Degree structures and Arithmetic

Mariya I. Soskova¹

Sofia University

Southern Wisconsin Logic Colloquium

¹Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and Sofia University Science Fund project 81/2015.

• Understanding the expressive power of the theory of the Turing degrees.

Understanding the definable relations in the structure of the Turing degrees.

Understanding the automorphism group of the Turing degrees.

- Understanding the expressive power of the theory of the Turing degrees.
 - ▶ Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.

Output
Understanding the automorphism group of the Turing degrees.

- Understanding the expressive power of the theory of the Turing degrees.
 - ▶ Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - ▶ Slaman and Woodin (1991) conjectured: The definable relations in \mathcal{D}_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Understanding the automorphism group of the Turing degrees.

- Understanding the expressive power of the theory of the Turing degrees.
 - ▶ Simpson (1977) proved: The theory of \mathcal{D}_T is computably isomorphic to the theory of second order arithmetic
- Understanding the definable relations in the structure of the Turing degrees.
 - ▶ Slaman and Woodin (1991) conjectured: The definable relations in \mathcal{D}_T are the ones induced by degree invariant relations on sets definable in second order arithmetic.
- Understanding the automorphism group of the Turing degrees.
 - ▶ Slaman and Woodin (1991) conjectured: There are no non-trivial automorphisms of \mathcal{D}_T .

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Definition

Let $\mathcal A$ be a structure. A set $B\subseteq |\mathcal A|$ is an automorphism base for $\mathcal A$ if whenever f and g are automorphisms of $\mathcal A$ such that $(\forall x\in B)(f(x)=g(x))$, then f=g.

Theorem (Slaman and Woodin)

There is an element $\mathbf{g} \leq \mathbf{0}^{(5)}$ such that $\{\mathbf{g}\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T .

 $Aut(\mathcal{D}_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

Definition

Let \mathcal{A} be a structure. A set $B \subseteq |\mathcal{A}|$ is an automorphism base for \mathcal{A} if whenever f and g are automorphisms of \mathcal{A} such that $(\forall x \in B)(f(x) = g(x))$, then f = g.

Equivalently if f is an automorphism of $\mathcal A$ and $(\forall x \in B)(f(x) = x)$ then f is the identity.

Definition

 $\ensuremath{\mathcal{R}}$ is the substructure of the computably enumerable degrees.

Definition

 ${\cal R}$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

Definition

 ${\cal R}$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0'})$ is the substructure of all degrees that are bounded by $\mathbf{0'}$, the Δ_2^0 Turing degrees.

• Shore (1981) proved that the theory of $\mathcal{D}_T(\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.

Definition

 $\ensuremath{\mathcal{R}}$ is the substructure of the computably enumerable degrees.

 $\mathcal{D}_T(\leq \mathbf{0}')$ is the substructure of all degrees that are bounded by $\mathbf{0}'$, the Δ_2^0 Turing degrees.

- Shore (1981) proved that the theory of $\mathcal{D}_T(\leq \mathbf{0}')$ is computably isomorphic to the theory of first order arithmetic.
- ullet Harrington and Slaman proved that the theory of $\mathcal R$ is computably isomorphic to the theory of first order arithmetic.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i< i} Z_j$.

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i\leq i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

Definition

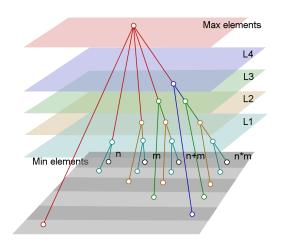
A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq \mathbf{0}')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z} , and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{i< i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A}=\{d_T(A_i)\mid i<\omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If \mathcal{Z} is a uniformly low subset of $\mathcal{D}_T(\leq \mathbf{0}')$ then \mathcal{Z} is definable from finitely many parameters in $\mathcal{D}_T(\leq \mathbf{0}')$.

We can represent a model of as a partial order \mathcal{M} and embed it in $\mathcal{D}_T(\leq \mathbf{0}')$:



So in $\mathcal{D}_T(\leq \mathbf{0}')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

So in $\mathcal{D}_T(\leq \mathbf{0}')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

So in $\mathcal{D}_T(\leq \mathbf{0}')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of Z.

So in $\mathcal{D}_T(\leq 0')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of Z.

Start the construction of your coded model of arithmetic \mathcal{M} with a 1-generic relative to $\bigoplus_i Z_i$.

So in $\mathcal{D}_T(\leq 0')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

If $Z \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of Z.

