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Understanding the structure of the Turing degrees

1 Understanding the expressive power of the theory of the Turing degrees.

Simpson (1977?) proved: The theory of DT is computably isomorphic to
the theory of second order arithmetic

2 Understanding the definable relations in the structure of the Turing
degrees.

Slaman and Woodin (1995) conjectured: The definable relations in DT

are the ones induced by degree invariant relations on sets definable in
second order arithmetic.

3 Understanding the automorphism group of the Turing degrees.

Slaman and Woodin (1995) conjectured: There are no non-trivial
automorphisms of DT .
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Slaman and Woodin’s automorphism analysis
Theorem (Slaman and Woodin)

There is an element g ≤ 0(5) such that {g} is an automorphism base for the
structure of the Turing degrees DT .

Aut(DT ) is countable and every member has an arithmetically definable
presentation.

Every relation induced by a degree invariant definable relation in Second
order arithmetic is definable with parameters.

Definition
Let A be a structure. A set B ⊆ |A| is an automorphism base for A if
whenever f and g are automorphisms of A such that (∀x ∈ B)(f(x) = g(x)),
then f = g.

Equivalently if f is an automorphism of A and (∀x ∈ B)(f(x) = x) then f is
the identity.
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Local structures of Turing degrees

Definition
R is the substructure of the computably enumerable degrees.

DT (≤ 0′) is the substructure of all degrees that are bounded by 0′, the ∆0
2

Turing degrees.

1 Shore (1981) proved that the theory of DT (≤ 0′) is computably
isomorphic to the theory of first order arithmetic.

2 Harrington and Slaman proved that the theory ofR is computably
isomorphic to the theory of first order arithmetic.
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The local coding theorem

Definition
A set of degrees Z contained in DT (≤ 0′) is uniformly low if it is bounded by
a low degree and there is a sequence {Zi}i<ω, representing the degrees in Z ,
and a computable function f such that {f(i)}∅′ is the Turing jump of⊕

j<i Zj .

Example: If
⊕

i<ω Ai is low then A = {dT (Ai) | i < ω} is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of DT (≤ 0′) then Z is definable from finitely
many parameters in DT (≤ 0′).
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Applications of the coding theorem

We can represent a model of as a partial orderM and embed it in DT (≤ 0′):
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Applications of the coding theorem
So in DT (≤ 0′) we can represent a model of arithmeticM, coded by finitely
many parameters ~p, so that every formula ϕ in the language of arithmetic has
an effective translation into a formula ϕ′ in the language of partial orders and

N |= ϕ ⇐⇒ DT (≤ 0′) |= ϕ′(~p).

If Z ⊆ DT (≤ 0′) is uniformly low and represented by the sequence {Zi}i<ω

then there are parameters that code a model of arithmeticM and a function
ϕ : NM → DT (≤ 0′) such that ϕ(iM) = dT (Zi).

We call such a function an indexing of Z .

Start the construction of your coded model of arithmeticM with a 1-generic
relative to

⊕
i Zi.

1 The sequence C = {dT (Zi)⊕ iM}i<ω is a uniformly low antichain.
2 For all z ∈ Z and nM ∈ NM we have that z ∨ nM ∈ C if and only if
Zn ∈ z.
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Applications of the coding theorem

Theorem (Slaman and Woodin)
There are finitely many ∆0

2 parameters which code a model of arithmeticM
and an indexing of the c.e. degrees: a function ψ : NM → DT (≤ 0′), such
that ψ(eM) = dT (We).

Proof.

Consider the set K =
⊕

e<ωWe. By Sacks’ Splitting theorem there are low
disjoint c.e. sets A and B such that K = A ∪B.

Represent A and B as
⊕

e<ω Ae and
⊕

e<ω Be.

Then A = {dT (Ae) | e < ω} and B = {dT (Be) | e < ω} are uniformly low
and hence can be indexed and dT (We) = dT (Ae) ∨ dT (Be).
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Biinterpretability

Definition
R is biinterpretable with first order arithmetic if there is a definable model of
arithmetic and a definable indexing of the c.e. degrees inR.

Proposition
IfR is biinterpretable with first order arithmetic then:

1 R has no nontrivial automorphisms.
2 The definable relations inR are exactly the ones induced by definable

relations in arithmetic that are closed under Turing equivalence.

