`,ˆq the set of prime numbers is definable by the
formula ϕpxq : x ‰ 1^ p@yqppDzqpy ˆ z “ xq Ñ py “ 1_ y “ xqq.

In the partial order of the Turing degrees pDT ,ďT ,0T q the set of minimal
degrees is definable by the formula ϕpxq:
x ‰ 0T ^ p@yqpy ďT xÑ py “ x_ y “ 0T qq.
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Arithmetic vs Degrees

Second order arithmetic Z2 is N with an additional sort for sets of natural
numbers and a membership relation.

Classical results due to Kleene and Post show that the relations and functions
ďT , ďe, ‘, are definable in second order arithmetic.

And so statements about the degree structure can be translated into
statements of second order arithmetic:

Example
The statement that there is no greatest degree: @xDypx ă yq translates into:
p@XqpDY qpϕepX,Y q &  ϕepY,Xqq, where ϕe defines ďe in Z2.

We say that the degree structures DT and De can be interpreted in Z2.
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The main problem

The three parts of this talk address three aspects of the same problem:

Theorem (S 2016 (following Slaman, Woodin))
The following are equivalent:

1 De is biinterpretable with second order arithmetic.
2 The definable relations in De are exactly the ones induced by degree

invariant definable relations in second order arithmetic.
3 De is a rigid structure.

Problem
Are these statements true or false?
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Part I: The first order theory of De

and its fragments
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The existential theory

To understand: “What existential sentences in the language of partial order
are true in De?”
we ask “What finite partial orders can be embedded in De?”.

The answer is “all”. And so the D-ThpDeq is decidable.

Theorem (Slaman, Sorbi 2014)
Every countable partial order can be embedded below any non-zero element of
De.

Note! This is a generalization of:

Theorem (Gutteridge 1971)
The enumeration degrees are downwards dense and so DT ı De.
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The two quantifier theory

Problem
Is the @D-theory of De decidable?

The problem of deciding the 2-quantifier theory is equivalent to the following:

Problem
We are given a finite lattice P and a partial orders Q0, . . . Qn Ě P . Does every
embedding of P extend to an embedding of one of the Qi?

If n “ 0 then we call this the extension of embeddings problem.
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The algorithm for deciding D@-ThpDT q

In DT the problem is solved through the following:

Theorem (Lerman 1971)
Every finite lattice can be embedded into DT as an initial segment.

Suppose that P is a finite lattice and Q Ě P is a partial order extending
P .
The initial segment embedding of P can be extended to an embedding of
Q only if no element in Qr P is below any element of P .
Q also needs to respect least upper bounds if x P Qr P and u, v P P and
x ě u, v then x ě u_ v.

Theorem (Shore 1978; Lerman 1983)
That is the only obstacle.

The downward density of De makes this approach not applicable.
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Towards a solution
Theorem (Kent, Lewis-Pye, Sorbi 2012 following Slaman, Calhoun
1996)
There are e-degrees a ă b such that b is a strong minimal cover of a: if x ă b
then x ď a.

Theorem (Lempp, Slaman, S.)
Every finite distributive lattice can be embedded as an interval ra,bs so that if
x ď b then x P ra,bs or x ď a.

Corollary
The D@D-theory of De is undecidable.

Corollary
The extension of embeddings problem for De is decidable.

14 / 1



The complexity of the full theory of De

Theorem (Slaman, Woodin 1997)
The theory of De is computably isomorphic to the theory of second order
arithmetic Z2: there are algorithms that translate a formula ϕ in the language
of partial orders to a formula ψ in the language of second order arithmetic and
vise versa so that:

De |ù ϕ if and only if Z2 |ù ψ.

To translate ψ into ϕ they use their Coding Theorem and prove that it is a
definable property of finitely many parameters ~p that they code a model of
pN,`,ˆ,ă, Cq where C is a unary predicate on N.
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The biinterpretability conjecture

Conjecture
The relation Bi, where Bip~p, cq holds when ~p codes a model of pN,`,ˆ,ă, Cq
and degepCq “ c, is first order definable in De.

Theorem (S 2016 (following Slaman and Woodin))
There is a parameter g such that relation Bi is first order definable in De with
parameter g.

Equivalently,

Corollary
If R is an n-ary relation invariant under ”e and definable in Z2 then
R “ tpdegepA1q, . . .degepAnqq | Z2 |ù RpA1, . . . Anqu is definable in De with
one parameter g.
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Part II: First order definability
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The total enumeration degrees
Proposition. A ďT B iff A‘A is B-c.e. iff A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the enumeration
degrees.

Proposition. The function ι : DT Ñ De, where
ιpdT pAqq “ depA‘Aq,

is an embedding of DT into De.

Definition
A set A is total if A ěe A (or equivalently if A ”e A‘A). An enumeration
degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the set of
total enumeration degrees.

Are the total degrees first order definable?
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Semicomputable sets and natural definability

Jockusch introduced the semicomputable sets as left cuts in computable linear
orderings on N .

Theorem (Jockusch 1968)
Every nonzero Turing degree contains a semicomputable set that is not c.e. or
co-c.e., so every nonzero total degree can be represented as degepAq _ degepAq
for such a set A.