Start the construction of your coded model of arithmetic \mathcal{M} with a 1-generic relative to $\bigoplus_i Z_i$.

• The sequence $\mathcal{C} = \{d_T(Z_i) \oplus i^{\mathcal{M}}\}_{i < \omega}$ is a uniformly low antichain.

So in $\mathcal{D}_T(\leq \mathbf{0}')$ we can represent a model of arithmetic \mathcal{M} , coded by finitely many parameters \vec{p} , so that every formula φ in the language of arithmetic has an effective translation into a formula φ' in the language of partial orders and

$$\mathbb{N} \models \varphi \iff \mathcal{D}_T(\leq \mathbf{0}') \models \varphi'(\vec{p}).$$

If $\mathcal{Z} \subseteq \mathcal{D}_T(\leq \mathbf{0}')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of Z.

Start the construction of your coded model of arithmetic \mathcal{M} with a 1-generic relative to $\bigoplus_i Z_i$.

- The sequence $\mathcal{C} = \{d_T(Z_i) \oplus i^{\mathcal{M}}\}_{i < \omega}$ is a uniformly low antichain.
- **②** For all $\mathbf{z} \in \mathcal{Z}$ and $n^{\mathcal{M}} \in \mathbb{N}^{\mathcal{M}}$ we have that $\mathbf{z} \vee n^{\mathcal{M}} \in \mathcal{C}$ if and only if $Z_n \in \mathbf{z}$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Proof.

Consider the set $K = \bigoplus_{e < \omega} W_e$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Proof.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Proof.

Consider the set $K=\bigoplus_{e<\omega}W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K=A\cup B$.

Represent A and B as $\bigoplus_{e<\omega} A_e$ and $\bigoplus_{e<\omega} B_e$.

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Proof.

Consider the set $K = \bigoplus_{e < \omega} W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K = A \cup B$.

Represent A and B as $\bigoplus_{e<\omega} A_e$ and $\bigoplus_{e<\omega} B_e$.

Then $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence can be indexed

Theorem (Slaman and Woodin)

There are finitely many Δ_2^0 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\psi(e^{\mathcal{M}}) = d_T(W_e)$.

Proof.

Consider the set $K=\bigoplus_{e<\omega}W_e$. By Sacks' Splitting theorem there are low disjoint c.e. sets A and B such that $K=A\cup B$.

Represent A and B as $\bigoplus_{e<\omega} A_e$ and $\bigoplus_{e<\omega} B_e$.

Then $\mathcal{A} = \{d_T(A_e) \mid e < \omega\}$ and $\mathcal{B} = \{d_T(B_e) \mid e < \omega\}$ are uniformly low and hence can be indexed and $d_T(W_e) = d_T(A_e) \vee d_T(B_e)$.

Biinterpretability

Definition

 \mathcal{R} is biinterpretable with first order arithmetic if there is a definable model of arithmetic and a definable indexing of the c.e. degrees in \mathcal{R} .

Biinterpretability

Definition

 \mathcal{R} is biinterpretable with first order arithmetic if there is a definable model of arithmetic and a definable indexing of the c.e. degrees in \mathcal{R} .

Proposition

If R is biinterpretable with first order arithmetic then:

- lacktriangledown has no nontrivial automorphisms.
- ullet The definable relations in \mathcal{R} are exactly the ones induced by definable relations in arithmetic that are closed under Turing equivalence.

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Given a coded model of arithmetic \mathcal{M} , an indexing of the Δ_2^0 degrees is a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Given a coded model of arithmetic \mathcal{M} , an indexing of the Δ_2^0 degrees is a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0'})$, such that $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Definition

 $\mathcal{D}_T(\leq \mathbf{0'})$ is biinterpretable using parameters with first order arithmetic if there are finitely many parameters that code a model of arithmetic and an indexing of the Δ_2^0 degrees in $\mathcal{D}_T(\leq \mathbf{0'})$.

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Given a coded model of arithmetic \mathcal{M} , an indexing of the Δ_2^0 degrees is a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0'})$, such that $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic if there are finitely many parameters that code a model of arithmetic and an indexing of the Δ_2^0 degrees in $\mathcal{D}_T(\leq \mathbf{0}')$.

Theorem (Slaman, S)

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic

Biinterpretability for $\mathcal{D}_T(\leq \mathbf{0}')$

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Given a coded model of arithmetic \mathcal{M} , an indexing of the Δ_2^0 degrees is a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0'})$, such that $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic if there are finitely many parameters that code a model of arithmetic and an indexing of the Δ_2^0 degrees in $\mathcal{D}_T(\leq \mathbf{0}')$.