9 / 22



Biinterpretability

Definition
R is biinterpretable with first order arithmetic if there is a definable model of
arithmetic and a definable indexing of the c.e. degrees inR.

Proposition
IfR is biinterpretable with first order arithmetic then:

1 R has no nontrivial automorphisms.
2 The definable relations inR are exactly the ones induced by definable

relations in arithmetic that are closed under Turing equivalence.

9 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.
2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed

under Turing reducibility, is definable in DT (≤ 0′) with parameters.

10 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.
2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed

under Turing reducibility, is definable in DT (≤ 0′) with parameters.

10 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.
2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed

under Turing reducibility, is definable in DT (≤ 0′) with parameters.

10 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.
2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed

under Turing reducibility, is definable in DT (≤ 0′) with parameters.

10 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.

2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed
under Turing reducibility, is definable in DT (≤ 0′) with parameters.

10 / 22



Biinterpretability for DT (≤ 0′)

Let Xe be Φ∅
′

e if this is a total binary function and ∅ otherwise.

Given a coded model of arithmeticM, an indexing of the ∆0
2 degrees is a

function ϕ : NM → DT (≤ 0′), such that ϕ(eM) = dT (Xe).

Definition
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic if
there are finitely many parameters that code a model of arithmetic and an
indexing of the ∆0

2 degrees in DT (≤ 0′).

Theorem (Slaman, S)
DT (≤ 0′) is biinterpretable using parameters with first order arithmetic

1 DT (≤ 0′) has only countably many automorphisms.
2 Every relation on DT (≤ 0′), induced by an arithmetical relation, closed

under Turing reducibility, is definable in DT (≤ 0′) with parameters.
10 / 22



Step 1

Theorem
For every ∆0

2 Turing degrees a there are low Turing degrees g1,g2,g3,g4
such that

a = (g1 ∨ g2) ∧ (g3 ∨ g4).

Suppose we had a coded model of arithmeticM and an indexing of the low
degrees, i.e. a function ϕ : NM → DT (≤ 0′), such that:

If e is the index of a low set then ϕ(eM) = dT (Xe).

Then we could define an indexing of the ∆0
2 degrees.

Question
Is every low ∆0

2 Turing degree uniquely positioned relative to the c.e. Turing
degrees?
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Step 2

Theorem
There exists a uniformly low set of Turing degrees Z , such that every low
Turing degree x is uniquely positioned with respect to the c.e. degrees and the
elements of Z .

If x is low and y is another ∆0
2 degree such that y � x then there are c.e.

degrees a1,a2 and ∆0
2 degrees b1,b2, c1, c2 in the set Z and ∆0

2 degrees g1
and g2, such that:

1 gi is the least element below ai which joins bi above ci.

2 x ≤ g1 ∨ g2.
3 y � g1 ∨ g2.
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The enumeration degrees

Definition
A ≤e B if there is a c.e. set W , such that

A = W (B) = {x | ∃D(〈x,D〉 ∈W & D ⊆ B)} .

A ≡e B if A ≤e B and B ≤e A.

The enumeration degree of a set A is de(A) = {B | A ≡e B}.
de(A) ≤ de(B) iff A ≤e B.

The least element: 0e = de(∅), the set of all c.e. sets.

The least upper bound: de(A) ∨ de(B) = de(A⊕B).

The enumeration jump: de(A)′ = de(KA ⊕KA), where
KA = {〈e, x〉 | x ∈We(A)}.
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What connects DT and De

Proposition

A ≤T B ⇔ A⊕A ≤e B ⊕B.

A set A is total if A ≡e A⊕A. An enumeration degree is total if it contains a
total set. The set of total degrees is denoted by T OT .

The embedding ι : DT → De, defined by ι(dT (A)) = de(A⊕A), preserves
the order, the least upper bound and the jump operation.

(DT ,≤T ,∨,′ ,0T ) ∼= (T OT ,≤e,∨,′ ,0e) ⊆ (De,≤e,∨,′ ,0e)

If x ∈ DT then we will call ι(x) the image of x.
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Definability in the enumeration degrees

Theorem (Kalimullin)
The enumeration jump is first order definable in De.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The set of total enumeration degrees is first order definable in the enumeration
degrees.

Definition
A Turing degree a is c.e. in a Turing degree x if some A ∈ a is c.e. in some
X ∈ x.