Theorem (Arslanov, Cooper, Kalimullin 2003)
If A is semicomputable and not c.e. or co-c.e. then the degrees a “ degepAq
and ā “ dege pAq are a robust minimal pair:

p@x P Deqrpa_ xq ^ pā_ xq “ xs.
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A definable copy of the Turing degrees

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The pairs of degrees of a semicomputable set and its complement are first
order definable in De. They are maximal robust minimal pairs.
The total enumeration degrees are first order definable

Note! The characterization of the complexity of ThpDeq and Biinterpretability
with parameters for De now follow from the corresponding theorems for DT .

Theorem (Cai, Ganchev, Lempp, Miller, S 2016)
The image of the relation “c.e. in” on Turing degrees is first order definable in
De.
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The continuous degrees
Definition (Lacombe 1957)
A computable metric space is a metric space M together with a countable
dense sequence QM “ tqMn unPω on which the metric is computable, i.e. there
is a computable function that maps a pairs of indices i, j and a precision
ε P Q` to a rational that is within ε of dMpqi, qjq.

Examples:. 2ω, ωω, R, Cr0, 1s, and Hilbert cube r0, 1sω.

Definition
λ : Q` Ñ ω is a name of a point x PM if for all rationals ε ą 0 we have
dMpx, q

M
λpεqq ă ε.

Definition (Miller 2004)
If x and y are members of (possibly different) computable metric spaces, then
x ďr y if there is a uniform way to compute a name for x from a name for y.

This reducibility induces the continuous degrees.
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The continuous degrees
Theorem (Miller 2004)
Every continuous degree contains a point from r0, 1sω and a point from Cr0, 1s.

For α P r0, 1sω, let
Cα “

à

iPω

tq P Q | q ă αpiqu ‘ tq P Q | q ą αpiqu.

Observation. Enumerating Cα is exactly as hard as computing a name for
α. So α ÞÑ Cα induces an embedding of the continuous degrees into the
enumeration degrees.
Elements of 2ω, ωω, and R are mapped onto the total degree of their least
Turing degree name.

Theorem (Miller 2004)
There is a nontotal continuous degree.

Every known proof of this result uses nontrivial topological facts: Brouwer’s
fixed point theorem for multivalued functions on an infinite dimensional space,
or Sperner’s lemma, or results from topological dimension theory.

21 / 1



Topology realized as a structural property
Definition
A Turing degree a is PA

if a computes a complete extension of Peano Arithmetic, or equivalently
if a computes a path in every infinite computable tree.

Theorem (Andrews, Igusa, Miller, S.)
An enumeration degree a is continuous if and only if it is almost total: if x ę a
and x is total then a_ x is total.
The continuous degrees are definable in De.

The degree a is PA above b if a computes a path in every infinite
b-computable tree.

Theorem (Miller 2004)
For total degrees a is PA above b if and only if there is a nontotal continuous
degree c such that b ă c ă a.
The image of the relation “PA above” is first order definable in De.
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The cototal enumeration degrees
Definition
A set A is cototal if A ďe A. A degree is cototal if it contains a cototal set.

The cototal degrees contain the continuous degrees. Not every e-degree is
cototal.

The cototal enumeration degrees are characterized as:
1 The degrees of complements of maximal independent sets in computable

graphs by AGKLMSS 2019.
2 The degrees of complements of maximal antichains in ωăω by McCarthy

2018.
3 The degrees of languages of minimal subshifts by McCarthy 2018.
4 The degrees of sets with good approximations by Miller and S 2018.
5 The degrees of points in computable Gδ topological spaces by Kihara, Ng,

and Pauly 2019.

Problem
Are the cototal degrees first order definable in De?
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Topological classification of classes of e-degrees
Definition (Kihara, Pauly 2018)
A represented space is a pair of a second countable topological space X and
listing of an open basis BX “ tBiuiăω.
A name for a point x P X is an enumeration of the set Nx “ ti | x P Biu.
For x, y P X, say that x ď y if every name for y (uniformly) computes a name
for x.

Thus a represented space X gives rise to a class of e-degrees DX Ă De.

Examples:.
D2ω “ DR is the total enumeration degrees.
Dr0,1sω is the continuous degrees.
DS8 “ De, where S is the Sierpinski topology tH, t1u, t0, 1uu.
DRă , where Ră is the real line with topology generated by tpq,8quqPQ, is
exactly the semicomputable degrees.

Kihara, Ng, and Pauly 2019 investigate DX , where X is the ω-power of the:
cofinite topology on ω, telophase space, double origin space, quasi-Polish Roy
space, irregular lattice space.
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Part III: Automorphisms

and automorphism bases
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Slaman and Woodin’s automorphism analysis

Theorem (Slaman, Woodin 1986)
The Turing degrees have at most countably many automorphisms.
There is a single degree g ď 0p5q that is an automorphism base for DT : if π is
an automorphism such that πpgq “ g then π “ id.
Relations on DT induced by definable relations in Z2 are first order definable
in DT with such a parameter g.
Relations on DT induced by definable relations in Z2 that are furthermore
invariant under automorphism are first order definable in DT (without
parameters).

Theorem (Selman 1971)
a ď b if and only if every total degree above b is above a.
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Implications for the e-degrees

Corollary
The total enumeration degrees form a definable automorphism base for De.

Every nontrivial automorphism of De gives rise to a unique non-trivial
automorphism of DT .
This automorphism preserves the relations “c.e. in” and “PA above”.
De has at most countably many automorphisms.

A single total degree below 0
p5q
e is an automorphism base of De.

Problem
Does every automorphism of DT extend to an automorphism of De?

A positive answer would imply the first order definability (without
parameters) of the relations “c.e. in” and “PA above” in DT .
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Thank you!