Theorem (Slaman, S)

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic

① $\mathcal{D}_T(\leq \mathbf{0}')$ has only countably many automorphisms.

Biinterpretability for $\mathcal{D}_T(\leq \mathbf{0}')$

Let X_e be $\Phi_e^{\emptyset'}$ if this is a total binary function and \emptyset otherwise.

Given a coded model of arithmetic \mathcal{M} , an indexing of the Δ_2^0 degrees is a function $\varphi: \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0'})$, such that $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Definition

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic if there are finitely many parameters that code a model of arithmetic and an indexing of the Δ_2^0 degrees in $\mathcal{D}_T(\leq \mathbf{0}')$.

Theorem (Slaman, S)

 $\mathcal{D}_T(\leq \mathbf{0}')$ is biinterpretable using parameters with first order arithmetic

- **1** $\mathcal{D}_T(\leq \mathbf{0}')$ has only countably many automorphisms.
- ② Every relation on $\mathcal{D}_T(\leq \mathbf{0}')$, induced by an arithmetical relation, closed under Turing reducibility, is definable in $\mathcal{D}_T(\leq \mathbf{0}')$ with parameters.

Theorem

For every Δ_2^0 Turing degrees a there are low Turing degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$ such that

$$\mathbf{a} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$$

Theorem

For every Δ_2^0 Turing degrees **a** there are low Turing degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$ such that

$$\mathbf{a} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$$

Suppose we had a coded model of arithmetic \mathcal{M} and an indexing of the low degrees,

Theorem

For every Δ_2^0 Turing degrees a there are low Turing degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$ such that

$$\mathbf{a} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$$

Suppose we had a coded model of arithmetic \mathcal{M} and an indexing of the low degrees, i.e. a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T (\leq \mathbf{0}')$, such that:

If e is the index of a low set then $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Theorem

For every Δ_2^0 Turing degrees a there are low Turing degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$ such that

$$\mathbf{a} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$$

Suppose we had a coded model of arithmetic \mathcal{M} and an indexing of the low degrees, i.e. a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that:

If e is the index of a low set then $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Then we could define an indexing of the Δ_2^0 degrees.

Theorem

For every Δ_2^0 Turing degrees **a** there are low Turing degrees $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4$ such that

$$\mathbf{a} = (\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4).$$

Suppose we had a coded model of arithmetic \mathcal{M} and an indexing of the low degrees, i.e. a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq \mathbf{0}')$, such that:

If e is the index of a low set then $\varphi(e^{\mathcal{M}}) = d_T(X_e)$.

Then we could define an indexing of the Δ_2^0 degrees.

Question

Is every low Δ_2^0 Turing degree uniquely positioned relative to the c.e. Turing degrees?

Theorem

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree \mathbf{x} is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

Theorem

There exists a uniformly low set of Turing degrees \mathcal{Z} , such that every low Turing degree \mathbf{x} is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z} .

If \mathbf{x} is low and \mathbf{y} is another Δ_2^0 degree such that $\mathbf{y} \nleq \mathbf{x}$ then there are c.e. degrees $\mathbf{a}_1, \mathbf{a}_2$ and Δ_2^0 degrees $\mathbf{b}_1, \mathbf{b}_2, \mathbf{c}_1, \mathbf{c}_2$ in the set \mathcal{Z} and Δ_2^0 degrees \mathbf{g}_1 and \mathbf{g}_2 , such that:

- $\mathbf{0}$ \mathbf{g}_i is the least element below \mathbf{a}_i which joins \mathbf{b}_i above \mathbf{c}_i .
- **2** $\mathbf{x} \leq \mathbf{g}_1 \vee \mathbf{g}_2$.
- **3** $y \not \leq g_1 \lor g_2$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

• $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.

Definition

$$A = W(B) = \{x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B)\}.$$

- $A \equiv_e B$ if $A \leq_e B$ and $B \leq_e A$.
- The enumeration degree of a set A is $d_e(A) = \{B \mid A \equiv_e B\}$.
- $d_e(A) \leq d_e(B)$ iff $A \leq_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}} = d_e(\emptyset)$, the set of all c.e. sets.
- The least upper bound: $d_e(A) \vee d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{\langle e, x \rangle \mid x \in W_e(A)\}$.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \vee, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$$

Proposition

$$A \leq_T B \Leftrightarrow A \oplus \overline{A} \leq_e B \oplus \overline{B}.$$

A set A is *total* if $A \equiv_e A \oplus \overline{A}$. An enumeration degree is *total* if it contains a total set. The set of total degrees is denoted by \mathcal{TOT} .