Theorem (Cai, Ganchev, Lempp, Miller, S)
The image of the relation “ c.e. in ” in the enumeration degrees is first order
definable in De.
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The total degrees as an automorphism base

Theorem (Selman)
A is enumeration reducible to B if and only if
{x ∈ T OT | de(A) ≤ x} ⊇ {x ∈ T OT | de(B) ≤ x}.

Corollary
The total enumeration degrees form a definable automorphism basis of the
enumeration degrees.

If DT is rigid then De is rigid.

The total degrees below 0
(5)
e are an automorphism base of De.

Goal:

Exploit the definability in the e-degrees and in particular of the relation “c.e.
in”, to ‘extend’ any indexing of the image of the c.e. degrees to an indexing of
all total degrees below 0

(5)
e .
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The power of the c.e. degrees in De(≤0′e)

Given parameters ~p that code in De(≤0′e) a standard model of arithmetic and
an indexing of the image of the c.e. degrees, we must show that there is an
indexing of the total enumeration degrees in De(≤0′e), definable from ~p.

1 Every total e-degree in De(≤0′e) is the join of two low enumeration
degrees.

2 The low enumeration degrees are uniquely positioned with respect to the
image of the c.e. degrees and the low co-d.c.e e-degrees.

Definition

An enumeration degree is co-d.c.e if it contains a set of the form We \Wi.

3 The low co-d.c.e. degrees are uniquely positioned with respect to the c.e.
degrees.
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Moving outside of local territory

From an indexing of the total enumeration degrees below 0′e, we must define
an indexing of the total enumeration degrees in:

I =
⋃

x∈T OT ∩De(≤0′
e)

[x,x′].

Definition

Let U〈e1,e2〉 be the set WXe2
e1 ⊕Xe2 .

1 First we will define an indexing that maps eM to the image of dT (Ue).
2 Then using a relativized version of the previous step we will identify all

total enumeration degrees in I.
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Identifying the sets that are c.e. in and above some total x.
Let x ≤ 0′ and a be c.e. in and above x.

1 If 0′ ≤ a then by Shoenfield’s jump inversion theorem a is the jump of
some y < 0′.

2 If 0′ � a then by Sacks’s jump inversion theorem a = c ∨ b, where b
and c are c.e in x, low over x and avoid the cone above 0′.

3 Suppose that 0′ � a and a′ = x′ and let L(x) contain all degrees that
have these properties: c.e. in x, low over x and avoid the cone above 0′.

The image of L(x) is definable in De.

Within L(x) the degree a is uniquely positioned with respect to the
degrees below 0′.

Theorem (Slaman, S)
If a, y are in L(x) and a � y then there are u,v ≤ 0′ such that a ∨ u ≥ v
and y ∨ u � v.

19 / 22
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degrees below 0′.

Theorem (Slaman, S)
If a, y are in L(x) and a � y then there are u,v ≤ 0′ such that a ∨ u ≥ v
and y ∨ u � v.
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Final step

From an indexing of I we must define an indexing of all total degrees below
0′′e .

1 Every Turing degree below 0′′ can be represented as
(x1 ∨ x2) ∧ (x3 ∨ x4) where x′i = 0′′.

2 Every Turing degree below 0′′ which is low over 0′′ can be represented
as (g1 ∨ g2) ∧ (g3 ∨ g4) , where gi ≤ 0′′ are 2-generic degrees.

3 2-generic degrees below 0′′ can be identified by degrees in I.

Theorem (Slaman, S)
There are high degrees h1 and h2, such that for every 2-generic g we have that

g = (g ∨ h1) ∧ (g ∨ h2).

If g ≤ 0′′ then g ∨ hi ∈ [hi,h
′
i].
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And now we iterate!

Theorem
Let n be a natural number and ~p be parameters that index the image of the c.e.
Turing degrees. There is a definable from ~p indexing of the total ∆0

n+1 sets.
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Consequences

1 There is a finite automorphism base for the enumeration degrees
consisting of total ∆0

2 enumeration degrees.

2 The image of the c.e. Turing degrees is an automorphism base for De.
3 If the structure of the c.e. Turing degrees is rigid then so is the structure

of the enumeration degrees.

Question
1 Can we carry out this proof in the Turing degrees assuming that the

relation c.e. in is definable?
2 What are the automorphism bases of the local structure De(≤0′e)?
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