The embedding $\iota: \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_T, \leq_T, \vee, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \vee, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \vee, ', \mathbf{0}_e)$$

If $\mathbf{x} \in \mathcal{D}_T$ then we will call $\iota(\mathbf{x})$ the image of \mathbf{x} .

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Definition

A Turing degree ${\bf a}$ is c.e. in a Turing degree ${\bf x}$ if some $A\in {\bf a}$ is c.e. in some $X\in {\bf x}$.

Theorem (Kalimullin)

The enumeration jump is first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S)

The set of total enumeration degrees is first order definable in the enumeration degrees.

Definition

A Turing degree ${\bf a}$ is c.e. in a Turing degree ${\bf x}$ if some $A \in {\bf a}$ is c.e. in some $X \in {\bf x}$.

Theorem (Cai, Ganchev, Lempp, Miller, S)

The image of the relation "c.e. in" in the enumeration degrees is first order definable in \mathcal{D}_e .

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

• If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

Theorem (Selman)

A is enumeration reducible to B if and only if

$$\{\mathbf{x} \in \mathcal{TOT} \mid d_e(A) \leq \mathbf{x}\} \supseteq \{\mathbf{x} \in \mathcal{TOT} \mid d_e(B) \leq \mathbf{x}\}.$$

Corollary

The total enumeration degrees form a definable automorphism basis of the enumeration degrees.

- If \mathcal{D}_T is rigid then \mathcal{D}_e is rigid.
- The total degrees below $\mathbf{0}_e^{(5)}$ are an automorphism base of \mathcal{D}_e .

Goal:

Exploit the definability in the e-degrees and in particular of the relation "c.e. in", to 'extend' any indexing of the image of the c.e. degrees to an indexing of all total degrees below $\mathbf{0}_e^{(5)}$.

Given parameters \vec{p} that code in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a standard model of arithmetic and an indexing of the image of the c.e. degrees, we must show that there is an indexing of the total enumeration degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$, definable from \vec{p} .

Given parameters \vec{p} that code in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a standard model of arithmetic and an indexing of the image of the c.e. degrees, we must show that there is an indexing of the total enumeration degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$, definable from \vec{p} .

• Every total e-degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the join of two low enumeration degrees.

Given parameters \vec{p} that code in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a standard model of arithmetic and an indexing of the image of the c.e. degrees, we must show that there is an indexing of the total enumeration degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$, definable from \vec{p} .

- Every total e-degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the join of two low enumeration degrees.
- ② The low enumeration degrees are uniquely positioned with respect to the image of the c.e. degrees and the low co-d.c.e e-degrees.

Given parameters \vec{p} that code in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a standard model of arithmetic and an indexing of the image of the c.e. degrees, we must show that there is an indexing of the total enumeration degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$, definable from \vec{p} .

- Every total e-degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the join of two low enumeration degrees.
- ② The low enumeration degrees are uniquely positioned with respect to the image of the c.e. degrees and the low co-d.c.e e-degrees.

Definition

An enumeration degree is co-d.c.e if it contains a set of the form $\overline{W_e \setminus W_i}$.

Given parameters \vec{p} that code in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ a standard model of arithmetic and an indexing of the image of the c.e. degrees, we must show that there is an indexing of the total enumeration degrees in $\mathcal{D}_e(\leq \mathbf{0}'_e)$, definable from \vec{p} .

- Every total e-degree in $\mathcal{D}_e(\leq \mathbf{0}'_e)$ is the join of two low enumeration degrees.
- The low enumeration degrees are uniquely positioned with respect to the image of the c.e. degrees and the low co-d.c.e e-degrees.

Definition

An enumeration degree is co-d.c.e if it contains a set of the form $\overline{W_e \setminus W_i}$.

The low co-d.c.e. degrees are uniquely positioned with respect to the c.e. degrees.

Moving outside of local territory

From an indexing of the total enumeration degrees below $\mathbf{0}'_e$, we must define an indexing of the total enumeration degrees in:

$$\mathcal{I} = igcup_{\mathbf{x} \in \mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}_e')} [\mathbf{x}, \mathbf{x}'].$$

Moving outside of local territory

From an indexing of the total enumeration degrees below $\mathbf{0}_e'$, we must define an indexing of the total enumeration degrees in:

$$\mathcal{I} = igcup_{\mathbf{x} \in \mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}'_e)} [\mathbf{x}, \mathbf{x}'].$$

Definition

Let $U_{\langle e_1,e_2\rangle}$ be the set $W_{e_1}^{X_{e_2}}\oplus X_{e_2}.$

Moving outside of local territory

From an indexing of the total enumeration degrees below $\mathbf{0}_e'$, we must define an indexing of the total enumeration degrees in:

$$\mathcal{I} = igcup_{\mathbf{x} \in \mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}_e')} [\mathbf{x}, \mathbf{x}'].$$

Definition

Let $U_{\langle e_1, e_2 \rangle}$ be the set $W_{e_1}^{X_{e_2}} \oplus X_{e_2}$.

• First we will define an indexing that maps $e^{\mathcal{M}}$ to the image of $d_T(U_e)$.

Moving outside of local territory

From an indexing of the total enumeration degrees below $\mathbf{0}'_e$, we must define an indexing of the total enumeration degrees in:

$$\mathcal{I} = igcup_{\mathbf{x} \in \mathcal{TOT} \cap \mathcal{D}_e(\leq \mathbf{0}_e')} [\mathbf{x}, \mathbf{x}'].$$

Definition

Let $U_{\langle e_1,e_2\rangle}$ be the set $W_{e_1}^{X_{e_2}}\oplus X_{e_2}.$

- First we will define an indexing that maps $e^{\mathcal{M}}$ to the image of $d_T(U_e)$.
- ② Then using a relativized version of the previous step we will identify all total enumeration degrees in \mathcal{I} .

Identifying the sets that are c.e. in and above some total x. Let $x \le 0'$ and a be c.e. in and above x.

Let $x \le 0'$ and a be c.e. in and above x.

① If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.

Let x < 0' and a be c.e. in and above x.

- If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.
- ② If $0' \nleq a$ then by Sacks's jump inversion theorem $a = c \lor b$, where b and c are c.e in x, low over x and avoid the cone above 0'.

Let $x \le 0'$ and a be c.e. in and above x.

- If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.
- ② If $0' \nleq a$ then by Sacks's jump inversion theorem $a = c \lor b$, where b and c are c.e in x, low over x and avoid the cone above 0'.
- Suppose that $\mathbf{0}'$ \nleq \mathbf{a} and $\mathbf{a}' = \mathbf{x}'$ and let $L(\mathbf{x})$ contain all degrees that have these properties: c.e. in \mathbf{x} , low over \mathbf{x} and avoid the cone above $\mathbf{0}'$.

Let $x \le 0'$ and a be c.e. in and above x.

- If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.
- ② If $0' \nleq a$ then by Sacks's jump inversion theorem $a = c \lor b$, where b and c are c.e in x, low over x and avoid the cone above 0'.
- Suppose that 0' ≤ a and a' = x' and let L(x) contain all degrees that have these properties: c.e. in x, low over x and avoid the cone above 0'.
 The image of L(x) is definable in D_e.

Let x < 0' and a be c.e. in and above x.

- If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.
- ② If $0' \nleq a$ then by Sacks's jump inversion theorem $a = c \lor b$, where b and c are c.e in x, low over x and avoid the cone above 0'.
- **③** Suppose that $\mathbf{0}' \nleq \mathbf{a}$ and $\mathbf{a}' = \mathbf{x}'$ and let $L(\mathbf{x})$ contain all degrees that have these properties: c.e. in \mathbf{x} , low over \mathbf{x} and avoid the cone above $\mathbf{0}'$.

The image of $L(\mathbf{x})$ is definable in \mathcal{D}_e .

Within $L(\mathbf{x})$ the degree \mathbf{a} is uniquely positioned with respect to the degrees below $\mathbf{0}'$.

Let $x \le 0'$ and a be c.e. in and above x.

- If $0' \le a$ then by Shoenfield's jump inversion theorem a is the jump of some y < 0'.
- ② If $0' \nleq a$ then by Sacks's jump inversion theorem $a = c \lor b$, where b and c are c.e in x, low over x and avoid the cone above 0'.
- Suppose that $\mathbf{0}' \nleq \mathbf{a}$ and $\mathbf{a}' = \mathbf{x}'$ and let $L(\mathbf{x})$ contain all degrees that have these properties: c.e. in \mathbf{x} , low over \mathbf{x} and avoid the cone above $\mathbf{0}'$.

The image of $L(\mathbf{x})$ is definable in \mathcal{D}_e .

Within $L(\mathbf{x})$ the degree \mathbf{a} is uniquely positioned with respect to the degrees below $\mathbf{0}'$.

Theorem (Slaman, S)

If \mathbf{a} , \mathbf{y} are in $L(\mathbf{x})$ and $\mathbf{a} \nleq \mathbf{y}$ then there are \mathbf{u} , $\mathbf{v} \leq \mathbf{0}'$ such that $\mathbf{a} \vee \mathbf{u} \geq \mathbf{v}$ and $\mathbf{y} \vee \mathbf{u} \ngeq \mathbf{v}$.

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_e$.

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_e$.

• Every Turing degree below $\mathbf{0}''$ can be represented as $(\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_4)$ where $\mathbf{x}_i' = \mathbf{0}''$.

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_{e}$.

- Every Turing degree below $\mathbf{0}''$ can be represented as $(\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_4)$ where $\mathbf{x}_i' = \mathbf{0}''$.
- ② Every Turing degree below $\mathbf{0}''$ which is low over $\mathbf{0}''$ can be represented as $(\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$, where $\mathbf{g}_i \leq \mathbf{0}''$ are 2-generic degrees.

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_{e}$.

- Every Turing degree below $\mathbf{0}''$ can be represented as $(\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_4)$ where $\mathbf{x}_i' = \mathbf{0}''$.
- ② Every Turing degree below $\mathbf{0}''$ which is low over $\mathbf{0}''$ can be represented as $(\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$, where $\mathbf{g}_i \leq \mathbf{0}''$ are 2-generic degrees.
- **3** 2-generic degrees below $\mathbf{0}''$ can be identified by degrees in \mathcal{I} .

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_e$.

- Every Turing degree below $\mathbf{0}''$ can be represented as $(\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_4)$ where $\mathbf{x}_i' = \mathbf{0}''$.
- **②** Every Turing degree below $\mathbf{0}''$ which is low over $\mathbf{0}''$ can be represented as $(\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$, where $\mathbf{g}_i \leq \mathbf{0}''$ are 2-generic degrees.
- **3** 2-generic degrees below $\mathbf{0}''$ can be identified by degrees in \mathcal{I} .

Theorem (Slaman, S)

There are high degrees h_1 and h_2 , such that for every 2-generic g we have that

$$\mathbf{g} = (\mathbf{g} \vee \mathbf{h}_1) \wedge (\mathbf{g} \vee \mathbf{h}_2).$$

From an indexing of \mathcal{I} we must define an indexing of all total degrees below $\mathbf{0}''_e$.

- Every Turing degree below $\mathbf{0}''$ can be represented as $(\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_4)$ where $\mathbf{x}_i' = \mathbf{0}''$.
- ② Every Turing degree below $\mathbf{0}''$ which is low over $\mathbf{0}''$ can be represented as $(\mathbf{g}_1 \vee \mathbf{g}_2) \wedge (\mathbf{g}_3 \vee \mathbf{g}_4)$, where $\mathbf{g}_i \leq \mathbf{0}''$ are 2-generic degrees.
- **3** 2-generic degrees below $\mathbf{0}''$ can be identified by degrees in \mathcal{I} .

Theorem (Slaman, S)

There are high degrees h_1 and h_2 , such that for every 2-generic g we have that

$$\mathbf{g} = (\mathbf{g} \vee \mathbf{h}_1) \wedge (\mathbf{g} \vee \mathbf{h}_2).$$

If
$$g \leq 0''$$
 then $g \vee h_i \in [h_i, h'_i]$.

And now we iterate!

Theorem

Let n be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ_{n+1}^0 sets.

• There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees.

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees.
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees.
- ② The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees.
- **②** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- **③** If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

• Can we carry out this proof in the Turing degrees assuming that the relation c.e. in is definable?

- There is a finite automorphism base for the enumeration degrees consisting of total Δ_2^0 enumeration degrees.
- **②** The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e .
- 3 If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

- Can we carry out this proof in the Turing degrees assuming that the relation c.e. in is definable?
- **②** What are the automorphism bases of the local structure $\mathcal{D}_e(\leq \mathbf{0}'_e)$?